mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-16 10:20:30 +00:00
1952e2e1c1
These bits are taken from the FSF anoncvs repo on 1-Feb-2002 08:20 PST.
1515 lines
41 KiB
C
1515 lines
41 KiB
C
/* "Bag-of-pages" garbage collector for the GNU compiler.
|
||
Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "toplev.h"
|
||
#include "varray.h"
|
||
#include "flags.h"
|
||
#include "ggc.h"
|
||
#include "timevar.h"
|
||
|
||
/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
|
||
file open. Prefer either to valloc. */
|
||
#ifdef HAVE_MMAP_ANON
|
||
# undef HAVE_MMAP_DEV_ZERO
|
||
|
||
# include <sys/mman.h>
|
||
# ifndef MAP_FAILED
|
||
# define MAP_FAILED -1
|
||
# endif
|
||
# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
|
||
# define MAP_ANONYMOUS MAP_ANON
|
||
# endif
|
||
# define USING_MMAP
|
||
|
||
#endif
|
||
|
||
#ifdef HAVE_MMAP_DEV_ZERO
|
||
|
||
# include <sys/mman.h>
|
||
# ifndef MAP_FAILED
|
||
# define MAP_FAILED -1
|
||
# endif
|
||
# define USING_MMAP
|
||
|
||
#endif
|
||
|
||
#ifndef USING_MMAP
|
||
#define USING_MALLOC_PAGE_GROUPS
|
||
#endif
|
||
|
||
/* Stategy:
|
||
|
||
This garbage-collecting allocator allocates objects on one of a set
|
||
of pages. Each page can allocate objects of a single size only;
|
||
available sizes are powers of two starting at four bytes. The size
|
||
of an allocation request is rounded up to the next power of two
|
||
(`order'), and satisfied from the appropriate page.
|
||
|
||
Each page is recorded in a page-entry, which also maintains an
|
||
in-use bitmap of object positions on the page. This allows the
|
||
allocation state of a particular object to be flipped without
|
||
touching the page itself.
|
||
|
||
Each page-entry also has a context depth, which is used to track
|
||
pushing and popping of allocation contexts. Only objects allocated
|
||
in the current (highest-numbered) context may be collected.
|
||
|
||
Page entries are arranged in an array of singly-linked lists. The
|
||
array is indexed by the allocation size, in bits, of the pages on
|
||
it; i.e. all pages on a list allocate objects of the same size.
|
||
Pages are ordered on the list such that all non-full pages precede
|
||
all full pages, with non-full pages arranged in order of decreasing
|
||
context depth.
|
||
|
||
Empty pages (of all orders) are kept on a single page cache list,
|
||
and are considered first when new pages are required; they are
|
||
deallocated at the start of the next collection if they haven't
|
||
been recycled by then. */
|
||
|
||
|
||
/* Define GGC_POISON to poison memory marked unused by the collector. */
|
||
#undef GGC_POISON
|
||
|
||
/* Define GGC_ALWAYS_COLLECT to perform collection every time
|
||
ggc_collect is invoked. Otherwise, collection is performed only
|
||
when a significant amount of memory has been allocated since the
|
||
last collection. */
|
||
#undef GGC_ALWAYS_COLLECT
|
||
|
||
#ifdef ENABLE_GC_CHECKING
|
||
#define GGC_POISON
|
||
#endif
|
||
#ifdef ENABLE_GC_ALWAYS_COLLECT
|
||
#define GGC_ALWAYS_COLLECT
|
||
#endif
|
||
|
||
/* Define GGC_DEBUG_LEVEL to print debugging information.
|
||
0: No debugging output.
|
||
1: GC statistics only.
|
||
2: Page-entry allocations/deallocations as well.
|
||
3: Object allocations as well.
|
||
4: Object marks as well. */
|
||
#define GGC_DEBUG_LEVEL (0)
|
||
|
||
#ifndef HOST_BITS_PER_PTR
|
||
#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
|
||
#endif
|
||
|
||
|
||
/* A two-level tree is used to look up the page-entry for a given
|
||
pointer. Two chunks of the pointer's bits are extracted to index
|
||
the first and second levels of the tree, as follows:
|
||
|
||
HOST_PAGE_SIZE_BITS
|
||
32 | |
|
||
msb +----------------+----+------+------+ lsb
|
||
| | |
|
||
PAGE_L1_BITS |
|
||
| |
|
||
PAGE_L2_BITS
|
||
|
||
The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
|
||
pages are aligned on system page boundaries. The next most
|
||
significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
|
||
index values in the lookup table, respectively.
