1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-11 14:10:34 +00:00
freebsd/sys/netinet/tcp_usrreq.c
Andre Oppermann b8152ba793 Change the TCP timer system from using the callout system five times
directly to a merged model where only one callout, the next to fire,
is registered.

Instead of callout_reset(9) and callout_stop(9) the new function
tcp_timer_activate() is used which then internally manages the callout.

The single new callout is a mutex callout on inpcb simplifying the
locking a bit.

tcp_timer() is the called function which handles all race conditions
in one place and then dispatches the individual timer functions.

Reviewed by:	rwatson (earlier version)
2007-04-11 09:45:16 +00:00

1893 lines
45 KiB
C

/*-
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California.
* Copyright (c) 2006-2007 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94
* $FreeBSD$
*/
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_tcpdebug.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#ifdef INET6
#include <sys/domain.h>
#endif /* INET6 */
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/proc.h>
#include <sys/jail.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/in_pcb.h>
#ifdef INET6
#include <netinet6/in6_pcb.h>
#endif
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#endif
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#ifdef TCPDEBUG
#include <netinet/tcp_debug.h>
#endif
/*
* TCP protocol interface to socket abstraction.
*/
extern char *tcpstates[]; /* XXX ??? */
static int tcp_attach(struct socket *);
static int tcp_connect(struct tcpcb *, struct sockaddr *,
struct thread *td);
#ifdef INET6
static int tcp6_connect(struct tcpcb *, struct sockaddr *,
struct thread *td);
#endif /* INET6 */
static void tcp_disconnect(struct tcpcb *);
static void tcp_usrclosed(struct tcpcb *);
static void tcp_fill_info(struct tcpcb *, struct tcp_info *);
#ifdef TCPDEBUG
#define TCPDEBUG0 int ostate = 0
#define TCPDEBUG1() ostate = tp ? tp->t_state : 0
#define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \
tcp_trace(TA_USER, ostate, tp, 0, 0, req)
#else
#define TCPDEBUG0
#define TCPDEBUG1()
#define TCPDEBUG2(req)
#endif
/*
* TCP attaches to socket via pru_attach(), reserving space,
* and an internet control block.
*/
static int
tcp_usr_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
struct tcpcb *tp = NULL;
int error;
TCPDEBUG0;
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("tcp_usr_attach: inp != NULL"));
TCPDEBUG1();
error = tcp_attach(so);
if (error)
goto out;
if ((so->so_options & SO_LINGER) && so->so_linger == 0)
so->so_linger = TCP_LINGERTIME;
inp = sotoinpcb(so);
tp = intotcpcb(inp);
out:
TCPDEBUG2(PRU_ATTACH);
return error;
}
/*
* tcp_detach is called when the socket layer loses its final reference
* to the socket, be it a file descriptor reference, a reference from TCP,
* etc. At this point, there is only one case in which we will keep around
* inpcb state: time wait.
*
* This function can probably be re-absorbed back into tcp_usr_detach() now
* that there is a single detach path.
*/
static void
tcp_detach(struct socket *so, struct inpcb *inp)
{
struct tcpcb *tp;
#ifdef INET6
int isipv6 = INP_CHECK_SOCKAF(so, AF_INET6) != 0;
#endif
INP_INFO_WLOCK_ASSERT(&tcbinfo);
INP_LOCK_ASSERT(inp);
KASSERT(so->so_pcb == inp, ("tcp_detach: so_pcb != inp"));
KASSERT(inp->inp_socket == so, ("tcp_detach: inp_socket != so"));
tp = intotcpcb(inp);
if (inp->inp_vflag & INP_TIMEWAIT) {
/*
* There are two cases to handle: one in which the time wait
* state is being discarded (INP_DROPPED), and one in which
* this connection will remain in timewait. In the former,
* it is time to discard all state (except tcptw, which has
* already been discarded by the timewait close code, which
* should be further up the call stack somewhere). In the
* latter case, we detach from the socket, but leave the pcb
* present until timewait ends.
*
* XXXRW: Would it be cleaner to free the tcptw here?
*/
if (inp->inp_vflag & INP_DROPPED) {
KASSERT(tp == NULL, ("tcp_detach: INP_TIMEWAIT && "
"INP_DROPPED && tp != NULL"));
#ifdef INET6
if (isipv6) {
in6_pcbdetach(inp);
in6_pcbfree(inp);
} else {
#endif
in_pcbdetach(inp);
in_pcbfree(inp);
#ifdef INET6
}
#endif
} else {
#ifdef INET6
if (isipv6)
in6_pcbdetach(inp);
else
#endif
in_pcbdetach(inp);
INP_UNLOCK(inp);
}
} else {
/*
* If the connection is not in timewait, we consider two
* two conditions: one in which no further processing is
* necessary (dropped || embryonic), and one in which TCP is
* not yet done, but no longer requires the socket, so the
* pcb will persist for the time being.
*
* XXXRW: Does the second case still occur?
*/
if (inp->inp_vflag & INP_DROPPED ||
tp->t_state < TCPS_SYN_SENT) {
tcp_discardcb(tp);
#ifdef INET6
if (isipv6) {
in6_pcbdetach(inp);
in6_pcbfree(inp);
} else {
#endif
in_pcbdetach(inp);
in_pcbfree(inp);
#ifdef INET6
}
#endif
} else {
#ifdef INET6
if (isipv6)
in6_pcbdetach(inp);
else
#endif
in_pcbdetach(inp);
}
}
}
/*
* pru_detach() detaches the TCP protocol from the socket.
* If the protocol state is non-embryonic, then can't
* do this directly: have to initiate a pru_disconnect(),
* which may finish later; embryonic TCB's can just
* be discarded here.
*/
static void
tcp_usr_detach(struct socket *so)
{
struct inpcb *inp;
struct tcpcb *tp;
TCPDEBUG0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_detach: inp == NULL"));
INP_INFO_WLOCK(&tcbinfo);
INP_LOCK(inp);
KASSERT(inp->inp_socket != NULL,
("tcp_usr_detach: inp_socket == NULL"));
TCPDEBUG1();
tcp_detach(so, inp);
tp = NULL;
TCPDEBUG2(PRU_DETACH);
INP_INFO_WUNLOCK(&tcbinfo);
}
/*
* Give the socket an address.
