1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-03 12:35:02 +00:00
freebsd/sys/i386/pci/pci_pir.c

668 lines
16 KiB
C

/*
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
* Copyright (c) 2000, BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*
*/
#include <sys/param.h> /* XXX trim includes */
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/md_var.h>
#include <pci/pcivar.h>
#include <pci/pcireg.h>
#include <isa/isavar.h>
#include <machine/nexusvar.h>
#include <machine/pci_cfgreg.h>
#include <machine/segments.h>
#include <machine/pc/bios.h>
#ifdef APIC_IO
#include <machine/smp.h>
#endif /* APIC_IO */
#include "pcib_if.h"
static int cfgmech;
static int devmax;
static int usebios;
static int pci_cfgintr_unique(struct PIR_entry *pe, int pin);
static int pci_cfgintr_linked(struct PIR_entry *pe, int pin);
static int pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin);
static int pci_cfgintr_virgin(struct PIR_entry *pe, int pin);
static int pcibios_cfgread(int bus, int slot, int func, int reg, int bytes);
static void pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
static int pcibios_cfgopen(void);
static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes);
static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
static int pcireg_cfgopen(void);
static struct PIR_table *pci_route_table;
static int pci_route_count;
/*
* Initialise access to PCI configuration space
*/
int
pci_cfgregopen(void)
{
static int opened = 0;
u_long sigaddr;
static struct PIR_table *pt;
u_int8_t ck, *cv;
int i;
if (opened)
return(1);
if (pcibios_cfgopen() != 0) {
usebios = 1;
} else if (pcireg_cfgopen() != 0) {
usebios = 0;
} else {
return(0);
}
/*
* Look for the interrupt routing table.
*/
/* XXX use PCI BIOS if it's available */
if ((pt == NULL) && ((sigaddr = bios_sigsearch(0, "$PIR", 4, 16, 0)) != 0)) {
pt = (struct PIR_table *)(uintptr_t)BIOS_PADDRTOVADDR(sigaddr);
for (cv = (u_int8_t *)pt, ck = 0, i = 0; i < (pt->pt_header.ph_length); i++) {
ck += cv[i];
}
if (ck == 0) {
pci_route_table = pt;
pci_route_count = (pt->pt_header.ph_length - sizeof(struct PIR_header)) / sizeof(struct PIR_entry);
printf("Using $PIR table, %d entries at %p\n", pci_route_count, pci_route_table);
}
}
opened = 1;
return(1);
}
/*
* Read configuration space register
*/
static u_int32_t
pci_do_cfgregread(int bus, int slot, int func, int reg, int bytes)
{
return(usebios ?
pcibios_cfgread(bus, slot, func, reg, bytes) :
pcireg_cfgread(bus, slot, func, reg, bytes));
}
u_int32_t
pci_cfgregread(int bus, int slot, int func, int reg, int bytes)
{
#ifdef APIC_IO
/*
* If we are using the APIC, the contents of the intline register will probably
* be wrong (since they are set up for use with the PIC.
* Rather than rewrite these registers (maybe that would be smarter) we trap
* attempts to read them and translate to our private vector numbers.
*/
if ((reg == PCIR_INTLINE) && (bytes == 1)) {
int pin, line;
pin = pci_do_cfgregread(bus, slot, func, PCIR_INTPIN, 1);
line = pci_do_cfgregread(bus, slot, func, PCIR_INTLINE, 1);
if (pin != 0) {
int airq;
airq = pci_apic_irq(bus, slot, pin);
if (airq >= 0) {
/* PCI specific entry found in MP table */
if (airq != line)
undirect_pci_irq(line);
return(airq);
} else {
/*
* PCI interrupts might be redirected to the
* ISA bus according to some MP tables. Use the
* same methods as used by the ISA devices
* devices to find the proper IOAPIC int pin.
