mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-24 11:29:10 +00:00
a4cd5630b0
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
969 lines
38 KiB
C
969 lines
38 KiB
C
/* Register Transfer Language (RTL) definitions for GNU C-Compiler
|
||
Copyright (C) 1987, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include "machmode.h"
|
||
|
||
#undef FFS /* Some systems predefine this symbol; don't let it interfere. */
|
||
#undef FLOAT /* Likewise. */
|
||
#undef ABS /* Likewise. */
|
||
#undef PC /* Likewise. */
|
||
|
||
#ifndef TREE_CODE
|
||
union tree_node;
|
||
#endif
|
||
|
||
/* Register Transfer Language EXPRESSIONS CODES */
|
||
|
||
#define RTX_CODE enum rtx_code
|
||
enum rtx_code {
|
||
|
||
#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
|
||
#include "rtl.def" /* rtl expressions are documented here */
|
||
#undef DEF_RTL_EXPR
|
||
|
||
LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
|
||
NUM_RTX_CODE.
|
||
Assumes default enum value assignment. */
|
||
|
||
#define NUM_RTX_CODE ((int)LAST_AND_UNUSED_RTX_CODE)
|
||
/* The cast here, saves many elsewhere. */
|
||
|
||
extern int rtx_length[];
|
||
#define GET_RTX_LENGTH(CODE) (rtx_length[(int)(CODE)])
|
||
|
||
extern char *rtx_name[];
|
||
#define GET_RTX_NAME(CODE) (rtx_name[(int)(CODE)])
|
||
|
||
extern char *rtx_format[];
|
||
#define GET_RTX_FORMAT(CODE) (rtx_format[(int)(CODE)])
|
||
|
||
extern char rtx_class[];
|
||
#define GET_RTX_CLASS(CODE) (rtx_class[(int)(CODE)])
|
||
|
||
/* Common union for an element of an rtx. */
|
||
|
||
typedef union rtunion_def
|
||
{
|
||
HOST_WIDE_INT rtwint;
|
||
int rtint;
|
||
char *rtstr;
|
||
struct rtx_def *rtx;
|
||
struct rtvec_def *rtvec;
|
||
enum machine_mode rttype;
|
||
} rtunion;
|
||
|
||
/* RTL expression ("rtx"). */
|
||
|
||
typedef struct rtx_def
|
||
{
|
||
#ifdef ONLY_INT_FIELDS
|
||
#ifdef CODE_FIELD_BUG
|
||
unsigned int code : 16;
|
||
#else
|
||
unsigned short code;
|
||
#endif
|
||
#else
|
||
/* The kind of expression this is. */
|
||
enum rtx_code code : 16;
|
||
#endif
|
||
/* The kind of value the expression has. */
|
||
#ifdef ONLY_INT_FIELDS
|
||
int mode : 8;
|
||
#else
|
||
enum machine_mode mode : 8;
|
||
#endif
|
||
/* 1 in an INSN if it can alter flow of control
|
||
within this function. Not yet used! */
|
||
unsigned int jump : 1;
|
||
/* 1 in an INSN if it can call another function. Not yet used! */
|
||
unsigned int call : 1;
|
||
/* 1 in a MEM or REG if value of this expression will never change
|
||
during the current function, even though it is not
|
||
manifestly constant.
|
||
1 in a SUBREG if it is from a promoted variable that is unsigned.
|
||
1 in a SYMBOL_REF if it addresses something in the per-function
|
||
constants pool.
|
||
1 in a CALL_INSN if it is a const call.
|
||
1 in a JUMP_INSN if it is a branch that should be annulled. Valid from
|
||
reorg until end of compilation; cleared before used. */
|
||
unsigned int unchanging : 1;
|
||
/* 1 in a MEM expression if contents of memory are volatile.
|
||
1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL or BARRIER
|
||
if it is deleted.
|
||
1 in a REG expression if corresponds to a variable declared by the user.
|
||
0 for an internally generated temporary.
|
||
In a SYMBOL_REF, this flag is used for machine-specific purposes.
|
||
In a LABEL_REF or in a REG_LABEL note, this is LABEL_REF_NONLOCAL_P. */
|
||
unsigned int volatil : 1;
|
||
/* 1 in a MEM referring to a field of a structure (not a union!).
|
||
0 if the MEM was a variable or the result of a * operator in C;
|
||
1 if it was the result of a . or -> operator (on a struct) in C.
|
||
1 in a REG if the register is used only in exit code a loop.
|
||
1 in a SUBREG expression if was generated from a variable with a
|
||
promoted mode.
|
||
1 in a CODE_LABEL if the label is used for nonlocal gotos
|
||
and must not be deleted even if its count is zero.
|
||
1 in a LABEL_REF if this is a reference to a label outside the
|
||
current loop.
|
||
1 in an INSN, JUMP_INSN, or CALL_INSN if this insn must be scheduled
|
||
together with the preceding insn. Valid only within sched.
|
||
1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
|
||
from the target of a branch. Valid from reorg until end of compilation;
|
||
cleared before used. */
|
||
unsigned int in_struct : 1;
|
||
/* 1 if this rtx is used. This is used for copying shared structure.
|
||
See `unshare_all_rtl'.
|
||
In a REG, this is not needed for that purpose, and used instead
|
||
in `leaf_renumber_regs_insn'.
|
||
In a SYMBOL_REF, means that emit_library_call
|
||
has used it as the function. */
|
||
unsigned int used : 1;
|
||
/* Nonzero if this rtx came from procedure integration.
|
||
In a REG, nonzero means this reg refers to the return value
|
||
of the current function. */
|
||
unsigned integrated : 1;
|
||
/* The first element of the operands of this rtx.
