mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-28 11:57:28 +00:00
076dd8eb2e
0. For spin events report time spent spinning, not a loop count. While loop count is much easier and cheaper to obtain it is hard to reason about the reported numbers, espcially for adaptive locks where both spinning and sleeping can happen. So, it's better to compare apples and apples. 1. Teach lockstat about FreeBSD rw locks. This is done in part by changing the corresponding probes and in part by changing what probes lockstat should expect. 2. Teach lockstat that rw locks are adaptive and can spin on FreeBSD. 3. Report lock acquisition events for successful rw try-lock operations. 4. Teach lockstat about FreeBSD sx locks. Reporting of events for those locks completely mirrors rw locks. 5. Report spin and block events before acquisition event. This is behavior documented for the upstream, so it makes sense to stick to it. Note that because of FreeBSD adaptive lock implementations both the spin and block events may be reported for the same acquisition while the upstream reports only one of them. Differential Revision: https://reviews.freebsd.org/D2727 Reviewed by: markj MFC after: 17 days Relnotes: yes Sponsored by: ClusterHQ
1256 lines
34 KiB
C
1256 lines
34 KiB
C
/*-
|
|
* Copyright (c) 2007 Attilio Rao <attilio@freebsd.org>
|
|
* Copyright (c) 2001 Jason Evans <jasone@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer as
|
|
* the first lines of this file unmodified other than the possible
|
|
* addition of one or more copyright notices.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Shared/exclusive locks. This implementation attempts to ensure
|
|
* deterministic lock granting behavior, so that slocks and xlocks are
|
|
* interleaved.
|
|
*
|
|
* Priority propagation will not generally raise the priority of lock holders,
|
|
* so should not be relied upon in combination with sx locks.
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_hwpmc_hooks.h"
|
|
#include "opt_no_adaptive_sx.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#if defined(SMP) && !defined(NO_ADAPTIVE_SX)
|
|
#include <machine/cpu.h>
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#if defined(SMP) && !defined(NO_ADAPTIVE_SX)
|
|
#define ADAPTIVE_SX
|
|
#endif
|
|
|
|
CTASSERT((SX_NOADAPTIVE & LO_CLASSFLAGS) == SX_NOADAPTIVE);
|
|
|
|
#ifdef HWPMC_HOOKS
|
|
#include <sys/pmckern.h>
|
|
PMC_SOFT_DECLARE( , , lock, failed);
|
|
#endif
|
|
|
|
/* Handy macros for sleep queues. */
|
|
#define SQ_EXCLUSIVE_QUEUE 0
|
|
#define SQ_SHARED_QUEUE 1
|
|
|
|
/*
|
|
* Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We
|
|
* drop Giant anytime we have to sleep or if we adaptively spin.
|
|
*/
|
|
#define GIANT_DECLARE \
|
|
int _giantcnt = 0; \
|
|
WITNESS_SAVE_DECL(Giant) \
|
|
|
|
#define GIANT_SAVE() do { \
|
|
if (mtx_owned(&Giant)) { \
|
|
WITNESS_SAVE(&Giant.lock_object, Giant); \
|
|
while (mtx_owned(&Giant)) { \
|
|
_giantcnt++; \
|
|
mtx_unlock(&Giant); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
#define GIANT_RESTORE() do { \
|
|
if (_giantcnt > 0) { \
|
|
mtx_assert(&Giant, MA_NOTOWNED); \
|
|
while (_giantcnt--) \
|
|
mtx_lock(&Giant); \
|
|
WITNESS_RESTORE(&Giant.lock_object, Giant); \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Returns true if an exclusive lock is recursed. It assumes
|
|
* curthread currently has an exclusive lock.