|
||
|
||
For 32-bit architectures and the settings below, there are no
|
||
leftover bits. For architectures with wider pointers, the lookup
|
||
tree points to a list of pages, which must be scanned to find the
|
||
correct one. */
|
||
|
||
#define PAGE_L1_BITS (8)
|
||
#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
|
||
#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
|
||
#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
|
||
|
||
#define LOOKUP_L1(p) \
|
||
(((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
|
||
|
||
#define LOOKUP_L2(p) \
|
||
(((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
|
||
|
||
/* The number of objects per allocation page, for objects on a page of
|
||
the indicated ORDER. */
|
||
#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
|
||
|
||
/* The size of an object on a page of the indicated ORDER. */
|
||
#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
|
||
|
||
/* The number of extra orders, not corresponding to power-of-two sized
|
||
objects. */
|
||
|
||
#define NUM_EXTRA_ORDERS \
|
||
(sizeof (extra_order_size_table) / sizeof (extra_order_size_table[0]))
|
||
|
||
/* The Ith entry is the maximum size of an object to be stored in the
|
||
Ith extra order. Adding a new entry to this array is the *only*
|
||
thing you need to do to add a new special allocation size. */
|
||
|
||
static const size_t extra_order_size_table[] = {
|
||
sizeof (struct tree_decl),
|
||
sizeof (struct tree_list)
|
||
};
|
||
|
||
/* The total number of orders. */
|
||
|
||
#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
|
||
|
||
/* We use this structure to determine the alignment required for
|
||
allocations. For power-of-two sized allocations, that's not a
|
||
problem, but it does matter for odd-sized allocations. */
|
||
|
||
struct max_alignment {
|
||
char c;
|
||
union {
|
||
HOST_WIDEST_INT i;
|
||
#ifdef HAVE_LONG_DOUBLE
|
||
long double d;
|
||
#else
|
||
double d;
|
||
#endif
|
||
} u;
|
||
};
|
||
|
||
/* The biggest alignment required. */
|
||
|
||
#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
|
||
|
||
/* The Ith entry is the number of objects on a page or order I. */
|
||
|
||
static unsigned objects_per_page_table[NUM_ORDERS];
|
||
|
||
/* The Ith entry is the size of an object on a page of order I. */
|
||
|
||
static size_t object_size_table[NUM_ORDERS];
|
||
|
||
/* A page_entry records the status of an allocation page. This
|
||
structure is dynamically sized to fit the bitmap in_use_p. */
|
||
typedef struct page_entry
|
||
{
|
||
/* The next page-entry with objects of the same size, or NULL if
|
||
this is the last page-entry. */
|
||
struct page_entry *next;
|
||
|
||
/* The number of bytes allocated. (This will always be a multiple
|
||
of the host system page size.) */
|
||
size_t bytes;
|
||
|
||
/* The address at which the memory is allocated. */
|
||
char *page;
|
||
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
/* Back pointer to the page group this page came from. */
|
||
struct page_group *group;
|
||
#endif
|
||
|
||
/* Saved in-use bit vector for pages that aren't in the topmost
|
||
context during collection. */
|
||
unsigned long *save_in_use_p;
|
||
|
||
/* Context depth of this page. */
|
||
unsigned short context_depth;
|
||
|
||
/* The number of free objects remaining on this page. */
|
||
unsigned short num_free_objects;
|
||
|
||
/* A likely candidate for the bit position of a free object for the
|
||
next allocation from this page. */
|
||
unsigned short next_bit_hint;
|
||
|
||
/* The lg of size of objects allocated from this page. */
|
||
unsigned char order;
|
||
|
||
/* A bit vector indicating whether or not objects are in use. The
|
||
Nth bit is one if the Nth object on this page is allocated. This
|
||
array is dynamically sized. */
|
||
unsigned long in_use_p[1];
|
||
} page_entry;
|
||
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
/* A page_group describes a large allocation from malloc, from which
|
||
we parcel out aligned pages. */
|
||
typedef struct page_group
|
||
{
|
||
/* A linked list of all extant page groups. */
|
||
struct page_group *next;
|
||
|
||
/* The address we received from malloc. */
|
||
char *allocation;
|
||
|
||
/* The size of the block. */
|
||
size_t alloc_size;
|
||
|
||
/* A bitmask of pages in use. */
|
||
unsigned int in_use;
|
||
} page_group;
|
||
#endif
|
||
|
||
#if HOST_BITS_PER_PTR <= 32
|
||
|
||
/* On 32-bit hosts, we use a two level page table, as pictured above. */
|
||
typedef page_entry **page_table[PAGE_L1_SIZE];
|
||
|
||
#else
|
||
|
||
/* On 64-bit hosts, we use the same two level page tables plus a linked
|
||
list that disambiguates the top 32-bits. There will almost always be
|
||
exactly one entry in the list. */
|
||
typedef struct page_table_chain
|
||
{
|
||
struct page_table_chain *next;
|
||
size_t high_bits;
|
||
page_entry **table[PAGE_L1_SIZE];
|
||
} *page_table;
|
||
|
||
#endif
|
||
|
||
/* The rest of the global variables. */
|
||
static struct globals
|
||
{
|
||
/* The Nth element in this array is a page with objects of size 2^N.
|
||
If there are any pages with free objects, they will be at the
|
||
head of the list. NULL if there are no page-entries for this
|
||
object size. */
|
||
page_entry *pages[NUM_ORDERS];
|
||
|
||
/* The Nth element in this array is the last page with objects of
|
||
size 2^N. NULL if there are no page-entries for this object
|
||
size. */
|
||
page_entry *page_tails[NUM_ORDERS];
|
||
|
||
/* Lookup table for associating allocation pages with object addresses. */
|
||
page_table lookup;
|
||
|
||
/* The system's page size. */
|
||
size_t pagesize;
|
||
size_t lg_pagesize;
|
||
|
||
/* Bytes currently allocated. */
|
||
size_t allocated;
|
||
|
||
/* Bytes currently allocated at the end of the last collection. */
|
||
size_t allocated_last_gc;
|
||
|
||
/* Total amount of memory mapped. */
|
||
size_t bytes_mapped;
|
||
|
||
/* The current depth in the context stack. */
|
||
unsigned short context_depth;
|
||
|
||
/* A file descriptor open to /dev/zero for reading. */
|
||
#if defined (HAVE_MMAP_DEV_ZERO)
|
||
int dev_zero_fd;
|
||
#endif
|
||
|
||
/* A cache of free system pages. */
|
||
page_entry *free_pages;
|
||
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
page_group *page_groups;
|
||
#endif
|
||
|
||
/* The file descriptor for debugging output. */
|
||
FILE *debug_file;
|
||
} G;
|
||
|
||
/* The size in bytes required to maintain a bitmap for the objects
|
||
on a page-entry. */
|
||
#define BITMAP_SIZE(Num_objects) \
|
||
(CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
|
||
|
||
/* Skip garbage collection if the current allocation is not at least
|
||
this factor times the allocation at the end of the last collection.
