mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-01 12:19:28 +00:00
8cc64f1e21
and more importantly, new I218 adapter support to the em driver. MFC after: 1 week
3643 lines
98 KiB
C
3643 lines
98 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2014, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
/*
|
|
* 82575EB Gigabit Network Connection
|
|
* 82575EB Gigabit Backplane Connection
|
|
* 82575GB Gigabit Network Connection
|
|
* 82576 Gigabit Network Connection
|
|
* 82576 Quad Port Gigabit Mezzanine Adapter
|
|
* 82580 Gigabit Network Connection
|
|
* I350 Gigabit Network Connection
|
|
*/
|
|
|
|
#include "e1000_api.h"
|
|
#include "e1000_i210.h"
|
|
|
|
static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
|
|
static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
|
|
static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
|
|
static void e1000_release_phy_82575(struct e1000_hw *hw);
|
|
static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
|
|
static void e1000_release_nvm_82575(struct e1000_hw *hw);
|
|
static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
|
|
static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw);
|
|
static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
|
|
static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex);
|
|
static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
|
|
static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
|
|
u16 *data);
|
|
static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
|
|
static s32 e1000_reset_hw_82580(struct e1000_hw *hw);
|
|
static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw,
|
|
u32 offset, u16 *data);
|
|
static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw,
|
|
u32 offset, u16 data);
|
|
static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
|
|
bool active);
|
|
static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
|
|
bool active);
|
|
static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
|
|
bool active);
|
|
static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
|
|
static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw);
|
|
static s32 e1000_get_media_type_82575(struct e1000_hw *hw);
|
|
static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
|
|
static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
|
|
static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
|
|
u32 offset, u16 data);
|
|
static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
|
|
static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
|
|
static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
|
|
u16 *speed, u16 *duplex);
|
|
static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
|
|
static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
|
|
static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
|
|
static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
|
|
static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
|
|
static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
|
|
static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
|
|
static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
|
|
static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
|
|
static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
|
|
static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
|
|
static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
|
|
static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
|
|
static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
|
|
u16 offset);
|
|
static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
|
|
u16 offset);
|
|
static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
|
|
static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
|
|
static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
|
|
static void e1000_clear_vfta_i350(struct e1000_hw *hw);
|
|
|
|
static void e1000_i2c_start(struct e1000_hw *hw);
|
|
static void e1000_i2c_stop(struct e1000_hw *hw);
|
|
static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
|
|
static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
|
|
static s32 e1000_get_i2c_ack(struct e1000_hw *hw);
|
|
static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
|
|
static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
|
|
static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
|
|
static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
|
|
static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
|
|
static bool e1000_get_i2c_data(u32 *i2cctl);
|
|
|
|
static const u16 e1000_82580_rxpbs_table[] = {
|
|
36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
|
|
#define E1000_82580_RXPBS_TABLE_SIZE \
|
|
(sizeof(e1000_82580_rxpbs_table) / \
|
|
sizeof(e1000_82580_rxpbs_table[0]))
|
|
|
|
|
|
/**
|
|
* e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Called to determine if the I2C pins are being used for I2C or as an
|
|
* external MDIO interface since the two options are mutually exclusive.
|
|
**/
|
|
static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 reg = 0;
|
|
bool ext_mdio = FALSE;
|
|
|
|
DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82575:
|
|
case e1000_82576:
|
|
reg = E1000_READ_REG(hw, E1000_MDIC);
|
|
ext_mdio = !!(reg & E1000_MDIC_DEST);
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
reg = E1000_READ_REG(hw, E1000_MDICNFG);
|
|
ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ext_mdio;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_phy_params_82575 - Init PHY func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 ctrl_ext;
|
|
|
|
DEBUGFUNC("e1000_init_phy_params_82575");
|
|
|
|
phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
|
|
phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
|
|
|
|
if (hw->phy.media_type != e1000_media_type_copper) {
|
|
phy->type = e1000_phy_none;
|
|
goto out;
|
|
}
|
|
|
|
phy->ops.power_up = e1000_power_up_phy_copper;
|
|
phy->ops.power_down = e1000_power_down_phy_copper_82575;
|
|
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
phy->reset_delay_us = 100;
|
|
|
|
phy->ops.acquire = e1000_acquire_phy_82575;
|
|
phy->ops.check_reset_block = e1000_check_reset_block_generic;
|
|
phy->ops.commit = e1000_phy_sw_reset_generic;
|
|
phy->ops.get_cfg_done = e1000_get_cfg_done_82575;
|
|
phy->ops.release = e1000_release_phy_82575;
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
|
|
if (e1000_sgmii_active_82575(hw)) {
|
|
phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
|
|
ctrl_ext |= E1000_CTRL_I2C_ENA;
|
|
} else {
|
|
phy->ops.reset = e1000_phy_hw_reset_generic;
|
|
ctrl_ext &= ~E1000_CTRL_I2C_ENA;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
e1000_reset_mdicnfg_82580(hw);
|
|
|
|
if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
|
|
phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
|
|
phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
|
|
} else {
|
|
switch (hw->mac.type) {
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
phy->ops.read_reg = e1000_read_phy_reg_82580;
|
|
phy->ops.write_reg = e1000_write_phy_reg_82580;
|
|
break;
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
phy->ops.read_reg = e1000_read_phy_reg_gs40g;
|
|
phy->ops.write_reg = e1000_write_phy_reg_gs40g;
|
|
break;
|
|
default:
|
|
phy->ops.read_reg = e1000_read_phy_reg_igp;
|
|
phy->ops.write_reg = e1000_write_phy_reg_igp;
|
|
}
|
|
}
|
|
|
|
/* Set phy->phy_addr and phy->id. */
|
|
ret_val = e1000_get_phy_id_82575(hw);
|
|
|
|
/* Verify phy id and set remaining function pointers */
|
|
switch (phy->id) {
|
|
case M88E1543_E_PHY_ID:
|
|
case M88E1512_E_PHY_ID:
|
|
case I347AT4_E_PHY_ID:
|
|
case M88E1112_E_PHY_ID:
|
|
case M88E1340M_E_PHY_ID:
|
|
case M88E1111_I_PHY_ID:
|
|
phy->type = e1000_phy_m88;
|
|
phy->ops.check_polarity = e1000_check_polarity_m88;
|
|
phy->ops.get_info = e1000_get_phy_info_m88;
|
|
if (phy->id == I347AT4_E_PHY_ID ||
|
|
phy->id == M88E1112_E_PHY_ID ||
|
|
phy->id == M88E1340M_E_PHY_ID)
|
|
phy->ops.get_cable_length =
|
|
e1000_get_cable_length_m88_gen2;
|
|
else if (phy->id == M88E1543_E_PHY_ID ||
|
|
phy->id == M88E1512_E_PHY_ID)
|
|
phy->ops.get_cable_length =
|
|
e1000_get_cable_length_m88_gen2;
|
|
else
|
|
phy->ops.get_cable_length = e1000_get_cable_length_m88;
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
|
|
/* Check if this PHY is confgured for media swap. */
|
|
if (phy->id == M88E1112_E_PHY_ID) {
|
|
u16 data;
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
E1000_M88E1112_PAGE_ADDR,
|
|
2);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.read_reg(hw,
|
|
E1000_M88E1112_MAC_CTRL_1,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
|
|
E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
|
|
if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
|
|
data == E1000_M88E1112_AUTO_COPPER_BASEX)
|
|
hw->mac.ops.check_for_link =
|
|
e1000_check_for_link_media_swap;
|
|
}
|
|
if (phy->id == M88E1512_E_PHY_ID) {
|
|
ret_val = e1000_initialize_M88E1512_phy(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
break;
|
|
case IGP03E1000_E_PHY_ID:
|
|
case IGP04E1000_E_PHY_ID:
|
|
phy->type = e1000_phy_igp_3;
|
|
phy->ops.check_polarity = e1000_check_polarity_igp;
|
|
phy->ops.get_info = e1000_get_phy_info_igp;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
|
|
phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
|
|
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
|
|
break;
|
|
case I82580_I_PHY_ID:
|
|
case I350_I_PHY_ID:
|
|
phy->type = e1000_phy_82580;
|
|
phy->ops.check_polarity = e1000_check_polarity_82577;
|
|
phy->ops.force_speed_duplex =
|
|
e1000_phy_force_speed_duplex_82577;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_82577;
|
|
phy->ops.get_info = e1000_get_phy_info_82577;
|
|
phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
|
|
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
|
|
break;
|
|
case I210_I_PHY_ID:
|
|
phy->type = e1000_phy_i210;
|
|
phy->ops.check_polarity = e1000_check_polarity_m88;
|
|
phy->ops.get_info = e1000_get_phy_info_m88;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
|
|
phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
|
|
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
|
|
break;
|
|
default:
|
|
ret_val = -E1000_ERR_PHY;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_nvm_params_82575 - Init NVM func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
u16 size;
|
|
|
|
DEBUGFUNC("e1000_init_nvm_params_82575");
|
|
|
|
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
|
|
E1000_EECD_SIZE_EX_SHIFT);
|
|
/*
|
|
* Added to a constant, "size" becomes the left-shift value
|
|
* for setting word_size.