|
|
*/
|
|
#define sx_recursed(sx) ((sx)->sx_recurse != 0)
|
|
|
|
static void assert_sx(const struct lock_object *lock, int what);
|
|
#ifdef DDB
|
|
static void db_show_sx(const struct lock_object *lock);
|
|
#endif
|
|
static void lock_sx(struct lock_object *lock, uintptr_t how);
|
|
#ifdef KDTRACE_HOOKS
|
|
static int owner_sx(const struct lock_object *lock, struct thread **owner);
|
|
#endif
|
|
static uintptr_t unlock_sx(struct lock_object *lock);
|
|
|
|
struct lock_class lock_class_sx = {
|
|
.lc_name = "sx",
|
|
.lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE,
|
|
.lc_assert = assert_sx,
|
|
#ifdef DDB
|
|
.lc_ddb_show = db_show_sx,
|
|
#endif
|
|
.lc_lock = lock_sx,
|
|
.lc_unlock = unlock_sx,
|
|
#ifdef KDTRACE_HOOKS
|
|
.lc_owner = owner_sx,
|
|
#endif
|
|
};
|
|
|
|
#ifndef INVARIANTS
|
|
#define _sx_assert(sx, what, file, line)
|
|
#endif
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
static u_int asx_retries = 10;
|
|
static u_int asx_loops = 10000;
|
|
static SYSCTL_NODE(_debug, OID_AUTO, sx, CTLFLAG_RD, NULL, "sxlock debugging");
|
|
SYSCTL_UINT(_debug_sx, OID_AUTO, retries, CTLFLAG_RW, &asx_retries, 0, "");
|
|
SYSCTL_UINT(_debug_sx, OID_AUTO, loops, CTLFLAG_RW, &asx_loops, 0, "");
|
|
#endif
|
|
|
|
void
|
|
assert_sx(const struct lock_object *lock, int what)
|
|
{
|
|
|
|
sx_assert((const struct sx *)lock, what);
|
|
}
|
|
|
|
void
|
|
lock_sx(struct lock_object *lock, uintptr_t how)
|
|
{
|
|
struct sx *sx;
|
|
|
|
sx = (struct sx *)lock;
|
|
if (how)
|
|
sx_slock(sx);
|
|
else
|
|
sx_xlock(sx);
|
|
}
|
|
|
|
uintptr_t
|
|
unlock_sx(struct lock_object *lock)
|
|
{
|
|
struct sx *sx;
|
|
|
|
sx = (struct sx *)lock;
|
|
sx_assert(sx, SA_LOCKED | SA_NOTRECURSED);
|
|
if (sx_xlocked(sx)) {
|
|
sx_xunlock(sx);
|
|
return (0);
|
|
} else {
|
|
sx_sunlock(sx);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
int
|
|
owner_sx(const struct lock_object *lock, struct thread **owner)
|
|
{
|
|
const struct sx *sx = (const struct sx *)lock;
|
|
uintptr_t x = sx->sx_lock;
|
|
|
|
*owner = (struct thread *)SX_OWNER(x);
|
|
return ((x & SX_LOCK_SHARED) != 0 ? (SX_SHARERS(x) != 0) :
|
|
(*owner != NULL));
|
|
}
|
|
#endif
|
|
|
|
void
|
|
sx_sysinit(void *arg)
|
|
{
|
|
struct sx_args *sargs = arg;
|
|
|
|
sx_init_flags(sargs->sa_sx, sargs->sa_desc, sargs->sa_flags);
|
|
}
|
|
|
|
void
|
|
sx_init_flags(struct sx *sx, const char *description, int opts)
|
|
{
|
|
int flags;
|
|
|
|
MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK |
|
|
SX_NOPROFILE | SX_NOADAPTIVE | SX_NEW)) == 0);
|
|
ASSERT_ATOMIC_LOAD_PTR(sx->sx_lock,
|
|
("%s: sx_lock not aligned for %s: %p", __func__, description,
|
|
&sx->sx_lock));
|
|
|
|
flags = LO_SLEEPABLE | LO_UPGRADABLE;
|
|
if (opts & SX_DUPOK)
|
|
flags |= LO_DUPOK;
|
|
if (opts & SX_NOPROFILE)
|
|
flags |= LO_NOPROFILE;
|
|
if (!(opts & SX_NOWITNESS))
|
|
flags |= LO_WITNESS;
|
|
if (opts & SX_RECURSE)
|
|
flags |= LO_RECURSABLE;
|
|
if (opts & SX_QUIET)
|
|
flags |= LO_QUIET;
|
|
if (opts & SX_NEW)
|
|
flags |= LO_NEW;
|
|
|
|
flags |= opts & SX_NOADAPTIVE;
|
|
lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags);
|
|
sx->sx_lock = SX_LOCK_UNLOCKED;
|
|
sx->sx_recurse = 0;
|
|
}
|
|
|
|
void
|
|
sx_destroy(struct sx *sx)
|
|
{
|
|
|
|
KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held"));
|
|
KASSERT(sx->sx_recurse == 0, ("sx lock still recursed"));
|
|
sx->sx_lock = SX_LOCK_DESTROYED;
|
|
lock_destroy(&sx->lock_object);
|
|
}
|
|
|
|
int
|
|
_sx_slock(struct sx *sx, int opts, const char *file, int line)
|
|
{
|
|
int error = 0;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (0);
|
|
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
|
|
("sx_slock() by idle thread %p on sx %s @ %s:%d",
|
|
curthread, sx->lock_object.lo_name, file, line));
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_slock() of destroyed sx @ %s:%d", file, line));
|
|
WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line, NULL);
|
|
error = __sx_slock(sx, opts, file, line);
|
|
if (!error) {
|
|
LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line);
|
|
WITNESS_LOCK(&sx->lock_object, 0, file, line);
|
|
curthread->td_locks++;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sx_try_slock_(struct sx *sx, const char *file, int line)
|
|
{
|
|
uintptr_t x;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (1);
|
|
|
|
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
|
|
("sx_try_slock() by idle thread %p on sx %s @ %s:%d",
|
|
curthread, sx->lock_object.lo_name, file, line));
|
|
|
|
for (;;) {
|
|
x = sx->sx_lock;
|
|
KASSERT(x != SX_LOCK_DESTROYED,
|
|
("sx_try_slock() of destroyed sx @ %s:%d", file, line));
|
|
if (!(x & SX_LOCK_SHARED))
|
|
break;
|
|
if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) {
|
|
LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line);
|
|
WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line);
|
|
LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_SX_SLOCK_ACQUIRE,
|
|
sx, 0, 0, file, line);
|
|
curthread->td_locks++;
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_sx_xlock(struct sx *sx, int opts, const char *file, int line)
|
|
{
|
|
int error = 0;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (0);
|
|