|
||
In other words, total allocation must expand by (this factor minus
|
||
one) before collection is performed. */
|
||
#define GGC_MIN_EXPAND_FOR_GC (1.3)
|
||
|
||
/* Bound `allocated_last_gc' to 4MB, to prevent the memory expansion
|
||
test from triggering too often when the heap is small. */
|
||
#define GGC_MIN_LAST_ALLOCATED (4 * 1024 * 1024)
|
||
|
||
/* Allocate pages in chunks of this size, to throttle calls to memory
|
||
allocation routines. The first page is used, the rest go onto the
|
||
free list. This cannot be larger than HOST_BITS_PER_INT for the
|
||
in_use bitmask for page_group. */
|
||
#define GGC_QUIRE_SIZE 16
|
||
|
||
static int ggc_allocated_p PARAMS ((const void *));
|
||
static page_entry *lookup_page_table_entry PARAMS ((const void *));
|
||
static void set_page_table_entry PARAMS ((void *, page_entry *));
|
||
#ifdef USING_MMAP
|
||
static char *alloc_anon PARAMS ((char *, size_t));
|
||
#endif
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
static size_t page_group_index PARAMS ((char *, char *));
|
||
static void set_page_group_in_use PARAMS ((page_group *, char *));
|
||
static void clear_page_group_in_use PARAMS ((page_group *, char *));
|
||
#endif
|
||
static struct page_entry * alloc_page PARAMS ((unsigned));
|
||
static void free_page PARAMS ((struct page_entry *));
|
||
static void release_pages PARAMS ((void));
|
||
static void clear_marks PARAMS ((void));
|
||
static void sweep_pages PARAMS ((void));
|
||
static void ggc_recalculate_in_use_p PARAMS ((page_entry *));
|
||
|
||
#ifdef GGC_POISON
|
||
static void poison_pages PARAMS ((void));
|
||
#endif
|
||
|
||
void debug_print_page_list PARAMS ((int));
|
||
|
||
/* Returns non-zero if P was allocated in GC'able memory. */
|
||
|
||
static inline int
|
||
ggc_allocated_p (p)
|
||
const void *p;
|
||
{
|
||
page_entry ***base;
|
||
size_t L1, L2;
|
||
|
||
#if HOST_BITS_PER_PTR <= 32
|
||
base = &G.lookup[0];
|
||
#else
|
||
page_table table = G.lookup;
|
||
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
||
while (1)
|
||
{
|
||
if (table == NULL)
|
||
return 0;
|
||
if (table->high_bits == high_bits)
|
||
break;
|
||
table = table->next;
|
||
}
|
||
base = &table->table[0];
|
||
#endif
|
||
|
||
/* Extract the level 1 and 2 indices. */
|
||
L1 = LOOKUP_L1 (p);
|
||
L2 = LOOKUP_L2 (p);
|
||
|
||
return base[L1] && base[L1][L2];
|
||
}
|
||
|
||
/* Traverse the page table and find the entry for a page.
|
||
Die (probably) if the object wasn't allocated via GC. */
|
||
|
||
static inline page_entry *
|
||
lookup_page_table_entry(p)
|
||
const void *p;
|
||
{
|
||
page_entry ***base;
|
||
size_t L1, L2;
|
||
|
||
#if HOST_BITS_PER_PTR <= 32
|
||
base = &G.lookup[0];
|
||
#else
|
||
page_table table = G.lookup;
|
||
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
||
while (table->high_bits != high_bits)
|
||
table = table->next;
|
||
base = &table->table[0];
|
||
#endif
|
||
|
||
/* Extract the level 1 and 2 indices. */
|
||
L1 = LOOKUP_L1 (p);
|
||
L2 = LOOKUP_L2 (p);
|
||
|
||
return base[L1][L2];
|
||
}
|
||
|
||
/* Set the page table entry for a page. */
|
||
|
||
static void
|
||
set_page_table_entry(p, entry)
|
||
void *p;
|
||
page_entry *entry;
|
||
{
|
||
page_entry ***base;
|
||
size_t L1, L2;
|
||
|
||
#if HOST_BITS_PER_PTR <= 32
|
||
base = &G.lookup[0];
|
||
#else
|
||
page_table table;
|
||
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
||
for (table = G.lookup; table; table = table->next)
|
||
if (table->high_bits == high_bits)
|
||
goto found;
|
||
|
||
/* Not found -- allocate a new table. */
|
||
table = (page_table) xcalloc (1, sizeof(*table));
|
||
table->next = G.lookup;
|
||
table->high_bits = high_bits;
|
||
G.lookup = table;
|
||
found:
|
||
base = &table->table[0];
|
||
#endif
|
||
|
||
/* Extract the level 1 and 2 indices. */
|
||
L1 = LOOKUP_L1 (p);
|
||
L2 = LOOKUP_L2 (p);
|
||
|
||
if (base[L1] == NULL)
|
||
base[L1] = (page_entry **) xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
|
||
|
||
base[L1][L2] = entry;
|
||
}
|
||
|
||
/* Prints the page-entry for object size ORDER, for debugging. */
|
||
|
||
void
|
||
debug_print_page_list (order)
|
||
int order;
|
||
{
|
||
page_entry *p;
|
||
printf ("Head=%p, Tail=%p:\n", (PTR) G.pages[order],
|
||
(PTR) G.page_tails[order]);
|
||
p = G.pages[order];
|
||
while (p != NULL)
|
||
{
|
||
printf ("%p(%1d|%3d) -> ", (PTR) p, p->context_depth,
|
||
p->num_free_objects);
|
||
p = p->next;
|
||
}
|
||
printf ("NULL\n");
|
||
fflush (stdout);
|
||
}
|
||
|
||
#ifdef USING_MMAP
|
||
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
|
||
(if non-null). The ifdef structure here is intended to cause a
|
||
compile error unless exactly one of the HAVE_* is defined. */
|
||
|
||
static inline char *
|
||
alloc_anon (pref, size)
|
||
char *pref ATTRIBUTE_UNUSED;
|
||
size_t size;
|
||
{
|
||
#ifdef HAVE_MMAP_ANON
|
||
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
|
||
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
||
#endif
|
||
#ifdef HAVE_MMAP_DEV_ZERO
|
||
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
|
||
MAP_PRIVATE, G.dev_zero_fd, 0);
|
||
#endif
|
||
|
||
if (page == (char *) MAP_FAILED)
|
||
{
|
||
perror ("virtual memory exhausted");
|
||
exit (FATAL_EXIT_CODE);
|
||
}
|
||
|
||
/* Remember that we allocated this memory. */
|
||
G.bytes_mapped += size;
|
||
|
||
return page;
|
||
}
|
||
#endif
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
/* Compute the index for this page into the page group. */
|
||
|
||
static inline size_t
|
||
page_group_index (allocation, page)
|
||
char *allocation, *page;
|
||
{
|
||
return (size_t) (page - allocation) >> G.lg_pagesize;
|
||
}
|
||
|
||
/* Set and clear the in_use bit for this page in the page group. */
|
||
|
||
static inline void
|
||
set_page_group_in_use (group, page)