|
|
*/
|
|
size += NVM_WORD_SIZE_BASE_SHIFT;
|
|
|
|
/* Just in case size is out of range, cap it to the largest
|
|
* EEPROM size supported
|
|
*/
|
|
if (size > 15)
|
|
size = 15;
|
|
|
|
nvm->word_size = 1 << size;
|
|
if (hw->mac.type < e1000_i210) {
|
|
nvm->opcode_bits = 8;
|
|
nvm->delay_usec = 1;
|
|
|
|
switch (nvm->override) {
|
|
case e1000_nvm_override_spi_large:
|
|
nvm->page_size = 32;
|
|
nvm->address_bits = 16;
|
|
break;
|
|
case e1000_nvm_override_spi_small:
|
|
nvm->page_size = 8;
|
|
nvm->address_bits = 8;
|
|
break;
|
|
default:
|
|
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
|
|
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
|
|
16 : 8;
|
|
break;
|
|
}
|
|
if (nvm->word_size == (1 << 15))
|
|
nvm->page_size = 128;
|
|
|
|
nvm->type = e1000_nvm_eeprom_spi;
|
|
} else {
|
|
nvm->type = e1000_nvm_flash_hw;
|
|
}
|
|
|
|
/* Function Pointers */
|
|
nvm->ops.acquire = e1000_acquire_nvm_82575;
|
|
nvm->ops.release = e1000_release_nvm_82575;
|
|
if (nvm->word_size < (1 << 15))
|
|
nvm->ops.read = e1000_read_nvm_eerd;
|
|
else
|
|
nvm->ops.read = e1000_read_nvm_spi;
|
|
|
|
nvm->ops.write = e1000_write_nvm_spi;
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_generic;
|
|
nvm->ops.update = e1000_update_nvm_checksum_generic;
|
|
nvm->ops.valid_led_default = e1000_valid_led_default_82575;
|
|
|
|
/* override generic family function pointers for specific descendants */
|
|
switch (hw->mac.type) {
|
|
case e1000_82580:
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_82580;
|
|
nvm->ops.update = e1000_update_nvm_checksum_82580;
|
|
break;
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_i350;
|
|
nvm->ops.update = e1000_update_nvm_checksum_i350;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_mac_params_82575 - Init MAC func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
|
|
|
|
DEBUGFUNC("e1000_init_mac_params_82575");
|
|
|
|
/* Derives media type */
|
|
e1000_get_media_type_82575(hw);
|
|
/* Set mta register count */
|
|
mac->mta_reg_count = 128;
|
|
/* Set uta register count */
|
|
mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
|
|
/* Set rar entry count */
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
|
|
if (mac->type == e1000_82576)
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
|
|
if (mac->type == e1000_82580)
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
|
|
if (mac->type == e1000_i350 || mac->type == e1000_i354)
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
|
|
|
|
/* Enable EEE default settings for EEE supported devices */
|
|
if (mac->type >= e1000_i350)
|
|
dev_spec->eee_disable = FALSE;
|
|
|
|
/* Allow a single clear of the SW semaphore on I210 and newer */
|
|
if (mac->type >= e1000_i210)
|
|
dev_spec->clear_semaphore_once = TRUE;
|
|
|
|
/* Set if part includes ASF firmware */
|
|
mac->asf_firmware_present = TRUE;
|
|
/* FWSM register */
|
|
mac->has_fwsm = TRUE;
|
|
/* ARC supported; valid only if manageability features are enabled. */
|
|
mac->arc_subsystem_valid =
|
|
!!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
|
|
|
|
/* Function pointers */
|
|
|
|
/* bus type/speed/width */
|
|
mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
|
|
/* reset */
|
|
if (mac->type >= e1000_82580)
|
|
mac->ops.reset_hw = e1000_reset_hw_82580;
|
|
else
|
|
mac->ops.reset_hw = e1000_reset_hw_82575;
|
|
/* hw initialization */
|
|
if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
|
|
mac->ops.init_hw = e1000_init_hw_i210;
|
|
else
|
|
mac->ops.init_hw = e1000_init_hw_82575;
|
|
/* link setup */
|
|
mac->ops.setup_link = e1000_setup_link_generic;
|
|
/* physical interface link setup */
|
|
mac->ops.setup_physical_interface =
|
|
(hw->phy.media_type == e1000_media_type_copper)
|
|
? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
|
|
/* physical interface shutdown */
|
|
mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
|
|
/* physical interface power up */
|
|
mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
|
|
/* check for link */
|
|
mac->ops.check_for_link = e1000_check_for_link_82575;
|
|
/* read mac address */
|
|
mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
|
|
/* configure collision distance */
|
|
mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
|
|
/* multicast address update */
|
|
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
|
|
if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
|
|
/* writing VFTA */
|
|
mac->ops.write_vfta = e1000_write_vfta_i350;
|
|
/* clearing VFTA */
|
|
mac->ops.clear_vfta = e1000_clear_vfta_i350;
|
|
} else {
|
|
/* writing VFTA */
|
|
mac->ops.write_vfta = e1000_write_vfta_generic;
|
|
/* clearing VFTA */
|
|
mac->ops.clear_vfta = e1000_clear_vfta_generic;
|
|
}
|
|
if (hw->mac.type >= e1000_82580)
|
|
mac->ops.validate_mdi_setting =
|
|
e1000_validate_mdi_setting_crossover_generic;
|
|
/* ID LED init */
|
|
mac->ops.id_led_init = e1000_id_led_init_generic;
|
|
/* blink LED */
|
|
mac->ops.blink_led = e1000_blink_led_generic;
|
|
/* setup LED */
|
|
mac->ops.setup_led = e1000_setup_led_generic;
|
|
/* cleanup LED */
|
|
mac->ops.cleanup_led = e1000_cleanup_led_generic;
|
|
/* turn on/off LED */
|
|
mac->ops.led_on = e1000_led_on_generic;
|
|
mac->ops.led_off = e1000_led_off_generic;
|
|
/* clear hardware counters */
|
|
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
|
|
/* link info */
|
|
mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
|
|
/* acquire SW_FW sync */
|
|
mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
|
|
mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
|
|
if (mac->type >= e1000_i210) {
|
|
mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
|
|
mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
|
|
}
|
|
|
|
/* set lan id for port to determine which phy lock to use */
|
|
hw->mac.ops.set_lan_id(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_function_pointers_82575 - Init func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Called to initialize all function pointers and parameters.
|
|
**/
|
|
void e1000_init_function_pointers_82575(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_init_function_pointers_82575");
|
|
|
|
hw->mac.ops.init_params = e1000_init_mac_params_82575;
|
|
hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
|
|
hw->phy.ops.init_params = e1000_init_phy_params_82575;
|
|
hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_phy_82575 - Acquire rights to access PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire access rights to the correct PHY.
|
|
**/
|
|
static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
|
|
{
|
|
u16 mask = E1000_SWFW_PHY0_SM;
|
|
|
|
DEBUGFUNC("e1000_acquire_phy_82575");
|
|
|
|
if (hw->bus.func == E1000_FUNC_1)
|
|
mask = E1000_SWFW_PHY1_SM;
|
|
else if (hw->bus.func == E1000_FUNC_2)
|
|
mask = E1000_SWFW_PHY2_SM;
|
|
else if (hw->bus.func == E1000_FUNC_3)
|
|
mask = E1000_SWFW_PHY3_SM;
|
|
|
|
return hw->mac.ops.acquire_swfw_sync(hw, mask);
|
|
}
|
|
|
|
/**
|
|
* e1000_release_phy_82575 - Release rights to access PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* A wrapper to release access rights to the correct PHY.
|
|
**/
|
|
static void e1000_release_phy_82575(struct e1000_hw *hw)
|
|
{
|
|
u16 mask = E1000_SWFW_PHY0_SM;
|
|
|
|
DEBUGFUNC("e1000_release_phy_82575");
|
|
|
|
if (hw->bus.func == E1000_FUNC_1)
|
|
mask = E1000_SWFW_PHY1_SM;
|
|
else if (hw->bus.func == E1000_FUNC_2)
|
|
mask = E1000_SWFW_PHY2_SM;
|
|
else if (hw->bus.func == E1000_FUNC_3)
|
|
mask = E1000_SWFW_PHY3_SM;
|
|
|
|
hw->mac.ops.release_swfw_sync(hw, mask);
|
|
}
|
|
|
|
/**
|
|
* e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to be read
|
|
* @data: pointer to the read data
|
|
*
|
|
* Reads the PHY register at offset using the serial gigabit media independent
|
|
* interface and stores the retrieved information in data.
|
|
**/
|
|
static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
|
|
u16 *data)
|
|
{
|
|
s32 ret_val = -E1000_ERR_PARAM;
|
|
|
|
DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
|
|
|
|
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
|
|
DEBUGOUT1("PHY Address %u is out of range\n", offset);
|
|
goto out;
|
|
}
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
|
|
|
|
hw->phy.ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to write to
|
|
* @data: data to write at register offset
|
|
*
|
|
* Writes the data to PHY register at the offset using the serial gigabit
|
|
* media independent interface.
|
|
**/
|
|
static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
|
|
u16 data)
|
|
{
|
|
s32 ret_val = -E1000_ERR_PARAM;
|
|
|
|
DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
|
|
|
|
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
|
|
DEBUGOUT1("PHY Address %d is out of range\n", offset);
|
|
goto out;
|
|
}
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
|
|
|
|
hw->phy.ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_phy_id_82575 - Retrieve PHY addr and id
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Retrieves the PHY address and ID for both PHY's which do and do not use
|
|
* sgmi interface.
|
|
**/
|
|
static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 phy_id;
|
|
u32 ctrl_ext;
|
|
u32 mdic;
|
|
|
|
DEBUGFUNC("e1000_get_phy_id_82575");
|
|
|
|
/* some i354 devices need an extra read for phy id */
|
|
if (hw->mac.type == e1000_i354)
|
|
e1000_get_phy_id(hw);
|
|
|
|
/*
|
|
* For SGMII PHYs, we try the list of possible addresses until
|
|
* we find one that works. For non-SGMII PHYs
|
|
* (e.g. integrated copper PHYs), an address of 1 should
|
|
* work. The result of this function should mean phy->phy_addr
|
|
* and phy->id are set correctly.
|
|
*/
|
|
if (!e1000_sgmii_active_82575(hw)) {
|
|
phy->addr = 1;
|
|
ret_val = e1000_get_phy_id(hw);
|
|
goto out;
|
|
}
|
|
|
|
if (e1000_sgmii_uses_mdio_82575(hw)) {
|
|
switch (hw->mac.type) {
|
|
case e1000_82575:
|
|
case e1000_82576:
|
|
mdic = E1000_READ_REG(hw, E1000_MDIC);
|
|
mdic &= E1000_MDIC_PHY_MASK;
|
|
phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
mdic = E1000_READ_REG(hw, E1000_MDICNFG);
|
|
mdic &= E1000_MDICNFG_PHY_MASK;
|
|
phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
|
|
break;
|
|
default:
|
|
ret_val = -E1000_ERR_PHY;
|
|
goto out;
|
|
break;
|
|
}
|
|
ret_val = e1000_get_phy_id(hw);
|
|
goto out;
|
|
}
|
|
|
|
/* Power on sgmii phy if it is disabled */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(300);
|
|
|
|
/*
|
|
* The address field in the I2CCMD register is 3 bits and 0 is invalid.
|
|
* Therefore, we need to test 1-7
|
|
*/
|
|
for (phy->addr = 1; phy->addr < 8; phy->addr++) {
|
|
ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
|
|
if (ret_val == E1000_SUCCESS) {
|
|
DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
|
|
phy_id, phy->addr);
|
|
/*
|
|
* At the time of this writing, The M88 part is
|
|
* the only supported SGMII PHY product.
|
|
*/
|
|
if (phy_id == M88_VENDOR)
|
|
break;
|
|
} else {
|
|
DEBUGOUT1("PHY address %u was unreadable\n",
|
|
phy->addr);
|
|
}
|
|
}
|
|
|
|
/* A valid PHY type couldn't be found. */
|
|
if (phy->addr == 8) {
|
|
phy->addr = 0;
|
|
ret_val = -E1000_ERR_PHY;
|
|
} else {
|
|
ret_val = e1000_get_phy_id(hw);
|
|
}
|
|
|
|
/* restore previous sfp cage power state */
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Resets the PHY using the serial gigabit media independent interface.
|
|
**/
|
|
static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
|
|
DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
|
|
|
|
/*
|
|
* This isn't a TRUE "hard" reset, but is the only reset
|
|
* available to us at this time.
|
|
*/
|
|
|
|
DEBUGOUT("Soft resetting SGMII attached PHY...\n");
|
|
|
|
if (!(hw->phy.ops.write_reg))
|
|
goto out;
|
|
|
|
/*
|
|
* SFP documentation requires the following to configure the SPF module
|
|
* to work on SGMII. No further documentation is given.
|
|
*/
|
|
ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = hw->phy.ops.commit(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (phy->id == M88E1512_E_PHY_ID)
|
|
ret_val = e1000_initialize_M88E1512_phy(hw);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
|
|
* @hw: pointer to the HW structure
|
|
* @active: TRUE to enable LPLU, FALSE to disable
|
|
*
|
|
* Sets the LPLU D0 state according to the active flag. When
|
|
* activating LPLU this function also disables smart speed
|
|
* and vice versa. LPLU will not be activated unless the
|
|
* device autonegotiation advertisement meets standards of
|
|
* either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
* This is a function pointer entry point only called by
|
|
* PHY setup routines.