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
|
|
("sx_xlock() by idle thread %p on sx %s @ %s:%d",
|
|
curthread, sx->lock_object.lo_name, file, line));
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_xlock() of destroyed sx @ %s:%d", file, line));
|
|
WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file,
|
|
line, NULL);
|
|
error = __sx_xlock(sx, curthread, opts, file, line);
|
|
if (!error) {
|
|
LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse,
|
|
file, line);
|
|
WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
|
|
curthread->td_locks++;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sx_try_xlock_(struct sx *sx, const char *file, int line)
|
|
{
|
|
int rval;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (1);
|
|
|
|
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
|
|
("sx_try_xlock() by idle thread %p on sx %s @ %s:%d",
|
|
curthread, sx->lock_object.lo_name, file, line));
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_try_xlock() of destroyed sx @ %s:%d", file, line));
|
|
|
|
if (sx_xlocked(sx) &&
|
|
(sx->lock_object.lo_flags & LO_RECURSABLE) != 0) {
|
|
sx->sx_recurse++;
|
|
atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
|
|
rval = 1;
|
|
} else
|
|
rval = atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED,
|
|
(uintptr_t)curthread);
|
|
LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line);
|
|
if (rval) {
|
|
WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
|
|
file, line);
|
|
if (!sx_recursed(sx))
|
|
LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_SX_XLOCK_ACQUIRE,
|
|
sx, 0, 0, file, line);
|
|
curthread->td_locks++;
|
|
}
|
|
|
|
return (rval);
|
|
}
|
|
|
|
void
|
|
_sx_sunlock(struct sx *sx, const char *file, int line)
|
|
{
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return;
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_sunlock() of destroyed sx @ %s:%d", file, line));
|
|
_sx_assert(sx, SA_SLOCKED, file, line);
|
|
WITNESS_UNLOCK(&sx->lock_object, 0, file, line);
|
|
LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line);
|
|
__sx_sunlock(sx, file, line);
|
|
curthread->td_locks--;
|
|
}
|
|
|
|
void
|
|
_sx_xunlock(struct sx *sx, const char *file, int line)
|
|
{
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return;
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_xunlock() of destroyed sx @ %s:%d", file, line));
|
|
_sx_assert(sx, SA_XLOCKED, file, line);
|
|
WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
|
|
LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file,
|
|
line);
|
|
__sx_xunlock(sx, curthread, file, line);
|
|
curthread->td_locks--;
|
|
}
|
|
|
|
/*
|
|
* Try to do a non-blocking upgrade from a shared lock to an exclusive lock.
|
|
* This will only succeed if this thread holds a single shared lock.
|
|
* Return 1 if if the upgrade succeed, 0 otherwise.
|
|
*/
|
|
int
|
|
sx_try_upgrade_(struct sx *sx, const char *file, int line)
|
|
{
|
|
uintptr_t x;
|
|
int success;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (1);
|
|
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_try_upgrade() of destroyed sx @ %s:%d", file, line));
|
|
_sx_assert(sx, SA_SLOCKED, file, line);
|
|
|
|
/*
|
|
* Try to switch from one shared lock to an exclusive lock. We need
|
|
* to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that
|
|
* we will wake up the exclusive waiters when we drop the lock.
|
|
*/
|
|
x = sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS;
|
|
success = atomic_cmpset_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) | x,
|
|
(uintptr_t)curthread | x);
|
|
LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line);
|
|
if (success) {
|
|
WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
|
|
file, line);
|
|
LOCKSTAT_RECORD0(LS_SX_TRYUPGRADE_UPGRADE, sx);
|
|
}
|
|
return (success);
|
|
}
|
|
|
|
/*
|
|
* Downgrade an unrecursed exclusive lock into a single shared lock.
|
|
*/
|
|
void
|
|
sx_downgrade_(struct sx *sx, const char *file, int line)
|
|
{
|
|
uintptr_t x;
|
|
int wakeup_swapper;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return;
|
|
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_downgrade() of destroyed sx @ %s:%d", file, line));
|
|
_sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line);
|
|
#ifndef INVARIANTS
|
|
if (sx_recursed(sx))
|
|
panic("downgrade of a recursed lock");
|
|
#endif
|
|
|
|
WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line);
|
|
|
|
/*
|
|
* Try to switch from an exclusive lock with no shared waiters
|
|
* to one sharer with no shared waiters. If there are
|
|
* exclusive waiters, we don't need to lock the sleep queue so
|
|
* long as we preserve the flag. We do one quick try and if
|
|
* that fails we grab the sleepq lock to keep the flags from
|
|
* changing and do it the slow way.
|
|
*
|
|
* We have to lock the sleep queue if there are shared waiters
|
|
* so we can wake them up.
|
|
*/
|
|
x = sx->sx_lock;
|
|
if (!(x & SX_LOCK_SHARED_WAITERS) &&
|
|
atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) |
|
|
(x & SX_LOCK_EXCLUSIVE_WAITERS))) {
|
|
LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Lock the sleep queue so we can read the waiters bits
|
|
* without any races and wakeup any shared waiters.