*/
airq = isa_apic_irq(line);
if ((airq >= 0) && (airq != line)) {
/* XXX: undirect_pci_irq() ? */
undirect_isa_irq(line);
return(airq);
}
}
}
return(line);
}
#endif /* APIC_IO */
return(pci_do_cfgregread(bus, slot, func, reg, bytes));
}
/*
* Write configuration space register
*/
void
pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes)
{
return(usebios ?
pcibios_cfgwrite(bus, slot, func, reg, data, bytes) :
pcireg_cfgwrite(bus, slot, func, reg, data, bytes));
}
/*
* Route a PCI interrupt
*
* XXX we don't do anything "right" with the function number in the PIR table
* (because the consumer isn't currently passing it in). We don't care
* anyway, due to the way PCI interrupts are assigned.
*/
int
pci_cfgintr(int bus, int device, int pin)
{
struct PIR_entry *pe;
int i, irq;
struct bios_regs args;
if ((bus < 0) || (bus > 255) || (device < 0) || (device > 255) ||
(pin < 1) || (pin > 4))
return(255);
/*
* Scan the entry table for a contender
*/
for (i = 0, pe = &pci_route_table->pt_entry[0]; i < pci_route_count; i++, pe++) {
if ((bus != pe->pe_bus) || (device != pe->pe_device))
continue;
irq = pci_cfgintr_unique(pe, pin);
if (irq == 255)
irq = pci_cfgintr_linked(pe, pin);
if (irq == 255)
irq = pci_cfgintr_virgin(pe, pin);
if (irq == 255)
break;
/*
* Ask the BIOS to route the interrupt
*/
args.eax = PCIBIOS_ROUTE_INTERRUPT;
args.ebx = (bus << 8) | (device << 3);
args.ecx = (irq << 8) | (0xa + pin - 1); /* pin value is 0xa - 0xd */
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
/*
* XXX if it fails, we should try to smack the router hardware directly
*/
printf("pci_cfgintr: %d:%d INT%c routed to irq %d\n",
bus, device, 'A' + pin - 1, irq);
return(irq);
}
printf("pci_cfgintr: can't route an interrupt to %d:%d INT%c\n", bus, device, 'A' + pin - 1);
return(255);
}
/*
* Look to see if the routing table claims this pin is uniquely routed.
*/
static int
pci_cfgintr_unique(struct PIR_entry *pe, int pin)
{
int irq;
if (powerof2(pe->pe_intpin[pin - 1].irqs)) {
irq = ffs(pe->pe_intpin[pin - 1].irqs) - 1;
printf("pci_cfgintr_unique: hard-routed to irq %d\n", irq);
return(irq);
}
return(255);
}
/*
* Look for another device which shares the same link byte and
* already has a unique IRQ, or which has had one routed already.
*/
static int
pci_cfgintr_linked(struct PIR_entry *pe, int pin)
{
struct PIR_entry *oe;
struct PIR_intpin *pi;
int i, j, irq;
/*
* Scan table slots.
*/
for (i = 0, oe = &pci_route_table->pt_entry[0]; i < pci_route_count; i++, oe++) {
/* scan interrupt pins */
for (j = 0, pi = &oe->pe_intpin[0]; j < 4; j++, pi++) {
/* don't look at the entry we're trying to match with */
if ((pe == oe) && (i == (pin - 1)))
continue;
/* compare link bytes */
if (pi->link != pe->pe_intpin[pin - 1].link)
continue;
/* link destination mapped to a unique interrupt? */
if (powerof2(pi->irqs)) {
irq = ffs(pi->irqs) - 1;
printf("pci_cfgintr_linked: linked (%x) to hard-routed irq %d\n",
pi->link, irq);
return(irq);
}
/* look for the real PCI device that matches this table entry */
if ((irq = pci_cfgintr_search(pe, oe->pe_bus, oe->pe_device, j, pin)) != 255)
return(irq);
}
}
return(255);
}
/*
* Scan for the real PCI device at (bus)/(device) using intpin (matchpin) and
* see if it has already been assigned an interrupt.
