mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-11 14:10:34 +00:00
3fded357af
While here, correct all consumers to pass NULL instead of 0 as we pass capability rights as pointers now, not uint64_t. Reported by: Daniel Peyrolon Tested by: Daniel Peyrolon Approved by: re (marius)
1277 lines
30 KiB
C
1277 lines
30 KiB
C
/*-
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California.
|
|
* Copyright (c) 2005 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ktrace.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/capability.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/ktrace.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/sysproto.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
/*
|
|
* The ktrace facility allows the tracing of certain key events in user space
|
|
* processes, such as system calls, signal delivery, context switches, and
|
|
* user generated events using utrace(2). It works by streaming event
|
|
* records and data to a vnode associated with the process using the
|
|
* ktrace(2) system call. In general, records can be written directly from
|
|
* the context that generates the event. One important exception to this is
|
|
* during a context switch, where sleeping is not permitted. To handle this
|
|
* case, trace events are generated using in-kernel ktr_request records, and
|
|
* then delivered to disk at a convenient moment -- either immediately, the
|
|
* next traceable event, at system call return, or at process exit.
|
|
*
|
|
* When dealing with multiple threads or processes writing to the same event
|
|
* log, ordering guarantees are weak: specifically, if an event has multiple
|
|
* records (i.e., system call enter and return), they may be interlaced with
|
|
* records from another event. Process and thread ID information is provided
|
|
* in the record, and user applications can de-interlace events if required.
|
|
*/
|
|
|
|
static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
|
|
|
|
#ifdef KTRACE
|
|
|
|
FEATURE(ktrace, "Kernel support for system-call tracing");
|
|
|
|
#ifndef KTRACE_REQUEST_POOL
|
|
#define KTRACE_REQUEST_POOL 100
|
|
#endif
|
|
|
|
struct ktr_request {
|
|
struct ktr_header ktr_header;
|
|
void *ktr_buffer;
|
|
union {
|
|
struct ktr_proc_ctor ktr_proc_ctor;
|
|
struct ktr_cap_fail ktr_cap_fail;
|
|
struct ktr_syscall ktr_syscall;
|
|
struct ktr_sysret ktr_sysret;
|
|
struct ktr_genio ktr_genio;
|
|
struct ktr_psig ktr_psig;
|
|
struct ktr_csw ktr_csw;
|
|
struct ktr_fault ktr_fault;
|
|
struct ktr_faultend ktr_faultend;
|
|
} ktr_data;
|
|
STAILQ_ENTRY(ktr_request) ktr_list;
|
|
};
|
|
|
|
static int data_lengths[] = {
|
|
0, /* none */
|
|
offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */
|
|
sizeof(struct ktr_sysret), /* KTR_SYSRET */
|
|
0, /* KTR_NAMEI */
|
|
sizeof(struct ktr_genio), /* KTR_GENIO */
|
|
sizeof(struct ktr_psig), /* KTR_PSIG */
|
|
sizeof(struct ktr_csw), /* KTR_CSW */
|
|
0, /* KTR_USER */
|
|
0, /* KTR_STRUCT */
|
|
0, /* KTR_SYSCTL */
|
|
sizeof(struct ktr_proc_ctor), /* KTR_PROCCTOR */
|
|
0, /* KTR_PROCDTOR */
|
|
sizeof(struct ktr_cap_fail), /* KTR_CAPFAIL */
|
|
sizeof(struct ktr_fault), /* KTR_FAULT */
|
|
sizeof(struct ktr_faultend), /* KTR_FAULTEND */
|
|
};
|
|
|
|
static STAILQ_HEAD(, ktr_request) ktr_free;
|
|
|
|
static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
|
|
|
|
static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
|
|
TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
|
|
|
|
static u_int ktr_geniosize = PAGE_SIZE;
|
|
TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
|
|
SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
|
|
0, "Maximum size of genio event payload");
|
|
|
|
static int print_message = 1;
|
|
static struct mtx ktrace_mtx;
|
|
static struct sx ktrace_sx;
|
|
|
|
static void ktrace_init(void *dummy);
|
|
static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
|
|
static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
|
|
static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
|
|
static struct ktr_request *ktr_getrequest(int type);
|
|
static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
|
|
static void ktr_freeproc(struct proc *p, struct ucred **uc,
|
|
struct vnode **vp);
|
|
static void ktr_freerequest(struct ktr_request *req);
|
|
static void ktr_freerequest_locked(struct ktr_request *req);
|
|
static void ktr_writerequest(struct thread *td, struct ktr_request *req);
|
|
static int ktrcanset(struct thread *,struct proc *);
|
|
static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
|
|
static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
|
|
static void ktrprocctor_entered(struct thread *, struct proc *);
|
|
|
|
/*
|
|
* ktrace itself generates events, such as context switches, which we do not
|
|
* wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine
|
|
* whether or not it is in a region where tracing of events should be
|
|
* suppressed.