|
|
*/
|
|
sleepq_lock(&sx->lock_object);
|
|
|
|
/*
|
|
* Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single
|
|
* shared lock. If there are any shared waiters, wake them up.
|
|
*/
|
|
wakeup_swapper = 0;
|
|
x = sx->sx_lock;
|
|
atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) |
|
|
(x & SX_LOCK_EXCLUSIVE_WAITERS));
|
|
if (x & SX_LOCK_SHARED_WAITERS)
|
|
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
|
|
0, SQ_SHARED_QUEUE);
|
|
sleepq_release(&sx->lock_object);
|
|
|
|
LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
|
|
LOCKSTAT_RECORD0(LS_SX_DOWNGRADE_DOWNGRADE, sx);
|
|
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
|
|
/*
|
|
* This function represents the so-called 'hard case' for sx_xlock
|
|
* operation. All 'easy case' failures are redirected to this. Note
|
|
* that ideally this would be a static function, but it needs to be
|
|
* accessible from at least sx.h.
|
|
*/
|
|
int
|
|
_sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file,
|
|
int line)
|
|
{
|
|
GIANT_DECLARE;
|
|
#ifdef ADAPTIVE_SX
|
|
volatile struct thread *owner;
|
|
u_int i, spintries = 0;
|
|
#endif
|
|
uintptr_t x;
|
|
#ifdef LOCK_PROFILING
|
|
uint64_t waittime = 0;
|
|
int contested = 0;
|
|
#endif
|
|
int error = 0;
|
|
#ifdef KDTRACE_HOOKS
|
|
uintptr_t state;
|
|
uint64_t spin_cnt = 0;
|
|
uint64_t sleep_cnt = 0;
|
|
int64_t sleep_time = 0;
|
|
int64_t all_time = 0;
|
|
#endif
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (0);
|
|
|
|
/* If we already hold an exclusive lock, then recurse. */
|
|
if (sx_xlocked(sx)) {
|
|
KASSERT((sx->lock_object.lo_flags & LO_RECURSABLE) != 0,
|
|
("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line));
|
|
sx->sx_recurse++;
|
|
atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx);
|
|
return (0);
|
|
}
|
|
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__,
|
|
sx->lock_object.lo_name, (void *)sx->sx_lock, file, line);
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
all_time -= lockstat_nsecs();
|
|
state = sx->sx_lock;
|
|
#endif
|
|
while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) {
|
|
#ifdef KDTRACE_HOOKS
|
|
spin_cnt++;
|
|
#endif
|
|
#ifdef HWPMC_HOOKS
|
|
PMC_SOFT_CALL( , , lock, failed);
|
|
#endif
|
|
lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
|
|
&waittime);
|
|
#ifdef ADAPTIVE_SX
|
|
/*
|
|
* If the lock is write locked and the owner is
|
|
* running on another CPU, spin until the owner stops
|
|
* running or the state of the lock changes.
|
|
*/
|
|
x = sx->sx_lock;
|
|
if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) {
|
|
if ((x & SX_LOCK_SHARED) == 0) {
|
|
x = SX_OWNER(x);
|
|
owner = (struct thread *)x;
|
|
if (TD_IS_RUNNING(owner)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR3(KTR_LOCK,
|
|
"%s: spinning on %p held by %p",
|
|
__func__, sx, owner);
|
|
KTR_STATE1(KTR_SCHED, "thread",
|
|
sched_tdname(curthread), "spinning",
|
|
"lockname:\"%s\"",
|
|
sx->lock_object.lo_name);
|
|
GIANT_SAVE();
|
|
while (SX_OWNER(sx->sx_lock) == x &&
|
|
TD_IS_RUNNING(owner)) {
|
|
cpu_spinwait();
|
|
#ifdef KDTRACE_HOOKS
|
|
spin_cnt++;
|
|
#endif
|
|
}
|
|
KTR_STATE0(KTR_SCHED, "thread",
|
|
sched_tdname(curthread), "running");
|
|
continue;
|
|
}
|
|
} else if (SX_SHARERS(x) && spintries < asx_retries) {
|
|
KTR_STATE1(KTR_SCHED, "thread",
|
|
sched_tdname(curthread), "spinning",
|
|
"lockname:\"%s\"", sx->lock_object.lo_name);
|
|
GIANT_SAVE();
|
|
spintries++;
|
|
for (i = 0; i < asx_loops; i++) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR4(KTR_LOCK,
|
|
"%s: shared spinning on %p with %u and %u",
|
|
__func__, sx, spintries, i);
|
|
x = sx->sx_lock;
|
|
if ((x & SX_LOCK_SHARED) == 0 ||
|
|
SX_SHARERS(x) == 0)
|
|
break;
|
|
cpu_spinwait();
|
|
#ifdef KDTRACE_HOOKS
|
|
spin_cnt++;
|
|
#endif
|
|
}
|
|
KTR_STATE0(KTR_SCHED, "thread",
|
|
sched_tdname(curthread), "running");
|
|
if (i != asx_loops)
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
sleepq_lock(&sx->lock_object);
|
|
x = sx->sx_lock;
|
|
|
|
/*
|
|
* If the lock was released while spinning on the
|
|
* sleep queue chain lock, try again.