|
||
page_group *group;
|
||
char *page;
|
||
{
|
||
group->in_use |= 1 << page_group_index (group->allocation, page);
|
||
}
|
||
|
||
static inline void
|
||
clear_page_group_in_use (group, page)
|
||
page_group *group;
|
||
char *page;
|
||
{
|
||
group->in_use &= ~(1 << page_group_index (group->allocation, page));
|
||
}
|
||
#endif
|
||
|
||
/* Allocate a new page for allocating objects of size 2^ORDER,
|
||
and return an entry for it. The entry is not added to the
|
||
appropriate page_table list. */
|
||
|
||
static inline struct page_entry *
|
||
alloc_page (order)
|
||
unsigned order;
|
||
{
|
||
struct page_entry *entry, *p, **pp;
|
||
char *page;
|
||
size_t num_objects;
|
||
size_t bitmap_size;
|
||
size_t page_entry_size;
|
||
size_t entry_size;
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
page_group *group;
|
||
#endif
|
||
|
||
num_objects = OBJECTS_PER_PAGE (order);
|
||
bitmap_size = BITMAP_SIZE (num_objects + 1);
|
||
page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
|
||
entry_size = num_objects * OBJECT_SIZE (order);
|
||
if (entry_size < G.pagesize)
|
||
entry_size = G.pagesize;
|
||
|
||
entry = NULL;
|
||
page = NULL;
|
||
|
||
/* Check the list of free pages for one we can use. */
|
||
for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
|
||
if (p->bytes == entry_size)
|
||
break;
|
||
|
||
if (p != NULL)
|
||
{
|
||
/* Recycle the allocated memory from this page ... */
|
||
*pp = p->next;
|
||
page = p->page;
|
||
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
group = p->group;
|
||
#endif
|
||
|
||
/* ... and, if possible, the page entry itself. */
|
||
if (p->order == order)
|
||
{
|
||
entry = p;
|
||
memset (entry, 0, page_entry_size);
|
||
}
|
||
else
|
||
free (p);
|
||
}
|
||
#ifdef USING_MMAP
|
||
else if (entry_size == G.pagesize)
|
||
{
|
||
/* We want just one page. Allocate a bunch of them and put the
|
||
extras on the freelist. (Can only do this optimization with
|
||
mmap for backing store.) */
|
||
struct page_entry *e, *f = G.free_pages;
|
||
int i;
|
||
|
||
page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
|
||
|
||
/* This loop counts down so that the chain will be in ascending
|
||
memory order. */
|
||
for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
|
||
{
|
||
e = (struct page_entry *) xcalloc (1, page_entry_size);
|
||
e->order = order;
|
||
e->bytes = G.pagesize;
|
||
e->page = page + (i << G.lg_pagesize);
|
||
e->next = f;
|
||
f = e;
|
||
}
|
||
|
||
G.free_pages = f;
|
||
}
|
||
else
|
||
page = alloc_anon (NULL, entry_size);
|
||
#endif
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
else
|
||
{
|
||
/* Allocate a large block of memory and serve out the aligned
|
||
pages therein. This results in much less memory wastage
|
||
than the traditional implementation of valloc. */
|
||
|
||
char *allocation, *a, *enda;
|
||
size_t alloc_size, head_slop, tail_slop;
|
||
int multiple_pages = (entry_size == G.pagesize);
|
||
|
||
if (multiple_pages)
|
||
alloc_size = GGC_QUIRE_SIZE * G.pagesize;
|
||
else
|
||
alloc_size = entry_size + G.pagesize - 1;
|
||
allocation = xmalloc (alloc_size);
|
||
|
||
page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
|
||
head_slop = page - allocation;
|
||
if (multiple_pages)
|
||
tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
|
||
else
|
||
tail_slop = alloc_size - entry_size - head_slop;
|
||
enda = allocation + alloc_size - tail_slop;
|
||
|
||
/* We allocated N pages, which are likely not aligned, leaving
|
||
us with N-1 usable pages. We plan to place the page_group
|
||
structure somewhere in the slop. */
|
||
if (head_slop >= sizeof (page_group))
|
||
group = (page_group *)page - 1;
|
||
else
|
||
{
|
||
/* We magically got an aligned allocation. Too bad, we have
|
||
to waste a page anyway. */
|
||
if (tail_slop == 0)
|
||
{
|
||
enda -= G.pagesize;
|
||
tail_slop += G.pagesize;
|
||
}
|
||
if (tail_slop < sizeof (page_group))
|
||
abort ();
|
||
group = (page_group *)enda;
|
||
tail_slop -= sizeof (page_group);
|
||
}
|
||
|
||
/* Remember that we allocated this memory. */
|
||
group->next = G.page_groups;
|
||
group->allocation = allocation;
|
||
group->alloc_size = alloc_size;
|
||
group->in_use = 0;
|
||
G.page_groups = group;
|
||
G.bytes_mapped += alloc_size;
|
||
|
||
/* If we allocated multiple pages, put the rest on the free list. */
|
||
if (multiple_pages)
|
||
{
|
||
struct page_entry *e, *f = G.free_pages;
|
||
for (a = enda - G.pagesize; a != page; a -= G.pagesize)
|
||
{
|
||
e = (struct page_entry *) xcalloc (1, page_entry_size);
|
||
e->order = order;
|
||
e->bytes = G.pagesize;
|
||
e->page = a;
|
||
e->group = group;
|
||
e->next = f;
|
||
f = e;
|
||
}
|
||
G.free_pages = f;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (entry == NULL)
|
||
entry = (struct page_entry *) xcalloc (1, page_entry_size);
|
||
|
||
entry->bytes = entry_size;
|
||
entry->page = page;
|
||
entry->context_depth = G.context_depth;
|
||
entry->order = order;
|
||
entry->num_free_objects = num_objects;
|
||
entry->next_bit_hint = 1;
|
||
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
entry->group = group;
|
||
set_page_group_in_use (group, page);
|
||
#endif
|
||
|
||
/* Set the one-past-the-end in-use bit. This acts as a sentry as we
|
||
increment the hint. */
|
||
entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
|
||
= (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
|
||
|
||
set_page_table_entry (page, entry);
|
||
|
||
if (GGC_DEBUG_LEVEL >= 2)
|
||
fprintf (G.debug_file,
|
||
"Allocating page at %p, object size=%ld, data %p-%p\n",
|
||
(PTR) entry, (long) OBJECT_SIZE (order), page,
|
||
page + entry_size - 1);
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* For a page that is no longer needed, put it on the free page list. */
|
||
|
||
static inline void