|
|
*/
|
|
static void
|
|
ktrace_enter(struct thread *td)
|
|
{
|
|
|
|
KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
|
|
td->td_pflags |= TDP_INKTRACE;
|
|
}
|
|
|
|
static void
|
|
ktrace_exit(struct thread *td)
|
|
{
|
|
|
|
KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
|
|
td->td_pflags &= ~TDP_INKTRACE;
|
|
}
|
|
|
|
static void
|
|
ktrace_assert(struct thread *td)
|
|
{
|
|
|
|
KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
|
|
}
|
|
|
|
static void
|
|
ktrace_init(void *dummy)
|
|
{
|
|
struct ktr_request *req;
|
|
int i;
|
|
|
|
mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
|
|
sx_init(&ktrace_sx, "ktrace_sx");
|
|
STAILQ_INIT(&ktr_free);
|
|
for (i = 0; i < ktr_requestpool; i++) {
|
|
req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
|
|
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
|
|
}
|
|
}
|
|
SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
|
|
|
|
static int
|
|
sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct thread *td;
|
|
u_int newsize, oldsize, wantsize;
|
|
int error;
|
|
|
|
/* Handle easy read-only case first to avoid warnings from GCC. */
|
|
if (!req->newptr) {
|
|
oldsize = ktr_requestpool;
|
|
return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
|
|
}
|
|
|
|
error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
|
|
if (error)
|
|
return (error);
|
|
td = curthread;
|
|
ktrace_enter(td);
|
|
oldsize = ktr_requestpool;
|
|
newsize = ktrace_resize_pool(oldsize, wantsize);
|
|
ktrace_exit(td);
|
|
error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
|
|
if (error)
|
|
return (error);
|
|
if (wantsize > oldsize && newsize < wantsize)
|
|
return (ENOSPC);
|
|
return (0);
|
|
}
|
|
SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
|
|
&ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
|
|
"Pool buffer size for ktrace(1)");
|
|
|
|
static u_int
|
|
ktrace_resize_pool(u_int oldsize, u_int newsize)
|
|
{
|
|
STAILQ_HEAD(, ktr_request) ktr_new;
|
|
struct ktr_request *req;
|
|
int bound;
|
|
|
|
print_message = 1;
|
|
bound = newsize - oldsize;
|
|
if (bound == 0)
|
|
return (ktr_requestpool);
|
|
if (bound < 0) {
|
|
mtx_lock(&ktrace_mtx);
|
|
/* Shrink pool down to newsize if possible. */
|
|
while (bound++ < 0) {
|
|
req = STAILQ_FIRST(&ktr_free);
|
|
if (req == NULL)
|
|
break;
|
|
STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
|
|
ktr_requestpool--;
|
|
free(req, M_KTRACE);
|
|
}
|
|
} else {
|
|
/* Grow pool up to newsize. */
|
|
STAILQ_INIT(&ktr_new);
|
|
while (bound-- > 0) {
|
|
req = malloc(sizeof(struct ktr_request), M_KTRACE,
|
|
M_WAITOK);
|
|
STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
|
|
}
|
|
mtx_lock(&ktrace_mtx);
|
|
STAILQ_CONCAT(&ktr_free, &ktr_new);
|
|
ktr_requestpool += (newsize - oldsize);
|
|
}
|
|
mtx_unlock(&ktrace_mtx);
|
|
return (ktr_requestpool);
|
|
}
|
|
|
|
/* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
|
|
CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
|
|
(sizeof((struct thread *)NULL)->td_name));
|
|
|
|
static struct ktr_request *
|
|
ktr_getrequest_entered(struct thread *td, int type)
|
|
{
|
|
struct ktr_request *req;
|
|
struct proc *p = td->td_proc;
|
|
int pm;
|
|
|
|
mtx_lock(&ktrace_mtx);
|
|
if (!KTRCHECK(td, type)) {
|
|
mtx_unlock(&ktrace_mtx);
|
|
return (NULL);
|
|
}
|
|
req = STAILQ_FIRST(&ktr_free);
|
|
if (req != NULL) {
|
|
STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
|
|
req->ktr_header.ktr_type = type;
|
|
if (p->p_traceflag & KTRFAC_DROP) {
|
|
req->ktr_header.ktr_type |= KTR_DROP;
|
|
p->p_traceflag &= ~KTRFAC_DROP;
|
|
}
|
|
mtx_unlock(&ktrace_mtx);
|
|
microtime(&req->ktr_header.ktr_time);
|
|
req->ktr_header.ktr_pid = p->p_pid;
|
|
req->ktr_header.ktr_tid = td->td_tid;
|
|
bcopy(td->td_name, req->ktr_header.ktr_comm,
|
|
sizeof(req->ktr_header.ktr_comm));
|
|
req->ktr_buffer = NULL;
|
|
req->ktr_header.ktr_len = 0;
|
|
} else {
|
|
p->p_traceflag |= KTRFAC_DROP;
|
|
pm = print_message;
|
|
print_message = 0;
|
|
mtx_unlock(&ktrace_mtx);
|
|
if (pm)
|
|
printf("Out of ktrace request objects.\n");
|
|
}
|
|
return (req);
|
|
}
|
|
|
|
static struct ktr_request *
|
|
ktr_getrequest(int type)
|
|
{
|
|
struct thread *td = curthread;
|
|
struct ktr_request *req;
|
|
|
|
ktrace_enter(td);
|
|
req = ktr_getrequest_entered(td, type);
|
|
if (req == NULL)
|
|
ktrace_exit(td);
|
|
|
|
return (req);
|
|
}
|
|
|
|
/*
|
|
* Some trace generation environments don't permit direct access to VFS,
|
|
* such as during a context switch where sleeping is not allowed. Under these
|
|
* circumstances, queue a request to the thread to be written asynchronously
|
|
* later.