|
|
*/
|
|
if (x == SX_LOCK_UNLOCKED) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
/*
|
|
* The current lock owner might have started executing
|
|
* on another CPU (or the lock could have changed
|
|
* owners) while we were waiting on the sleep queue
|
|
* chain lock. If so, drop the sleep queue lock and try
|
|
* again.
|
|
*/
|
|
if (!(x & SX_LOCK_SHARED) &&
|
|
(sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) {
|
|
owner = (struct thread *)SX_OWNER(x);
|
|
if (TD_IS_RUNNING(owner)) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If an exclusive lock was released with both shared
|
|
* and exclusive waiters and a shared waiter hasn't
|
|
* woken up and acquired the lock yet, sx_lock will be
|
|
* set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS.
|
|
* If we see that value, try to acquire it once. Note
|
|
* that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS
|
|
* as there are other exclusive waiters still. If we
|
|
* fail, restart the loop.
|
|
*/
|
|
if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
if (atomic_cmpset_acq_ptr(&sx->sx_lock,
|
|
SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS,
|
|
tid | SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
sleepq_release(&sx->lock_object);
|
|
CTR2(KTR_LOCK, "%s: %p claimed by new writer",
|
|
__func__, sx);
|
|
break;
|
|
}
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail,
|
|
* than loop back and retry.
|
|
*/
|
|
if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
if (!atomic_cmpset_ptr(&sx->sx_lock, x,
|
|
x | SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p set excl waiters flag",
|
|
__func__, sx);
|
|
}
|
|
|
|
/*
|
|
* Since we have been unable to acquire the exclusive
|
|
* lock and the exclusive waiters flag is set, we have
|
|
* to sleep.
|
|
*/
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
|
|
__func__, sx);
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
sleep_time -= lockstat_nsecs();
|
|
#endif
|
|
GIANT_SAVE();
|
|
sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
|
|
SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
|
|
SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE);
|
|
if (!(opts & SX_INTERRUPTIBLE))
|
|
sleepq_wait(&sx->lock_object, 0);
|
|
else
|
|
error = sleepq_wait_sig(&sx->lock_object, 0);
|
|
#ifdef KDTRACE_HOOKS
|
|
sleep_time += lockstat_nsecs();
|
|
sleep_cnt++;
|
|
#endif
|
|
if (error) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK,
|
|
"%s: interruptible sleep by %p suspended by signal",
|
|
__func__, sx);
|
|
break;
|
|
}
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
|
|
__func__, sx);
|
|
}
|
|
#ifdef KDTRACE_HOOKS
|
|
all_time += lockstat_nsecs();
|
|
if (sleep_time)
|
|
LOCKSTAT_RECORD4(LS_SX_XLOCK_BLOCK, sx, sleep_time,
|
|
LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0,
|
|
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
|
|
if (spin_cnt > sleep_cnt)
|
|
LOCKSTAT_RECORD4(LS_SX_XLOCK_SPIN, sx, all_time - sleep_time,
|
|
LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0,
|
|
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
|
|
#endif
|
|
if (!error)
|
|
LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_SX_XLOCK_ACQUIRE, sx,
|
|
contested, waittime, file, line);
|
|
GIANT_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This function represents the so-called 'hard case' for sx_xunlock
|
|
* operation. All 'easy case' failures are redirected to this. Note
|
|
* that ideally this would be a static function, but it needs to be
|
|
* accessible from at least sx.h.
|
|
*/
|
|
void
|
|
_sx_xunlock_hard(struct sx *sx, uintptr_t tid, const char *file, int line)
|
|
{
|
|
uintptr_t x;
|
|
int queue, wakeup_swapper;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return;
|
|
|
|
MPASS(!(sx->sx_lock & SX_LOCK_SHARED));
|
|
|
|
/* If the lock is recursed, then unrecurse one level. */
|
|
if (sx_xlocked(sx) && sx_recursed(sx)) {
|
|
if ((--sx->sx_recurse) == 0)
|
|
atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx);
|
|
return;
|
|
}
|
|
MPASS(sx->sx_lock & (SX_LOCK_SHARED_WAITERS |
|
|
SX_LOCK_EXCLUSIVE_WAITERS));
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p contested", __func__, sx);
|
|
|
|
sleepq_lock(&sx->lock_object);
|
|
x = SX_LOCK_UNLOCKED;
|
|
|
|
/*
|
|
* The wake up algorithm here is quite simple and probably not
|
|
* ideal. It gives precedence to shared waiters if they are
|
|
* present. For this condition, we have to preserve the
|
|
* state of the exclusive waiters flag.
|
|
* If interruptible sleeps left the shared queue empty avoid a
|
|
* starvation for the threads sleeping on the exclusive queue by giving
|
|
* them precedence and cleaning up the shared waiters bit anyway.