|
||
The number of operands and their types are controlled
|
||
by the `code' field, according to rtl.def. */
|
||
rtunion fld[1];
|
||
} *rtx;
|
||
|
||
|
||
/* Add prototype support. */
|
||
#ifndef PROTO
|
||
#if defined (USE_PROTOTYPES) ? USE_PROTOTYPES : defined (__STDC__)
|
||
#define PROTO(ARGS) ARGS
|
||
#else
|
||
#define PROTO(ARGS) ()
|
||
#endif
|
||
#endif
|
||
|
||
#ifndef VPROTO
|
||
#ifdef __STDC__
|
||
#define PVPROTO(ARGS) ARGS
|
||
#define VPROTO(ARGS) ARGS
|
||
#define VA_START(va_list,var) va_start(va_list,var)
|
||
#else
|
||
#define PVPROTO(ARGS) ()
|
||
#define VPROTO(ARGS) (va_alist) va_dcl
|
||
#define VA_START(va_list,var) va_start(va_list)
|
||
#endif
|
||
#endif
|
||
|
||
#ifndef STDIO_PROTO
|
||
#ifdef BUFSIZ
|
||
#define STDIO_PROTO(ARGS) PROTO(ARGS)
|
||
#else
|
||
#define STDIO_PROTO(ARGS) ()
|
||
#endif
|
||
#endif
|
||
|
||
#define NULL_RTX (rtx) 0
|
||
|
||
/* Define a generic NULL if one hasn't already been defined. */
|
||
|
||
#ifndef NULL
|
||
#define NULL 0
|
||
#endif
|
||
|
||
#ifndef GENERIC_PTR
|
||
#if defined (USE_PROTOTYPES) ? USE_PROTOTYPES : defined (__STDC__)
|
||
#define GENERIC_PTR void *
|
||
#else
|
||
#define GENERIC_PTR char *
|
||
#endif
|
||
#endif
|
||
|
||
#ifndef NULL_PTR
|
||
#define NULL_PTR ((GENERIC_PTR)0)
|
||
#endif
|
||
|
||
/* Define macros to access the `code' field of the rtx. */
|
||
|
||
#ifdef SHORT_ENUM_BUG
|
||
#define GET_CODE(RTX) ((enum rtx_code) ((RTX)->code))
|
||
#define PUT_CODE(RTX, CODE) ((RTX)->code = ((short) (CODE)))
|
||
#else
|
||
#define GET_CODE(RTX) ((RTX)->code)
|
||
#define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
|
||
#endif
|
||
|
||
#define GET_MODE(RTX) ((RTX)->mode)
|
||
#define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
|
||
|
||
#define RTX_INTEGRATED_P(RTX) ((RTX)->integrated)
|
||
#define RTX_UNCHANGING_P(RTX) ((RTX)->unchanging)
|
||
|
||
/* RTL vector. These appear inside RTX's when there is a need
|
||
for a variable number of things. The principle use is inside
|
||
PARALLEL expressions. */
|
||
|
||
typedef struct rtvec_def{
|
||
unsigned num_elem; /* number of elements */
|
||
rtunion elem[1];
|
||
} *rtvec;
|
||
|
||
#define NULL_RTVEC (rtvec) 0
|
||
|
||
#define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
|
||
#define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (unsigned) NUM)
|
||
|
||
#define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[(I)].rtx)
|
||
|
||
/* 1 if X is a REG. */
|
||
|
||
#define REG_P(X) (GET_CODE (X) == REG)
|
||
|
||
/* 1 if X is a constant value that is an integer. */
|
||
|
||
#define CONSTANT_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE \
|
||
|| GET_CODE (X) == CONST || GET_CODE (X) == HIGH)
|
||
|
||
/* General accessor macros for accessing the fields of an rtx. */
|
||
|
||
#define XEXP(RTX, N) ((RTX)->fld[N].rtx)
|
||
#define XINT(RTX, N) ((RTX)->fld[N].rtint)
|
||
#define XWINT(RTX, N) ((RTX)->fld[N].rtwint)
|
||
#define XSTR(RTX, N) ((RTX)->fld[N].rtstr)
|
||
#define XVEC(RTX, N) ((RTX)->fld[N].rtvec)
|
||
#define XVECLEN(RTX, N) ((RTX)->fld[N].rtvec->num_elem)
|
||
#define XVECEXP(RTX,N,M)((RTX)->fld[N].rtvec->elem[M].rtx)
|
||
|
||
/* ACCESS MACROS for particular fields of insns. */
|
||
|
||
/* Holds a unique number for each insn.
|
||
These are not necessarily sequentially increasing. */
|
||
#define INSN_UID(INSN) ((INSN)->fld[0].rtint)
|
||
|
||
/* Chain insns together in sequence. */
|
||
#define PREV_INSN(INSN) ((INSN)->fld[1].rtx)
|
||
#define NEXT_INSN(INSN) ((INSN)->fld[2].rtx)
|
||
|
||
/* The body of an insn. */
|
||
#define PATTERN(INSN) ((INSN)->fld[3].rtx)
|
||
|
||
/* Code number of instruction, from when it was recognized.
|
||
-1 means this instruction has not been recognized yet. */
|
||
#define INSN_CODE(INSN) ((INSN)->fld[4].rtint)
|
||
|
||
/* Set up in flow.c; empty before then.
|
||
Holds a chain of INSN_LIST rtx's whose first operands point at
|
||
previous insns with direct data-flow connections to this one.
|
||
That means that those insns set variables whose next use is in this insn.
|
||
They are always in the same basic block as this insn. */
|
||
#define LOG_LINKS(INSN) ((INSN)->fld[5].rtx)
|
||
|
||
/* 1 if insn has been deleted. */
|
||
#define INSN_DELETED_P(INSN) ((INSN)->volatil)
|
||
|
||
/* 1 if insn is a call to a const function. */
|
||
#define CONST_CALL_P(INSN) ((INSN)->unchanging)
|
||
|
||
/* 1 if insn is a branch that should not unconditionally execute its
|
||
delay slots, i.e., it is an annulled branch. */
|
||
#define INSN_ANNULLED_BRANCH_P(INSN) ((INSN)->unchanging)
|
||
|
||
/* 1 if insn is in a delay slot and is from the target of the branch. If
|
||
the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
|
||
executed if the branch is taken. For annulled branches with this bit
|
||
clear, the insn should be executed only if the branch is not taken. */
|
||
#define INSN_FROM_TARGET_P(INSN) ((INSN)->in_struct)
|
||
|
||
/* Holds a list of notes on what this insn does to various REGs.
|
||
It is a chain of EXPR_LIST rtx's, where the second operand
|
||
is the chain pointer and the first operand is the REG being described.
|
||
The mode field of the EXPR_LIST contains not a real machine mode
|
||
but a value that says what this note says about the REG:
|
||
REG_DEAD means that the value in REG dies in this insn (i.e., it is
|
||
not needed past this insn). If REG is set in this insn, the REG_DEAD
|
||
note may, but need not, be omitted.