*/
static int
tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
struct sockaddr_in *sinp;
sinp = (struct sockaddr_in *)nam;
if (nam->sa_len != sizeof (*sinp))
return (EINVAL);
/*
* Must check for multicast addresses and disallow binding
* to them.
*/
if (sinp->sin_family == AF_INET &&
IN_MULTICAST(ntohl(sinp->sin_addr.s_addr)))
return (EAFNOSUPPORT);
TCPDEBUG0;
INP_INFO_WLOCK(&tcbinfo);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_bind: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = EINVAL;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
error = in_pcbbind(inp, nam, td->td_ucred);
out:
TCPDEBUG2(PRU_BIND);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
#ifdef INET6
static int
tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
struct sockaddr_in6 *sin6p;
sin6p = (struct sockaddr_in6 *)nam;
if (nam->sa_len != sizeof (*sin6p))
return (EINVAL);
/*
* Must check for multicast addresses and disallow binding
* to them.
*/
if (sin6p->sin6_family == AF_INET6 &&
IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr))
return (EAFNOSUPPORT);
TCPDEBUG0;
INP_INFO_WLOCK(&tcbinfo);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp6_usr_bind: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = EINVAL;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
inp->inp_vflag &= ~INP_IPV4;
inp->inp_vflag |= INP_IPV6;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr))
inp->inp_vflag |= INP_IPV4;
else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
struct sockaddr_in sin;
in6_sin6_2_sin(&sin, sin6p);
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
error = in_pcbbind(inp, (struct sockaddr *)&sin,
td->td_ucred);
goto out;
}
}
error = in6_pcbbind(inp, nam, td->td_ucred);
out:
TCPDEBUG2(PRU_BIND);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
#endif /* INET6 */
/*
* Prepare to accept connections.
*/
static int
tcp_usr_listen(struct socket *so, int backlog, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
TCPDEBUG0;
INP_INFO_WLOCK(&tcbinfo);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_listen: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = EINVAL;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
SOCK_LOCK(so);
error = solisten_proto_check(so);
if (error == 0 && inp->inp_lport == 0)
error = in_pcbbind(inp, (struct sockaddr *)0, td->td_ucred);
if (error == 0) {
tp->t_state = TCPS_LISTEN;
solisten_proto(so, backlog);
}
SOCK_UNLOCK(so);
out:
TCPDEBUG2(PRU_LISTEN);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
#ifdef INET6
static int
tcp6_usr_listen(struct socket *so, int backlog, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
TCPDEBUG0;
INP_INFO_WLOCK(&tcbinfo);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp6_usr_listen: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = EINVAL;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
SOCK_LOCK(so);
error = solisten_proto_check(so);
if (error == 0 && inp->inp_lport == 0) {
inp->inp_vflag &= ~INP_IPV4;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0)
inp->inp_vflag |= INP_IPV4;
error = in6_pcbbind(inp, (struct sockaddr *)0, td->td_ucred);
}
if (error == 0) {
tp->t_state = TCPS_LISTEN;
solisten_proto(so, backlog);
}
SOCK_UNLOCK(so);
out:
TCPDEBUG2(PRU_LISTEN);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
#endif /* INET6 */
/*
* Initiate connection to peer.
* Create a template for use in transmissions on this connection.
* Enter SYN_SENT state, and mark socket as connecting.
* Start keep-alive timer, and seed output sequence space.
* Send initial segment on connection.
*/
static int
tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
struct sockaddr_in *sinp;
sinp = (struct sockaddr_in *)nam;
if (nam->sa_len != sizeof (*sinp))
return (EINVAL);
/*
* Must disallow TCP ``connections'' to multicast addresses.
*/
if (sinp->sin_family == AF_INET
&& IN_MULTICAST(ntohl(sinp->sin_addr.s_addr)))
return (EAFNOSUPPORT);
if (jailed(td->td_ucred))
prison_remote_ip(td->td_ucred, 0, &sinp->sin_addr.s_addr);
TCPDEBUG0;
INP_INFO_WLOCK(&tcbinfo);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_connect: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = EINVAL;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
if ((error = tcp_connect(tp, nam, td)) != 0)
goto out;
error = tcp_output(tp);
out:
TCPDEBUG2(PRU_CONNECT);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
#ifdef INET6
static int
tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
struct sockaddr_in6 *sin6p;
TCPDEBUG0;
sin6p = (struct sockaddr_in6 *)nam;
if (nam->sa_len != sizeof (*sin6p))
return (EINVAL);
/*
* Must disallow TCP ``connections'' to multicast addresses.
*/
if (sin6p->sin6_family == AF_INET6
&& IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr))
return (EAFNOSUPPORT);
INP_INFO_WLOCK(&tcbinfo);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp6_usr_connect: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = EINVAL;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
struct sockaddr_in sin;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) {
error = EINVAL;
goto out;
}
in6_sin6_2_sin(&sin, sin6p);
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
if ((error = tcp_connect(tp, (struct sockaddr *)&sin, td)) != 0)
goto out;
error = tcp_output(tp);
goto out;
}
inp->inp_vflag &= ~INP_IPV4;
inp->inp_vflag |= INP_IPV6;
inp->inp_inc.inc_isipv6 = 1;
if ((error = tcp6_connect(tp, nam, td)) != 0)
goto out;
error = tcp_output(tp);
out:
TCPDEBUG2(PRU_CONNECT);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
#endif /* INET6 */
/*
* Initiate disconnect from peer.
* If connection never passed embryonic stage, just drop;
* else if don't need to let data drain, then can just drop anyways,
* else have to begin TCP shutdown process: mark socket disconnecting,
* drain unread data, state switch to reflect user close, and
* send segment (e.g. FIN) to peer. Socket will be really disconnected
* when peer sends FIN and acks ours.
*
* SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.