|
|
*/
|
|
if ((sx->sx_lock & SX_LOCK_SHARED_WAITERS) != 0 &&
|
|
sleepq_sleepcnt(&sx->lock_object, SQ_SHARED_QUEUE) != 0) {
|
|
queue = SQ_SHARED_QUEUE;
|
|
x |= (sx->sx_lock & SX_LOCK_EXCLUSIVE_WAITERS);
|
|
} else
|
|
queue = SQ_EXCLUSIVE_QUEUE;
|
|
|
|
/* Wake up all the waiters for the specific queue. */
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue",
|
|
__func__, sx, queue == SQ_SHARED_QUEUE ? "shared" :
|
|
"exclusive");
|
|
atomic_store_rel_ptr(&sx->sx_lock, x);
|
|
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0,
|
|
queue);
|
|
sleepq_release(&sx->lock_object);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
|
|
/*
|
|
* This function represents the so-called 'hard case' for sx_slock
|
|
* operation. All 'easy case' failures are redirected to this. Note
|
|
* that ideally this would be a static function, but it needs to be
|
|
* accessible from at least sx.h.
|
|
*/
|
|
int
|
|
_sx_slock_hard(struct sx *sx, int opts, const char *file, int line)
|
|
{
|
|
GIANT_DECLARE;
|
|
#ifdef ADAPTIVE_SX
|
|
volatile struct thread *owner;
|
|
#endif
|
|
#ifdef LOCK_PROFILING
|
|
uint64_t waittime = 0;
|
|
int contested = 0;
|
|
#endif
|
|
uintptr_t x;
|
|
int error = 0;
|
|
#ifdef KDTRACE_HOOKS
|
|
uintptr_t state;
|
|
uint64_t spin_cnt = 0;
|
|
uint64_t sleep_cnt = 0;
|
|
int64_t sleep_time = 0;
|
|
int64_t all_time = 0;
|
|
#endif
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (0);
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
state = sx->sx_lock;
|
|
all_time -= lockstat_nsecs();
|
|
#endif
|
|
|
|
/*
|
|
* As with rwlocks, we don't make any attempt to try to block
|
|
* shared locks once there is an exclusive waiter.
|
|
*/
|
|
for (;;) {
|
|
#ifdef KDTRACE_HOOKS
|
|
spin_cnt++;
|
|
#endif
|
|
x = sx->sx_lock;
|
|
|
|
/*
|
|
* If no other thread has an exclusive lock then try to bump up
|
|
* the count of sharers. Since we have to preserve the state
|
|
* of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the
|
|
* shared lock loop back and retry.
|
|
*/
|
|
if (x & SX_LOCK_SHARED) {
|
|
MPASS(!(x & SX_LOCK_SHARED_WAITERS));
|
|
if (atomic_cmpset_acq_ptr(&sx->sx_lock, x,
|
|
x + SX_ONE_SHARER)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR4(KTR_LOCK,
|
|
"%s: %p succeed %p -> %p", __func__,
|
|
sx, (void *)x,
|
|
(void *)(x + SX_ONE_SHARER));
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
#ifdef HWPMC_HOOKS
|
|
PMC_SOFT_CALL( , , lock, failed);
|
|
#endif
|
|
lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
|
|
&waittime);
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
/*
|
|
* If the owner is running on another CPU, spin until
|
|
* the owner stops running or the state of the lock
|
|
* changes.
|
|
*/
|
|
if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) {
|
|
x = SX_OWNER(x);
|
|
owner = (struct thread *)x;
|
|
if (TD_IS_RUNNING(owner)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR3(KTR_LOCK,
|
|
"%s: spinning on %p held by %p",
|
|
__func__, sx, owner);
|
|
KTR_STATE1(KTR_SCHED, "thread",
|
|
sched_tdname(curthread), "spinning",
|
|
"lockname:\"%s\"", sx->lock_object.lo_name);
|
|
GIANT_SAVE();
|
|
while (SX_OWNER(sx->sx_lock) == x &&
|
|
TD_IS_RUNNING(owner)) {
|
|
#ifdef KDTRACE_HOOKS
|
|
spin_cnt++;
|
|
#endif
|
|
cpu_spinwait();
|
|
}
|
|
KTR_STATE0(KTR_SCHED, "thread",
|
|
sched_tdname(curthread), "running");
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Some other thread already has an exclusive lock, so
|
|
* start the process of blocking.
|
|
*/
|
|
sleepq_lock(&sx->lock_object);
|
|
x = sx->sx_lock;
|
|
|
|
/*
|
|
* The lock could have been released while we spun.
|
|
* In this case loop back and retry.
|
|
*/
|
|
if (x & SX_LOCK_SHARED) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
/*
|
|
* If the owner is running on another CPU, spin until
|
|
* the owner stops running or the state of the lock
|
|
* changes.
|
|
*/
|
|
if (!(x & SX_LOCK_SHARED) &&
|
|
(sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) {
|
|
owner = (struct thread *)SX_OWNER(x);
|
|
if (TD_IS_RUNNING(owner)) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Try to set the SX_LOCK_SHARED_WAITERS flag. If we
|
|
* fail to set it drop the sleep queue lock and loop
|
|
* back.
|
|
*/
|
|
if (!(x & SX_LOCK_SHARED_WAITERS)) {
|
|
if (!atomic_cmpset_ptr(&sx->sx_lock, x,
|
|
x | SX_LOCK_SHARED_WAITERS)) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p set shared waiters flag",
|
|
__func__, sx);
|
|
}
|
|
|
|
/*
|
|
* Since we have been unable to acquire the shared lock,
|
|
* we have to sleep.