|
||
free_page (entry)
|
||
page_entry *entry;
|
||
{
|
||
if (GGC_DEBUG_LEVEL >= 2)
|
||
fprintf (G.debug_file,
|
||
"Deallocating page at %p, data %p-%p\n", (PTR) entry,
|
||
entry->page, entry->page + entry->bytes - 1);
|
||
|
||
set_page_table_entry (entry->page, NULL);
|
||
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
clear_page_group_in_use (entry->group, entry->page);
|
||
#endif
|
||
|
||
entry->next = G.free_pages;
|
||
G.free_pages = entry;
|
||
}
|
||
|
||
/* Release the free page cache to the system. */
|
||
|
||
static void
|
||
release_pages ()
|
||
{
|
||
#ifdef USING_MMAP
|
||
page_entry *p, *next;
|
||
char *start;
|
||
size_t len;
|
||
|
||
/* Gather up adjacent pages so they are unmapped together. */
|
||
p = G.free_pages;
|
||
|
||
while (p)
|
||
{
|
||
start = p->page;
|
||
next = p->next;
|
||
len = p->bytes;
|
||
free (p);
|
||
p = next;
|
||
|
||
while (p && p->page == start + len)
|
||
{
|
||
next = p->next;
|
||
len += p->bytes;
|
||
free (p);
|
||
p = next;
|
||
}
|
||
|
||
munmap (start, len);
|
||
G.bytes_mapped -= len;
|
||
}
|
||
|
||
G.free_pages = NULL;
|
||
#endif
|
||
#ifdef USING_MALLOC_PAGE_GROUPS
|
||
page_entry **pp, *p;
|
||
page_group **gp, *g;
|
||
|
||
/* Remove all pages from free page groups from the list. */
|
||
pp = &G.free_pages;
|
||
while ((p = *pp) != NULL)
|
||
if (p->group->in_use == 0)
|
||
{
|
||
*pp = p->next;
|
||
free (p);
|
||
}
|
||
else
|
||
pp = &p->next;
|
||
|
||
/* Remove all free page groups, and release the storage. */
|
||
gp = &G.page_groups;
|
||
while ((g = *gp) != NULL)
|
||
if (g->in_use == 0)
|
||
{
|
||
*gp = g->next;
|
||
G.bytes_mapped -= g->alloc_size;
|
||
free (g->allocation);
|
||
}
|
||
else
|
||
gp = &g->next;
|
||
#endif
|
||
}
|
||
|
||
/* This table provides a fast way to determine ceil(log_2(size)) for
|
||
allocation requests. The minimum allocation size is eight bytes. */
|
||
|
||
static unsigned char size_lookup[257] =
|
||
{
|
||
3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
|
||
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
||
5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
||
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
||
6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
8
|
||
};
|
||
|
||
/* Allocate a chunk of memory of SIZE bytes. If ZERO is non-zero, the
|
||
memory is zeroed; otherwise, its contents are undefined. */
|
||
|
||
void *
|
||
ggc_alloc (size)
|
||
size_t size;
|
||
{
|
||
unsigned order, word, bit, object_offset;
|
||
struct page_entry *entry;
|
||
void *result;
|
||
|
||
if (size <= 256)
|
||
order = size_lookup[size];
|
||
else
|
||
{
|
||
order = 9;
|
||
while (size > OBJECT_SIZE (order))
|
||
order++;
|
||
}
|
||
|
||
/* If there are non-full pages for this size allocation, they are at
|
||
the head of the list. */
|
||
entry = G.pages[order];
|
||
|
||
/* If there is no page for this object size, or all pages in this
|
||
context are full, allocate a new page. */
|
||
if (entry == NULL || entry->num_free_objects == 0)
|
||
{
|
||
struct page_entry *new_entry;
|
||
new_entry = alloc_page (order);
|
||
|
||
/* If this is the only entry, it's also the tail. */
|
||
if (entry == NULL)
|
||
G.page_tails[order] = new_entry;
|
||
|
||
/* Put new pages at the head of the page list. */
|
||
new_entry->next = entry;
|
||
entry = new_entry;
|
||
G.pages[order] = new_entry;
|
||
|
||
/* For a new page, we know the word and bit positions (in the
|
||
in_use bitmap) of the first available object -- they're zero. */
|
||
new_entry->next_bit_hint = 1;
|
||
word = 0;
|
||
bit = 0;
|
||
object_offset = 0;
|
||
}
|
||
else
|
||
{
|
||
/* First try to use the hint left from the previous allocation
|
||
to locate a clear bit in the in-use bitmap. We've made sure
|
||
that the one-past-the-end bit is always set, so if the hint
|
||
has run over, this test will fail. */
|
||
unsigned hint = entry->next_bit_hint;
|
||
word = hint / HOST_BITS_PER_LONG;
|
||
bit = hint % HOST_BITS_PER_LONG;
|
||
|
||
/* If the hint didn't work, scan the bitmap from the beginning. */
|
||
if ((entry->in_use_p[word] >> bit) & 1)
|
||
{
|
||
word = bit = 0;
|
||
while (~entry->in_use_p[word] == 0)
|
||
++word;
|
||
while ((entry->in_use_p[word] >> bit) & 1)
|
||
++bit;
|
||
hint = word * HOST_BITS_PER_LONG + bit;
|
||
}
|
||
|
||
/* Next time, try the next bit. */
|
||
entry->next_bit_hint = hint + 1;
|
||
|
||
object_offset = hint * OBJECT_SIZE (order);
|
||
}
|
||
|
||
/* Set the in-use bit. */
|
||
entry->in_use_p[word] |= ((unsigned long) 1 << bit);
|
||
|
||
/* Keep a running total of the number of free objects. If this page
|
||
fills up, we may have to move it to the end of the list if the
|
||
next page isn't full. If the next page is full, all subsequent
|
||
pages are full, so there's no need to move it. */
|
||
if (--entry->num_free_objects == 0
|
||
&& entry->next != NULL
|
||
&& entry->next->num_free_objects > 0)
|
||
{
|
||
G.pages[order] = entry->next;
|
||
entry->next = NULL;
|
||
G.page_tails[order]->next = entry;
|
||
G.page_tails[order] = entry;
|
||
}
|
||
|
||
/* Calculate the object's address. */
|
||
result = entry->page + object_offset;
|
||
|
||
#ifdef GGC_POISON
|
||
/* `Poison' the entire allocated object, including any padding at
|
||
the end. */
|
||
memset (result, 0xaf, OBJECT_SIZE (order));
|
||
#endif
|
||
|
||
/* Keep track of how many bytes are being allocated. This
|
||
information is used in deciding when to collect. */
|
||
G.allocated += OBJECT_SIZE (order);
|
||
|
||
if (GGC_DEBUG_LEVEL >= 3)
|
||
fprintf (G.debug_file,
|
||
"Allocating object, requested size=%ld, actual=%ld at %p on %p\n",
|
||
(long) size, (long) OBJECT_SIZE (order), result, (PTR) entry);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* If P is not marked, marks it and return false. Otherwise return true.