*/
static int
tcp_usr_disconnect(struct socket *so)
{
struct inpcb *inp;
struct tcpcb *tp = NULL;
int error = 0;
TCPDEBUG0;
INP_INFO_WLOCK(&tcbinfo);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_disconnect: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = ECONNRESET;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
tcp_disconnect(tp);
out:
TCPDEBUG2(PRU_DISCONNECT);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
/*
* Accept a connection. Essentially all the work is
* done at higher levels; just return the address
* of the peer, storing through addr.
*/
static int
tcp_usr_accept(struct socket *so, struct sockaddr **nam)
{
int error = 0;
struct inpcb *inp = NULL;
struct tcpcb *tp = NULL;
struct in_addr addr;
in_port_t port = 0;
TCPDEBUG0;
if (so->so_state & SS_ISDISCONNECTED)
return (ECONNABORTED);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_accept: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = ECONNABORTED;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
/*
* We inline in_setpeeraddr and COMMON_END here, so that we can
* copy the data of interest and defer the malloc until after we
* release the lock.
*/
port = inp->inp_fport;
addr = inp->inp_faddr;
out:
TCPDEBUG2(PRU_ACCEPT);
INP_UNLOCK(inp);
if (error == 0)
*nam = in_sockaddr(port, &addr);
return error;
}
#ifdef INET6
static int
tcp6_usr_accept(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp = NULL;
int error = 0;
struct tcpcb *tp = NULL;
struct in_addr addr;
struct in6_addr addr6;
in_port_t port = 0;
int v4 = 0;
TCPDEBUG0;
if (so->so_state & SS_ISDISCONNECTED)
return (ECONNABORTED);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp6_usr_accept: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = ECONNABORTED;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
/*
* We inline in6_mapped_peeraddr and COMMON_END here, so that we can
* copy the data of interest and defer the malloc until after we
* release the lock.
*/
if (inp->inp_vflag & INP_IPV4) {
v4 = 1;
port = inp->inp_fport;
addr = inp->inp_faddr;
} else {
port = inp->inp_fport;
addr6 = inp->in6p_faddr;
}
out:
TCPDEBUG2(PRU_ACCEPT);
INP_UNLOCK(inp);
if (error == 0) {
if (v4)
*nam = in6_v4mapsin6_sockaddr(port, &addr);
else
*nam = in6_sockaddr(port, &addr6);
}
return error;
}
#endif /* INET6 */
/*
* This is the wrapper function for in_setsockaddr. We just pass down
* the pcbinfo for in_setsockaddr to lock. We don't want to do the locking
* here because in_setsockaddr will call malloc and can block.
*/
static int
tcp_sockaddr(struct socket *so, struct sockaddr **nam)
{
return (in_setsockaddr(so, nam, &tcbinfo));
}
/*
* This is the wrapper function for in_setpeeraddr. We just pass down
* the pcbinfo for in_setpeeraddr to lock.
*/
static int
tcp_peeraddr(struct socket *so, struct sockaddr **nam)
{
return (in_setpeeraddr(so, nam, &tcbinfo));
}
/*
* Mark the connection as being incapable of further output.
*/
static int
tcp_usr_shutdown(struct socket *so)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
TCPDEBUG0;
INP_INFO_WLOCK(&tcbinfo);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = ECONNRESET;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
socantsendmore(so);
tcp_usrclosed(tp);
error = tcp_output(tp);
out:
TCPDEBUG2(PRU_SHUTDOWN);
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
/*
* After a receive, possibly send window update to peer.
*/
static int
tcp_usr_rcvd(struct socket *so, int flags)
{
struct inpcb *inp;
struct tcpcb *tp = NULL;
int error = 0;
TCPDEBUG0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_rcvd: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = ECONNRESET;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
tcp_output(tp);
out:
TCPDEBUG2(PRU_RCVD);
INP_UNLOCK(inp);
return (error);
}
/*
* Do a send by putting data in output queue and updating urgent
* marker if URG set. Possibly send more data. Unlike the other
* pru_*() routines, the mbuf chains are our responsibility. We
* must either enqueue them or free them. The other pru_* routines
* generally are caller-frees.
*/
static int
tcp_usr_send(struct socket *so, int flags, struct mbuf *m,
struct sockaddr *nam, struct mbuf *control, struct thread *td)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
int headlocked = 0;
#ifdef INET6
int isipv6;
#endif
TCPDEBUG0;
/*
* We require the pcbinfo lock in two cases:
*
* (1) An implied connect is taking place, which can result in
* binding IPs and ports and hence modification of the pcb hash
* chains.
*
* (2) PRUS_EOF is set, resulting in explicit close on the send.
*/
if ((nam != NULL) || (flags & PRUS_EOF)) {
INP_INFO_WLOCK(&tcbinfo);
headlocked = 1;
}
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_send: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
if (control)
m_freem(control);
if (m)
m_freem(m);
error = ECONNRESET;
goto out;
}
#ifdef INET6
isipv6 = nam && nam->sa_family == AF_INET6;
#endif /* INET6 */
tp = intotcpcb(inp);
TCPDEBUG1();
if (control) {
/* TCP doesn't do control messages (rights, creds, etc) */
if (control->m_len) {
m_freem(control);
if (m)
m_freem(m);
error = EINVAL;
goto out;
}
m_freem(control); /* empty control, just free it */
}
if (!(flags & PRUS_OOB)) {
sbappendstream(&so->so_snd, m);
if (nam && tp->t_state < TCPS_SYN_SENT) {
/*
* Do implied connect if not yet connected,
* initialize window to default value, and
* initialize maxseg/maxopd using peer's cached
* MSS.
*/
INP_INFO_WLOCK_ASSERT(&tcbinfo);
#ifdef INET6
if (isipv6)
error = tcp6_connect(tp, nam, td);
else
#endif /* INET6 */
error = tcp_connect(tp, nam, td);
if (error)
goto out;
tp->snd_wnd = TTCP_CLIENT_SND_WND;
tcp_mss(tp, -1);
}
if (flags & PRUS_EOF) {
/*
* Close the send side of the connection after
* the data is sent.