|
|
*/
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
|
|
__func__, sx);
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
sleep_time -= lockstat_nsecs();
|
|
#endif
|
|
GIANT_SAVE();
|
|
sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
|
|
SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
|
|
SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE);
|
|
if (!(opts & SX_INTERRUPTIBLE))
|
|
sleepq_wait(&sx->lock_object, 0);
|
|
else
|
|
error = sleepq_wait_sig(&sx->lock_object, 0);
|
|
#ifdef KDTRACE_HOOKS
|
|
sleep_time += lockstat_nsecs();
|
|
sleep_cnt++;
|
|
#endif
|
|
if (error) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK,
|
|
"%s: interruptible sleep by %p suspended by signal",
|
|
__func__, sx);
|
|
break;
|
|
}
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
|
|
__func__, sx);
|
|
}
|
|
#ifdef KDTRACE_HOOKS
|
|
all_time += lockstat_nsecs();
|
|
if (sleep_time)
|
|
LOCKSTAT_RECORD4(LS_SX_SLOCK_BLOCK, sx, sleep_time,
|
|
LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0,
|
|
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
|
|
if (spin_cnt > sleep_cnt)
|
|
LOCKSTAT_RECORD4(LS_SX_SLOCK_SPIN, sx, all_time - sleep_time,
|
|
LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0,
|
|
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
|
|
#endif
|
|
if (error == 0)
|
|
LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(LS_SX_SLOCK_ACQUIRE, sx,
|
|
contested, waittime, file, line);
|
|
GIANT_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This function represents the so-called 'hard case' for sx_sunlock
|
|
* operation. All 'easy case' failures are redirected to this. Note
|
|
* that ideally this would be a static function, but it needs to be
|
|
* accessible from at least sx.h.
|
|
*/
|
|
void
|
|
_sx_sunlock_hard(struct sx *sx, const char *file, int line)
|
|
{
|
|
uintptr_t x;
|
|
int wakeup_swapper;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return;
|
|
|
|
for (;;) {
|
|
x = sx->sx_lock;
|
|
|
|
/*
|
|
* We should never have sharers while at least one thread
|
|
* holds a shared lock.
|
|
*/
|
|
KASSERT(!(x & SX_LOCK_SHARED_WAITERS),
|
|
("%s: waiting sharers", __func__));
|
|
|
|
/*
|
|
* See if there is more than one shared lock held. If
|
|
* so, just drop one and return.
|
|
*/
|
|
if (SX_SHARERS(x) > 1) {
|
|
if (atomic_cmpset_rel_ptr(&sx->sx_lock, x,
|
|
x - SX_ONE_SHARER)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR4(KTR_LOCK,
|
|
"%s: %p succeeded %p -> %p",
|
|
__func__, sx, (void *)x,
|
|
(void *)(x - SX_ONE_SHARER));
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If there aren't any waiters for an exclusive lock,
|
|
* then try to drop it quickly.
|
|
*/
|
|
if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
MPASS(x == SX_SHARERS_LOCK(1));
|
|
if (atomic_cmpset_rel_ptr(&sx->sx_lock,
|
|
SX_SHARERS_LOCK(1), SX_LOCK_UNLOCKED)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p last succeeded",
|
|
__func__, sx);
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* At this point, there should just be one sharer with
|
|
* exclusive waiters.
|
|
*/
|
|
MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS));
|
|
|
|
sleepq_lock(&sx->lock_object);
|
|
|
|
/*
|
|
* Wake up semantic here is quite simple:
|
|
* Just wake up all the exclusive waiters.
|
|
* Note that the state of the lock could have changed,
|
|
* so if it fails loop back and retry.
|
|
*/
|
|
if (!atomic_cmpset_rel_ptr(&sx->sx_lock,
|
|
SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS,
|
|
SX_LOCK_UNLOCKED)) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p waking up all thread on"
|
|
"exclusive queue", __func__, sx);
|
|
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
|
|
0, SQ_EXCLUSIVE_QUEUE);
|
|
sleepq_release(&sx->lock_object);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef INVARIANT_SUPPORT
|
|
#ifndef INVARIANTS
|
|
#undef _sx_assert
|
|
#endif
|
|
|
|
/*
|
|
* In the non-WITNESS case, sx_assert() can only detect that at least
|
|
* *some* thread owns an slock, but it cannot guarantee that *this*
|
|
* thread owns an slock.
|
|
*/
|
|
void
|
|
_sx_assert(const struct sx *sx, int what, const char *file, int line)
|
|
{
|
|
#ifndef WITNESS
|
|
int slocked = 0;
|
|
#endif
|
|
|
|
if (panicstr != NULL)
|
|
return;
|
|
switch (what) {
|
|
case SA_SLOCKED:
|
|
case SA_SLOCKED | SA_NOTRECURSED:
|
|
case SA_SLOCKED | SA_RECURSED:
|
|
#ifndef WITNESS
|
|
slocked = 1;
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
case SA_LOCKED:
|
|
case SA_LOCKED | SA_NOTRECURSED:
|
|
case SA_LOCKED | SA_RECURSED:
|
|
#ifdef WITNESS
|
|
witness_assert(&sx->lock_object, what, file, line);
|
|
#else
|
|
/*
|
|
* If some other thread has an exclusive lock or we
|
|
* have one and are asserting a shared lock, fail.