|
|
**/
|
|
static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("e1000_set_d0_lplu_state_82575");
|
|
|
|
if (!(hw->phy.ops.read_reg))
|
|
goto out;
|
|
|
|
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (active) {
|
|
data |= IGP02E1000_PM_D0_LPLU;
|
|
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
} else {
|
|
data &= ~IGP02E1000_PM_D0_LPLU;
|
|
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
data);
|
|
/*
|
|
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
* during Dx states where the power conservation is most
|
|
* important. During driver activity we should enable
|
|
* SmartSpeed, so performance is maintained.
|
|
*/
|
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
|
ret_val = phy->ops.read_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
|
ret_val = phy->ops.read_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
|
|
* @hw: pointer to the HW structure
|
|
* @active: TRUE to enable LPLU, FALSE to disable
|
|
*
|
|
* Sets the LPLU D0 state according to the active flag. When
|
|
* activating LPLU this function also disables smart speed
|
|
* and vice versa. LPLU will not be activated unless the
|
|
* device autonegotiation advertisement meets standards of
|
|
* either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
* This is a function pointer entry point only called by
|
|
* PHY setup routines.
|
|
**/
|
|
static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
u32 data;
|
|
|
|
DEBUGFUNC("e1000_set_d0_lplu_state_82580");
|
|
|
|
data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
|
|
|
|
if (active) {
|
|
data |= E1000_82580_PM_D0_LPLU;
|
|
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
data &= ~E1000_82580_PM_SPD;
|
|
} else {
|
|
data &= ~E1000_82580_PM_D0_LPLU;
|
|
|
|
/*
|
|
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
* during Dx states where the power conservation is most
|
|
* important. During driver activity we should enable
|
|
* SmartSpeed, so performance is maintained.
|
|
*/
|
|
if (phy->smart_speed == e1000_smart_speed_on)
|
|
data |= E1000_82580_PM_SPD;
|
|
else if (phy->smart_speed == e1000_smart_speed_off)
|
|
data &= ~E1000_82580_PM_SPD;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
|
|
* @hw: pointer to the HW structure
|
|
* @active: boolean used to enable/disable lplu
|
|
*
|
|
* Success returns 0, Failure returns 1
|
|
*
|
|
* The low power link up (lplu) state is set to the power management level D3
|
|
* and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
|
|
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
|
|
* is used during Dx states where the power conservation is most important.
|
|
* During driver activity, SmartSpeed should be enabled so performance is
|
|
* maintained.
|
|
**/
|
|
s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
u32 data;
|
|
|
|
DEBUGFUNC("e1000_set_d3_lplu_state_82580");
|
|
|
|
data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
|
|
|
|
if (!active) {
|
|
data &= ~E1000_82580_PM_D3_LPLU;
|
|
/*
|
|
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
* during Dx states where the power conservation is most
|
|
* important. During driver activity we should enable
|
|
* SmartSpeed, so performance is maintained.
|
|
*/
|
|
if (phy->smart_speed == e1000_smart_speed_on)
|
|
data |= E1000_82580_PM_SPD;
|
|
else if (phy->smart_speed == e1000_smart_speed_off)
|
|
data &= ~E1000_82580_PM_SPD;
|
|
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
|
|
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
|
|
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
|
|
data |= E1000_82580_PM_D3_LPLU;
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
data &= ~E1000_82580_PM_SPD;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_nvm_82575 - Request for access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the necessary semaphores for exclusive access to the EEPROM.
|
|
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
|
|
* Return successful if access grant bit set, else clear the request for
|
|
* EEPROM access and return -E1000_ERR_NVM (-1).
|
|
**/
|
|
static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_acquire_nvm_82575");
|
|
|
|
ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/*
|
|
* Check if there is some access
|
|
* error this access may hook on
|
|
*/
|
|
if (hw->mac.type == e1000_i350) {
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
|
|
E1000_EECD_TIMEOUT)) {
|
|
/* Clear all access error flags */
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd |
|
|
E1000_EECD_ERROR_CLR);
|
|
DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
|
|
}
|
|
}
|
|
|
|
if (hw->mac.type == e1000_82580) {
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
if (eecd & E1000_EECD_BLOCKED) {
|
|
/* Clear access error flag */
|
|
E1000_WRITE_REG(hw, E1000_EECD, eecd |
|
|
E1000_EECD_BLOCKED);
|
|
DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
|
|
}
|
|
}
|
|
|
|
ret_val = e1000_acquire_nvm_generic(hw);
|
|
if (ret_val)
|
|
e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_nvm_82575 - Release exclusive access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
|
|
* then release the semaphores acquired.
|
|
**/
|
|
static void e1000_release_nvm_82575(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_release_nvm_82575");
|
|
|
|
e1000_release_nvm_generic(hw);
|
|
|
|
e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
|
|
}
|
|
|
|
/**
|
|
* e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
|
|
* @hw: pointer to the HW structure
|
|
* @mask: specifies which semaphore to acquire
|
|
*
|
|
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
|
|
* will also specify which port we're acquiring the lock for.
|
|
**/
|
|
static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
|
|
{
|
|
u32 swfw_sync;
|
|
u32 swmask = mask;
|
|
u32 fwmask = mask << 16;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
|
|
|
|
DEBUGFUNC("e1000_acquire_swfw_sync_82575");
|
|
|
|
while (i < timeout) {
|
|
if (e1000_get_hw_semaphore_generic(hw)) {
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
goto out;
|
|
}
|
|
|
|
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
|
|
if (!(swfw_sync & (fwmask | swmask)))
|
|
break;
|
|
|
|
/*
|
|
* Firmware currently using resource (fwmask)
|
|
* or other software thread using resource (swmask)
|
|
*/
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
msec_delay_irq(5);
|
|
i++;
|
|
}
|
|
|
|
if (i == timeout) {
|
|
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
goto out;
|
|
}
|
|
|
|
swfw_sync |= swmask;
|
|
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_swfw_sync_82575 - Release SW/FW semaphore
|
|
* @hw: pointer to the HW structure
|
|
* @mask: specifies which semaphore to acquire
|
|
*
|
|
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
|
|
* will also specify which port we're releasing the lock for.
|
|
**/
|
|
static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
|
|
{
|
|
u32 swfw_sync;
|
|
|
|
DEBUGFUNC("e1000_release_swfw_sync_82575");
|
|
|
|
while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
|
|
; /* Empty */
|
|
|
|
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
|
|
swfw_sync &= ~mask;
|
|
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
|
|
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_cfg_done_82575 - Read config done bit
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Read the management control register for the config done bit for
|
|
* completion status. NOTE: silicon which is EEPROM-less will fail trying
|
|
* to read the config done bit, so an error is *ONLY* logged and returns
|
|
* E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
|
|
* would not be able to be reset or change link.
|
|
**/
|
|
static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 timeout = PHY_CFG_TIMEOUT;
|
|
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
|
|
|
|
DEBUGFUNC("e1000_get_cfg_done_82575");
|
|
|
|
if (hw->bus.func == E1000_FUNC_1)
|
|
mask = E1000_NVM_CFG_DONE_PORT_1;
|
|
else if (hw->bus.func == E1000_FUNC_2)
|
|
mask = E1000_NVM_CFG_DONE_PORT_2;
|
|
else if (hw->bus.func == E1000_FUNC_3)
|
|
mask = E1000_NVM_CFG_DONE_PORT_3;
|
|
while (timeout) {
|
|
if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
|
|
break;
|
|
msec_delay(1);
|
|
timeout--;
|
|
}
|
|
if (!timeout)
|
|
DEBUGOUT("MNG configuration cycle has not completed.\n");
|
|
|
|
/* If EEPROM is not marked present, init the PHY manually */
|
|
if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
|
|
(hw->phy.type == e1000_phy_igp_3))
|
|
e1000_phy_init_script_igp3(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_link_up_info_82575 - Get link speed/duplex info
|
|
* @hw: pointer to the HW structure
|
|
* @speed: stores the current speed
|
|
* @duplex: stores the current duplex
|
|
*
|
|
* This is a wrapper function, if using the serial gigabit media independent
|
|
* interface, use PCS to retrieve the link speed and duplex information.
|
|
* Otherwise, use the generic function to get the link speed and duplex info.
|
|
**/
|
|
static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_get_link_up_info_82575");
|
|
|
|
if (hw->phy.media_type != e1000_media_type_copper)
|
|
ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
|
|
duplex);
|
|
else
|
|
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
|
|
duplex);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_link_82575 - Check for link
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* If sgmii is enabled, then use the pcs register to determine link, otherwise
|
|
* use the generic interface for determining link.
|
|
**/
|
|
static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 speed, duplex;
|
|
|
|
DEBUGFUNC("e1000_check_for_link_82575");
|
|
|
|
if (hw->phy.media_type != e1000_media_type_copper) {
|
|
ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
|
|
&duplex);
|
|
/*
|
|
* Use this flag to determine if link needs to be checked or
|
|
* not. If we have link clear the flag so that we do not
|
|
* continue to check for link.
|
|
*/
|
|
hw->mac.get_link_status = !hw->mac.serdes_has_link;
|
|
|
|
/*
|
|
* Configure Flow Control now that Auto-Neg has completed.
|
|
* First, we need to restore the desired flow control
|
|
* settings because we may have had to re-autoneg with a
|
|
* different link partner.
|
|
*/
|
|
ret_val = e1000_config_fc_after_link_up_generic(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("Error configuring flow control\n");
|
|
} else {
|
|
ret_val = e1000_check_for_copper_link_generic(hw);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_link_media_swap - Check which M88E1112 interface linked
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Poll the M88E1112 interfaces to see which interface achieved link.
|
|
*/
|
|
static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
u16 data;
|
|
u8 port = 0;
|
|
|
|
DEBUGFUNC("e1000_check_for_link_media_swap");
|
|
|
|
/* Check the copper medium. */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (data & E1000_M88E1112_STATUS_LINK)
|
|
port = E1000_MEDIA_PORT_COPPER;
|
|
|
|
/* Check the other medium. */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* reset page to 0 */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (data & E1000_M88E1112_STATUS_LINK)
|
|
port = E1000_MEDIA_PORT_OTHER;
|
|
|
|
/* Determine if a swap needs to happen. */
|
|
if (port && (hw->dev_spec._82575.media_port != port)) {
|
|
hw->dev_spec._82575.media_port = port;
|
|
hw->dev_spec._82575.media_changed = TRUE;
|
|
} else {
|
|
ret_val = e1000_check_for_link_82575(hw);
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 reg;
|
|
|
|
DEBUGFUNC("e1000_power_up_serdes_link_82575");
|
|
|
|
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
|
|
!e1000_sgmii_active_82575(hw))
|
|
return;
|
|
|
|
/* Enable PCS to turn on link */
|
|
reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
|
|
reg |= E1000_PCS_CFG_PCS_EN;
|
|
E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
|
|
|
|
/* Power up the laser */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
reg &= ~E1000_CTRL_EXT_SDP3_DATA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
/* flush the write to verify completion */
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(1);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
|
|
* @hw: pointer to the HW structure
|
|
* @speed: stores the current speed
|
|
* @duplex: stores the current duplex
|
|
*
|
|
* Using the physical coding sub-layer (PCS), retrieve the current speed and
|
|
* duplex, then store the values in the pointers provided.