|
||
REG_INC means that the REG is autoincremented or autodecremented.
|
||
REG_EQUIV describes the insn as a whole; it says that the
|
||
insn sets a register to a constant value or to be equivalent to
|
||
a memory address. If the
|
||
register is spilled to the stack then the constant value
|
||
should be substituted for it. The contents of the REG_EQUIV
|
||
is the constant value or memory address, which may be different
|
||
from the source of the SET although it has the same value.
|
||
REG_EQUAL is like REG_EQUIV except that the destination
|
||
is only momentarily equal to the specified rtx. Therefore, it
|
||
cannot be used for substitution; but it can be used for cse.
|
||
REG_RETVAL means that this insn copies the return-value of
|
||
a library call out of the hard reg for return values. This note
|
||
is actually an INSN_LIST and it points to the first insn involved
|
||
in setting up arguments for the call. flow.c uses this to delete
|
||
the entire library call when its result is dead.
|
||
REG_LIBCALL is the inverse of REG_RETVAL: it goes on the first insn
|
||
of the library call and points at the one that has the REG_RETVAL.
|
||
REG_WAS_0 says that the register set in this insn held 0 before the insn.
|
||
The contents of the note is the insn that stored the 0.
|
||
If that insn is deleted or patched to a NOTE, the REG_WAS_0 is inoperative.
|
||
The REG_WAS_0 note is actually an INSN_LIST, not an EXPR_LIST.
|
||
REG_NONNEG means that the register is always nonnegative during
|
||
the containing loop. This is used in branches so that decrement and
|
||
branch instructions terminating on zero can be matched. There must be
|
||
an insn pattern in the md file named `decrement_and_branch_until_zero'
|
||
or else this will never be added to any instructions.
|
||
REG_NO_CONFLICT means there is no conflict *after this insn*
|
||
between the register in the note and the destination of this insn.
|
||
REG_UNUSED identifies a register set in this insn and never used.
|
||
REG_CC_SETTER and REG_CC_USER link a pair of insns that set and use
|
||
CC0, respectively. Normally, these are required to be consecutive insns,
|
||
but we permit putting a cc0-setting insn in the delay slot of a branch
|
||
as long as only one copy of the insn exists. In that case, these notes
|
||
point from one to the other to allow code generation to determine what
|
||
any require information and to properly update CC_STATUS.
|
||
REG_LABEL points to a CODE_LABEL. Used by non-JUMP_INSNs to
|
||
say that the CODE_LABEL contained in the REG_LABEL note is used
|
||
by the insn.
|
||
REG_DEP_ANTI is used in LOG_LINKS which represent anti (write after read)
|
||
dependencies. REG_DEP_OUTPUT is used in LOG_LINKS which represent output
|
||
(write after write) dependencies. Data dependencies, which are the only
|
||
type of LOG_LINK created by flow, are represented by a 0 reg note kind. */
|
||
|
||
#define REG_NOTES(INSN) ((INSN)->fld[6].rtx)
|
||
|
||
/* Don't forget to change reg_note_name in rtl.c. */
|
||
enum reg_note { REG_DEAD = 1, REG_INC = 2, REG_EQUIV = 3, REG_WAS_0 = 4,
|
||
REG_EQUAL = 5, REG_RETVAL = 6, REG_LIBCALL = 7,
|
||
REG_NONNEG = 8, REG_NO_CONFLICT = 9, REG_UNUSED = 10,
|
||
REG_CC_SETTER = 11, REG_CC_USER = 12, REG_LABEL = 13,
|
||
REG_DEP_ANTI = 14, REG_DEP_OUTPUT = 15 };
|
||
|
||
/* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
|
||
#define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
|
||
#define PUT_REG_NOTE_KIND(LINK,KIND) PUT_MODE(LINK, (enum machine_mode) (KIND))
|
||
|
||
/* Names for REG_NOTE's in EXPR_LIST insn's. */
|
||
|
||
extern char *reg_note_name[];
|
||
#define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int)(MODE)])
|
||
|
||
/* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
|
||
USE and CLOBBER expressions.
|
||
USE expressions list the registers filled with arguments that
|
||
are passed to the function.
|
||
CLOBBER expressions document the registers explicitly clobbered
|
||
by this CALL_INSN.
|
||
Pseudo registers can not be mentioned in this list. */
|
||
#define CALL_INSN_FUNCTION_USAGE(INSN) ((INSN)->fld[7].rtx)
|
||
|
||
/* The label-number of a code-label. The assembler label
|
||
is made from `L' and the label-number printed in decimal.
|
||
Label numbers are unique in a compilation. */
|
||
#define CODE_LABEL_NUMBER(INSN) ((INSN)->fld[3].rtint)
|
||
|
||
#define LINE_NUMBER NOTE
|
||
|
||
/* In a NOTE that is a line number, this is a string for the file name
|
||
that the line is in. We use the same field to record block numbers
|
||
temporarily in NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes.
|
||
(We avoid lots of casts between ints and pointers if we use a
|
||
different macro for the bock number.) */
|
||
|
||
#define NOTE_SOURCE_FILE(INSN) ((INSN)->fld[3].rtstr)
|
||
#define NOTE_BLOCK_NUMBER(INSN) ((INSN)->fld[3].rtint)
|
||
|
||
/* In a NOTE that is a line number, this is the line number.
|
||
Other kinds of NOTEs are identified by negative numbers here. */
|
||
#define NOTE_LINE_NUMBER(INSN) ((INSN)->fld[4].rtint)
|
||
|
||
/* Codes that appear in the NOTE_LINE_NUMBER field
|
||
for kinds of notes that are not line numbers.
|
||
|
||
Notice that we do not try to use zero here for any of
|
||
the special note codes because sometimes the source line
|
||
actually can be zero! This happens (for example) when we
|
||
are generating code for the per-translation-unit constructor
|
||
and destructor routines for some C++ translation unit.
|
||
|
||
If you should change any of the following values, or if you
|
||
should add a new value here, don't forget to change the
|
||
note_insn_name array in rtl.c. */
|
||
|
||
/* This note is used to get rid of an insn
|
||
when it isn't safe to patch the insn out of the chain. */
|
||
#define NOTE_INSN_DELETED -1
|
||
#define NOTE_INSN_BLOCK_BEG -2
|
||
#define NOTE_INSN_BLOCK_END -3
|
||
#define NOTE_INSN_LOOP_BEG -4
|
||
#define NOTE_INSN_LOOP_END -5
|
||
/* This kind of note is generated at the end of the function body,
|
||
just before the return insn or return label.