|
|
*/
|
|
static void
|
|
ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
|
|
{
|
|
|
|
mtx_lock(&ktrace_mtx);
|
|
STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
|
|
mtx_unlock(&ktrace_mtx);
|
|
}
|
|
|
|
/*
|
|
* Drain any pending ktrace records from the per-thread queue to disk. This
|
|
* is used both internally before committing other records, and also on
|
|
* system call return. We drain all the ones we can find at the time when
|
|
* drain is requested, but don't keep draining after that as those events
|
|
* may be approximately "after" the current event.
|
|
*/
|
|
static void
|
|
ktr_drain(struct thread *td)
|
|
{
|
|
struct ktr_request *queued_req;
|
|
STAILQ_HEAD(, ktr_request) local_queue;
|
|
|
|
ktrace_assert(td);
|
|
sx_assert(&ktrace_sx, SX_XLOCKED);
|
|
|
|
STAILQ_INIT(&local_queue);
|
|
|
|
if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
|
|
mtx_lock(&ktrace_mtx);
|
|
STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
|
|
mtx_unlock(&ktrace_mtx);
|
|
|
|
while ((queued_req = STAILQ_FIRST(&local_queue))) {
|
|
STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
|
|
ktr_writerequest(td, queued_req);
|
|
ktr_freerequest(queued_req);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Submit a trace record for immediate commit to disk -- to be used only
|
|
* where entering VFS is OK. First drain any pending records that may have
|
|
* been cached in the thread.
|
|
*/
|
|
static void
|
|
ktr_submitrequest(struct thread *td, struct ktr_request *req)
|
|
{
|
|
|
|
ktrace_assert(td);
|
|
|
|
sx_xlock(&ktrace_sx);
|
|
ktr_drain(td);
|
|
ktr_writerequest(td, req);
|
|
ktr_freerequest(req);
|
|
sx_xunlock(&ktrace_sx);
|
|
ktrace_exit(td);
|
|
}
|
|
|
|
static void
|
|
ktr_freerequest(struct ktr_request *req)
|
|
{
|
|
|
|
mtx_lock(&ktrace_mtx);
|
|
ktr_freerequest_locked(req);
|
|
mtx_unlock(&ktrace_mtx);
|
|
}
|
|
|
|
static void
|
|
ktr_freerequest_locked(struct ktr_request *req)
|
|
{
|
|
|
|
mtx_assert(&ktrace_mtx, MA_OWNED);
|
|
if (req->ktr_buffer != NULL)
|
|
free(req->ktr_buffer, M_KTRACE);
|
|
STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
|
|
}
|
|
|
|
/*
|
|
* Disable tracing for a process and release all associated resources.
|
|
* The caller is responsible for releasing a reference on the returned
|
|
* vnode and credentials.
|
|
*/
|
|
static void
|
|
ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
|
|
{
|
|
struct ktr_request *req;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
mtx_assert(&ktrace_mtx, MA_OWNED);
|
|
*uc = p->p_tracecred;
|
|
p->p_tracecred = NULL;
|
|
if (vp != NULL)
|
|
*vp = p->p_tracevp;
|
|
p->p_tracevp = NULL;
|
|
p->p_traceflag = 0;
|
|
while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
|
|
STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
|
|
ktr_freerequest_locked(req);
|
|
}
|
|
}
|
|
|
|
void
|
|
ktrsyscall(code, narg, args)
|
|
int code, narg;
|
|
register_t args[];
|
|
{
|
|
struct ktr_request *req;
|
|
struct ktr_syscall *ktp;
|
|
size_t buflen;
|
|
char *buf = NULL;
|
|
|
|
buflen = sizeof(register_t) * narg;
|
|
if (buflen > 0) {
|
|
buf = malloc(buflen, M_KTRACE, M_WAITOK);
|
|
bcopy(args, buf, buflen);
|
|
}
|
|
req = ktr_getrequest(KTR_SYSCALL);
|
|
if (req == NULL) {
|
|
if (buf != NULL)
|
|
free(buf, M_KTRACE);
|
|
return;
|
|
}
|
|
ktp = &req->ktr_data.ktr_syscall;
|
|
ktp->ktr_code = code;
|
|
ktp->ktr_narg = narg;
|
|
if (buflen > 0) {
|
|
req->ktr_header.ktr_len = buflen;
|
|
req->ktr_buffer = buf;
|
|
}
|
|
ktr_submitrequest(curthread, req);
|
|
}
|
|
|
|
void
|
|
ktrsysret(code, error, retval)
|
|
int code, error;
|
|
register_t retval;
|
|
{
|
|
struct ktr_request *req;
|
|
struct ktr_sysret *ktp;
|
|
|
|
req = ktr_getrequest(KTR_SYSRET);
|
|
if (req == NULL)
|
|
return;
|
|
ktp = &req->ktr_data.ktr_sysret;
|
|
ktp->ktr_code = code;
|
|
ktp->ktr_error = error;
|
|
ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */
|
|
ktr_submitrequest(curthread, req);
|
|
}
|
|
|
|
/*
|
|
* When a setuid process execs, disable tracing.