*/
INP_INFO_WLOCK_ASSERT(&tcbinfo);
socantsendmore(so);
tcp_usrclosed(tp);
}
if (headlocked) {
INP_INFO_WUNLOCK(&tcbinfo);
headlocked = 0;
}
if (tp != NULL) {
if (flags & PRUS_MORETOCOME)
tp->t_flags |= TF_MORETOCOME;
error = tcp_output(tp);
if (flags & PRUS_MORETOCOME)
tp->t_flags &= ~TF_MORETOCOME;
}
} else {
/*
* XXXRW: PRUS_EOF not implemented with PRUS_OOB?
*/
SOCKBUF_LOCK(&so->so_snd);
if (sbspace(&so->so_snd) < -512) {
SOCKBUF_UNLOCK(&so->so_snd);
m_freem(m);
error = ENOBUFS;
goto out;
}
/*
* According to RFC961 (Assigned Protocols),
* the urgent pointer points to the last octet
* of urgent data. We continue, however,
* to consider it to indicate the first octet
* of data past the urgent section.
* Otherwise, snd_up should be one lower.
*/
sbappendstream_locked(&so->so_snd, m);
SOCKBUF_UNLOCK(&so->so_snd);
if (nam && tp->t_state < TCPS_SYN_SENT) {
/*
* Do implied connect if not yet connected,
* initialize window to default value, and
* initialize maxseg/maxopd using peer's cached
* MSS.
*/
INP_INFO_WLOCK_ASSERT(&tcbinfo);
#ifdef INET6
if (isipv6)
error = tcp6_connect(tp, nam, td);
else
#endif /* INET6 */
error = tcp_connect(tp, nam, td);
if (error)
goto out;
tp->snd_wnd = TTCP_CLIENT_SND_WND;
tcp_mss(tp, -1);
INP_INFO_WUNLOCK(&tcbinfo);
headlocked = 0;
} else if (nam) {
INP_INFO_WUNLOCK(&tcbinfo);
headlocked = 0;
}
tp->snd_up = tp->snd_una + so->so_snd.sb_cc;
tp->t_flags |= TF_FORCEDATA;
error = tcp_output(tp);
tp->t_flags &= ~TF_FORCEDATA;
}
out:
TCPDEBUG2((flags & PRUS_OOB) ? PRU_SENDOOB :
((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND));
INP_UNLOCK(inp);
if (headlocked)
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
/*
* Abort the TCP. Drop the connection abruptly.
*/
static void
tcp_usr_abort(struct socket *so)
{
struct inpcb *inp;
struct tcpcb *tp = NULL;
TCPDEBUG0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_abort: inp == NULL"));
INP_INFO_WLOCK(&tcbinfo);
INP_LOCK(inp);
KASSERT(inp->inp_socket != NULL,
("tcp_usr_abort: inp_socket == NULL"));
/*
* If we still have full TCP state, and we're not dropped, drop.
*/
if (!(inp->inp_vflag & INP_TIMEWAIT) &&
!(inp->inp_vflag & INP_DROPPED)) {
tp = intotcpcb(inp);
TCPDEBUG1();
tcp_drop(tp, ECONNABORTED);
TCPDEBUG2(PRU_ABORT);
}
if (!(inp->inp_vflag & INP_DROPPED)) {
SOCK_LOCK(so);
so->so_state |= SS_PROTOREF;
SOCK_UNLOCK(so);
inp->inp_vflag |= INP_SOCKREF;
}
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
}
/*
* TCP socket is closed. Start friendly disconnect.
*/
static void
tcp_usr_close(struct socket *so)
{
struct inpcb *inp;
struct tcpcb *tp = NULL;
TCPDEBUG0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_close: inp == NULL"));
INP_INFO_WLOCK(&tcbinfo);
INP_LOCK(inp);
KASSERT(inp->inp_socket != NULL,
("tcp_usr_close: inp_socket == NULL"));
/*
* If we still have full TCP state, and we're not dropped, initiate
* a disconnect.
*/
if (!(inp->inp_vflag & INP_TIMEWAIT) &&
!(inp->inp_vflag & INP_DROPPED)) {
tp = intotcpcb(inp);
TCPDEBUG1();
tcp_disconnect(tp);
TCPDEBUG2(PRU_CLOSE);
}
if (!(inp->inp_vflag & INP_DROPPED)) {
SOCK_LOCK(so);
so->so_state |= SS_PROTOREF;
SOCK_UNLOCK(so);
inp->inp_vflag |= INP_SOCKREF;
}
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
}
/*
* Receive out-of-band data.