|
||
P must have been allocated by the GC allocator; it mustn't point to
|
||
static objects, stack variables, or memory allocated with malloc. */
|
||
|
||
int
|
||
ggc_set_mark (p)
|
||
const void *p;
|
||
{
|
||
page_entry *entry;
|
||
unsigned bit, word;
|
||
unsigned long mask;
|
||
|
||
/* Look up the page on which the object is alloced. If the object
|
||
wasn't allocated by the collector, we'll probably die. */
|
||
entry = lookup_page_table_entry (p);
|
||
#ifdef ENABLE_CHECKING
|
||
if (entry == NULL)
|
||
abort ();
|
||
#endif
|
||
|
||
/* Calculate the index of the object on the page; this is its bit
|
||
position in the in_use_p bitmap. */
|
||
bit = (((const char *) p) - entry->page) / OBJECT_SIZE (entry->order);
|
||
word = bit / HOST_BITS_PER_LONG;
|
||
mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
|
||
|
||
/* If the bit was previously set, skip it. */
|
||
if (entry->in_use_p[word] & mask)
|
||
return 1;
|
||
|
||
/* Otherwise set it, and decrement the free object count. */
|
||
entry->in_use_p[word] |= mask;
|
||
entry->num_free_objects -= 1;
|
||
|
||
if (GGC_DEBUG_LEVEL >= 4)
|
||
fprintf (G.debug_file, "Marking %p\n", p);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if P has been marked, zero otherwise.
|
||
P must have been allocated by the GC allocator; it mustn't point to
|
||
static objects, stack variables, or memory allocated with malloc. */
|
||
|
||
int
|
||
ggc_marked_p (p)
|
||
const void *p;
|
||
{
|
||
page_entry *entry;
|
||
unsigned bit, word;
|
||
unsigned long mask;
|
||
|
||
/* Look up the page on which the object is alloced. If the object
|
||
wasn't allocated by the collector, we'll probably die. */
|
||
entry = lookup_page_table_entry (p);
|
||
#ifdef ENABLE_CHECKING
|
||
if (entry == NULL)
|
||
abort ();
|
||
#endif
|
||
|
||
/* Calculate the index of the object on the page; this is its bit
|
||
position in the in_use_p bitmap. */
|
||
bit = (((const char *) p) - entry->page) / OBJECT_SIZE (entry->order);
|
||
word = bit / HOST_BITS_PER_LONG;
|
||
mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
|
||
|
||
return (entry->in_use_p[word] & mask) != 0;
|
||
}
|
||
|
||
/* Return the size of the gc-able object P. */
|
||
|
||
size_t
|
||
ggc_get_size (p)
|
||
const void *p;
|
||
{
|
||
page_entry *pe = lookup_page_table_entry (p);
|
||
return OBJECT_SIZE (pe->order);
|
||
}
|
||
|
||
/* Initialize the ggc-mmap allocator. */
|
||
|
||
void
|
||
init_ggc ()
|
||
{
|
||
unsigned order;
|
||
|
||
G.pagesize = getpagesize();
|
||
G.lg_pagesize = exact_log2 (G.pagesize);
|
||
|
||
#ifdef HAVE_MMAP_DEV_ZERO
|
||
G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
|
||
if (G.dev_zero_fd == -1)
|
||
abort ();
|
||
#endif
|
||
|
||
#if 0
|
||
G.debug_file = fopen ("ggc-mmap.debug", "w");
|
||
#else
|
||
G.debug_file = stdout;
|
||
#endif
|
||
|
||
G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
|
||
|
||
#ifdef USING_MMAP
|
||
/* StunOS has an amazing off-by-one error for the first mmap allocation
|
||
after fiddling with RLIMIT_STACK. The result, as hard as it is to
|
||
believe, is an unaligned page allocation, which would cause us to
|
||
hork badly if we tried to use it. */
|
||
{
|
||
char *p = alloc_anon (NULL, G.pagesize);
|
||
struct page_entry *e;
|
||
if ((size_t)p & (G.pagesize - 1))
|
||
{
|
||
/* How losing. Discard this one and try another. If we still
|
||
can't get something useful, give up. */
|
||
|
||
p = alloc_anon (NULL, G.pagesize);
|
||
if ((size_t)p & (G.pagesize - 1))
|
||
abort ();
|
||
}
|
||
|
||
/* We have a good page, might as well hold onto it... */
|
||
e = (struct page_entry *) xcalloc (1, sizeof (struct page_entry));
|
||
e->bytes = G.pagesize;
|
||
e->page = p;
|
||
e->next = G.free_pages;
|
||
G.free_pages = e;
|
||
}
|
||
#endif
|
||
|
||
/* Initialize the object size table. */
|
||
for (order = 0; order < HOST_BITS_PER_PTR; ++order)
|
||
object_size_table[order] = (size_t) 1 << order;
|
||
for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
|
||
{
|
||
size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
|
||
|
||
/* If S is not a multiple of the MAX_ALIGNMENT, then round it up
|
||
so that we're sure of getting aligned memory. */
|
||
s = CEIL (s, MAX_ALIGNMENT) * MAX_ALIGNMENT;
|
||
object_size_table[order] = s;
|
||
}
|
||
|
||
/* Initialize the objects-per-page table. */
|
||
for (order = 0; order < NUM_ORDERS; ++order)
|
||
{
|
||
objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
|
||
if (objects_per_page_table[order] == 0)
|
||
objects_per_page_table[order] = 1;
|
||
}
|
||
|
||
/* Reset the size_lookup array to put appropriately sized objects in
|
||
the special orders. All objects bigger than the previous power
|
||
of two, but no greater than the special size, should go in the
|
||
new order. */
|
||
for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
|
||
{
|
||
int o;
|
||
int i;
|
||
|
||
o = size_lookup[OBJECT_SIZE (order)];
|
||
for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
|
||
size_lookup[i] = order;
|
||
}
|
||
}
|
||
|
||
/* Increment the `GC context'. Objects allocated in an outer context
|
||
are never freed, eliminating the need to register their roots. */
|
||
|
||
void
|
||
ggc_push_context ()
|
||
{
|
||
++G.context_depth;
|
||