|
||
In an optimizing compilation it is deleted by the first jump optimization,
|
||
after enabling that optimizer to determine whether control can fall
|
||
off the end of the function body without a return statement. */
|
||
#define NOTE_INSN_FUNCTION_END -6
|
||
/* This kind of note is generated just after each call to `setjmp', et al. */
|
||
#define NOTE_INSN_SETJMP -7
|
||
/* Generated at the place in a loop that `continue' jumps to. */
|
||
#define NOTE_INSN_LOOP_CONT -8
|
||
/* Generated at the start of a duplicated exit test. */
|
||
#define NOTE_INSN_LOOP_VTOP -9
|
||
/* This marks the point immediately after the last prologue insn. */
|
||
#define NOTE_INSN_PROLOGUE_END -10
|
||
/* This marks the point immediately prior to the first epilogue insn. */
|
||
#define NOTE_INSN_EPILOGUE_BEG -11
|
||
/* Generated in place of user-declared labels when they are deleted. */
|
||
#define NOTE_INSN_DELETED_LABEL -12
|
||
/* This note indicates the start of the real body of the function,
|
||
i.e. the point just after all of the parms have been moved into
|
||
their homes, etc. */
|
||
#define NOTE_INSN_FUNCTION_BEG -13
|
||
|
||
|
||
#if 0 /* These are not used, and I don't know what they were for. --rms. */
|
||
#define NOTE_DECL_NAME(INSN) ((INSN)->fld[3].rtstr)
|
||
#define NOTE_DECL_CODE(INSN) ((INSN)->fld[4].rtint)
|
||
#define NOTE_DECL_RTL(INSN) ((INSN)->fld[5].rtx)
|
||
#define NOTE_DECL_IDENTIFIER(INSN) ((INSN)->fld[6].rtint)
|
||
#define NOTE_DECL_TYPE(INSN) ((INSN)->fld[7].rtint)
|
||
#endif /* 0 */
|
||
|
||
/* Names for NOTE insn's other than line numbers. */
|
||
|
||
extern char *note_insn_name[];
|
||
#define GET_NOTE_INSN_NAME(NOTE_CODE) (note_insn_name[-(NOTE_CODE)])
|
||
|
||
/* The name of a label, in case it corresponds to an explicit label
|
||
in the input source code. */
|
||
#define LABEL_NAME(LABEL) ((LABEL)->fld[4].rtstr)
|
||
|
||
/* In jump.c, each label contains a count of the number
|
||
of LABEL_REFs that point at it, so unused labels can be deleted. */
|
||
#define LABEL_NUSES(LABEL) ((LABEL)->fld[5].rtint)
|
||
|
||
/* The rest is used instead of the above, in a CODE_LABEL,
|
||
if bytecode is being output.
|
||
We make the slightly kludgy assumption that a LABEL has enough slots
|
||
to hold these things. That happens to be true. */
|
||
|
||
/* For static or external objects. */
|
||
#define BYTECODE_LABEL(X) (XEXP ((X), 0))
|
||
|
||
/* For goto labels inside bytecode functions. */
|
||
#define BYTECODE_BC_LABEL(X) (*(struct bc_label **) &XEXP ((X), 1))
|
||
|
||
/* In jump.c, each JUMP_INSN can point to a label that it can jump to,
|
||
so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
|
||
be decremented and possibly the label can be deleted. */
|
||
#define JUMP_LABEL(INSN) ((INSN)->fld[7].rtx)
|
||
|
||
/* Once basic blocks are found in flow.c,
|
||
each CODE_LABEL starts a chain that goes through
|
||
all the LABEL_REFs that jump to that label.
|
||
The chain eventually winds up at the CODE_LABEL; it is circular. */
|
||
#define LABEL_REFS(LABEL) ((LABEL)->fld[5].rtx)
|
||
|
||
/* This is the field in the LABEL_REF through which the circular chain
|
||
of references to a particular label is linked.
|
||
This chain is set up in flow.c. */
|
||
|
||
#define LABEL_NEXTREF(REF) ((REF)->fld[1].rtx)
|
||
|
||
/* Once basic blocks are found in flow.c,
|
||
Each LABEL_REF points to its containing instruction with this field. */
|
||
|
||
#define CONTAINING_INSN(RTX) ((RTX)->fld[2].rtx)
|
||
|
||
/* For a REG rtx, REGNO extracts the register number. */
|
||
|
||
#define REGNO(RTX) ((RTX)->fld[0].rtint)
|
||
|
||
/* For a REG rtx, REG_FUNCTION_VALUE_P is nonzero if the reg
|
||
is the current function's return value. */
|
||
|
||
#define REG_FUNCTION_VALUE_P(RTX) ((RTX)->integrated)
|
||
|
||
/* 1 in a REG rtx if it corresponds to a variable declared by the user. */
|
||
#define REG_USERVAR_P(RTX) ((RTX)->volatil)
|
||
|
||
/* For a CONST_INT rtx, INTVAL extracts the integer. */
|
||
|
||
#define INTVAL(RTX) ((RTX)->fld[0].rtwint)
|
||
|
||
/* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
|
||
SUBREG_WORD extracts the word-number. */
|
||
|
||
#define SUBREG_REG(RTX) ((RTX)->fld[0].rtx)
|
||
#define SUBREG_WORD(RTX) ((RTX)->fld[1].rtint)
|
||
|
||
/* 1 if the REG contained in SUBREG_REG is already known to be
|
||
sign- or zero-extended from the mode of the SUBREG to the mode of
|
||
the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
|
||
extension.