|
|
*
|
|
* XXX: We toss any pending asynchronous records.
|
|
*/
|
|
void
|
|
ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
mtx_lock(&ktrace_mtx);
|
|
ktr_freeproc(p, uc, vp);
|
|
mtx_unlock(&ktrace_mtx);
|
|
}
|
|
|
|
/*
|
|
* When a process exits, drain per-process asynchronous trace records
|
|
* and disable tracing.
|
|
*/
|
|
void
|
|
ktrprocexit(struct thread *td)
|
|
{
|
|
struct ktr_request *req;
|
|
struct proc *p;
|
|
struct ucred *cred;
|
|
struct vnode *vp;
|
|
|
|
p = td->td_proc;
|
|
if (p->p_traceflag == 0)
|
|
return;
|
|
|
|
ktrace_enter(td);
|
|
req = ktr_getrequest_entered(td, KTR_PROCDTOR);
|
|
if (req != NULL)
|
|
ktr_enqueuerequest(td, req);
|
|
sx_xlock(&ktrace_sx);
|
|
ktr_drain(td);
|
|
sx_xunlock(&ktrace_sx);
|
|
PROC_LOCK(p);
|
|
mtx_lock(&ktrace_mtx);
|
|
ktr_freeproc(p, &cred, &vp);
|
|
mtx_unlock(&ktrace_mtx);
|
|
PROC_UNLOCK(p);
|
|
if (vp != NULL)
|
|
vrele(vp);
|
|
if (cred != NULL)
|
|
crfree(cred);
|
|
ktrace_exit(td);
|
|
}
|
|
|
|
static void
|
|
ktrprocctor_entered(struct thread *td, struct proc *p)
|
|
{
|
|
struct ktr_proc_ctor *ktp;
|
|
struct ktr_request *req;
|
|
struct thread *td2;
|
|
|
|
ktrace_assert(td);
|
|
td2 = FIRST_THREAD_IN_PROC(p);
|
|
req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
|
|
if (req == NULL)
|
|
return;
|
|
ktp = &req->ktr_data.ktr_proc_ctor;
|
|
ktp->sv_flags = p->p_sysent->sv_flags;
|
|
ktr_enqueuerequest(td2, req);
|
|
}
|
|
|
|
void
|
|
ktrprocctor(struct proc *p)
|
|
{
|
|
struct thread *td = curthread;
|
|
|
|
if ((p->p_traceflag & KTRFAC_MASK) == 0)
|
|
return;
|
|
|
|
ktrace_enter(td);
|
|
ktrprocctor_entered(td, p);
|
|
ktrace_exit(td);
|
|
}
|
|
|
|
/*
|
|
* When a process forks, enable tracing in the new process if needed.
|
|
*/
|
|
void
|
|
ktrprocfork(struct proc *p1, struct proc *p2)
|
|
{
|
|
|
|
PROC_LOCK(p1);
|
|
mtx_lock(&ktrace_mtx);
|
|
KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
|
|
if (p1->p_traceflag & KTRFAC_INHERIT) {
|
|
p2->p_traceflag = p1->p_traceflag;
|
|
if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
|
|
VREF(p2->p_tracevp);
|
|
KASSERT(p1->p_tracecred != NULL,
|
|
("ktrace vnode with no cred"));
|
|
p2->p_tracecred = crhold(p1->p_tracecred);
|
|
}
|
|
}
|
|
mtx_unlock(&ktrace_mtx);
|
|
PROC_UNLOCK(p1);
|
|
|
|
ktrprocctor(p2);
|
|
}
|
|
|
|
/*
|
|
* When a thread returns, drain any asynchronous records generated by the
|
|
* system call.