|
|
**/
|
|
static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
|
|
u16 *speed, u16 *duplex)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 pcs;
|
|
u32 status;
|
|
|
|
DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
|
|
|
|
/*
|
|
* Read the PCS Status register for link state. For non-copper mode,
|
|
* the status register is not accurate. The PCS status register is
|
|
* used instead.
|
|
*/
|
|
pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
|
|
|
|
/*
|
|
* The link up bit determines when link is up on autoneg.
|
|
*/
|
|
if (pcs & E1000_PCS_LSTS_LINK_OK) {
|
|
mac->serdes_has_link = TRUE;
|
|
|
|
/* Detect and store PCS speed */
|
|
if (pcs & E1000_PCS_LSTS_SPEED_1000)
|
|
*speed = SPEED_1000;
|
|
else if (pcs & E1000_PCS_LSTS_SPEED_100)
|
|
*speed = SPEED_100;
|
|
else
|
|
*speed = SPEED_10;
|
|
|
|
/* Detect and store PCS duplex */
|
|
if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
|
|
*duplex = FULL_DUPLEX;
|
|
else
|
|
*duplex = HALF_DUPLEX;
|
|
|
|
/* Check if it is an I354 2.5Gb backplane connection. */
|
|
if (mac->type == e1000_i354) {
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
if ((status & E1000_STATUS_2P5_SKU) &&
|
|
!(status & E1000_STATUS_2P5_SKU_OVER)) {
|
|
*speed = SPEED_2500;
|
|
*duplex = FULL_DUPLEX;
|
|
DEBUGOUT("2500 Mbs, ");
|
|
DEBUGOUT("Full Duplex\n");
|
|
}
|
|
}
|
|
|
|
} else {
|
|
mac->serdes_has_link = FALSE;
|
|
*speed = 0;
|
|
*duplex = 0;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_shutdown_serdes_link_82575 - Remove link during power down
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* In the case of serdes shut down sfp and PCS on driver unload
|
|
* when management pass thru is not enabled.
|
|
**/
|
|
void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 reg;
|
|
|
|
DEBUGFUNC("e1000_shutdown_serdes_link_82575");
|
|
|
|
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
|
|
!e1000_sgmii_active_82575(hw))
|
|
return;
|
|
|
|
if (!e1000_enable_mng_pass_thru(hw)) {
|
|
/* Disable PCS to turn off link */
|
|
reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
|
|
reg &= ~E1000_PCS_CFG_PCS_EN;
|
|
E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
|
|
|
|
/* shutdown the laser */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
reg |= E1000_CTRL_EXT_SDP3_DATA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
/* flush the write to verify completion */
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_hw_82575 - Reset hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This resets the hardware into a known state.
|
|
**/
|
|
static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_reset_hw_82575");
|
|
|
|
/*
|
|
* Prevent the PCI-E bus from sticking if there is no TLP connection
|
|
* on the last TLP read/write transaction when MAC is reset.
|
|
*/
|
|
ret_val = e1000_disable_pcie_master_generic(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("PCI-E Master disable polling has failed.\n");
|
|
|
|
/* set the completion timeout for interface */
|
|
ret_val = e1000_set_pcie_completion_timeout(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("PCI-E Set completion timeout has failed.\n");
|
|
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, 0);
|
|
E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
msec_delay(10);
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
DEBUGOUT("Issuing a global reset to MAC\n");
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
|
|
|
|
ret_val = e1000_get_auto_rd_done_generic(hw);
|
|
if (ret_val) {
|
|
/*
|
|
* When auto config read does not complete, do not
|
|
* return with an error. This can happen in situations
|
|
* where there is no eeprom and prevents getting link.
|
|
*/
|
|
DEBUGOUT("Auto Read Done did not complete\n");
|
|
}
|
|
|
|
/* If EEPROM is not present, run manual init scripts */
|
|
if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
|
|
e1000_reset_init_script_82575(hw);
|
|
|
|
/* Clear any pending interrupt events. */
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
/* Install any alternate MAC address into RAR0 */
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_hw_82575 - Initialize hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This inits the hardware readying it for operation.
|
|
**/
|
|
s32 e1000_init_hw_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
u16 i, rar_count = mac->rar_entry_count;
|
|
|
|
DEBUGFUNC("e1000_init_hw_82575");
|
|
|
|
/* Initialize identification LED */
|
|
ret_val = mac->ops.id_led_init(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error initializing identification LED\n");
|
|
/* This is not fatal and we should not stop init due to this */
|
|
}
|
|
|
|
/* Disabling VLAN filtering */
|
|
DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
mac->ops.clear_vfta(hw);
|
|
|
|
/* Setup the receive address */
|
|
e1000_init_rx_addrs_generic(hw, rar_count);
|
|
|
|
/* Zero out the Multicast HASH table */
|
|
DEBUGOUT("Zeroing the MTA\n");
|
|
for (i = 0; i < mac->mta_reg_count; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
|
|
|
/* Zero out the Unicast HASH table */
|
|
DEBUGOUT("Zeroing the UTA\n");
|
|
for (i = 0; i < mac->uta_reg_count; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
|
|
|
|
/* Setup link and flow control */
|
|
ret_val = mac->ops.setup_link(hw);
|
|
|
|
/* Set the default MTU size */
|
|
hw->dev_spec._82575.mtu = 1500;
|
|
|
|
/*
|
|
* Clear all of the statistics registers (clear on read). It is
|
|
* important that we do this after we have tried to establish link
|
|
* because the symbol error count will increment wildly if there
|
|
* is no link.
|
|
*/
|
|
e1000_clear_hw_cntrs_82575(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_copper_link_82575 - Configure copper link settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures the link for auto-neg or forced speed and duplex. Then we check
|
|
* for link, once link is established calls to configure collision distance
|
|
* and flow control are called.
|
|
**/
|
|
static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 ret_val;
|
|
u32 phpm_reg;
|
|
|
|
DEBUGFUNC("e1000_setup_copper_link_82575");
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_SLU;
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
/* Clear Go Link Disconnect bit on supported devices */
|
|
switch (hw->mac.type) {
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_i210:
|
|
case e1000_i211:
|
|
phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
|
|
phpm_reg &= ~E1000_82580_PM_GO_LINKD;
|
|
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ret_val = e1000_setup_serdes_link_82575(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (e1000_sgmii_active_82575(hw)) {
|
|
/* allow time for SFP cage time to power up phy */
|
|
msec_delay(300);
|
|
|
|
ret_val = hw->phy.ops.reset(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error resetting the PHY.\n");
|
|
goto out;
|
|
}
|
|
}
|
|
switch (hw->phy.type) {
|
|
case e1000_phy_i210:
|
|
case e1000_phy_m88:
|
|
switch (hw->phy.id) {
|
|
case I347AT4_E_PHY_ID:
|
|
case M88E1112_E_PHY_ID:
|
|
case M88E1340M_E_PHY_ID:
|
|
case M88E1543_E_PHY_ID:
|
|
case M88E1512_E_PHY_ID:
|
|
case I210_I_PHY_ID:
|
|
ret_val = e1000_copper_link_setup_m88_gen2(hw);
|
|
break;
|
|
default:
|
|
ret_val = e1000_copper_link_setup_m88(hw);
|
|
break;
|
|
}
|
|
break;
|
|
case e1000_phy_igp_3:
|
|
ret_val = e1000_copper_link_setup_igp(hw);
|
|
break;
|
|
case e1000_phy_82580:
|
|
ret_val = e1000_copper_link_setup_82577(hw);
|
|
break;
|
|
default:
|
|
ret_val = -E1000_ERR_PHY;
|
|
break;
|
|
}
|
|
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_setup_copper_link_generic(hw);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_serdes_link_82575 - Setup link for serdes
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configure the physical coding sub-layer (PCS) link. The PCS link is
|
|
* used on copper connections where the serialized gigabit media independent
|
|
* interface (sgmii), or serdes fiber is being used. Configures the link
|
|
* for auto-negotiation or forces speed/duplex.
|
|
**/
|
|
static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
|
|
bool pcs_autoneg;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("e1000_setup_serdes_link_82575");
|
|
|
|
if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
|
|
!e1000_sgmii_active_82575(hw))
|
|
return ret_val;
|
|
|
|
/*
|
|
* On the 82575, SerDes loopback mode persists until it is
|
|
* explicitly turned off or a power cycle is performed. A read to
|
|
* the register does not indicate its status. Therefore, we ensure
|
|
* loopback mode is disabled during initialization.
|
|
*/
|
|
E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
|
|
|
|
/* power on the sfp cage if present */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
|
|
ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl_reg |= E1000_CTRL_SLU;
|
|
|
|
/* set both sw defined pins on 82575/82576*/
|
|
if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
|
|
ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
|
|
|
|
reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
|
|
|
|
/* default pcs_autoneg to the same setting as mac autoneg */
|
|
pcs_autoneg = hw->mac.autoneg;
|
|
|
|
switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
|
|
case E1000_CTRL_EXT_LINK_MODE_SGMII:
|
|
/* sgmii mode lets the phy handle forcing speed/duplex */
|
|
pcs_autoneg = TRUE;
|
|
/* autoneg time out should be disabled for SGMII mode */
|
|
reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
|
|
break;
|
|
case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
|
|
/* disable PCS autoneg and support parallel detect only */
|
|
pcs_autoneg = FALSE;
|
|
/* fall through to default case */
|
|
default:
|
|
if (hw->mac.type == e1000_82575 ||
|
|
hw->mac.type == e1000_82576) {
|
|
ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
|
|
pcs_autoneg = FALSE;
|
|
}
|
|
|
|
/*
|
|
* non-SGMII modes only supports a speed of 1000/Full for the
|
|
* link so it is best to just force the MAC and let the pcs
|
|
* link either autoneg or be forced to 1000/Full
|
|
*/
|
|
ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
|
|
E1000_CTRL_FD | E1000_CTRL_FRCDPX;
|
|
|
|
/* set speed of 1000/Full if speed/duplex is forced */
|
|
reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
|
|
break;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
|
|
|
|
/*
|
|
* New SerDes mode allows for forcing speed or autonegotiating speed
|
|
* at 1gb. Autoneg should be default set by most drivers. This is the
|
|
* mode that will be compatible with older link partners and switches.
|
|
* However, both are supported by the hardware and some drivers/tools.
|
|
*/
|
|
reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
|
|
E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
|
|
|
|
if (pcs_autoneg) {
|
|
/* Set PCS register for autoneg */
|
|
reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
|
|
E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
|
|
|
|
/* Disable force flow control for autoneg */
|
|
reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
|
|
|
|
/* Configure flow control advertisement for autoneg */
|
|
anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
|
|
anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
|
|
|
|
switch (hw->fc.requested_mode) {
|
|
case e1000_fc_full:
|
|
case e1000_fc_rx_pause:
|
|
anadv_reg |= E1000_TXCW_ASM_DIR;
|
|
anadv_reg |= E1000_TXCW_PAUSE;
|
|
break;
|
|
case e1000_fc_tx_pause:
|
|
anadv_reg |= E1000_TXCW_ASM_DIR;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
|
|
|
|
DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
|
|
} else {
|
|
/* Set PCS register for forced link */
|
|
reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
|
|
|
|
/* Force flow control for forced link */
|
|
reg |= E1000_PCS_LCTL_FORCE_FCTRL;
|
|
|
|
DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
|
|
|
|
if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
|
|
e1000_force_mac_fc_generic(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_media_type_82575 - derives current media type.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* The media type is chosen reflecting few settings.