|
||
|
||
When used as a LHS, is means that this extension must be done
|
||
when assigning to SUBREG_REG. */
|
||
|
||
#define SUBREG_PROMOTED_VAR_P(RTX) ((RTX)->in_struct)
|
||
#define SUBREG_PROMOTED_UNSIGNED_P(RTX) ((RTX)->unchanging)
|
||
|
||
/* Access various components of an ASM_OPERANDS rtx. */
|
||
|
||
#define ASM_OPERANDS_TEMPLATE(RTX) XSTR ((RTX), 0)
|
||
#define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XSTR ((RTX), 1)
|
||
#define ASM_OPERANDS_OUTPUT_IDX(RTX) XINT ((RTX), 2)
|
||
#define ASM_OPERANDS_INPUT_VEC(RTX) XVEC ((RTX), 3)
|
||
#define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XVEC ((RTX), 4)
|
||
#define ASM_OPERANDS_INPUT(RTX, N) XVECEXP ((RTX), 3, (N))
|
||
#define ASM_OPERANDS_INPUT_LENGTH(RTX) XVECLEN ((RTX), 3)
|
||
#define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) XSTR (XVECEXP ((RTX), 4, (N)), 0)
|
||
#define ASM_OPERANDS_INPUT_MODE(RTX, N) GET_MODE (XVECEXP ((RTX), 4, (N)))
|
||
#define ASM_OPERANDS_SOURCE_FILE(RTX) XSTR ((RTX), 5)
|
||
#define ASM_OPERANDS_SOURCE_LINE(RTX) XINT ((RTX), 6)
|
||
|
||
/* For a MEM rtx, 1 if it's a volatile reference.
|
||
Also in an ASM_OPERANDS rtx. */
|
||
#define MEM_VOLATILE_P(RTX) ((RTX)->volatil)
|
||
|
||
/* For a MEM rtx, 1 if it refers to a structure or union component. */
|
||
#define MEM_IN_STRUCT_P(RTX) ((RTX)->in_struct)
|
||
|
||
/* For a LABEL_REF, 1 means that this reference is to a label outside the
|
||
loop containing the reference. */
|
||
#define LABEL_OUTSIDE_LOOP_P(RTX) ((RTX)->in_struct)
|
||
|
||
/* For a LABEL_REF, 1 means it is for a nonlocal label. */
|
||
/* Likewise in an EXPR_LIST for a REG_LABEL note. */
|
||
#define LABEL_REF_NONLOCAL_P(RTX) ((RTX)->volatil)
|
||
|
||
/* For a CODE_LABEL, 1 means always consider this label to be needed. */
|
||
#define LABEL_PRESERVE_P(RTX) ((RTX)->in_struct)
|
||
|
||
/* For a REG, 1 means the register is used only in an exit test of a loop. */
|
||
#define REG_LOOP_TEST_P(RTX) ((RTX)->in_struct)
|
||
|
||
/* During sched, for an insn, 1 means that the insn must be scheduled together
|
||
with the preceding insn. */
|
||
#define SCHED_GROUP_P(INSN) ((INSN)->in_struct)
|
||
|
||
/* During sched, for the LOG_LINKS of an insn, these cache the adjusted
|
||
cost of the dependence link. The cost of executing an instruction
|
||
may vary based on how the results are used. LINK_COST_ZERO is 1 when
|
||
the cost through the link varies and is unchanged (i.e., the link has
|
||
zero additional cost). LINK_COST_FREE is 1 when the cost through the
|
||
link is zero (i.e., the link makes the cost free). In other cases,
|
||
the adjustment to the cost is recomputed each time it is needed. */
|
||
#define LINK_COST_ZERO(X) ((X)->jump)
|
||
#define LINK_COST_FREE(X) ((X)->call)
|
||
|
||
/* For a SET rtx, SET_DEST is the place that is set
|
||
and SET_SRC is the value it is set to. */
|
||
#define SET_DEST(RTX) ((RTX)->fld[0].rtx)
|
||
#define SET_SRC(RTX) ((RTX)->fld[1].rtx)
|
||
|
||
/* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
|
||
#define TRAP_CONDITION(RTX) ((RTX)->fld[0].rtx)
|
||
|
||
/* 1 in a SYMBOL_REF if it addresses this function's constants pool. */
|
||
#define CONSTANT_POOL_ADDRESS_P(RTX) ((RTX)->unchanging)
|
||
|
||
/* Flag in a SYMBOL_REF for machine-specific purposes. */
|
||
#define SYMBOL_REF_FLAG(RTX) ((RTX)->volatil)
|
||
|
||
/* 1 means a SYMBOL_REF has been the library function in emit_library_call. */
|
||
#define SYMBOL_REF_USED(RTX) ((RTX)->used)
|
||
|
||
/* For an INLINE_HEADER rtx, FIRST_FUNCTION_INSN is the first insn
|
||
of the function that is not involved in copying parameters to
|
||
pseudo-registers. FIRST_PARM_INSN is the very first insn of
|
||
the function, including the parameter copying.
|
||
We keep this around in case we must splice
|
||
this function into the assembly code at the end of the file.
|
||
FIRST_LABELNO is the first label number used by the function (inclusive).
|
||
LAST_LABELNO is the last label used by the function (exclusive).
|
||
MAX_REGNUM is the largest pseudo-register used by that function.
|
||
FUNCTION_ARGS_SIZE is the size of the argument block in the stack.
|
||
POPS_ARGS is the number of bytes of input arguments popped by the function
|
||
STACK_SLOT_LIST is the list of stack slots.
|
||
FORCED_LABELS is the list of labels whose address was taken.
|
||
FUNCTION_FLAGS are where single-bit flags are saved.
|
||
OUTGOING_ARGS_SIZE is the size of the largest outgoing stack parameter list.
|
||
ORIGINAL_ARG_VECTOR is a vector of the original DECL_RTX values
|
||
for the function arguments.
|
||
ORIGINAL_DECL_INITIAL is a pointer to the original DECL_INITIAL for the
|
||
function.