|
|
*/
|
|
void
|
|
ktruserret(struct thread *td)
|
|
{
|
|
|
|
ktrace_enter(td);
|
|
sx_xlock(&ktrace_sx);
|
|
ktr_drain(td);
|
|
sx_xunlock(&ktrace_sx);
|
|
ktrace_exit(td);
|
|
}
|
|
|
|
void
|
|
ktrnamei(path)
|
|
char *path;
|
|
{
|
|
struct ktr_request *req;
|
|
int namelen;
|
|
char *buf = NULL;
|
|
|
|
namelen = strlen(path);
|
|
if (namelen > 0) {
|
|
buf = malloc(namelen, M_KTRACE, M_WAITOK);
|
|
bcopy(path, buf, namelen);
|
|
}
|
|
req = ktr_getrequest(KTR_NAMEI);
|
|
if (req == NULL) {
|
|
if (buf != NULL)
|
|
free(buf, M_KTRACE);
|
|
return;
|
|
}
|
|
if (namelen > 0) {
|
|
req->ktr_header.ktr_len = namelen;
|
|
req->ktr_buffer = buf;
|
|
}
|
|
ktr_submitrequest(curthread, req);
|
|
}
|
|
|
|
void
|
|
ktrsysctl(name, namelen)
|
|
int *name;
|
|
u_int namelen;
|
|
{
|
|
struct ktr_request *req;
|
|
u_int mib[CTL_MAXNAME + 2];
|
|
char *mibname;
|
|
size_t mibnamelen;
|
|
int error;
|
|
|
|
/* Lookup name of mib. */
|
|
KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
|
|
mib[0] = 0;
|
|
mib[1] = 1;
|
|
bcopy(name, mib + 2, namelen * sizeof(*name));
|
|
mibnamelen = 128;
|
|
mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
|
|
error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
|
|
NULL, 0, &mibnamelen, 0);
|
|
if (error) {
|
|
free(mibname, M_KTRACE);
|
|
return;
|
|
}
|
|
req = ktr_getrequest(KTR_SYSCTL);
|
|
if (req == NULL) {
|
|
free(mibname, M_KTRACE);
|
|
return;
|
|
}
|
|
req->ktr_header.ktr_len = mibnamelen;
|
|
req->ktr_buffer = mibname;
|
|
ktr_submitrequest(curthread, req);
|
|
}
|
|
|
|
void
|
|
ktrgenio(fd, rw, uio, error)
|
|
int fd;
|
|
enum uio_rw rw;
|
|
struct uio *uio;
|
|
int error;
|
|
{
|
|
struct ktr_request *req;
|
|
struct ktr_genio *ktg;
|
|
int datalen;
|
|
char *buf;
|
|
|
|
if (error) {
|
|
free(uio, M_IOV);
|
|
return;
|
|
}
|
|
uio->uio_offset = 0;
|
|
uio->uio_rw = UIO_WRITE;
|
|
datalen = MIN(uio->uio_resid, ktr_geniosize);
|
|
buf = malloc(datalen, M_KTRACE, M_WAITOK);
|
|
error = uiomove(buf, datalen, uio);
|
|
free(uio, M_IOV);
|
|
if (error) {
|
|
free(buf, M_KTRACE);
|
|
return;
|
|
}
|
|
req = ktr_getrequest(KTR_GENIO);
|
|
if (req == NULL) {
|
|
free(buf, M_KTRACE);
|
|
return;
|
|
}
|
|
ktg = &req->ktr_data.ktr_genio;
|
|
ktg->ktr_fd = fd;
|
|
ktg->ktr_rw = rw;
|
|
req->ktr_header.ktr_len = datalen;
|
|
req->ktr_buffer = buf;
|
|
ktr_submitrequest(curthread, req);
|
|
}
|
|
|
|
void
|
|
ktrpsig(sig, action, mask, code)
|
|
int sig;
|
|
sig_t action;
|
|
sigset_t *mask;
|
|
int code;
|
|
{
|
|
struct thread *td = curthread;
|
|
struct ktr_request *req;
|
|
struct ktr_psig *kp;
|
|
|
|
req = ktr_getrequest(KTR_PSIG);
|
|
if (req == NULL)
|
|
return;
|
|
kp = &req->ktr_data.ktr_psig;
|
|
kp->signo = (char)sig;
|
|
kp->action = action;
|
|
kp->mask = *mask;
|
|
kp->code = code;
|
|
ktr_enqueuerequest(td, req);
|
|
ktrace_exit(td);
|
|
}
|
|
|
|
void
|
|
ktrcsw(out, user, wmesg)
|
|
int out, user;
|
|
const char *wmesg;
|
|
{
|
|
struct thread *td = curthread;
|
|
struct ktr_request *req;
|
|
struct ktr_csw *kc;
|
|
|
|
req = ktr_getrequest(KTR_CSW);
|
|
if (req == NULL)
|
|
return;
|
|
kc = &req->ktr_data.ktr_csw;
|
|
kc->out = out;
|
|
kc->user = user;
|
|
if (wmesg != NULL)
|
|
strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
|
|
else
|
|
bzero(kc->wmesg, sizeof(kc->wmesg));
|
|
ktr_enqueuerequest(td, req);
|
|
ktrace_exit(td);
|
|
}
|
|
|
|
void
|
|
ktrstruct(name, data, datalen)
|
|
const char *name;
|
|
void *data;
|
|
size_t datalen;
|
|
{
|
|
struct ktr_request *req;
|
|
char *buf = NULL;
|
|
size_t buflen;
|
|
|
|
if (!data)
|
|
datalen = 0;
|
|
buflen = strlen(name) + 1 + datalen;
|
|
buf = malloc(buflen, M_KTRACE, M_WAITOK);
|
|
strcpy(buf, name);
|
|
bcopy(data, buf + strlen(name) + 1, datalen);
|
|