|
||
/* Die on wrap. */
|
||
if (G.context_depth == 0)
|
||
abort ();
|
||
}
|
||
|
||
/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
|
||
reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
|
||
|
||
static void
|
||
ggc_recalculate_in_use_p (p)
|
||
page_entry *p;
|
||
{
|
||
unsigned int i;
|
||
size_t num_objects;
|
||
|
||
/* Because the past-the-end bit in in_use_p is always set, we
|
||
pretend there is one additional object. */
|
||
num_objects = OBJECTS_PER_PAGE (p->order) + 1;
|
||
|
||
/* Reset the free object count. */
|
||
p->num_free_objects = num_objects;
|
||
|
||
/* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
|
||
for (i = 0;
|
||
i < CEIL (BITMAP_SIZE (num_objects),
|
||
sizeof (*p->in_use_p));
|
||
++i)
|
||
{
|
||
unsigned long j;
|
||
|
||
/* Something is in use if it is marked, or if it was in use in a
|
||
context further down the context stack. */
|
||
p->in_use_p[i] |= p->save_in_use_p[i];
|
||
|
||
/* Decrement the free object count for every object allocated. */
|
||
for (j = p->in_use_p[i]; j; j >>= 1)
|
||
p->num_free_objects -= (j & 1);
|
||
}
|
||
|
||
if (p->num_free_objects >= num_objects)
|
||
abort ();
|
||
}
|
||
|
||
/* Decrement the `GC context'. All objects allocated since the
|
||
previous ggc_push_context are migrated to the outer context. */
|
||
|
||
void
|
||
ggc_pop_context ()
|
||
{
|
||
unsigned order, depth;
|
||
|
||
depth = --G.context_depth;
|
||
|
||
/* Any remaining pages in the popped context are lowered to the new
|
||
current context; i.e. objects allocated in the popped context and
|
||
left over are imported into the previous context. */
|
||
for (order = 2; order < NUM_ORDERS; order++)
|
||
{
|
||
page_entry *p;
|
||
|
||
for (p = G.pages[order]; p != NULL; p = p->next)
|
||
{
|
||
if (p->context_depth > depth)
|
||
p->context_depth = depth;
|
||
|
||
/* If this page is now in the topmost context, and we'd
|
||
saved its allocation state, restore it. */
|
||
else if (p->context_depth == depth && p->save_in_use_p)
|
||
{
|
||
ggc_recalculate_in_use_p (p);
|
||
free (p->save_in_use_p);
|
||
p->save_in_use_p = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Unmark all objects. */
|
||
|
||
static inline void
|
||
clear_marks ()
|
||
{
|
||
unsigned order;
|
||
|
||
for (order = 2; order < NUM_ORDERS; order++)
|
||
{
|
||
size_t num_objects = OBJECTS_PER_PAGE (order);
|
||
size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
|
||
page_entry *p;
|
||
|
||
for (p = G.pages[order]; p != NULL; p = p->next)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
/* The data should be page-aligned. */
|
||
if ((size_t) p->page & (G.pagesize - 1))
|
||
abort ();
|
||
#endif
|
||
|
||
/* Pages that aren't in the topmost context are not collected;
|
||
nevertheless, we need their in-use bit vectors to store GC
|
||
marks. So, back them up first. */
|
||
if (p->context_depth < G.context_depth)
|
||
{
|
||
if (! p->save_in_use_p)
|
||
p->save_in_use_p = xmalloc (bitmap_size);
|
||
memcpy (p->save_in_use_p, p->in_use_p, bitmap_size);
|
||
}
|
||
|
||
/* Reset reset the number of free objects and clear the
|
||
in-use bits. These will be adjusted by mark_obj. */
|
||
p->num_free_objects = num_objects;
|
||
memset (p->in_use_p, 0, bitmap_size);
|
||
|
||
/* Make sure the one-past-the-end bit is always set. */
|
||
p->in_use_p[num_objects / HOST_BITS_PER_LONG]
|
||
= ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Free all empty pages. Partially empty pages need no attention
|
||
because the `mark' bit doubles as an `unused' bit. */
|
||
|
||
static inline void
|
||
sweep_pages ()
|
||
{
|
||
unsigned order;
|
||
|
||
for (order = 2; order < NUM_ORDERS; order++)
|
||
{
|
||
/* The last page-entry to consider, regardless of entries
|
||
placed at the end of the list. */
|
||
page_entry * const last = G.page_tails[order];
|
||
|
||
size_t num_objects = OBJECTS_PER_PAGE (order);
|
||
size_t live_objects;
|
||
page_entry *p, *previous;
|
||
int done;
|
||
|
||
p = G.pages[order];
|
||
if (p == NULL)
|
||
continue;
|
||
|
||
previous = NULL;
|
||
do
|
||
{
|
||
page_entry *next = p->next;
|
||
|
||
/* Loop until all entries have been examined. */
|
||
done = (p == last);
|
||
|
||
/* Add all live objects on this page to the count of
|
||
allocated memory. */
|
||
live_objects = num_objects - p->num_free_objects;
|
||
|
||
G.allocated += OBJECT_SIZE (order) * live_objects;
|
||
|
||
/* Only objects on pages in the topmost context should get
|
||
collected. */
|
||
if (p->context_depth < G.context_depth)
|
||
;
|
||
|
||
/* Remove the page if it's empty. */
|
||
else if (live_objects == 0)
|
||
{
|
||
if (! previous)
|
||
G.pages[order] = next;
|
||
else
|
||
previous->next = next;
|
||
|
||
/* Are we removing the last element? */
|
||
if (p == G.page_tails[order])
|
||
G.page_tails[order] = previous;
|
||
free_page (p);
|
||
p = previous;
|
||
}
|
||
|
||
/* If the page is full, move it to the end. */
|
||
else if (p->num_free_objects == 0)
|
||
{
|
||
/* Don't move it if it's already at the end. */
|
||
if (p != G.page_tails[order])
|
||
{
|
||
/* Move p to the end of the list. */
|
||
p->next = NULL;
|
||
G.page_tails[order]->next = p;
|
||
|
||
/* Update the tail pointer... */
|
||
G.page_tails[order] = p;
|
||
|