|
||
|
||
We want this to lay down like an INSN. The PREV_INSN field
|
||
is always NULL. The NEXT_INSN field always points to the
|
||
first function insn of the function being squirreled away. */
|
||
|
||
#define FIRST_FUNCTION_INSN(RTX) ((RTX)->fld[2].rtx)
|
||
#define FIRST_PARM_INSN(RTX) ((RTX)->fld[3].rtx)
|
||
#define FIRST_LABELNO(RTX) ((RTX)->fld[4].rtint)
|
||
#define LAST_LABELNO(RTX) ((RTX)->fld[5].rtint)
|
||
#define MAX_PARMREG(RTX) ((RTX)->fld[6].rtint)
|
||
#define MAX_REGNUM(RTX) ((RTX)->fld[7].rtint)
|
||
#define FUNCTION_ARGS_SIZE(RTX) ((RTX)->fld[8].rtint)
|
||
#define POPS_ARGS(RTX) ((RTX)->fld[9].rtint)
|
||
#define STACK_SLOT_LIST(RTX) ((RTX)->fld[10].rtx)
|
||
#define FORCED_LABELS(RTX) ((RTX)->fld[11].rtx)
|
||
#define FUNCTION_FLAGS(RTX) ((RTX)->fld[12].rtint)
|
||
#define OUTGOING_ARGS_SIZE(RTX) ((RTX)->fld[13].rtint)
|
||
#define ORIGINAL_ARG_VECTOR(RTX) ((RTX)->fld[14].rtvec)
|
||
#define ORIGINAL_DECL_INITIAL(RTX) ((RTX)->fld[15].rtx)
|
||
|
||
/* In FUNCTION_FLAGS we save some variables computed when emitting the code
|
||
for the function and which must be `or'ed into the current flag values when
|
||
insns from that function are being inlined. */
|
||
|
||
/* These ought to be an enum, but non-ANSI compilers don't like that. */
|
||
#define FUNCTION_FLAGS_CALLS_ALLOCA 01
|
||
#define FUNCTION_FLAGS_CALLS_SETJMP 02
|
||
#define FUNCTION_FLAGS_RETURNS_STRUCT 04
|
||
#define FUNCTION_FLAGS_RETURNS_PCC_STRUCT 010
|
||
#define FUNCTION_FLAGS_NEEDS_CONTEXT 020
|
||
#define FUNCTION_FLAGS_HAS_NONLOCAL_LABEL 040
|
||
#define FUNCTION_FLAGS_RETURNS_POINTER 0100
|
||
#define FUNCTION_FLAGS_USES_CONST_POOL 0200
|
||
#define FUNCTION_FLAGS_CALLS_LONGJMP 0400
|
||
#define FUNCTION_FLAGS_USES_PIC_OFFSET_TABLE 01000
|
||
|
||
/* Define a macro to look for REG_INC notes,
|
||
but save time on machines where they never exist. */
|
||
|
||
/* Don't continue this line--convex cc version 4.1 would lose. */
|
||
#if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT))
|
||
#define FIND_REG_INC_NOTE(insn, reg) (find_reg_note ((insn), REG_INC, (reg)))
|
||
#else
|
||
#define FIND_REG_INC_NOTE(insn, reg) 0
|
||
#endif
|
||
|
||
/* Indicate whether the machine has any sort of auto increment addressing.
|
||
If not, we can avoid checking for REG_INC notes. */
|
||
|
||
/* Don't continue this line--convex cc version 4.1 would lose. */
|
||
#if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT))
|
||
#define AUTO_INC_DEC
|
||
#endif
|
||
|
||
/* Generally useful functions. */
|
||
|
||
/* The following functions accept a wide integer argument. Rather than
|
||
having to cast on every function call, we use a macro instead, that is
|
||
defined here and in tree.h. */
|
||
|
||
#ifndef exact_log2
|
||
#define exact_log2(N) exact_log2_wide ((HOST_WIDE_INT) (N))
|
||
#define floor_log2(N) floor_log2_wide ((HOST_WIDE_INT) (N))
|
||
#endif
|
||
|
||
#define plus_constant(X,C) plus_constant_wide (X, (HOST_WIDE_INT) (C))
|
||
|
||
#define plus_constant_for_output(X,C) \
|
||
plus_constant_for_output_wide (X, (HOST_WIDE_INT) (C))
|
||
|
||
extern rtx plus_constant_wide PROTO((rtx, HOST_WIDE_INT));
|
||
extern rtx plus_constant_for_output_wide PROTO((rtx, HOST_WIDE_INT));
|
||
|
||
#define GEN_INT(N) gen_rtx (CONST_INT, VOIDmode, (HOST_WIDE_INT) (N))
|
||
|
||
extern rtx bc_gen_rtx ();
|
||
|
||
extern rtx gen_rtx PVPROTO((enum rtx_code,
|
||
enum machine_mode, ...));
|
||
extern rtvec gen_rtvec PVPROTO((int, ...));
|
||
|
||
extern rtx read_rtx STDIO_PROTO((FILE *));
|
||
|
||
#if 0
|
||
/* At present, don't prototype xrealloc, since all of the callers don't
|
||
cast their pointers to char *, and all of the xrealloc's don't use
|
||
void * yet. */
|
||
extern char *xmalloc PROTO((size_t));
|
||
extern char *xrealloc PROTO((void *, size_t));
|
||
#else
|
||
extern char *xmalloc ();
|
||
extern char *xrealloc ();
|
||
#endif
|
||
|
||
extern char *oballoc PROTO((int));
|
||
extern char *permalloc PROTO((int));
|
||
extern void free PROTO((void *));
|
||
extern rtx rtx_alloc PROTO((RTX_CODE));
|
||
extern rtvec rtvec_alloc PROTO((int));
|
||
extern rtx find_reg_note PROTO((rtx, enum reg_note, rtx));
|
||
extern rtx find_regno_note PROTO((rtx, enum reg_note, int));
|
||
extern int find_reg_fusage PROTO((rtx, enum rtx_code, rtx));
|
||
extern int find_regno_fusage PROTO((rtx, enum rtx_code, int));
|
||
extern HOST_WIDE_INT get_integer_term PROTO((rtx));
|
||
extern rtx get_related_value PROTO((rtx));
|
||
extern rtx single_set PROTO((rtx));
|
||
extern rtx find_last_value PROTO((rtx, rtx *, rtx));
|
||
extern rtx copy_rtx PROTO((rtx));
|
||
extern rtx copy_rtx_if_shared PROTO((rtx));
|
||
extern rtx copy_most_rtx PROTO((rtx, rtx));
|
||
extern rtx replace_rtx PROTO((rtx, rtx, rtx));
|
||
extern rtvec gen_rtvec_v PROTO((int, rtx *));
|
||
extern rtx gen_reg_rtx PROTO((enum machine_mode));
|
||
extern rtx gen_label_rtx PROTO((void));
|
||
extern rtx gen_inline_header_rtx PROTO((rtx, rtx, int, int, int, int,
|
||
int, int, rtx, rtx, int, int,
|
||
rtvec, rtx));
|
||
extern rtx gen_lowpart_common PROTO((enum machine_mode, rtx));
|
||
extern rtx gen_lowpart PROTO((enum machine_mode, rtx));
|
||