*/
static int
tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags)
{
int error = 0;
struct inpcb *inp;
struct tcpcb *tp = NULL;
TCPDEBUG0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_usr_rcvoob: inp == NULL"));
INP_LOCK(inp);
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = ECONNRESET;
goto out;
}
tp = intotcpcb(inp);
TCPDEBUG1();
if ((so->so_oobmark == 0 &&
(so->so_rcv.sb_state & SBS_RCVATMARK) == 0) ||
so->so_options & SO_OOBINLINE ||
tp->t_oobflags & TCPOOB_HADDATA) {
error = EINVAL;
goto out;
}
if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) {
error = EWOULDBLOCK;
goto out;
}
m->m_len = 1;
*mtod(m, caddr_t) = tp->t_iobc;
if ((flags & MSG_PEEK) == 0)
tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA);
out:
TCPDEBUG2(PRU_RCVOOB);
INP_UNLOCK(inp);
return (error);
}
struct pr_usrreqs tcp_usrreqs = {
.pru_abort = tcp_usr_abort,
.pru_accept = tcp_usr_accept,
.pru_attach = tcp_usr_attach,
.pru_bind = tcp_usr_bind,
.pru_connect = tcp_usr_connect,
.pru_control = in_control,
.pru_detach = tcp_usr_detach,
.pru_disconnect = tcp_usr_disconnect,
.pru_listen = tcp_usr_listen,
.pru_peeraddr = tcp_peeraddr,
.pru_rcvd = tcp_usr_rcvd,
.pru_rcvoob = tcp_usr_rcvoob,
.pru_send = tcp_usr_send,
.pru_shutdown = tcp_usr_shutdown,
.pru_sockaddr = tcp_sockaddr,
.pru_sosetlabel = in_pcbsosetlabel,
.pru_close = tcp_usr_close,
};
#ifdef INET6
struct pr_usrreqs tcp6_usrreqs = {
.pru_abort = tcp_usr_abort,
.pru_accept = tcp6_usr_accept,
.pru_attach = tcp_usr_attach,
.pru_bind = tcp6_usr_bind,
.pru_connect = tcp6_usr_connect,
.pru_control = in6_control,
.pru_detach = tcp_usr_detach,
.pru_disconnect = tcp_usr_disconnect,
.pru_listen = tcp6_usr_listen,
.pru_peeraddr = in6_mapped_peeraddr,
.pru_rcvd = tcp_usr_rcvd,
.pru_rcvoob = tcp_usr_rcvoob,
.pru_send = tcp_usr_send,
.pru_shutdown = tcp_usr_shutdown,
.pru_sockaddr = in6_mapped_sockaddr,
.pru_sosetlabel = in_pcbsosetlabel,
.pru_close = tcp_usr_close,
};
#endif /* INET6 */
/*
* Common subroutine to open a TCP connection to remote host specified
* by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local
* port number if needed. Call in_pcbconnect_setup to do the routing and
* to choose a local host address (interface). If there is an existing
* incarnation of the same connection in TIME-WAIT state and if the remote
* host was sending CC options and if the connection duration was < MSL, then
* truncate the previous TIME-WAIT state and proceed.
* Initialize connection parameters and enter SYN-SENT state.
*/
static int
tcp_connect(struct tcpcb *tp, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp = tp->t_inpcb, *oinp;
struct socket *so = inp->inp_socket;
struct in_addr laddr;
u_short lport;
int error;
INP_INFO_WLOCK_ASSERT(&tcbinfo);
INP_LOCK_ASSERT(inp);
if (inp->inp_lport == 0) {
error = in_pcbbind(inp, (struct sockaddr *)0, td->td_ucred);
if (error)
return error;
}
/*
* Cannot simply call in_pcbconnect, because there might be an
* earlier incarnation of this same connection still in
* TIME_WAIT state, creating an ADDRINUSE error.
*/
laddr = inp->inp_laddr;
lport = inp->inp_lport;
error = in_pcbconnect_setup(inp, nam, &laddr.s_addr, &lport,
&inp->inp_faddr.s_addr, &inp->inp_fport, &oinp, td->td_ucred);
if (error && oinp == NULL)
return error;
if (oinp)
return EADDRINUSE;
inp->inp_laddr = laddr;
in_pcbrehash(inp);
/*
* Compute window scaling to request:
* Scale to fit into sweet spot. See tcp_syncache.c.
* XXX: This should move to tcp_output().
* XXX: This should be based on the actual MSS.
*/
while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
(0x1 << tp->request_r_scale) < tcp_minmss)
tp->request_r_scale++;
soisconnecting(so);
tcpstat.tcps_connattempt++;
tp->t_state = TCPS_SYN_SENT;
tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
tp->iss = tcp_new_isn(tp);
tp->t_bw_rtseq = tp->iss;
tcp_sendseqinit(tp);
return 0;
}
#ifdef INET6
static int
tcp6_connect(struct tcpcb *tp, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp = tp->t_inpcb, *oinp;
struct socket *so = inp->inp_socket;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
struct in6_addr *addr6;
int error;
INP_INFO_WLOCK_ASSERT(&tcbinfo);
INP_LOCK_ASSERT(inp);
if (inp->inp_lport == 0) {
error = in6_pcbbind(inp, (struct sockaddr *)0, td->td_ucred);
if (error)
return error;
}
/*
* Cannot simply call in_pcbconnect, because there might be an
* earlier incarnation of this same connection still in
* TIME_WAIT state, creating an ADDRINUSE error.
* in6_pcbladdr() also handles scope zone IDs.
*/
error = in6_pcbladdr(inp, nam, &addr6);
if (error)
return error;
oinp = in6_pcblookup_hash(inp->inp_pcbinfo,
&sin6->sin6_addr, sin6->sin6_port,
IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)
? addr6
: &inp->in6p_laddr,
inp->inp_lport, 0, NULL);
if (oinp)
return EADDRINUSE;
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
inp->in6p_laddr = *addr6;
inp->in6p_faddr = sin6->sin6_addr;
inp->inp_fport = sin6->sin6_port;
/* update flowinfo - draft-itojun-ipv6-flowlabel-api-00 */
inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
if (inp->in6p_flags & IN6P_AUTOFLOWLABEL)
inp->in6p_flowinfo |=
(htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
in_pcbrehash(inp);
/* Compute window scaling to request. */
while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
(TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.sb_hiwat)
tp->request_r_scale++;
soisconnecting(so);
tcpstat.tcps_connattempt++;
tp->t_state = TCPS_SYN_SENT;
tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
tp->iss = tcp_new_isn(tp);
tp->t_bw_rtseq = tp->iss;
tcp_sendseqinit(tp);
return 0;
}
#endif /* INET6 */
/*
* Export TCP internal state information via a struct tcp_info, based on the
* Linux 2.6 API. Not ABI compatible as our constants are mapped differently
* (TCP state machine, etc). We export all information using FreeBSD-native
* constants -- for example, the numeric values for tcpi_state will differ
* from Linux.
*/
static void
tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti)
{
INP_LOCK_ASSERT(tp->t_inpcb);
bzero(ti, sizeof(*ti));
ti->tcpi_state = tp->t_state;
if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP))
ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
if (tp->sack_enable)
ti->tcpi_options |= TCPI_OPT_SACK;
if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) {
ti->tcpi_options |= TCPI_OPT_WSCALE;
ti->tcpi_snd_wscale = tp->snd_scale;
ti->tcpi_rcv_wscale = tp->rcv_scale;
}
ti->tcpi_rtt = ((u_int64_t)tp->t_srtt * tick) >> TCP_RTT_SHIFT;
ti->tcpi_rttvar = ((u_int64_t)tp->t_rttvar * tick) >> TCP_RTTVAR_SHIFT;
ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
ti->tcpi_snd_cwnd = tp->snd_cwnd;
/*
* FreeBSD-specific extension fields for tcp_info.