|
|
* The following are taken into account:
|
|
* - link mode set in the current port Init Control Word #3
|
|
* - current link mode settings in CSR register
|
|
* - MDIO vs. I2C PHY control interface chosen
|
|
* - SFP module media type
|
|
**/
|
|
static s32 e1000_get_media_type_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 ctrl_ext = 0;
|
|
u32 link_mode = 0;
|
|
|
|
/* Set internal phy as default */
|
|
dev_spec->sgmii_active = FALSE;
|
|
dev_spec->module_plugged = FALSE;
|
|
|
|
/* Get CSR setting */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
|
|
/* extract link mode setting */
|
|
link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
|
|
|
|
switch (link_mode) {
|
|
case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
|
|
hw->phy.media_type = e1000_media_type_internal_serdes;
|
|
break;
|
|
case E1000_CTRL_EXT_LINK_MODE_GMII:
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
break;
|
|
case E1000_CTRL_EXT_LINK_MODE_SGMII:
|
|
/* Get phy control interface type set (MDIO vs. I2C)*/
|
|
if (e1000_sgmii_uses_mdio_82575(hw)) {
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
dev_spec->sgmii_active = TRUE;
|
|
break;
|
|
}
|
|
/* fall through for I2C based SGMII */
|
|
case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
|
|
/* read media type from SFP EEPROM */
|
|
ret_val = e1000_set_sfp_media_type_82575(hw);
|
|
if ((ret_val != E1000_SUCCESS) ||
|
|
(hw->phy.media_type == e1000_media_type_unknown)) {
|
|
/*
|
|
* If media type was not identified then return media
|
|
* type defined by the CTRL_EXT settings.
|
|
*/
|
|
hw->phy.media_type = e1000_media_type_internal_serdes;
|
|
|
|
if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
dev_spec->sgmii_active = TRUE;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* do not change link mode for 100BaseFX */
|
|
if (dev_spec->eth_flags.e100_base_fx)
|
|
break;
|
|
|
|
/* change current link mode setting */
|
|
ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
|
|
|
|
if (hw->phy.media_type == e1000_media_type_copper)
|
|
ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
|
|
else
|
|
ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
|
|
break;
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_sfp_media_type_82575 - derives SFP module media type.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* The media type is chosen based on SFP module.
|
|
* compatibility flags retrieved from SFP ID EEPROM.
|
|
**/
|
|
static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_ERR_CONFIG;
|
|
u32 ctrl_ext = 0;
|
|
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
|
|
struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
|
|
u8 tranceiver_type = 0;
|
|
s32 timeout = 3;
|
|
|
|
/* Turn I2C interface ON and power on sfp cage */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/* Read SFP module data */
|
|
while (timeout) {
|
|
ret_val = e1000_read_sfp_data_byte(hw,
|
|
E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
|
|
&tranceiver_type);
|
|
if (ret_val == E1000_SUCCESS)
|
|
break;
|
|
msec_delay(100);
|
|
timeout--;
|
|
}
|
|
if (ret_val != E1000_SUCCESS)
|
|
goto out;
|
|
|
|
ret_val = e1000_read_sfp_data_byte(hw,
|
|
E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
|
|
(u8 *)eth_flags);
|
|
if (ret_val != E1000_SUCCESS)
|
|
goto out;
|
|
|
|
/* Check if there is some SFP module plugged and powered */
|
|
if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
|
|
(tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
|
|
dev_spec->module_plugged = TRUE;
|
|
if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
|
|
hw->phy.media_type = e1000_media_type_internal_serdes;
|
|
} else if (eth_flags->e100_base_fx) {
|
|
dev_spec->sgmii_active = TRUE;
|
|
hw->phy.media_type = e1000_media_type_internal_serdes;
|
|
} else if (eth_flags->e1000_base_t) {
|
|
dev_spec->sgmii_active = TRUE;
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
} else {
|
|
hw->phy.media_type = e1000_media_type_unknown;
|
|
DEBUGOUT("PHY module has not been recognized\n");
|
|
goto out;
|
|
}
|
|
} else {
|
|
hw->phy.media_type = e1000_media_type_unknown;
|
|
}
|
|
ret_val = E1000_SUCCESS;
|
|
out:
|
|
/* Restore I2C interface setting */
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_valid_led_default_82575 - Verify a valid default LED config
|
|
* @hw: pointer to the HW structure
|
|
* @data: pointer to the NVM (EEPROM)
|
|
*
|
|
* Read the EEPROM for the current default LED configuration. If the
|
|
* LED configuration is not valid, set to a valid LED configuration.
|
|
**/
|
|
static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_valid_led_default_82575");
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_internal_serdes:
|
|
*data = ID_LED_DEFAULT_82575_SERDES;
|
|
break;
|
|
case e1000_media_type_copper:
|
|
default:
|
|
*data = ID_LED_DEFAULT;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_sgmii_active_82575 - Return sgmii state
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* 82575 silicon has a serialized gigabit media independent interface (sgmii)
|
|
* which can be enabled for use in the embedded applications. Simply
|
|
* return the current state of the sgmii interface.
|
|
**/
|
|
static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
|
|
return dev_spec->sgmii_active;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_init_script_82575 - Inits HW defaults after reset
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Inits recommended HW defaults after a reset when there is no EEPROM
|
|
* detected. This is only for the 82575.
|
|
**/
|
|
static s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_reset_init_script_82575");
|
|
|
|
if (hw->mac.type == e1000_82575) {
|
|
DEBUGOUT("Running reset init script for 82575\n");
|
|
/* SerDes configuration via SERDESCTRL */
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
|
|
|
|
/* CCM configuration via CCMCTL register */
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
|
|
|
|
/* PCIe lanes configuration */
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
|
|
|
|
/* PCIe PLL Configuration */
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
|
|
e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_mac_addr_82575 - Read device MAC address
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_read_mac_addr_82575");
|
|
|
|
/*
|
|
* If there's an alternate MAC address place it in RAR0
|
|
* so that it will override the Si installed default perm
|
|
* address.
|
|
*/
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_read_mac_addr_generic(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_config_collision_dist_82575 - Configure collision distance
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures the collision distance to the default value and is used
|
|
* during link setup.
|
|
**/
|
|
static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 tctl_ext;
|
|
|
|
DEBUGFUNC("e1000_config_collision_dist_82575");
|
|
|
|
tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
|
|
|
|
tctl_ext &= ~E1000_TCTL_EXT_COLD;
|
|
tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
|
|
|
|
E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_power_down_phy_copper_82575 - Remove link during PHY power down
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* In the case of a PHY power down to save power, or to turn off link during a
|
|
* driver unload, or wake on lan is not enabled, remove the link.
|
|
**/
|
|
static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
|
|
if (!(phy->ops.check_reset_block))
|
|
return;
|
|
|
|
/* If the management interface is not enabled, then power down */
|
|
if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
|
|
e1000_power_down_phy_copper(hw);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the hardware counters by reading the counter registers.
|
|
**/
|
|
static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_clear_hw_cntrs_82575");
|
|
|
|
e1000_clear_hw_cntrs_base_generic(hw);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC64);
|
|
E1000_READ_REG(hw, E1000_PRC127);
|
|
E1000_READ_REG(hw, E1000_PRC255);
|
|
E1000_READ_REG(hw, E1000_PRC511);
|
|
E1000_READ_REG(hw, E1000_PRC1023);
|
|
E1000_READ_REG(hw, E1000_PRC1522);
|
|
E1000_READ_REG(hw, E1000_PTC64);
|
|
E1000_READ_REG(hw, E1000_PTC127);
|
|
E1000_READ_REG(hw, E1000_PTC255);
|
|
E1000_READ_REG(hw, E1000_PTC511);
|
|
E1000_READ_REG(hw, E1000_PTC1023);
|
|
E1000_READ_REG(hw, E1000_PTC1522);
|
|
|
|
E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
E1000_READ_REG(hw, E1000_RXERRC);
|
|
E1000_READ_REG(hw, E1000_TNCRS);
|
|
E1000_READ_REG(hw, E1000_CEXTERR);
|
|
E1000_READ_REG(hw, E1000_TSCTC);
|
|
E1000_READ_REG(hw, E1000_TSCTFC);
|
|
|
|
E1000_READ_REG(hw, E1000_MGTPRC);
|
|
E1000_READ_REG(hw, E1000_MGTPDC);
|
|
E1000_READ_REG(hw, E1000_MGTPTC);
|
|
|
|
E1000_READ_REG(hw, E1000_IAC);
|
|
E1000_READ_REG(hw, E1000_ICRXOC);
|
|
|
|
E1000_READ_REG(hw, E1000_ICRXPTC);
|
|
E1000_READ_REG(hw, E1000_ICRXATC);
|
|
E1000_READ_REG(hw, E1000_ICTXPTC);
|
|
E1000_READ_REG(hw, E1000_ICTXATC);
|
|
E1000_READ_REG(hw, E1000_ICTXQEC);
|
|
E1000_READ_REG(hw, E1000_ICTXQMTC);
|
|
E1000_READ_REG(hw, E1000_ICRXDMTC);
|
|
|
|
E1000_READ_REG(hw, E1000_CBTMPC);
|
|
E1000_READ_REG(hw, E1000_HTDPMC);
|
|
E1000_READ_REG(hw, E1000_CBRMPC);
|
|
E1000_READ_REG(hw, E1000_RPTHC);
|
|
E1000_READ_REG(hw, E1000_HGPTC);
|
|
E1000_READ_REG(hw, E1000_HTCBDPC);
|
|
E1000_READ_REG(hw, E1000_HGORCL);
|
|
E1000_READ_REG(hw, E1000_HGORCH);
|
|
E1000_READ_REG(hw, E1000_HGOTCL);
|
|
E1000_READ_REG(hw, E1000_HGOTCH);
|
|
E1000_READ_REG(hw, E1000_LENERRS);
|
|
|
|
/* This register should not be read in copper configurations */
|
|
if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
|
|
e1000_sgmii_active_82575(hw))
|
|
E1000_READ_REG(hw, E1000_SCVPC);
|
|
}
|
|
|
|
/**
|
|
* e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* After rx enable if managability is enabled then there is likely some
|
|
* bad data at the start of the fifo and possibly in the DMA fifo. This
|
|
* function clears the fifos and flushes any packets that came in as rx was
|
|
* being enabled.
