mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-22 11:17:19 +00:00
f7ea2f55d1
There is only cdevsw (which should be renamed in a later edit to deventry or something). cdevsw contains the union of what were in both bdevsw an cdevsw entries. The bdevsw[] table stiff exists and is a second pointer to the cdevsw entry of the device. it's major is in d_bmaj rather than d_maj. some cleanup still to happen (e.g. dsopen now gets two pointers to the same cdevsw struct instead of one to a bdevsw and one to a cdevsw). rawread()/rawwrite() went away as part of this though it's not strictly the same patch, just that it involves all the same lines in the drivers. cdroms no longer have write() entries (they did have rawwrite (?)). tapes no longer have support for bdev operations. Reviewed by: Eivind Eklund and Mike Smith Changes suggested by eivind.
320 lines
8.0 KiB
C
320 lines
8.0 KiB
C
/*
|
|
* sctarg: Target mode user interface
|
|
*
|
|
* Copyright (C) 1995, HD Associates, Inc.
|
|
* PO Box 276
|
|
* Pepperell, MA 01463
|
|
* 508 433 5266
|
|
* dufault@hda.com
|
|
*
|
|
* This code is contributed to the University of California at Berkeley:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $Id: sctarg.c,v 1.26 1998/06/17 14:13:14 bde Exp $
|
|
*/
|
|
|
|
#include "opt_bounce.h"
|
|
#include "opt_devfs.h"
|
|
#include "opt_scsi.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kernel.h>
|
|
#ifdef DEVFS
|
|
#include <sys/devfsext.h>
|
|
#endif /*DEVFS*/
|
|
#include <scsi/scsiconf.h>
|
|
#include <scsi/scsi_debug.h>
|
|
#include <scsi/scsi_driver.h>
|
|
|
|
#include "ioconf.h"
|
|
|
|
#define OPEN 0x01
|
|
|
|
struct scsi_data {
|
|
struct buf_queue_head buf_queue;
|
|
int flags; /* Already open */
|
|
};
|
|
|
|
static d_open_t sctargopen;
|
|
static d_read_t sctargread;
|
|
static d_write_t sctargwrite;
|
|
static d_close_t sctargclose;
|
|
static d_ioctl_t sctargioctl;
|
|
static d_strategy_t sctargstrategy;
|
|
|
|
#define CDEV_MAJOR 65
|
|
static struct cdevsw sctarg_cdevsw =
|
|
{ sctargopen, sctargclose, sctargread, sctargwrite, /*65*/
|
|
sctargioctl, nostop, nullreset, nodevtotty,/* sctarg */
|
|
seltrue, nommap, sctargstrategy, "sctarg", NULL, -1 };
|
|
|
|
SCSI_DEVICE_ENTRIES(sctarg)
|
|
|
|
static errval sctarg_open(dev_t dev, int flags, int fmt, struct proc *p,
|
|
struct scsi_link *sc_link);
|
|
static void sctargstart(u_int32_t unit, u_int32_t unused_flags);
|
|
static void sctarg_strategy(struct buf *bp, struct scsi_link *sc_link);
|
|
|
|
static struct scsi_device sctarg_switch =
|
|
{
|
|
NULL,
|
|
sctargstart, /* we have a queue, and this is how we service it */
|
|
NULL,
|
|
NULL,
|
|
"sctarg",
|
|
0,
|
|
{0, 0},
|
|
SDEV_ONCE_ONLY,
|
|
sctargattach,
|
|
"Processor Target",
|
|
sctargopen,
|
|
sizeof(struct scsi_data),
|
|
T_TARGET,
|
|
0,
|
|
0,
|
|
sctarg_open,
|
|
0,
|
|
0,
|
|
sctarg_strategy,
|
|
};
|
|
|
|
static errval
|
|
sctargattach(struct scsi_link *sc_link)
|
|
{
|
|
struct scsi_data *sctarg;
|
|
|
|
sctarg = sc_link->sd;
|
|
bufq_init(&sctarg->buf_queue);
|
|
sctarg->flags = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static errval
|
|
sctarg_open(dev_t dev, int flags, int fmt, struct proc *p,
|
|
struct scsi_link *sc_link)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Does this host adapter support target mode operation?
|
|
*/
|
|
if ((sc_link->flags & SDEV_TARGET_OPS) == 0)
|
|
return ENODEV; /* Operation not supported */
|
|
|
|
if (SCSI_FIXED(dev)) {
|
|
sc_link->scsibus = SCSI_BUS(dev);
|
|
scsi_set_bus(sc_link->scsibus, sc_link);
|
|
|
|
sc_link->target = SCSI_ID(dev);
|
|
sc_link->lun = SCSI_LUN(dev);
|
|
}
|
|
|
|
if (sc_link->scsibus == SCCONF_UNSPEC ||
|
|
sc_link->target == SCCONF_UNSPEC ||
|
|
sc_link->lun == SCCONF_UNSPEC)
|
|
return ENXIO;
|
|
|
|
/* XXX: You can have more than one target device on a single
|
|
* host adapter. We need a reference count.
|
|
*/
|
|
if ((sc_link->sd->flags & OPEN) == 0) /* Enable target mode */
|
|
{
|
|
ret = scsi_target_mode(sc_link, 1);
|
|
sc_link->sd->flags |= OPEN;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
sctargread( dev_t dev, struct uio *uio, int ioflag)
|
|
{
|
|
return (physio(sctargstrategy, NULL, dev, 1, minphys, uio));
|
|
}
|
|
|
|
static int
|
|
sctargwrite ( dev_t dev, struct uio *uio, int ioflag)
|
|
{
|
|
return (physio(sctargstrategy, NULL, dev, 0, minphys, uio));
|
|
}
|
|
|
|
/*
|
|
* sctargstart looks to see if there is a buf waiting for the device
|
|
* and that the device is not already busy. If both are true,
|
|
* It dequeues the buf and creates a scsi command to perform the
|
|
* transfer required. The transfer request will call scsi_done
|
|
* on completion, which will in turn call this routine again
|
|
* so that the next queued transfer is performed.