*/
ti->tcpi_rcv_space = tp->rcv_wnd;
ti->tcpi_snd_wnd = tp->snd_wnd;
ti->tcpi_snd_bwnd = tp->snd_bwnd;
}
/*
* The new sockopt interface makes it possible for us to block in the
* copyin/out step (if we take a page fault). Taking a page fault at
* splnet() is probably a Bad Thing. (Since sockets and pcbs both now
* use TSM, there probably isn't any need for this function to run at
* splnet() any more. This needs more examination.)
*
* XXXRW: The locking here is wrong; we may take a page fault while holding
* the inpcb lock.
*/
int
tcp_ctloutput(struct socket *so, struct sockopt *sopt)
{
int error, opt, optval;
struct inpcb *inp;
struct tcpcb *tp;
struct tcp_info ti;
error = 0;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL"));
INP_LOCK(inp);
if (sopt->sopt_level != IPPROTO_TCP) {
INP_UNLOCK(inp);
#ifdef INET6
if (INP_CHECK_SOCKAF(so, AF_INET6))
error = ip6_ctloutput(so, sopt);
else
#endif /* INET6 */
error = ip_ctloutput(so, sopt);
return (error);
}
if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) {
error = ECONNRESET;
goto out;
}
tp = intotcpcb(inp);
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
#ifdef TCP_SIGNATURE
case TCP_MD5SIG:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
if (optval > 0)
tp->t_flags |= TF_SIGNATURE;
else
tp->t_flags &= ~TF_SIGNATURE;
break;
#endif /* TCP_SIGNATURE */
case TCP_NODELAY:
case TCP_NOOPT:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
switch (sopt->sopt_name) {
case TCP_NODELAY:
opt = TF_NODELAY;
break;
case TCP_NOOPT:
opt = TF_NOOPT;
break;
default:
opt = 0; /* dead code to fool gcc */
break;
}
if (optval)
tp->t_flags |= opt;
else
tp->t_flags &= ~opt;
break;
case TCP_NOPUSH:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
if (optval)
tp->t_flags |= TF_NOPUSH;
else {
tp->t_flags &= ~TF_NOPUSH;
error = tcp_output(tp);
}
break;
case TCP_MAXSEG:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
if (optval > 0 && optval <= tp->t_maxseg &&
optval + 40 >= tcp_minmss)
tp->t_maxseg = optval;
else
error = EINVAL;
break;
case TCP_INFO:
error = EINVAL;
break;
default:
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
#ifdef TCP_SIGNATURE
case TCP_MD5SIG:
optval = (tp->t_flags & TF_SIGNATURE) ? 1 : 0;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
#endif
case TCP_NODELAY:
optval = tp->t_flags & TF_NODELAY;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_MAXSEG:
optval = tp->t_maxseg;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_NOOPT:
optval = tp->t_flags & TF_NOOPT;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_NOPUSH:
optval = tp->t_flags & TF_NOPUSH;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case TCP_INFO:
tcp_fill_info(tp, &ti);
error = sooptcopyout(sopt, &ti, sizeof ti);
break;
default:
error = ENOPROTOOPT;
break;
}
break;
}
out:
INP_UNLOCK(inp);
return (error);
}
/*
* tcp_sendspace and tcp_recvspace are the default send and receive window
* sizes, respectively. These are obsolescent (this information should
* be set by the route).
*/
u_long tcp_sendspace = 1024*32;
SYSCTL_ULONG(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLFLAG_RW,
&tcp_sendspace , 0, "Maximum outgoing TCP datagram size");
u_long tcp_recvspace = 1024*64;
SYSCTL_ULONG(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
&tcp_recvspace , 0, "Maximum incoming TCP datagram size");
/*
* Attach TCP protocol to socket, allocating
* internet protocol control block, tcp control block,
* bufer space, and entering LISTEN state if to accept connections.
*/
static int
tcp_attach(struct socket *so)
{
struct tcpcb *tp;
struct inpcb *inp;
int error;
#ifdef INET6
int isipv6 = INP_CHECK_SOCKAF(so, AF_INET6) != 0;
#endif
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, tcp_sendspace, tcp_recvspace);
if (error)
return (error);
}
so->so_rcv.sb_flags |= SB_AUTOSIZE;
so->so_snd.sb_flags |= SB_AUTOSIZE;
INP_INFO_WLOCK(&tcbinfo);
error = in_pcballoc(so, &tcbinfo);
if (error) {
INP_INFO_WUNLOCK(&tcbinfo);
return (error);
}
inp = sotoinpcb(so);
#ifdef INET6
if (isipv6) {
inp->inp_vflag |= INP_IPV6;
inp->in6p_hops = -1; /* use kernel default */
}
else
#endif
inp->inp_vflag |= INP_IPV4;
tp = tcp_newtcpcb(inp);
if (tp == NULL) {
#ifdef INET6
if (isipv6) {
in6_pcbdetach(inp);
in6_pcbfree(inp);
} else {
#endif
in_pcbdetach(inp);
in_pcbfree(inp);
#ifdef INET6
}
#endif
INP_INFO_WUNLOCK(&tcbinfo);
return (ENOBUFS);
}
tp->t_state = TCPS_CLOSED;
INP_UNLOCK(inp);
INP_INFO_WUNLOCK(&tcbinfo);
return (0);
}
/*
* Initiate (or continue) disconnect.
* If embryonic state, just send reset (once).
* If in ``let data drain'' option and linger null, just drop.
* Otherwise (hard), mark socket disconnecting and drop
* current input data; switch states based on user close, and
* send segment to peer (with FIN).