|
|
**/
|
|
void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
|
|
{
|
|
u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
|
|
int i, ms_wait;
|
|
|
|
DEBUGFUNC("e1000_rx_fifo_workaround_82575");
|
|
if (hw->mac.type != e1000_82575 ||
|
|
!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
|
|
return;
|
|
|
|
/* Disable all Rx queues */
|
|
for (i = 0; i < 4; i++) {
|
|
rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i),
|
|
rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
|
|
}
|
|
/* Poll all queues to verify they have shut down */
|
|
for (ms_wait = 0; ms_wait < 10; ms_wait++) {
|
|
msec_delay(1);
|
|
rx_enabled = 0;
|
|
for (i = 0; i < 4; i++)
|
|
rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
|
|
break;
|
|
}
|
|
|
|
if (ms_wait == 10)
|
|
DEBUGOUT("Queue disable timed out after 10ms\n");
|
|
|
|
/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
|
|
* incoming packets are rejected. Set enable and wait 2ms so that
|
|
* any packet that was coming in as RCTL.EN was set is flushed
|
|
*/
|
|
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
|
|
|
|
rlpml = E1000_READ_REG(hw, E1000_RLPML);
|
|
E1000_WRITE_REG(hw, E1000_RLPML, 0);
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
|
|
temp_rctl |= E1000_RCTL_LPE;
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(2);
|
|
|
|
/* Enable Rx queues that were previously enabled and restore our
|
|
* previous state
|
|
*/
|
|
for (i = 0; i < 4; i++)
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
|
|
|
|
/* Flush receive errors generated by workaround */
|
|
E1000_READ_REG(hw, E1000_ROC);
|
|
E1000_READ_REG(hw, E1000_RNBC);
|
|
E1000_READ_REG(hw, E1000_MPC);
|
|
}
|
|
|
|
/**
|
|
* e1000_set_pcie_completion_timeout - set pci-e completion timeout
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
|
|
* however the hardware default for these parts is 500us to 1ms which is less
|
|
* than the 10ms recommended by the pci-e spec. To address this we need to
|
|
* increase the value to either 10ms to 200ms for capability version 1 config,
|
|
* or 16ms to 55ms for version 2.
|
|
**/
|
|
static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
|
|
{
|
|
u32 gcr = E1000_READ_REG(hw, E1000_GCR);
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 pcie_devctl2;
|
|
|
|
/* only take action if timeout value is defaulted to 0 */
|
|
if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
|
|
goto out;
|
|
|
|
/*
|
|
* if capababilities version is type 1 we can write the
|
|
* timeout of 10ms to 200ms through the GCR register
|
|
*/
|
|
if (!(gcr & E1000_GCR_CAP_VER2)) {
|
|
gcr |= E1000_GCR_CMPL_TMOUT_10ms;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* for version 2 capabilities we need to write the config space
|
|
* directly in order to set the completion timeout value for
|
|
* 16ms to 55ms
|
|
*/
|
|
ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
|
|
&pcie_devctl2);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
|
|
|
|
ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
|
|
&pcie_devctl2);
|
|
out:
|
|
/* disable completion timeout resend */
|
|
gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
|
|
|
|
E1000_WRITE_REG(hw, E1000_GCR, gcr);
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
|
|
* @hw: pointer to the hardware struct
|
|
* @enable: state to enter, either enabled or disabled
|
|
* @pf: Physical Function pool - do not set anti-spoofing for the PF
|
|
*
|
|
* enables/disables L2 switch anti-spoofing functionality.
|
|
**/
|
|
void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
|
|
{
|
|
u32 reg_val, reg_offset;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82576:
|
|
reg_offset = E1000_DTXSWC;
|
|
break;
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
reg_offset = E1000_TXSWC;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
reg_val = E1000_READ_REG(hw, reg_offset);
|
|
if (enable) {
|
|
reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
|
|
E1000_DTXSWC_VLAN_SPOOF_MASK);
|
|
/* The PF can spoof - it has to in order to
|
|
* support emulation mode NICs
|
|
*/
|
|
reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
|
|
} else {
|
|
reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
|
|
E1000_DTXSWC_VLAN_SPOOF_MASK);
|
|
}
|
|
E1000_WRITE_REG(hw, reg_offset, reg_val);
|
|
}
|
|
|
|
/**
|
|
* e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
|
|
* @hw: pointer to the hardware struct
|
|
* @enable: state to enter, either enabled or disabled
|
|
*
|
|
* enables/disables L2 switch loopback functionality.
|
|
**/
|
|
void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
|
|
{
|
|
u32 dtxswc;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82576:
|
|
dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
|
|
if (enable)
|
|
dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
|
|
else
|
|
dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
|
|
E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
|
|
break;
|
|
case e1000_i350:
|
|
case e1000_i354:
|
|
dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
|
|
if (enable)
|
|
dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
|
|
else
|
|
dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
|
|
E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
|
|
break;
|
|
default:
|
|
/* Currently no other hardware supports loopback */
|
|
break;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* e1000_vmdq_set_replication_pf - enable or disable vmdq replication
|
|
* @hw: pointer to the hardware struct
|
|
* @enable: state to enter, either enabled or disabled
|
|
*
|
|
* enables/disables replication of packets across multiple pools.
|
|
**/
|
|
void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
|
|
{
|
|
u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
|
|
|
|
if (enable)
|
|
vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
|
|
else
|
|
vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
|
|
|
|
E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
|
|
}
|
|
|
|
/**
|
|
* e1000_read_phy_reg_82580 - Read 82580 MDI control register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to be read
|
|
* @data: pointer to the read data
|
|
*
|
|
* Reads the MDI control register in the PHY at offset and stores the
|
|
* information read to data.
|
|
**/
|
|
static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_read_phy_reg_82580");
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
|
|
|
|
hw->phy.ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_phy_reg_82580 - Write 82580 MDI control register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset to write to
|
|
* @data: data to write to register at offset
|
|
*
|
|
* Writes data to MDI control register in the PHY at offset.
|
|
**/
|
|
static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_write_phy_reg_82580");
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
|
|
|
|
hw->phy.ops.release(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
|
|
* the values found in the EEPROM. This addresses an issue in which these
|
|
* bits are not restored from EEPROM after reset.
|
|
**/
|
|
static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 mdicnfg;
|
|
u16 nvm_data = 0;
|
|
|
|
DEBUGFUNC("e1000_reset_mdicnfg_82580");
|
|
|
|
if (hw->mac.type != e1000_82580)
|
|
goto out;
|
|
if (!e1000_sgmii_active_82575(hw))
|
|
goto out;
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
|
|
NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
|
|
&nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
|
|
if (nvm_data & NVM_WORD24_EXT_MDIO)
|
|
mdicnfg |= E1000_MDICNFG_EXT_MDIO;
|
|
if (nvm_data & NVM_WORD24_COM_MDIO)
|
|
mdicnfg |= E1000_MDICNFG_COM_MDIO;
|
|
E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_hw_82580 - Reset hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This resets function or entire device (all ports, etc.)
|
|
* to a known state.
|
|
**/
|
|
static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
/* BH SW mailbox bit in SW_FW_SYNC */
|
|
u16 swmbsw_mask = E1000_SW_SYNCH_MB;
|
|
u32 ctrl;
|
|
bool global_device_reset = hw->dev_spec._82575.global_device_reset;
|
|
|
|
DEBUGFUNC("e1000_reset_hw_82580");
|
|
|
|
hw->dev_spec._82575.global_device_reset = FALSE;
|
|
|
|
/* 82580 does not reliably do global_device_reset due to hw errata */
|
|
if (hw->mac.type == e1000_82580)
|
|
global_device_reset = FALSE;
|
|
|
|
/* Get current control state. */
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
/*
|
|
* Prevent the PCI-E bus from sticking if there is no TLP connection
|
|
* on the last TLP read/write transaction when MAC is reset.
|
|
*/
|
|
ret_val = e1000_disable_pcie_master_generic(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("PCI-E Master disable polling has failed.\n");
|
|
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, 0);
|
|
E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
msec_delay(10);
|
|
|
|
/* Determine whether or not a global dev reset is requested */
|
|
if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
|
|
swmbsw_mask))
|
|
global_device_reset = FALSE;
|
|
|
|
if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STAT_DEV_RST_SET))
|
|
ctrl |= E1000_CTRL_DEV_RST;
|
|
else
|
|
ctrl |= E1000_CTRL_RST;
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
switch (hw->device_id) {
|
|
case E1000_DEV_ID_DH89XXCC_SGMII:
|
|
break;
|
|
default:
|
|
E1000_WRITE_FLUSH(hw);
|
|
break;
|
|
}
|
|
|
|
/* Add delay to insure DEV_RST or RST has time to complete */
|
|
msec_delay(5);
|
|
|
|
ret_val = e1000_get_auto_rd_done_generic(hw);
|
|
if (ret_val) {
|
|
/*
|
|
* When auto config read does not complete, do not
|
|
* return with an error. This can happen in situations
|
|
* where there is no eeprom and prevents getting link.
|
|
*/
|
|
DEBUGOUT("Auto Read Done did not complete\n");
|
|
}
|
|
|
|
/* clear global device reset status bit */
|
|
E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
|
|
|
|
/* Clear any pending interrupt events. */
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
|
|
E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
ret_val = e1000_reset_mdicnfg_82580(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
|
|
|
|
/* Install any alternate MAC address into RAR0 */
|
|
ret_val = e1000_check_alt_mac_addr_generic(hw);
|
|
|
|
/* Release semaphore */
|
|
if (global_device_reset)
|
|
hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
|
|
* @data: data received by reading RXPBS register
|
|
*
|
|
* The 82580 uses a table based approach for packet buffer allocation sizes.
|
|
* This function converts the retrieved value into the correct table value
|
|
* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
|
|
* 0x0 36 72 144 1 2 4 8 16
|
|
* 0x8 35 70 140 rsv rsv rsv rsv rsv
|
|
*/
|
|
u16 e1000_rxpbs_adjust_82580(u32 data)
|
|
{
|
|
u16 ret_val = 0;
|
|
|
|
if (data < E1000_82580_RXPBS_TABLE_SIZE)
|
|
ret_val = e1000_82580_rxpbs_table[data];
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_validate_nvm_checksum_with_offset - Validate EEPROM
|
|
* checksum
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset in words of the checksum protected region
|
|
*
|
|
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
**/
|
|
s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
|
|
|
|
for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
|
|
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
|
|
if (checksum != (u16) NVM_SUM) {
|
|
DEBUGOUT("NVM Checksum Invalid\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_nvm_checksum_with_offset - Update EEPROM
|
|
* checksum
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset in words of the checksum protected region
|
|
*
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
* value to the EEPROM.
|
|
**/
|
|
s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
|
|
{
|
|
s32 ret_val;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
|
|
|
|
for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
|
|
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error while updating checksum.\n");
|
|
goto out;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
checksum = (u16) NVM_SUM - checksum;
|
|
ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
|
|
&checksum);
|
|
if (ret_val)
|
|
DEBUGOUT("NVM Write Error while updating checksum.\n");
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Calculates the EEPROM section checksum by reading/adding each word of
|
|
* the EEPROM and then verifies that the sum of the EEPROM is
|
|
* equal to 0xBABA.
|
|
**/
|
|
static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 eeprom_regions_count = 1;
|
|
u16 j, nvm_data;
|
|
u16 nvm_offset;
|
|
|
|
DEBUGFUNC("e1000_validate_nvm_checksum_82580");
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
|
|
/* if chekcsums compatibility bit is set validate checksums
|
|
* for all 4 ports. */
|
|
eeprom_regions_count = 4;
|
|
}
|
|
|
|
for (j = 0; j < eeprom_regions_count; j++) {
|
|
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
|
|
ret_val = e1000_validate_nvm_checksum_with_offset(hw,
|
|
nvm_offset);
|
|
if (ret_val != E1000_SUCCESS)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_nvm_checksum_82580 - Update EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Updates the EEPROM section checksums for all 4 ports by reading/adding
|
|
* each word of the EEPROM up to the checksum. Then calculates the EEPROM
|
|
* checksum and writes the value to the EEPROM.