|
|
* The bufs are queued by the strategy routine (sctargstrategy)
|
|
*
|
|
* This routine is also called after other non-queued requests
|
|
* have been made of the scsi driver, to ensure that the queue
|
|
* continues to be drained.
|
|
* sctargstart() is called at splbio
|
|
*/
|
|
static void
|
|
sctargstart(unit, unused_flags)
|
|
u_int32_t unit;
|
|
u_int32_t unused_flags;
|
|
{
|
|
struct scsi_link *sc_link = SCSI_LINK(&sctarg_switch, unit);
|
|
struct scsi_data *sctarg = sc_link->sd;
|
|
register struct buf *bp = 0;
|
|
struct
|
|
{
|
|
#define PROCESSOR_SEND 0x0A
|
|
#define PROCESSOR_RECEIVE 0x08
|
|
u_char op_code;
|
|
u_char byte2;
|
|
u_char len[3];
|
|
u_char control;
|
|
} cmd;
|
|
|
|
u_int32_t flags;
|
|
|
|
SC_DEBUG(sc_link, SDEV_DB2, ("sctargstart "));
|
|
/*
|
|
* See if there is a buf to do and we are not already
|
|
* doing one
|
|
*/
|
|
while (sc_link->opennings != 0) {
|
|
|
|
/* if a special awaits, let it proceed first */
|
|
if (sc_link->flags & SDEV_WAITING) {
|
|
sc_link->flags &= ~SDEV_WAITING;
|
|
wakeup((caddr_t)sc_link);
|
|
return;
|
|
}
|
|
|
|
bp = bufq_first(&sctarg->buf_queue);
|
|
if (bp == NULL)
|
|
return;
|
|
bufq_remove(&sctarg->buf_queue, bp);
|
|
|
|
/*
|
|
* Fill out the scsi command
|
|
*/
|
|
bzero(&cmd, sizeof(cmd));
|
|
flags = SCSI_TARGET;
|
|
if ((bp->b_flags & B_READ) == B_WRITE) {
|
|
cmd.op_code = PROCESSOR_SEND;
|
|
flags |= SCSI_DATA_OUT;
|
|
} else {
|
|
cmd.op_code = PROCESSOR_RECEIVE;
|
|
flags |= SCSI_DATA_IN;
|
|
}
|
|
|
|
scsi_uto3b(bp->b_bcount, cmd.len);
|
|
/*
|
|
* go ask the adapter to do all this for us
|
|
*/
|
|
if (scsi_scsi_cmd(sc_link,
|
|
(struct scsi_generic *) &cmd,
|
|
sizeof(cmd),
|
|
(u_char *) bp->b_data,
|
|
bp->b_bcount,
|
|
0,
|
|
100000,
|
|
bp,
|
|
flags | SCSI_NOSLEEP) == SUCCESSFULLY_QUEUED) {
|
|
} else {
|
|
printf("sctarg%ld: oops not queued\n", unit);
|
|
bp->b_flags |= B_ERROR;
|
|
bp->b_error = EIO;
|
|
biodone(bp);
|
|
}
|
|
} /* go back and see if we can cram more work in.. */
|
|
}
|
|
|
|
static void
|
|
sctarg_strategy(struct buf *bp, struct scsi_link *sc_link)
|
|
{
|
|
unsigned char unit;
|
|
u_int32_t opri;
|
|
struct scsi_data *sctarg;
|
|
|
|
unit = minor((bp->b_dev));
|
|
sctarg = sc_link->sd;
|
|
|
|
opri = splbio();
|
|
|
|
/*
|
|
* Use a bounce buffer if necessary
|
|
*/
|
|
#ifdef BOUNCE_BUFFERS
|
|
if (sc_link->flags & SDEV_BOUNCE)
|
|
vm_bounce_alloc(bp);
|
|
#endif
|
|
|
|
/*
|
|
* Place it at the end of the queue of activities for this device.
|
|
*/
|
|
bufq_insert_tail(&sctarg->buf_queue, bp);
|
|
|
|
/*
|
|
* Tell the device to get going on the transfer if it's
|
|
* not doing anything, otherwise just wait for completion
|
|
* (All a bit silly if we're only allowing 1 open but..)
|
|
*/
|
|
sctargstart(unit, 0);
|
|
|
|
splx(opri);
|
|
return;
|
|
}
|
|
|
|
static sctarg_devsw_installed = 0;
|
|
#ifdef DEVFS
|
|
static void *sctarg_devfs_token;
|
|
#endif
|
|
|
|
static void sctarg_drvinit(void *unused)
|
|
{
|
|
dev_t dev;
|
|
|
|
if( ! sctarg_devsw_installed ) {
|
|
dev = makedev(CDEV_MAJOR, 0);
|
|
cdevsw_add(&dev,&sctarg_cdevsw, NULL);
|
|
sctarg_devsw_installed = 1;
|
|
#ifdef DEVFS
|
|
/* XXX should be in ADAPTER code */
|
|
sctarg_devfs_token =
|
|
devfs_add_devswf(&sctarg_cdevsw, 0, DV_CHR, 0, 0,
|
|
0600, "sctarg");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
SYSINIT(sctargdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,sctarg_drvinit,NULL)
|
|
|
|
|