if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
|
|
free(buf, M_KTRACE);
|
|
return;
|
|
}
|
|
req->ktr_buffer = buf;
|
|
req->ktr_header.ktr_len = buflen;
|
|
ktr_submitrequest(curthread, req);
|
|
}
|
|
|
|
void
|
|
ktrcapfail(type, needed, held)
|
|
enum ktr_cap_fail_type type;
|
|
const cap_rights_t *needed;
|
|
const cap_rights_t *held;
|
|
{
|
|
struct thread *td = curthread;
|
|
struct ktr_request *req;
|
|
struct ktr_cap_fail *kcf;
|
|
|
|
req = ktr_getrequest(KTR_CAPFAIL);
|
|
if (req == NULL)
|
|
return;
|
|
kcf = &req->ktr_data.ktr_cap_fail;
|
|
kcf->cap_type = type;
|
|
if (needed != NULL)
|
|
kcf->cap_needed = *needed;
|
|
else
|
|
cap_rights_init(&kcf->cap_needed);
|
|
if (held != NULL)
|
|
kcf->cap_held = *held;
|
|
else
|
|
cap_rights_init(&kcf->cap_held);
|
|
ktr_enqueuerequest(td, req);
|
|
ktrace_exit(td);
|
|
}
|
|
|
|
void
|
|
ktrfault(vaddr, type)
|
|
vm_offset_t vaddr;
|
|
int type;
|
|
{
|
|
struct thread *td = curthread;
|
|
struct ktr_request *req;
|
|
struct ktr_fault *kf;
|
|
|
|
req = ktr_getrequest(KTR_FAULT);
|
|
if (req == NULL)
|
|
return;
|
|
kf = &req->ktr_data.ktr_fault;
|
|
kf->vaddr = vaddr;
|
|
kf->type = type;
|
|
ktr_enqueuerequest(td, req);
|
|
ktrace_exit(td);
|
|
}
|
|
|
|
void
|
|
ktrfaultend(result)
|
|
int result;
|
|
{
|
|
struct thread *td = curthread;
|
|
struct ktr_request *req;
|
|
struct ktr_faultend *kf;
|
|
|
|
req = ktr_getrequest(KTR_FAULTEND);
|
|
if (req == NULL)
|
|
return;
|
|
kf = &req->ktr_data.ktr_faultend;
|
|
kf->result = result;
|
|
ktr_enqueuerequest(td, req);
|
|
ktrace_exit(td);
|
|
}
|
|
#endif /* KTRACE */
|
|
|
|
/* Interface and common routines */
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ktrace_args {
|
|
char *fname;
|
|
int ops;
|
|
int facs;
|
|
int pid;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_ktrace(td, uap)
|
|
struct thread *td;
|
|
register struct ktrace_args *uap;
|
|
{
|
|
#ifdef KTRACE
|
|
register struct vnode *vp = NULL;
|
|
register struct proc *p;
|
|
struct pgrp *pg;
|
|
int facs = uap->facs & ~KTRFAC_ROOT;
|
|
int ops = KTROP(uap->ops);
|
|
int descend = uap->ops & KTRFLAG_DESCEND;
|
|
int nfound, ret = 0;
|
|
int flags, error = 0;
|
|
struct nameidata nd;
|
|
struct ucred *cred;
|
|
|
|
/*
|
|
* Need something to (un)trace.
|
|
*/
|
|
if (ops != KTROP_CLEARFILE && facs == 0)
|
|
return (EINVAL);
|
|
|
|
ktrace_enter(td);
|
|
if (ops != KTROP_CLEAR) {
|
|
/*
|
|
* an operation which requires a file argument.
|
|
*/
|
|
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
|
|
flags = FREAD | FWRITE | O_NOFOLLOW;
|
|
error = vn_open(&nd, &flags, 0, NULL);
|
|
if (error) {
|
|
ktrace_exit(td);
|
|
return (error);
|
|
}
|
|
NDFREE(&nd, NDF_ONLY_PNBUF);
|
|
vp = nd.ni_vp;
|
|
VOP_UNLOCK(vp, 0);
|
|
if (vp->v_type != VREG) {
|
|
(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
|
|
ktrace_exit(td);
|
|
return (EACCES);
|
|
}
|
|
}
|
|
/*
|
|
* Clear all uses of the tracefile.
|
|
*/
|
|
if (ops == KTROP_CLEARFILE) {
|
|
int vrele_count;
|
|
|
|
vrele_count = 0;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
PROC_LOCK(p);
|
|
if (p->p_tracevp == vp) {
|
|
if (ktrcanset(td, p)) {
|
|
mtx_lock(&ktrace_mtx);
|
|
ktr_freeproc(p, &cred, NULL);
|
|
mtx_unlock(&ktrace_mtx);
|
|
vrele_count++;
|
|
crfree(cred);
|
|
} else
|
|
error = EPERM;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
if (vrele_count > 0) {
|
|
while (vrele_count-- > 0)
|
|
vrele(vp);
|
|
}
|
|
goto done;
|
|
}
|
|
/*
|
|
* do it
|
|
*/
|
|
sx_slock(&proctree_lock);
|
|
if (uap->pid < 0) {
|
|
/*
|
|
* by process group
|
|
*/
|
|
pg = pgfind(-uap->pid);
|
|
if (pg == NULL) {
|
|
sx_sunlock(&proctree_lock);
|
|
error = ESRCH;
|
|
goto done;
|
|
}
|
|
/*
|
|
* ktrops() may call vrele(). Lock pg_members
|
|
* by the proctree_lock rather than pg_mtx.