|
|
**/
|
|
static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 j, nvm_data;
|
|
u16 nvm_offset;
|
|
|
|
DEBUGFUNC("e1000_update_nvm_checksum_82580");
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
|
|
goto out;
|
|
}
|
|
|
|
if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
|
|
/* set compatibility bit to validate checksums appropriately */
|
|
nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
|
|
ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
|
|
&nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
|
|
ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Calculates the EEPROM section checksum by reading/adding each word of
|
|
* the EEPROM and then verifies that the sum of the EEPROM is
|
|
* equal to 0xBABA.
|
|
**/
|
|
static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 j;
|
|
u16 nvm_offset;
|
|
|
|
DEBUGFUNC("e1000_validate_nvm_checksum_i350");
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
|
|
ret_val = e1000_validate_nvm_checksum_with_offset(hw,
|
|
nvm_offset);
|
|
if (ret_val != E1000_SUCCESS)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_nvm_checksum_i350 - Update EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Updates the EEPROM section checksums for all 4 ports by reading/adding
|
|
* each word of the EEPROM up to the checksum. Then calculates the EEPROM
|
|
* checksum and writes the value to the EEPROM.
|
|
**/
|
|
static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 j;
|
|
u16 nvm_offset;
|
|
|
|
DEBUGFUNC("e1000_update_nvm_checksum_i350");
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
|
|
ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
|
|
if (ret_val != E1000_SUCCESS)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* __e1000_access_emi_reg - Read/write EMI register
|
|
* @hw: pointer to the HW structure
|
|
* @addr: EMI address to program
|
|
* @data: pointer to value to read/write from/to the EMI address
|
|
* @read: boolean flag to indicate read or write
|
|
**/
|
|
static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
|
|
u16 *data, bool read)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("__e1000_access_emi_reg");
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (read)
|
|
ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
|
|
else
|
|
ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_emi_reg - Read Extended Management Interface register
|
|
* @hw: pointer to the HW structure
|
|
* @addr: EMI address to program
|
|
* @data: value to be read from the EMI address
|
|
**/
|
|
s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
|
|
{
|
|
DEBUGFUNC("e1000_read_emi_reg");
|
|
|
|
return __e1000_access_emi_reg(hw, addr, data, TRUE);
|
|
}
|
|
|
|
/**
|
|
* e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initialize Marverl 1512 to work correctly with Avoton.
|
|
**/
|
|
s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_initialize_M88E1512_phy");
|
|
|
|
/* Check if this is correct PHY. */
|
|
if (phy->id != M88E1512_E_PHY_ID)
|
|
goto out;
|
|
|
|
/* Switch to PHY page 0xFF. */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Switch to PHY page 0xFB. */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Switch to PHY page 0x12. */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Change mode to SGMII-to-Copper */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Return the PHY to page 0. */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.commit(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error committing the PHY changes\n");
|
|
return ret_val;
|
|
}
|
|
|
|
msec_delay(1000);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_eee_i350 - Enable/disable EEE support
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Enable/disable EEE based on setting in dev_spec structure.
|
|
*
|
|
**/
|
|
s32 e1000_set_eee_i350(struct e1000_hw *hw)
|
|
{
|
|
u32 ipcnfg, eeer;
|
|
|
|
DEBUGFUNC("e1000_set_eee_i350");
|
|
|
|
if ((hw->mac.type < e1000_i350) ||
|
|
(hw->phy.media_type != e1000_media_type_copper))
|
|
goto out;
|
|
ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
|
|
eeer = E1000_READ_REG(hw, E1000_EEER);
|
|
|
|
/* enable or disable per user setting */
|
|
if (!(hw->dev_spec._82575.eee_disable)) {
|
|
u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
|
|
|
|
ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
|
|
eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
|
|
E1000_EEER_LPI_FC);
|
|
|
|
/* This bit should not be set in normal operation. */
|
|
if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
|
|
DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
|
|
} else {
|
|
ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
|
|
eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
|
|
E1000_EEER_LPI_FC);
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
|
|
E1000_WRITE_REG(hw, E1000_EEER, eeer);
|
|
E1000_READ_REG(hw, E1000_IPCNFG);
|
|
E1000_READ_REG(hw, E1000_EEER);
|
|
out:
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_eee_i354 - Enable/disable EEE support
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Enable/disable EEE legacy mode based on setting in dev_spec structure.
|
|
*
|
|
**/
|
|
s32 e1000_set_eee_i354(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 phy_data;
|
|
|
|
DEBUGFUNC("e1000_set_eee_i354");
|
|
|
|
if ((hw->phy.media_type != e1000_media_type_copper) ||
|
|
((phy->id != M88E1543_E_PHY_ID) &&
|
|
(phy->id != M88E1512_E_PHY_ID)))
|
|
goto out;
|
|
|
|
if (!hw->dev_spec._82575.eee_disable) {
|
|
/* Switch to PHY page 18. */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
|
|
&phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
|
|
phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Return the PHY to page 0. */
|
|
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Turn on EEE advertisement. */
|
|
ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
|
|
E1000_EEE_ADV_DEV_I354,
|
|
&phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
phy_data |= E1000_EEE_ADV_100_SUPPORTED |
|
|
E1000_EEE_ADV_1000_SUPPORTED;
|
|
ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
|
|
E1000_EEE_ADV_DEV_I354,
|
|
phy_data);
|
|
} else {
|
|
/* Turn off EEE advertisement. */
|
|
ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
|
|
E1000_EEE_ADV_DEV_I354,
|
|
&phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
|
|
E1000_EEE_ADV_1000_SUPPORTED);
|
|
ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
|
|
E1000_EEE_ADV_DEV_I354,
|
|
phy_data);
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_eee_status_i354 - Get EEE status
|
|
* @hw: pointer to the HW structure
|
|
* @status: EEE status
|
|
*
|
|
* Get EEE status by guessing based on whether Tx or Rx LPI indications have
|
|
* been received.
|
|
**/
|
|
s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 phy_data;
|
|
|
|
DEBUGFUNC("e1000_get_eee_status_i354");
|
|
|
|
/* Check if EEE is supported on this device. */
|
|
if ((hw->phy.media_type != e1000_media_type_copper) ||
|
|
((phy->id != M88E1543_E_PHY_ID) &&
|
|
(phy->id != M88E1512_E_PHY_ID)))
|
|
goto out;
|
|
|
|
ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
|
|
E1000_PCS_STATUS_DEV_I354,
|
|
&phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
|
|
E1000_PCS_STATUS_RX_LPI_RCVD) ? TRUE : FALSE;
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/* Due to a hw errata, if the host tries to configure the VFTA register
|
|
* while performing queries from the BMC or DMA, then the VFTA in some
|
|
* cases won't be written.
|
|
*/
|
|
|
|
/**
|
|
* e1000_clear_vfta_i350 - Clear VLAN filter table
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the register array which contains the VLAN filter table by
|
|
* setting all the values to 0.
|
|
**/
|
|
void e1000_clear_vfta_i350(struct e1000_hw *hw)
|
|
{
|
|
u32 offset;
|
|
int i;
|
|
|
|
DEBUGFUNC("e1000_clear_vfta_350");
|
|
|
|
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
|
|
for (i = 0; i < 10; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_write_vfta_i350 - Write value to VLAN filter table
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset in VLAN filter table
|
|
* @value: register value written to VLAN filter table
|
|
*
|
|
* Writes value at the given offset in the register array which stores
|
|
* the VLAN filter table.
|
|
**/
|
|
void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
|
|
{
|
|
int i;
|
|
|
|
DEBUGFUNC("e1000_write_vfta_350");
|
|
|
|
for (i = 0; i < 10; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
|
|
/**
|
|
* e1000_set_i2c_bb - Enable I2C bit-bang
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Enable I2C bit-bang interface
|
|
*
|
|
**/
|
|
s32 e1000_set_i2c_bb(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 ctrl_ext, i2cparams;
|
|
|
|
DEBUGFUNC("e1000_set_i2c_bb");
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_I2C_ENA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
i2cparams |= E1000_I2CBB_EN;
|
|
i2cparams |= E1000_I2C_DATA_OE_N;
|
|
i2cparams |= E1000_I2C_CLK_OE_N;
|
|
E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
|
|
* @hw: pointer to hardware structure
|
|
* @byte_offset: byte offset to read
|
|
* @dev_addr: device address
|
|
* @data: value read
|
|
*
|
|
* Performs byte read operation over I2C interface at
|
|
* a specified device address.
|
|
**/
|
|
s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
|
|
u8 dev_addr, u8 *data)
|
|
{
|
|
s32 status = E1000_SUCCESS;
|
|
u32 max_retry = 10;
|
|
u32 retry = 1;
|
|
u16 swfw_mask = 0;
|
|
|
|
bool nack = TRUE;
|
|
|
|
DEBUGFUNC("e1000_read_i2c_byte_generic");
|
|
|
|
swfw_mask = E1000_SWFW_PHY0_SM;
|
|
|
|
do {
|
|
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
|
|
!= E1000_SUCCESS) {
|
|
status = E1000_ERR_SWFW_SYNC;
|
|
goto read_byte_out;
|
|
}
|
|
|
|
e1000_i2c_start(hw);
|
|
|
|
/* Device Address and write indication */
|
|
status = e1000_clock_out_i2c_byte(hw, dev_addr);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_get_i2c_ack(hw);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_clock_out_i2c_byte(hw, byte_offset);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_get_i2c_ack(hw);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
e1000_i2c_start(hw);
|
|
|
|
/* Device Address and read indication */
|
|
status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_get_i2c_ack(hw);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_clock_in_i2c_byte(hw, data);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_clock_out_i2c_bit(hw, nack);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
e1000_i2c_stop(hw);
|
|
break;
|
|
|
|
fail:
|
|
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
|
|
msec_delay(100);
|
|
e1000_i2c_bus_clear(hw);
|
|
retry++;
|
|
if (retry < max_retry)
|
|
DEBUGOUT("I2C byte read error - Retrying.\n");
|
|
else
|
|
DEBUGOUT("I2C byte read error.\n");
|
|
|
|
} while (retry < max_retry);
|
|
|
|
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
|
|
|
|
read_byte_out:
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
|
|
* @hw: pointer to hardware structure
|
|
* @byte_offset: byte offset to write
|
|
* @dev_addr: device address
|
|
* @data: value to write
|
|
*
|
|
* Performs byte write operation over I2C interface at
|
|
* a specified device address.