||
/* ... and the head pointer, if necessary. */
|
||
if (! previous)
|
||
G.pages[order] = next;
|
||
else
|
||
previous->next = next;
|
||
p = previous;
|
||
}
|
||
}
|
||
|
||
/* If we've fallen through to here, it's a page in the
|
||
topmost context that is neither full nor empty. Such a
|
||
page must precede pages at lesser context depth in the
|
||
list, so move it to the head. */
|
||
else if (p != G.pages[order])
|
||
{
|
||
previous->next = p->next;
|
||
p->next = G.pages[order];
|
||
G.pages[order] = p;
|
||
/* Are we moving the last element? */
|
||
if (G.page_tails[order] == p)
|
||
G.page_tails[order] = previous;
|
||
p = previous;
|
||
}
|
||
|
||
previous = p;
|
||
p = next;
|
||
}
|
||
while (! done);
|
||
|
||
/* Now, restore the in_use_p vectors for any pages from contexts
|
||
other than the current one. */
|
||
for (p = G.pages[order]; p; p = p->next)
|
||
if (p->context_depth != G.context_depth)
|
||
ggc_recalculate_in_use_p (p);
|
||
}
|
||
}
|
||
|
||
#ifdef GGC_POISON
|
||
/* Clobber all free objects. */
|
||
|
||
static inline void
|
||
poison_pages ()
|
||
{
|
||
unsigned order;
|
||
|
||
for (order = 2; order < NUM_ORDERS; order++)
|
||
{
|
||
size_t num_objects = OBJECTS_PER_PAGE (order);
|
||
size_t size = OBJECT_SIZE (order);
|
||
page_entry *p;
|
||
|
||
for (p = G.pages[order]; p != NULL; p = p->next)
|
||
{
|
||
size_t i;
|
||
|
||
if (p->context_depth != G.context_depth)
|
||
/* Since we don't do any collection for pages in pushed
|
||
contexts, there's no need to do any poisoning. And
|
||
besides, the IN_USE_P array isn't valid until we pop
|
||
contexts. */
|
||
continue;
|
||
|
||
for (i = 0; i < num_objects; i++)
|
||
{
|
||
size_t word, bit;
|
||
word = i / HOST_BITS_PER_LONG;
|
||
bit = i % HOST_BITS_PER_LONG;
|
||
if (((p->in_use_p[word] >> bit) & 1) == 0)
|
||
memset (p->page + i * size, 0xa5, size);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Top level mark-and-sweep routine. */
|
||
|
||
void
|
||
ggc_collect ()
|
||
{
|
||
/* Avoid frequent unnecessary work by skipping collection if the
|
||
total allocations haven't expanded much since the last
|
||
collection. */
|
||
#ifndef GGC_ALWAYS_COLLECT
|
||
if (G.allocated < GGC_MIN_EXPAND_FOR_GC * G.allocated_last_gc)
|
||
return;
|
||
#endif
|
||
|
||
timevar_push (TV_GC);
|
||
if (!quiet_flag)
|
||
fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
|
||
|
||
/* Zero the total allocated bytes. This will be recalculated in the
|
||
sweep phase. */
|
||
G.allocated = 0;
|
||
|
||
/* Release the pages we freed the last time we collected, but didn't
|
||
reuse in the interim. */
|
||
release_pages ();
|
||
|
||
clear_marks ();
|
||
ggc_mark_roots ();
|
||
|
||
#ifdef GGC_POISON
|
||
poison_pages ();
|
||
#endif
|
||
|
||
sweep_pages ();
|
||
|
||
G.allocated_last_gc = G.allocated;
|
||
if (G.allocated_last_gc < GGC_MIN_LAST_ALLOCATED)
|
||
G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
|
||
|
||
timevar_pop (TV_GC);
|
||
|
||
if (!quiet_flag)
|
||
fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
|
||
}
|
||
|
||
/* Print allocation statistics. */
|
||
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
|
||
? (x) \
|
||
: ((x) < 1024*1024*10 \
|
||
? (x) / 1024 \
|
||
: (x) / (1024*1024))))
|
||
#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
|
||
|
||
void
|
||
ggc_print_statistics ()
|
||
{
|
||
struct ggc_statistics stats;
|
||
unsigned int i;
|
||
size_t total_overhead = 0;
|
||
|
||
/* Clear the statistics. */
|
||
memset (&stats, 0, sizeof (stats));
|
||
|
||
/* Make sure collection will really occur. */
|
||
G.allocated_last_gc = 0;
|
||
|
||
/* Collect and print the statistics common across collectors. */
|
||
ggc_print_common_statistics (stderr, &stats);
|
||
|
||
/* Release free pages so that we will not count the bytes allocated
|
||
there as part of the total allocated memory. */
|
||
release_pages ();
|
||
|
||
/* Collect some information about the various sizes of
|
||
allocation. */
|
||
fprintf (stderr, "\n%-5s %10s %10s %10s\n",
|
||
"Size", "Allocated", "Used", "Overhead");
|
||
for (i = 0; i < NUM_ORDERS; ++i)
|
||
{
|
||
page_entry *p;
|
||
size_t allocated;
|
||
size_t in_use;
|
||
size_t overhead;
|
||
|
||
/* Skip empty entries. */
|
||
if (!G.pages[i])
|
||
continue;
|
||
|
||
overhead = allocated = in_use = 0;
|
||
|
||
/* Figure out the total number of bytes allocated for objects of
|
||
this size, and how many of them are actually in use. Also figure
|
||
out how much memory the page table is using. */
|
||
for (p = G.pages[i]; p; p = p->next)
|
||
{
|
||
allocated += p->bytes;
|
||
in_use +=
|
||
(OBJECTS_PER_PAGE (i) - p->num_free_objects) * OBJECT_SIZE (i);
|
||
|
||
overhead += (sizeof (page_entry) - sizeof (long)
|
||
+ BITMAP_SIZE (OBJECTS_PER_PAGE (i) + 1));
|
||
}
|
||
fprintf (stderr, "%-5d %10ld%c %10ld%c %10ld%c\n", OBJECT_SIZE (i),
|
||
SCALE (allocated), LABEL (allocated),
|
||
SCALE (in_use), LABEL (in_use),
|
||
SCALE (overhead), LABEL (overhead));
|
||
total_overhead += overhead;
|
||
}
|
||
fprintf (stderr, "%-5s %10ld%c %10ld%c %10ld%c\n", "Total",
|
||
SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
|
||
SCALE (G.allocated), LABEL(G.allocated),
|
||
SCALE (total_overhead), LABEL (total_overhead));
|
||
}
|