|
|
*/
|
|
PGRP_UNLOCK(pg);
|
|
nfound = 0;
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NEW ||
|
|
p_cansee(td, p) != 0) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
nfound++;
|
|
if (descend)
|
|
ret |= ktrsetchildren(td, p, ops, facs, vp);
|
|
else
|
|
ret |= ktrops(td, p, ops, facs, vp);
|
|
}
|
|
if (nfound == 0) {
|
|
sx_sunlock(&proctree_lock);
|
|
error = ESRCH;
|
|
goto done;
|
|
}
|
|
} else {
|
|
/*
|
|
* by pid
|
|
*/
|
|
p = pfind(uap->pid);
|
|
if (p == NULL)
|
|
error = ESRCH;
|
|
else
|
|
error = p_cansee(td, p);
|
|
if (error) {
|
|
if (p != NULL)
|
|
PROC_UNLOCK(p);
|
|
sx_sunlock(&proctree_lock);
|
|
goto done;
|
|
}
|
|
if (descend)
|
|
ret |= ktrsetchildren(td, p, ops, facs, vp);
|
|
else
|
|
ret |= ktrops(td, p, ops, facs, vp);
|
|
}
|
|
sx_sunlock(&proctree_lock);
|
|
if (!ret)
|
|
error = EPERM;
|
|
done:
|
|
if (vp != NULL)
|
|
(void) vn_close(vp, FWRITE, td->td_ucred, td);
|
|
ktrace_exit(td);
|
|
return (error);
|
|
#else /* !KTRACE */
|
|
return (ENOSYS);
|
|
#endif /* KTRACE */
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_utrace(td, uap)
|
|
struct thread *td;
|
|
register struct utrace_args *uap;
|
|
{
|
|
|
|
#ifdef KTRACE
|
|
struct ktr_request *req;
|
|
void *cp;
|
|
int error;
|
|
|
|
if (!KTRPOINT(td, KTR_USER))
|
|
return (0);
|
|
if (uap->len > KTR_USER_MAXLEN)
|
|
return (EINVAL);
|
|
cp = malloc(uap->len, M_KTRACE, M_WAITOK);
|
|
error = copyin(uap->addr, cp, uap->len);
|
|
if (error) {
|
|
free(cp, M_KTRACE);
|
|
return (error);
|
|
}
|
|
req = ktr_getrequest(KTR_USER);
|
|
if (req == NULL) {
|
|
free(cp, M_KTRACE);
|
|
return (ENOMEM);
|
|
}
|
|
req->ktr_buffer = cp;
|
|
req->ktr_header.ktr_len = uap->len;
|
|
ktr_submitrequest(td, req);
|
|
return (0);
|
|
#else /* !KTRACE */
|
|
return (ENOSYS);
|
|
#endif /* KTRACE */
|
|
}
|
|
|
|
#ifdef KTRACE
|
|
static int
|
|
ktrops(td, p, ops, facs, vp)
|
|
struct thread *td;
|
|
struct proc *p;
|
|
int ops, facs;
|
|
struct vnode *vp;
|
|
{
|
|
struct vnode *tracevp = NULL;
|
|
struct ucred *tracecred = NULL;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if (!ktrcanset(td, p)) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
if (p->p_flag & P_WEXIT) {
|
|
/* If the process is exiting, just ignore it. */
|
|
PROC_UNLOCK(p);
|
|
return (1);
|
|
}
|
|
mtx_lock(&ktrace_mtx);
|
|
if (ops == KTROP_SET) {
|
|
if (p->p_tracevp != vp) {
|
|
/*
|
|
* if trace file already in use, relinquish below
|
|
*/
|
|
tracevp = p->p_tracevp;
|
|
VREF(vp);
|
|
p->p_tracevp = vp;
|
|
}
|
|
if (p->p_tracecred != td->td_ucred) {
|
|
tracecred = p->p_tracecred;
|
|
p->p_tracecred = crhold(td->td_ucred);
|
|
}
|
|
p->p_traceflag |= facs;
|
|
if (priv_check(td, PRIV_KTRACE) == 0)
|
|
p->p_traceflag |= KTRFAC_ROOT;
|
|
} else {
|
|
/* KTROP_CLEAR */
|
|
if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
|
|
/* no more tracing */
|
|
ktr_freeproc(p, &tracecred, &tracevp);
|
|
}
|
|
mtx_unlock(&ktrace_mtx);
|
|
if ((p->p_traceflag & KTRFAC_MASK) != 0)
|
|
ktrprocctor_entered(td, p);
|
|
PROC_UNLOCK(p);
|
|
if (tracevp != NULL)
|
|
vrele(tracevp);
|
|
if (tracecred != NULL)
|
|
crfree(tracecred);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
ktrsetchildren(td, top, ops, facs, vp)
|
|
struct thread *td;
|
|
struct proc *top;
|
|
int ops, facs;
|
|
struct vnode *vp;
|
|
{
|
|
register struct proc *p;
|
|
register int ret = 0;
|
|
|
|
p = top;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
for (;;) {
|
|
ret |= ktrops(td, p, ops, facs, vp);
|
|
/*
|
|
* If this process has children, descend to them next,
|
|
* otherwise do any siblings, and if done with this level,
|
|
* follow back up the tree (but not past top).