*/
static void
tcp_disconnect(struct tcpcb *tp)
{
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
INP_INFO_WLOCK_ASSERT(&tcbinfo);
INP_LOCK_ASSERT(inp);
/*
* Neither tcp_close() nor tcp_drop() should return NULL, as the
* socket is still open.
*/
if (tp->t_state < TCPS_ESTABLISHED) {
tp = tcp_close(tp);
KASSERT(tp != NULL,
("tcp_disconnect: tcp_close() returned NULL"));
} else if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
tp = tcp_drop(tp, 0);
KASSERT(tp != NULL,
("tcp_disconnect: tcp_drop() returned NULL"));
} else {
soisdisconnecting(so);
sbflush(&so->so_rcv);
tcp_usrclosed(tp);
if (!(inp->inp_vflag & INP_DROPPED))
tcp_output(tp);
}
}
/*
* User issued close, and wish to trail through shutdown states:
* if never received SYN, just forget it. If got a SYN from peer,
* but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
* If already got a FIN from peer, then almost done; go to LAST_ACK
* state. In all other cases, have already sent FIN to peer (e.g.
* after PRU_SHUTDOWN), and just have to play tedious game waiting
* for peer to send FIN or not respond to keep-alives, etc.
* We can let the user exit from the close as soon as the FIN is acked.
*/
static void
tcp_usrclosed(struct tcpcb *tp)
{
INP_INFO_WLOCK_ASSERT(&tcbinfo);
INP_LOCK_ASSERT(tp->t_inpcb);
switch (tp->t_state) {
case TCPS_CLOSED:
case TCPS_LISTEN:
tp->t_state = TCPS_CLOSED;
tp = tcp_close(tp);
/*
* tcp_close() should never return NULL here as the socket is
* still open.
*/
KASSERT(tp != NULL,
("tcp_usrclosed: tcp_close() returned NULL"));
break;
case TCPS_SYN_SENT:
case TCPS_SYN_RECEIVED:
tp->t_flags |= TF_NEEDFIN;
break;
case TCPS_ESTABLISHED:
tp->t_state = TCPS_FIN_WAIT_1;
break;
case TCPS_CLOSE_WAIT:
tp->t_state = TCPS_LAST_ACK;
break;
}
if (tp && tp->t_state >= TCPS_FIN_WAIT_2) {
soisdisconnected(tp->t_inpcb->inp_socket);
/* To prevent the connection hanging in FIN_WAIT_2 forever. */
if (tp->t_state == TCPS_FIN_WAIT_2) {
int timeout;
timeout = (tcp_fast_finwait2_recycle) ?
tcp_finwait2_timeout : tcp_maxidle;
tcp_timer_activate(tp, TT_2MSL, timeout);
}
}
}
#ifdef DDB
static void
db_print_indent(int indent)
{
int i;
for (i = 0; i < indent; i++)
db_printf(" ");
}
static void
db_print_tstate(int t_state)
{
switch (t_state) {
case TCPS_CLOSED:
db_printf("TCPS_CLOSED");
return;
case TCPS_LISTEN:
db_printf("TCPS_LISTEN");
return;
case TCPS_SYN_SENT:
db_printf("TCPS_SYN_SENT");
return;
case TCPS_SYN_RECEIVED:
db_printf("TCPS_SYN_RECEIVED");
return;
case TCPS_ESTABLISHED:
db_printf("TCPS_ESTABLISHED");
return;
case TCPS_CLOSE_WAIT:
db_printf("TCPS_CLOSE_WAIT");
return;
case TCPS_FIN_WAIT_1:
db_printf("TCPS_FIN_WAIT_1");
return;
case TCPS_CLOSING:
db_printf("TCPS_CLOSING");
return;
case TCPS_LAST_ACK:
db_printf("TCPS_LAST_ACK");
return;
case TCPS_FIN_WAIT_2:
db_printf("TCPS_FIN_WAIT_2");
return;
case TCPS_TIME_WAIT:
db_printf("TCPS_TIME_WAIT");
return;
default:
db_printf("unknown");
return;
}
}
static void
db_print_tflags(u_int t_flags)
{
int comma;
comma = 0;
if (t_flags & TF_ACKNOW) {
db_printf("%sTF_ACKNOW", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_DELACK) {
db_printf("%sTF_DELACK", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NODELAY) {
db_printf("%sTF_NODELAY", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NOOPT) {
db_printf("%sTF_NOOPT", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_SENTFIN) {
db_printf("%sTF_SENTFIN", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_REQ_SCALE) {
db_printf("%sTF_REQ_SCALE", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_RCVD_SCALE) {
db_printf("%sTF_RECVD_SCALE", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_REQ_TSTMP) {
db_printf("%sTF_REQ_TSTMP", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_RCVD_TSTMP) {
db_printf("%sTF_RCVD_TSTMP", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_SACK_PERMIT) {
db_printf("%sTF_SACK_PERMIT", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NEEDSYN) {
db_printf("%sTF_NEEDSYN", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NEEDFIN) {
db_printf("%sTF_NEEDFIN", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NOPUSH) {
db_printf("%sTF_NOPUSH", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_NOPUSH) {
db_printf("%sTF_NOPUSH", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_MORETOCOME) {
db_printf("%sTF_MORETOCOME", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_LQ_OVERFLOW) {
db_printf("%sTF_LQ_OVERFLOW", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_LASTIDLE) {
db_printf("%sTF_LASTIDLE", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_RXWIN0SENT) {