extern rtx gen_lowpart_if_possible PROTO((enum machine_mode, rtx));
|
||
extern rtx gen_highpart PROTO((enum machine_mode, rtx));
|
||
extern rtx gen_realpart PROTO((enum machine_mode, rtx));
|
||
extern rtx gen_imagpart PROTO((enum machine_mode, rtx));
|
||
extern rtx operand_subword PROTO((rtx, int, int, enum machine_mode));
|
||
extern rtx operand_subword_force PROTO((rtx, int, enum machine_mode));
|
||
extern int subreg_lowpart_p PROTO((rtx));
|
||
extern rtx make_safe_from PROTO((rtx, rtx));
|
||
extern rtx convert_memory_address PROTO((enum machine_mode, rtx));
|
||
extern rtx memory_address PROTO((enum machine_mode, rtx));
|
||
extern rtx get_insns PROTO((void));
|
||
extern rtx get_last_insn PROTO((void));
|
||
extern rtx get_last_insn_anywhere PROTO((void));
|
||
extern void start_sequence PROTO((void));
|
||
extern void push_to_sequence PROTO((rtx));
|
||
extern void end_sequence PROTO((void));
|
||
extern rtx gen_sequence PROTO((void));
|
||
extern rtx immed_double_const PROTO((HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode));
|
||
extern rtx force_const_mem PROTO((enum machine_mode, rtx));
|
||
extern rtx force_reg PROTO((enum machine_mode, rtx));
|
||
extern rtx get_pool_constant PROTO((rtx));
|
||
extern enum machine_mode get_pool_mode PROTO((rtx));
|
||
extern int get_pool_offset PROTO((rtx));
|
||
extern rtx simplify_subtraction PROTO((rtx));
|
||
extern rtx assign_stack_local PROTO((enum machine_mode, int, int));
|
||
extern rtx assign_stack_temp PROTO((enum machine_mode, int, int));
|
||
extern rtx protect_from_queue PROTO((rtx, int));
|
||
extern void emit_queue PROTO((void));
|
||
extern rtx emit_move_insn PROTO((rtx, rtx));
|
||
extern rtx emit_insn_before PROTO((rtx, rtx));
|
||
extern rtx emit_jump_insn_before PROTO((rtx, rtx));
|
||
extern rtx emit_call_insn_before PROTO((rtx, rtx));
|
||
extern rtx emit_barrier_before PROTO((rtx));
|
||
extern rtx emit_note_before PROTO((int, rtx));
|
||
extern rtx emit_insn_after PROTO((rtx, rtx));
|
||
extern rtx emit_jump_insn_after PROTO((rtx, rtx));
|
||
extern rtx emit_barrier_after PROTO((rtx));
|
||
extern rtx emit_label_after PROTO((rtx, rtx));
|
||
extern rtx emit_note_after PROTO((int, rtx));
|
||
extern rtx emit_line_note_after PROTO((char *, int, rtx));
|
||
extern rtx emit_insn PROTO((rtx));
|
||
extern rtx emit_insns PROTO((rtx));
|
||
extern rtx emit_insns_before PROTO((rtx, rtx));
|
||
extern rtx emit_insns_after PROTO((rtx, rtx));
|
||
extern rtx emit_jump_insn PROTO((rtx));
|
||
extern rtx emit_call_insn PROTO((rtx));
|
||
extern rtx emit_label PROTO((rtx));
|
||
extern rtx emit_barrier PROTO((void));
|
||
extern rtx emit_line_note PROTO((char *, int));
|
||
extern rtx emit_note PROTO((char *, int));
|
||
extern rtx emit_line_note_force PROTO((char *, int));
|
||
extern rtx make_insn_raw PROTO((rtx));
|
||
extern rtx previous_insn PROTO((rtx));
|
||
extern rtx next_insn PROTO((rtx));
|
||
extern rtx prev_nonnote_insn PROTO((rtx));
|
||
extern rtx next_nonnote_insn PROTO((rtx));
|
||
extern rtx prev_real_insn PROTO((rtx));
|
||
extern rtx next_real_insn PROTO((rtx));
|
||
extern rtx prev_active_insn PROTO((rtx));
|
||
extern rtx next_active_insn PROTO((rtx));
|
||
extern rtx prev_label PROTO((rtx));
|
||
extern rtx next_label PROTO((rtx));
|
||
extern rtx next_cc0_user PROTO((rtx));
|
||
extern rtx prev_cc0_setter PROTO((rtx));
|
||
extern rtx reg_set_last PROTO((rtx, rtx));
|
||
extern rtx next_nondeleted_insn PROTO((rtx));
|
||
extern enum rtx_code reverse_condition PROTO((enum rtx_code));
|
||
extern enum rtx_code swap_condition PROTO((enum rtx_code));
|
||
extern enum rtx_code unsigned_condition PROTO((enum rtx_code));
|
||
extern enum rtx_code signed_condition PROTO((enum rtx_code));
|
||
extern rtx find_equiv_reg PROTO((rtx, rtx, enum reg_class, int, short *, int, enum machine_mode));
|
||
extern rtx squeeze_notes PROTO((rtx, rtx));
|
||
extern rtx delete_insn PROTO((rtx));
|
||
extern void delete_jump PROTO((rtx));
|
||
extern rtx get_label_before PROTO((rtx));
|
||
extern rtx get_label_after PROTO((rtx));
|
||
extern rtx follow_jumps PROTO((rtx));
|
||
extern rtx adj_offsettable_operand PROTO((rtx, int));
|
||
extern rtx try_split PROTO((rtx, rtx, int));
|
||
extern rtx split_insns PROTO((rtx, rtx));
|
||
extern rtx simplify_unary_operation PROTO((enum rtx_code, enum machine_mode, rtx, enum machine_mode));
|
||
extern rtx simplify_binary_operation PROTO((enum rtx_code, enum machine_mode, rtx, rtx));
|
||
extern rtx simplify_ternary_operation PROTO((enum rtx_code, enum machine_mode, enum machine_mode, rtx, rtx, rtx));
|
||
extern rtx simplify_relational_operation PROTO((enum rtx_code, enum machine_mode, rtx, rtx));
|
||
extern rtx nonlocal_label_rtx_list PROTO((void));
|
||
extern rtx gen_move_insn PROTO((rtx, rtx));
|
||
extern rtx gen_jump PROTO((rtx));
|
||
extern rtx gen_beq PROTO((rtx));
|
||
extern rtx gen_bge PROTO((rtx));
|
||
extern rtx gen_ble PROTO((rtx));
|
||
extern rtx eliminate_constant_term PROTO((rtx, rtx *));
|
||
extern rtx expand_complex_abs PROTO((enum machine_mode, rtx, rtx, int));
|
||
extern enum machine_mode choose_hard_reg_mode PROTO((int, int));
|
||
|
||
/* Maximum number of parallel sets and clobbers in any insn in this fn.