|
|
*/
|
|
if (!LIST_EMPTY(&p->p_children))
|
|
p = LIST_FIRST(&p->p_children);
|
|
else for (;;) {
|
|
if (p == top)
|
|
return (ret);
|
|
if (LIST_NEXT(p, p_sibling)) {
|
|
p = LIST_NEXT(p, p_sibling);
|
|
break;
|
|
}
|
|
p = p->p_pptr;
|
|
}
|
|
PROC_LOCK(p);
|
|
}
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
static void
|
|
ktr_writerequest(struct thread *td, struct ktr_request *req)
|
|
{
|
|
struct ktr_header *kth;
|
|
struct vnode *vp;
|
|
struct proc *p;
|
|
struct ucred *cred;
|
|
struct uio auio;
|
|
struct iovec aiov[3];
|
|
struct mount *mp;
|
|
int datalen, buflen, vrele_count;
|
|
int error;
|
|
|
|
/*
|
|
* We hold the vnode and credential for use in I/O in case ktrace is
|
|
* disabled on the process as we write out the request.
|
|
*
|
|
* XXXRW: This is not ideal: we could end up performing a write after
|
|
* the vnode has been closed.
|
|
*/
|
|
mtx_lock(&ktrace_mtx);
|
|
vp = td->td_proc->p_tracevp;
|
|
cred = td->td_proc->p_tracecred;
|
|
|
|
/*
|
|
* If vp is NULL, the vp has been cleared out from under this
|
|
* request, so just drop it. Make sure the credential and vnode are
|
|
* in sync: we should have both or neither.
|
|
*/
|
|
if (vp == NULL) {
|
|
KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
|
|
mtx_unlock(&ktrace_mtx);
|
|
return;
|
|
}
|
|
VREF(vp);
|
|
KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
|
|
crhold(cred);
|
|
mtx_unlock(&ktrace_mtx);
|
|
|
|
kth = &req->ktr_header;
|
|
KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
|
|
sizeof(data_lengths) / sizeof(data_lengths[0]),
|
|
("data_lengths array overflow"));
|
|
datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
|
|
buflen = kth->ktr_len;
|
|
auio.uio_iov = &aiov[0];
|
|
auio.uio_offset = 0;
|
|
auio.uio_segflg = UIO_SYSSPACE;
|
|
auio.uio_rw = UIO_WRITE;
|
|
aiov[0].iov_base = (caddr_t)kth;
|
|
aiov[0].iov_len = sizeof(struct ktr_header);
|
|
auio.uio_resid = sizeof(struct ktr_header);
|
|
auio.uio_iovcnt = 1;
|
|
auio.uio_td = td;
|
|
if (datalen != 0) {
|
|
aiov[1].iov_base = (caddr_t)&req->ktr_data;
|
|
aiov[1].iov_len = datalen;
|
|
auio.uio_resid += datalen;
|
|
auio.uio_iovcnt++;
|
|
kth->ktr_len += datalen;
|
|
}
|
|
if (buflen != 0) {
|
|
KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
|
|
aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
|
|
aiov[auio.uio_iovcnt].iov_len = buflen;
|
|
auio.uio_resid += buflen;
|
|
auio.uio_iovcnt++;
|
|
}
|
|
|
|
vn_start_write(vp, &mp, V_WAIT);
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
#ifdef MAC
|
|
error = mac_vnode_check_write(cred, NOCRED, vp);
|
|
if (error == 0)
|
|
#endif
|
|
error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
|
|
VOP_UNLOCK(vp, 0);
|
|
vn_finished_write(mp);
|
|
crfree(cred);
|
|
if (!error) {
|
|
vrele(vp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If error encountered, give up tracing on this vnode. We defer
|
|
* all the vrele()'s on the vnode until after we are finished walking
|
|
* the various lists to avoid needlessly holding locks.
|
|
* NB: at this point we still hold the vnode reference that must
|
|
* not go away as we need the valid vnode to compare with. Thus let
|
|
* vrele_count start at 1 and the reference will be freed
|
|
* by the loop at the end after our last use of vp.
|
|
*/
|
|
log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
|
|
error);
|
|
vrele_count = 1;
|
|
/*
|
|
* First, clear this vnode from being used by any processes in the
|
|
* system.
|
|
* XXX - If one process gets an EPERM writing to the vnode, should
|
|
* we really do this? Other processes might have suitable
|
|
* credentials for the operation.
|
|
*/
|
|
cred = NULL;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
PROC_LOCK(p);
|
|
if (p->p_tracevp == vp) {
|
|
mtx_lock(&ktrace_mtx);
|
|
ktr_freeproc(p, &cred, NULL);
|
|
mtx_unlock(&ktrace_mtx);
|
|
vrele_count++;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
if (cred != NULL) {
|
|
crfree(cred);
|
|
cred = NULL;
|
|
}
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
|
|
while (vrele_count-- > 0)
|
|
vrele(vp);
|
|
}
|
|
|
|
/*
|
|
* Return true if caller has permission to set the ktracing state
|
|
* of target. Essentially, the target can't possess any
|
|
* more permissions than the caller. KTRFAC_ROOT signifies that
|
|
* root previously set the tracing status on the target process, and
|
|
* so, only root may further change it.
|
|
*/
|
|
static int
|
|
ktrcanset(td, targetp)
|
|
struct thread *td;
|
|
struct proc *targetp;
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(targetp, MA_OWNED);
|
|
if (targetp->p_traceflag & KTRFAC_ROOT &&
|
|
priv_check(td, PRIV_KTRACE))
|
|
return (0);
|
|
|
|
if (p_candebug(td, targetp) != 0)
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
#endif /* KTRACE */
|