|
|
* Also, if no one has a lock at all, fail.
|
|
*/
|
|
if (sx->sx_lock == SX_LOCK_UNLOCKED ||
|
|
(!(sx->sx_lock & SX_LOCK_SHARED) && (slocked ||
|
|
sx_xholder(sx) != curthread)))
|
|
panic("Lock %s not %slocked @ %s:%d\n",
|
|
sx->lock_object.lo_name, slocked ? "share " : "",
|
|
file, line);
|
|
|
|
if (!(sx->sx_lock & SX_LOCK_SHARED)) {
|
|
if (sx_recursed(sx)) {
|
|
if (what & SA_NOTRECURSED)
|
|
panic("Lock %s recursed @ %s:%d\n",
|
|
sx->lock_object.lo_name, file,
|
|
line);
|
|
} else if (what & SA_RECURSED)
|
|
panic("Lock %s not recursed @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
}
|
|
#endif
|
|
break;
|
|
case SA_XLOCKED:
|
|
case SA_XLOCKED | SA_NOTRECURSED:
|
|
case SA_XLOCKED | SA_RECURSED:
|
|
if (sx_xholder(sx) != curthread)
|
|
panic("Lock %s not exclusively locked @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
if (sx_recursed(sx)) {
|
|
if (what & SA_NOTRECURSED)
|
|
panic("Lock %s recursed @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
} else if (what & SA_RECURSED)
|
|
panic("Lock %s not recursed @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
break;
|
|
case SA_UNLOCKED:
|
|
#ifdef WITNESS
|
|
witness_assert(&sx->lock_object, what, file, line);
|
|
#else
|
|
/*
|
|
* If we hold an exclusve lock fail. We can't
|
|
* reliably check to see if we hold a shared lock or
|
|
* not.
|
|
*/
|
|
if (sx_xholder(sx) == curthread)
|
|
panic("Lock %s exclusively locked @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
#endif
|
|
break;
|
|
default:
|
|
panic("Unknown sx lock assertion: %d @ %s:%d", what, file,
|
|
line);
|
|
}
|
|
}
|
|
#endif /* INVARIANT_SUPPORT */
|
|
|
|
#ifdef DDB
|
|
static void
|
|
db_show_sx(const struct lock_object *lock)
|
|
{
|
|
struct thread *td;
|
|
const struct sx *sx;
|
|
|
|
sx = (const struct sx *)lock;
|
|
|
|
db_printf(" state: ");
|
|
if (sx->sx_lock == SX_LOCK_UNLOCKED)
|
|
db_printf("UNLOCKED\n");
|
|
else if (sx->sx_lock == SX_LOCK_DESTROYED) {
|
|
db_printf("DESTROYED\n");
|
|
return;
|
|
} else if (sx->sx_lock & SX_LOCK_SHARED)
|
|
db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock));
|
|
else {
|
|
td = sx_xholder(sx);
|
|
db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td,
|
|
td->td_tid, td->td_proc->p_pid, td->td_name);
|
|
if (sx_recursed(sx))
|
|
db_printf(" recursed: %d\n", sx->sx_recurse);
|
|
}
|
|
|
|
db_printf(" waiters: ");
|
|
switch(sx->sx_lock &
|
|
(SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
case SX_LOCK_SHARED_WAITERS:
|
|
db_printf("shared\n");
|
|
break;
|
|
case SX_LOCK_EXCLUSIVE_WAITERS:
|
|
db_printf("exclusive\n");
|
|
break;
|
|
case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS:
|
|
db_printf("exclusive and shared\n");
|
|
break;
|
|
default:
|
|
db_printf("none\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if a thread that is blocked on a sleep queue is actually
|
|
* blocked on an sx lock. If so, output some details and return true.
|
|
* If the lock has an exclusive owner, return that in *ownerp.
|
|
*/
|
|
int
|
|
sx_chain(struct thread *td, struct thread **ownerp)
|
|
{
|
|
struct sx *sx;
|
|
|
|
/*
|
|
* Check to see if this thread is blocked on an sx lock.
|
|
* First, we check the lock class. If that is ok, then we
|
|
* compare the lock name against the wait message.
|
|
*/
|
|
sx = td->td_wchan;
|
|
if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx ||
|
|
sx->lock_object.lo_name != td->td_wmesg)
|
|
return (0);
|
|
|
|
/* We think we have an sx lock, so output some details. */
|
|
db_printf("blocked on sx \"%s\" ", td->td_wmesg);
|
|
*ownerp = sx_xholder(sx);
|
|
if (sx->sx_lock & SX_LOCK_SHARED)
|
|
db_printf("SLOCK (count %ju)\n",
|
|
(uintmax_t)SX_SHARERS(sx->sx_lock));
|
|
else
|
|
db_printf("XLOCK\n");
|
|
return (1);
|
|
}
|
|
#endif
|