mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-29 12:03:03 +00:00
c869e67208
address and use this mechanism when: 1. kmem_alloc_{attr,contig}() can't find suitable free pages in the physical memory allocator's free page lists. This replaces the long-standing approach of scanning the inactive and inactive queues, converting clean pages into PG_CACHED pages and laundering dirty pages. In contrast, the new mechanism does not use PG_CACHED pages nor does it trigger a large number of I/O operations. 2. on 32-bit MIPS processors, uma_small_alloc() and the pmap can't find free pages in the physical memory allocator's free page lists that are covered by the direct map. Tested by: adrian 3. ttm_bo_global_init() and ttm_vm_page_alloc_dma32() can't find suitable free pages in the physical memory allocator's free page lists. In the coming months, I expect that this new mechanism will be applied in other places. For example, balloon drivers should use relocation to minimize fragmentation of the guest physical address space. Make vm_phys_alloc_contig() a little smarter (and more efficient in some cases). Specifically, use vm_phys_segs[] earlier to avoid scanning free page lists that can't possibly contain suitable pages. Reviewed by: kib, markj Glanced at: jhb Discussed with: jeff Sponsored by: EMC / Isilon Storage Division Differential Revision: https://reviews.freebsd.org/D4444
127 lines
4.1 KiB
C
127 lines
4.1 KiB
C
/*-
|
|
* Copyright (c) 2002-2006 Rice University
|
|
* Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed for the FreeBSD Project by Alan L. Cox,
|
|
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
|
|
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Physical memory system definitions
|
|
*/
|
|
|
|
#ifndef _VM_PHYS_H_
|
|
#define _VM_PHYS_H_
|
|
|
|
#ifdef _KERNEL
|
|
|
|
/* Domains must be dense (non-sparse) and zero-based. */
|
|
struct mem_affinity {
|
|
vm_paddr_t start;
|
|
vm_paddr_t end;
|
|
int domain;
|
|
};
|
|
|
|
struct vm_freelist {
|
|
struct pglist pl;
|
|
int lcnt;
|
|
};
|
|
|
|
struct vm_phys_seg {
|
|
vm_paddr_t start;
|
|
vm_paddr_t end;
|
|
vm_page_t first_page;
|
|
int domain;
|
|
struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
|
|
};
|
|
|
|
extern struct mem_affinity *mem_affinity;
|
|
extern int *mem_locality;
|
|
extern int vm_ndomains;
|
|
extern struct vm_phys_seg vm_phys_segs[];
|
|
extern int vm_phys_nsegs;
|
|
|
|
/*
|
|
* The following functions are only to be used by the virtual memory system.
|
|
*/
|
|
void vm_phys_add_page(vm_paddr_t pa);
|
|
void vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end);
|
|
vm_page_t vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
|
|
u_long alignment, vm_paddr_t boundary);
|
|
vm_page_t vm_phys_alloc_freelist_pages(int freelist, int pool, int order);
|
|
vm_page_t vm_phys_alloc_pages(int pool, int order);
|
|
boolean_t vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high);
|
|
int vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
|
|
vm_memattr_t memattr);
|
|
void vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end);
|
|
vm_page_t vm_phys_fictitious_to_vm_page(vm_paddr_t pa);
|
|
void vm_phys_free_contig(vm_page_t m, u_long npages);
|
|
void vm_phys_free_pages(vm_page_t m, int order);
|
|
void vm_phys_init(void);
|
|
vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa);
|
|
vm_page_t vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
|
|
u_long alignment, vm_paddr_t boundary, int options);
|
|
void vm_phys_set_pool(int pool, vm_page_t m, int order);
|
|
boolean_t vm_phys_unfree_page(vm_page_t m);
|
|
boolean_t vm_phys_zero_pages_idle(void);
|
|
int vm_phys_mem_affinity(int f, int t);
|
|
|
|
/*
|
|
* vm_phys_domain:
|
|
*
|
|
* Return the memory domain the page belongs to.
|
|
*/
|
|
static inline struct vm_domain *
|
|
vm_phys_domain(vm_page_t m)
|
|
{
|
|
#if MAXMEMDOM > 1
|
|
int domn, segind;
|
|
|
|
/* XXXKIB try to assert that the page is managed */
|
|
segind = m->segind;
|
|
KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m));
|
|
domn = vm_phys_segs[segind].domain;
|
|
KASSERT(domn < vm_ndomains, ("domain %d m %p", domn, m));
|
|
return (&vm_dom[domn]);
|
|
#else
|
|
return (&vm_dom[0]);
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
vm_phys_freecnt_adj(vm_page_t m, int adj)
|
|
{
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
vm_cnt.v_free_count += adj;
|
|
vm_phys_domain(m)->vmd_free_count += adj;
|
|
}
|
|
|
|
#endif /* _KERNEL */
|
|
#endif /* !_VM_PHYS_H_ */
|