db_printf("%sTF_RXWIN0SENT", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_FASTRECOVERY) {
db_printf("%sTF_FASTRECOVERY", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_WASFRECOVERY) {
db_printf("%sTF_WASFRECOVERY", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_SIGNATURE) {
db_printf("%sTF_SIGNATURE", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_FORCEDATA) {
db_printf("%sTF_FORCEDATA", comma ? ", " : "");
comma = 1;
}
if (t_flags & TF_TSO) {
db_printf("%sTF_TSO", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_toobflags(char t_oobflags)
{
int comma;
comma = 0;
if (t_oobflags & TCPOOB_HAVEDATA) {
db_printf("%sTCPOOB_HAVEDATA", comma ? ", " : "");
comma = 1;
}
if (t_oobflags & TCPOOB_HADDATA) {
db_printf("%sTCPOOB_HADDATA", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_tcpcb(struct tcpcb *tp, const char *name, int indent)
{
db_print_indent(indent);
db_printf("%s at %p\n", name, tp);
indent += 2;
db_print_indent(indent);
db_printf("t_segq first: %p t_segqlen: %d t_dupacks: %d\n",
LIST_FIRST(&tp->t_segq), tp->t_segqlen, tp->t_dupacks);
db_print_indent(indent);
db_printf("t_inpcb: %p t_timers: %p tt_active: %x\n",
tp->t_inpcb, tp->t_timers, tp->t_timers->tt_active);
db_print_indent(indent);
db_printf("tt_delack: %i tt_rexmt: %i tt_keep: %i "
"tt_persist: %i tt_2msl: %i\n",
tp->t_timers->tt_delack, tp->t_timers->tt_rexmt,
tp->t_timers->tt_keep, tp->t_timers->tt_persist,
tp->t_timers->tt_2msl);
db_print_indent(indent);
db_printf("t_state: %d (", tp->t_state);
db_print_tstate(tp->t_state);
db_printf(")\n");
db_print_indent(indent);
db_printf("t_flags: 0x%x (", tp->t_flags);
db_print_tflags(tp->t_flags);
db_printf(")\n");
db_print_indent(indent);
db_printf("snd_una: 0x%08x snd_max: 0x%08x snd_nxt: x0%08x\n",
tp->snd_una, tp->snd_max, tp->snd_nxt);
db_print_indent(indent);
db_printf("snd_up: 0x%08x snd_wl1: 0x%08x snd_wl2: 0x%08x\n",
tp->snd_up, tp->snd_wl1, tp->snd_wl2);
db_print_indent(indent);
db_printf("iss: 0x%08x irs: 0x%08x rcv_nxt: 0x%08x\n",
tp->iss, tp->irs, tp->rcv_nxt);
db_print_indent(indent);
db_printf("rcv_adv: 0x%08x rcv_wnd: %lu rcv_up: 0x%08x\n",
tp->rcv_adv, tp->rcv_wnd, tp->rcv_up);
db_print_indent(indent);
db_printf("snd_wnd: %lu snd_cwnd: %lu snd_bwnd: %lu\n",
tp->snd_wnd, tp->snd_cwnd, tp->snd_bwnd);
db_print_indent(indent);
db_printf("snd_ssthresh: %lu snd_bandwidth: %lu snd_recover: "
"0x%08x\n", tp->snd_ssthresh, tp->snd_bandwidth,
tp->snd_recover);
db_print_indent(indent);
db_printf("t_maxopd: %u t_rcvtime: %lu t_startime: %lu\n",
tp->t_maxopd, tp->t_rcvtime, tp->t_starttime);
db_print_indent(indent);
db_printf("t_rttime: %d t_rtsq: 0x%08x t_bw_rtttime: %d\n",
tp->t_rtttime, tp->t_rtseq, tp->t_bw_rtttime);
db_print_indent(indent);
db_printf("t_bw_rtseq: 0x%08x t_rxtcur: %d t_maxseg: %u "
"t_srtt: %d\n", tp->t_bw_rtseq, tp->t_rxtcur, tp->t_maxseg,
tp->t_srtt);
db_print_indent(indent);
db_printf("t_rttvar: %d t_rxtshift: %d t_rttmin: %u "
"t_rttbest: %u\n", tp->t_rttvar, tp->t_rxtshift, tp->t_rttmin,
tp->t_rttbest);
db_print_indent(indent);
db_printf("t_rttupdated: %lu max_sndwnd: %lu t_softerror: %d\n",
tp->t_rttupdated, tp->max_sndwnd, tp->t_softerror);
db_print_indent(indent);
db_printf("t_oobflags: 0x%x (", tp->t_oobflags);
db_print_toobflags(tp->t_oobflags);
db_printf(") t_iobc: 0x%02x\n", tp->t_iobc);
db_print_indent(indent);
db_printf("snd_scale: %u rcv_scale: %u request_r_scale: %u\n",
tp->snd_scale, tp->rcv_scale, tp->request_r_scale);
db_print_indent(indent);
db_printf("requested_s_scale: %u ts_recent: %u ts_recent_age: "
"%lu\n", tp->requested_s_scale, tp->ts_recent, tp->ts_recent_age);
db_print_indent(indent);
db_printf("ts_offset: %u last_ack_sent: 0x%08x snd_cwnd_prev: "
"%lu\n", tp->ts_offset, tp->last_ack_sent, tp->snd_cwnd_prev);
db_print_indent(indent);
db_printf("snd_ssthresh_prev: %lu snd_recover_prev: 0x%08x "
"t_badrxtwin: %lu\n", tp->snd_ssthresh_prev,
tp->snd_recover_prev, tp->t_badrxtwin);
db_print_indent(indent);
db_printf("sack_enable: %d snd_numholes: %d snd_holes first: %p\n",
tp->sack_enable, tp->snd_numholes, TAILQ_FIRST(&tp->snd_holes));
db_print_indent(indent);
db_printf("snd_fack: 0x%08x rcv_numsacks: %d sack_newdata: "
"0x%08x\n", tp->snd_fack, tp->rcv_numsacks, tp->sack_newdata);
/* Skip sackblks, sackhint. */
db_print_indent(indent);
db_printf("t_rttlow: %d rfbuf_ts: %u rfbuf_cnt: %d\n",
tp->t_rttlow, tp->rfbuf_ts, tp->rfbuf_cnt);
}
DB_SHOW_COMMAND(tcpcb, db_show_tcpcb)
{
struct tcpcb *tp;
if (!have_addr) {
db_printf("usage: show tcpcb <addr>\n");
return;
}
tp = (struct tcpcb *)addr;
db_print_tcpcb(tp, "tcpcb", 0);
}
#endif