|
|
**/
|
|
s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
|
|
u8 dev_addr, u8 data)
|
|
{
|
|
s32 status = E1000_SUCCESS;
|
|
u32 max_retry = 1;
|
|
u32 retry = 0;
|
|
u16 swfw_mask = 0;
|
|
|
|
DEBUGFUNC("e1000_write_i2c_byte_generic");
|
|
|
|
swfw_mask = E1000_SWFW_PHY0_SM;
|
|
|
|
if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
|
|
status = E1000_ERR_SWFW_SYNC;
|
|
goto write_byte_out;
|
|
}
|
|
|
|
do {
|
|
e1000_i2c_start(hw);
|
|
|
|
status = e1000_clock_out_i2c_byte(hw, dev_addr);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_get_i2c_ack(hw);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_clock_out_i2c_byte(hw, byte_offset);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_get_i2c_ack(hw);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_clock_out_i2c_byte(hw, data);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
status = e1000_get_i2c_ack(hw);
|
|
if (status != E1000_SUCCESS)
|
|
goto fail;
|
|
|
|
e1000_i2c_stop(hw);
|
|
break;
|
|
|
|
fail:
|
|
e1000_i2c_bus_clear(hw);
|
|
retry++;
|
|
if (retry < max_retry)
|
|
DEBUGOUT("I2C byte write error - Retrying.\n");
|
|
else
|
|
DEBUGOUT("I2C byte write error.\n");
|
|
} while (retry < max_retry);
|
|
|
|
hw->mac.ops.release_swfw_sync(hw, swfw_mask);
|
|
|
|
write_byte_out:
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* e1000_i2c_start - Sets I2C start condition
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets I2C start condition (High -> Low on SDA while SCL is High)
|
|
**/
|
|
static void e1000_i2c_start(struct e1000_hw *hw)
|
|
{
|
|
u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
|
|
DEBUGFUNC("e1000_i2c_start");
|
|
|
|
/* Start condition must begin with data and clock high */
|
|
e1000_set_i2c_data(hw, &i2cctl, 1);
|
|
e1000_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Setup time for start condition (4.7us) */
|
|
usec_delay(E1000_I2C_T_SU_STA);
|
|
|
|
e1000_set_i2c_data(hw, &i2cctl, 0);
|
|
|
|
/* Hold time for start condition (4us) */
|
|
usec_delay(E1000_I2C_T_HD_STA);
|
|
|
|
e1000_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum low period of clock is 4.7 us */
|
|
usec_delay(E1000_I2C_T_LOW);
|
|
|
|
}
|
|
|
|
/**
|
|
* e1000_i2c_stop - Sets I2C stop condition
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Sets I2C stop condition (Low -> High on SDA while SCL is High)
|
|
**/
|
|
static void e1000_i2c_stop(struct e1000_hw *hw)
|
|
{
|
|
u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
|
|
DEBUGFUNC("e1000_i2c_stop");
|
|
|
|
/* Stop condition must begin with data low and clock high */
|
|
e1000_set_i2c_data(hw, &i2cctl, 0);
|
|
e1000_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Setup time for stop condition (4us) */
|
|
usec_delay(E1000_I2C_T_SU_STO);
|
|
|
|
e1000_set_i2c_data(hw, &i2cctl, 1);
|
|
|
|
/* bus free time between stop and start (4.7us)*/
|
|
usec_delay(E1000_I2C_T_BUF);
|
|
}
|
|
|
|
/**
|
|
* e1000_clock_in_i2c_byte - Clocks in one byte via I2C
|
|
* @hw: pointer to hardware structure
|
|
* @data: data byte to clock in
|
|
*
|
|
* Clocks in one byte data via I2C data/clock
|
|
**/
|
|
static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
|
|
{
|
|
s32 i;
|
|
bool bit = 0;
|
|
|
|
DEBUGFUNC("e1000_clock_in_i2c_byte");
|
|
|
|
*data = 0;
|
|
for (i = 7; i >= 0; i--) {
|
|
e1000_clock_in_i2c_bit(hw, &bit);
|
|
*data |= bit << i;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_clock_out_i2c_byte - Clocks out one byte via I2C
|
|
* @hw: pointer to hardware structure
|
|
* @data: data byte clocked out
|
|
*
|
|
* Clocks out one byte data via I2C data/clock
|
|
**/
|
|
static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
|
|
{
|
|
s32 status = E1000_SUCCESS;
|
|
s32 i;
|
|
u32 i2cctl;
|
|
bool bit = 0;
|
|
|
|
DEBUGFUNC("e1000_clock_out_i2c_byte");
|
|
|
|
for (i = 7; i >= 0; i--) {
|
|
bit = (data >> i) & 0x1;
|
|
status = e1000_clock_out_i2c_bit(hw, bit);
|
|
|
|
if (status != E1000_SUCCESS)
|
|
break;
|
|
}
|
|
|
|
/* Release SDA line (set high) */
|
|
i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
|
|
i2cctl |= E1000_I2C_DATA_OE_N;
|
|
E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_i2c_ack - Polls for I2C ACK
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clocks in/out one bit via I2C data/clock
|
|
**/
|
|
static s32 e1000_get_i2c_ack(struct e1000_hw *hw)
|
|
{
|
|
s32 status = E1000_SUCCESS;
|
|
u32 i = 0;
|
|
u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
u32 timeout = 10;
|
|
bool ack = TRUE;
|
|
|
|
DEBUGFUNC("e1000_get_i2c_ack");
|
|
|
|
e1000_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum high period of clock is 4us */
|
|
usec_delay(E1000_I2C_T_HIGH);
|
|
|
|
/* Wait until SCL returns high */
|
|
for (i = 0; i < timeout; i++) {
|
|
usec_delay(1);
|
|
i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
if (i2cctl & E1000_I2C_CLK_IN)
|
|
break;
|
|
}
|
|
if (!(i2cctl & E1000_I2C_CLK_IN))
|
|
return E1000_ERR_I2C;
|
|
|
|
ack = e1000_get_i2c_data(&i2cctl);
|
|
if (ack) {
|
|
DEBUGOUT("I2C ack was not received.\n");
|
|
status = E1000_ERR_I2C;
|
|
}
|
|
|
|
e1000_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum low period of clock is 4.7 us */
|
|
usec_delay(E1000_I2C_T_LOW);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
|
|
* @hw: pointer to hardware structure
|
|
* @data: read data value
|
|
*
|
|
* Clocks in one bit via I2C data/clock
|
|
**/
|
|
static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
|
|
{
|
|
u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
|
|
DEBUGFUNC("e1000_clock_in_i2c_bit");
|
|
|
|
e1000_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum high period of clock is 4us */
|
|
usec_delay(E1000_I2C_T_HIGH);
|
|
|
|
i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
*data = e1000_get_i2c_data(&i2cctl);
|
|
|
|
e1000_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum low period of clock is 4.7 us */
|
|
usec_delay(E1000_I2C_T_LOW);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
|
|
* @hw: pointer to hardware structure
|
|
* @data: data value to write
|
|
*
|
|
* Clocks out one bit via I2C data/clock
|
|
**/
|
|
static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
|
|
{
|
|
s32 status;
|
|
u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
|
|
DEBUGFUNC("e1000_clock_out_i2c_bit");
|
|
|
|
status = e1000_set_i2c_data(hw, &i2cctl, data);
|
|
if (status == E1000_SUCCESS) {
|
|
e1000_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum high period of clock is 4us */
|
|
usec_delay(E1000_I2C_T_HIGH);
|
|
|
|
e1000_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Minimum low period of clock is 4.7 us.
|
|
* This also takes care of the data hold time.
|
|
*/
|
|
usec_delay(E1000_I2C_T_LOW);
|
|
} else {
|
|
status = E1000_ERR_I2C;
|
|
DEBUGOUT1("I2C data was not set to %X\n", data);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
/**
|
|
* e1000_raise_i2c_clk - Raises the I2C SCL clock
|
|
* @hw: pointer to hardware structure
|
|
* @i2cctl: Current value of I2CCTL register
|
|
*
|
|
* Raises the I2C clock line '0'->'1'
|
|
**/
|
|
static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
|
|
{
|
|
DEBUGFUNC("e1000_raise_i2c_clk");
|
|
|
|
*i2cctl |= E1000_I2C_CLK_OUT;
|
|
*i2cctl &= ~E1000_I2C_CLK_OE_N;
|
|
E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/* SCL rise time (1000ns) */
|
|
usec_delay(E1000_I2C_T_RISE);
|
|
}
|
|
|
|
/**
|
|
* e1000_lower_i2c_clk - Lowers the I2C SCL clock
|
|
* @hw: pointer to hardware structure
|
|
* @i2cctl: Current value of I2CCTL register
|
|
*
|
|
* Lowers the I2C clock line '1'->'0'
|
|
**/
|
|
static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
|
|
{
|
|
|
|
DEBUGFUNC("e1000_lower_i2c_clk");
|
|
|
|
*i2cctl &= ~E1000_I2C_CLK_OUT;
|
|
*i2cctl &= ~E1000_I2C_CLK_OE_N;
|
|
E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/* SCL fall time (300ns) */
|
|
usec_delay(E1000_I2C_T_FALL);
|
|
}
|
|
|
|
/**
|
|
* e1000_set_i2c_data - Sets the I2C data bit
|
|
* @hw: pointer to hardware structure
|
|
* @i2cctl: Current value of I2CCTL register
|
|
* @data: I2C data value (0 or 1) to set
|
|
*
|
|
* Sets the I2C data bit
|
|
**/
|
|
static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
|
|
{
|
|
s32 status = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_set_i2c_data");
|
|
|
|
if (data)
|
|
*i2cctl |= E1000_I2C_DATA_OUT;
|
|
else
|
|
*i2cctl &= ~E1000_I2C_DATA_OUT;
|
|
|
|
*i2cctl &= ~E1000_I2C_DATA_OE_N;
|
|
*i2cctl |= E1000_I2C_CLK_OE_N;
|
|
E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
|
|
usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
|
|
|
|
*i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
if (data != e1000_get_i2c_data(i2cctl)) {
|
|
status = E1000_ERR_I2C;
|
|
DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_i2c_data - Reads the I2C SDA data bit
|
|
* @hw: pointer to hardware structure
|
|
* @i2cctl: Current value of I2CCTL register
|
|
*
|
|
* Returns the I2C data bit value
|
|
**/
|
|
static bool e1000_get_i2c_data(u32 *i2cctl)
|
|
{
|
|
bool data;
|
|
|
|
DEBUGFUNC("e1000_get_i2c_data");
|
|
|
|
if (*i2cctl & E1000_I2C_DATA_IN)
|
|
data = 1;
|
|
else
|
|
data = 0;
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* e1000_i2c_bus_clear - Clears the I2C bus
|
|
* @hw: pointer to hardware structure
|
|
*
|
|
* Clears the I2C bus by sending nine clock pulses.
|
|
* Used when data line is stuck low.
|
|
**/
|
|
void e1000_i2c_bus_clear(struct e1000_hw *hw)
|
|
{
|
|
u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
|
|
u32 i;
|
|
|
|
DEBUGFUNC("e1000_i2c_bus_clear");
|
|
|
|
e1000_i2c_start(hw);
|
|
|
|
e1000_set_i2c_data(hw, &i2cctl, 1);
|
|
|
|
for (i = 0; i < 9; i++) {
|
|
e1000_raise_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Min high period of clock is 4us */
|
|
usec_delay(E1000_I2C_T_HIGH);
|
|
|
|
e1000_lower_i2c_clk(hw, &i2cctl);
|
|
|
|
/* Min low period of clock is 4.7us*/
|
|
usec_delay(E1000_I2C_T_LOW);
|
|
}
|
|
|
|
e1000_i2c_start(hw);
|
|
|
|
/* Put the i2c bus back to default state */
|
|
e1000_i2c_stop(hw);
|
|
}
|
|
|