|
||
Always at least 3, since the combiner could put that many togetherm
|
||
and we want this to remain correct for all the remaining passes. */
|
||
|
||
extern int max_parallel;
|
||
|
||
extern int asm_noperands PROTO((rtx));
|
||
extern char *decode_asm_operands PROTO((rtx, rtx *, rtx **, char **, enum machine_mode *));
|
||
|
||
extern enum reg_class reg_preferred_class PROTO((int));
|
||
extern enum reg_class reg_alternate_class PROTO((int));
|
||
|
||
extern rtx get_first_nonparm_insn PROTO((void));
|
||
|
||
/* Standard pieces of rtx, to be substituted directly into things. */
|
||
extern rtx pc_rtx;
|
||
extern rtx cc0_rtx;
|
||
extern rtx const0_rtx;
|
||
extern rtx const1_rtx;
|
||
extern rtx const2_rtx;
|
||
extern rtx constm1_rtx;
|
||
extern rtx const_true_rtx;
|
||
|
||
extern rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
|
||
|
||
/* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
|
||
same as VOIDmode. */
|
||
|
||
#define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
|
||
|
||
/* Likewise, for the constants 1 and 2. */
|
||
|
||
#define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
|
||
#define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
|
||
|
||
/* All references to certain hard regs, except those created
|
||
by allocating pseudo regs into them (when that's possible),
|
||
go through these unique rtx objects. */
|
||
extern rtx stack_pointer_rtx;
|
||
extern rtx frame_pointer_rtx;
|
||
extern rtx hard_frame_pointer_rtx;
|
||
extern rtx arg_pointer_rtx;
|
||
extern rtx pic_offset_table_rtx;
|
||
extern rtx struct_value_rtx;
|
||
extern rtx struct_value_incoming_rtx;
|
||
extern rtx static_chain_rtx;
|
||
extern rtx static_chain_incoming_rtx;
|
||
|
||
/* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
|
||
is used to represent the frame pointer. This is because the
|
||
hard frame pointer and the automatic variables are separated by an amount
|
||
that cannot be determined until after register allocation. We can assume
|
||
that in this case ELIMINABLE_REGS will be defined, one action of which
|
||
will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
|
||
#ifndef HARD_FRAME_POINTER_REGNUM
|
||
#define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
|
||
#endif
|
||
|
||
/* Virtual registers are used during RTL generation to refer to locations into
|
||
the stack frame when the actual location isn't known until RTL generation
|
||
is complete. The routine instantiate_virtual_regs replaces these with
|
||
the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
|
||
a constant. */
|
||
|
||
#define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
|
||
|
||
/* This points to the first word of the incoming arguments passed on the stack,
|
||
either by the caller or by the callee when pretending it was passed by the
|
||
caller. */
|
||
|
||
extern rtx virtual_incoming_args_rtx;
|
||
|
||
#define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
|
||
|
||
/* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
|
||
variable on the stack. Otherwise, it points to the first variable on
|
||
the stack. */
|
||
|
||
extern rtx virtual_stack_vars_rtx;
|
||
|
||
#define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
|
||
|
||
/* This points to the location of dynamically-allocated memory on the stack
|
||
immediately after the stack pointer has been adjusted by the amount
|
||
desired. */
|
||
|
||
extern rtx virtual_stack_dynamic_rtx;
|
||
|
||
#define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
|
||
|
||
/* This points to the location in the stack at which outgoing arguments should
|
||
be written when the stack is pre-pushed (arguments pushed using push
|
||
insns always use sp). */
|
||
|
||
extern rtx virtual_outgoing_args_rtx;
|
||
|
||
#define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
|
||
|
||
#define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 3)
|
||
|
||
extern rtx find_next_ref PROTO((rtx, rtx));
|
||
extern rtx *find_single_use PROTO((rtx, rtx, rtx *));
|
||
|
||
/* It is hard to write the prototype for expand_expr, since it needs
|
||
expr.h to be included for the enumeration. */
|
||
|
||
extern rtx expand_expr ();
|
||
|
||
extern rtx output_constant_def PROTO((union tree_node *));
|
||
extern rtx immed_real_const PROTO((union tree_node *));
|
||
extern union tree_node *make_tree PROTO((union tree_node *, rtx));
|
||
|
||
/* Abort routines */
|
||
extern void fatal_insn_not_found PROTO((rtx));
|
||
extern void fatal_insn PROTO((char *, rtx));
|
||
|
||
/* Define a default value for STORE_FLAG_VALUE. */
|
||
|
||
#ifndef STORE_FLAG_VALUE
|
||
#define STORE_FLAG_VALUE 1
|
||
#endif
|
||
|
||
/* Nonzero after end of reload pass.
|
||
Set to 1 or 0 by toplev.c. */
|
||
|
||
extern int reload_completed;
|
||
|
||
/* Set to 1 while reload_as_needed is operating.
|
||
Required by some machines to handle any generated moves differently. */
|
||
|
||
extern int reload_in_progress;
|
||
|
||
/* If this is nonzero, we do not bother generating VOLATILE
|
||
around volatile memory references, and we are willing to
|
||
output indirect addresses. If cse is to follow, we reject
|
||
indirect addresses so a useful potential cse is generated;
|
||
if it is used only once, instruction combination will produce
|
||
the same indirect address eventually. */
|
||
extern int cse_not_expected;
|
||
|
||
/* Indexed by pseudo register number, gives the rtx for that pseudo.
|
||
Allocated in parallel with regno_pointer_flag. */
|
||
extern rtx *regno_reg_rtx;
|
||
|
||
/* Translates rtx code to tree code, for those codes needed by
|
||
REAL_ARITHMETIC. The function returns an int because the caller may not
|
||
know what `enum tree_code' means. */
|
||
|
||
extern int rtx_to_tree_code PROTO((enum rtx_code));
|