*/
static int
pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin)
{
devclass_t pci_devclass;
device_t *pci_devices;
int pci_count;
device_t *pci_children;
int pci_childcount;
device_t *busp, *childp;
int i, j, irq;
/*
* Find all the PCI busses.
*/
pci_count = 0;
if ((pci_devclass = devclass_find("pci")) != NULL)
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
/*
* Scan all the PCI busses/devices looking for this one.
*/
irq = 255;
for (i = 0, busp = pci_devices; (i < pci_count) && (irq == 255); i++, busp++) {
pci_childcount = 0;
device_get_children(*busp, &pci_children, &pci_childcount);
for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
if ((pci_get_bus(*childp) == bus) &&
(pci_get_slot(*childp) == device) &&
(pci_get_intpin(*childp) == matchpin) &&
((irq = pci_get_irq(*childp)) != 255)) {
printf("pci_cfgintr_search: linked (%x) to configured irq %d at %d:%d:%d\n",
pe->pe_intpin[pin - 1].link, irq,
pci_get_bus(*childp), pci_get_slot(*childp), pci_get_function(*childp));
break;
}
}
if (pci_children != NULL)
free(pci_children, M_TEMP);
}
if (pci_devices != NULL)
free(pci_devices, M_TEMP);
return(irq);
}
/*
* Pick a suitable IRQ from those listed as routable to this device.
*/
static int
pci_cfgintr_virgin(struct PIR_entry *pe, int pin)
{
int irq, ibit;
/* first scan the set of PCI-only interrupts and see if any of these are routable */
for (irq = 0; irq < 16; irq++) {
ibit = (1 << irq);
/* can we use this interrupt? */
if ((pci_route_table->pt_header.ph_pci_irqs & ibit) &&
(pe->pe_intpin[pin - 1].irqs & ibit)) {
printf("pci_cfgintr_virgin: using routable PCI-only interrupt %d\n", irq);
return(irq);
}
}
/* life is tough, so just pick an interrupt */
for (irq = 0; irq < 16; irq++) {
ibit = (1 << irq);
if (pe->pe_intpin[pin - 1].irqs & ibit) {
printf("pci_cfgintr_virgin: using routable interrupt %d\n", irq);
return(irq);
}
}
return(255);
}
/*
* Config space access using BIOS functions
*/
static int
pcibios_cfgread(int bus, int slot, int func, int reg, int bytes)
{
struct bios_regs args;
u_int mask;
switch(bytes) {
case 1:
args.eax = PCIBIOS_READ_CONFIG_BYTE;
mask = 0xff;
break;
case 2:
args.eax = PCIBIOS_READ_CONFIG_WORD;
mask = 0xffff;
break;
case 4:
args.eax = PCIBIOS_READ_CONFIG_DWORD;
mask = 0xffffffff;
break;
default:
return(-1);
}
args.ebx = (bus << 8) | (slot << 3) | func;
args.edi = reg;
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
/* check call results? */
return(args.ecx & mask);
}
static void
pcibios_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
{
struct bios_regs args;
switch(bytes) {
case 1:
args.eax = PCIBIOS_WRITE_CONFIG_BYTE;
break;
case 2:
args.eax = PCIBIOS_WRITE_CONFIG_WORD;
break;
case 4:
args.eax = PCIBIOS_WRITE_CONFIG_DWORD;
break;
default:
return;
}
args.ebx = (bus << 8) | (slot << 3) | func;
args.ecx = data;
args.edi = reg;
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL));
}
/*
* Determine whether there is a PCI BIOS present
*/
static int
pcibios_cfgopen(void)
{
/* check for a found entrypoint */
return(PCIbios.entry != 0);
}
/*
* Configuration space access using direct register operations
*/
/* enable configuration space accesses and return data port address */
static int
pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes)
{
int dataport = 0;
if (bus <= PCI_BUSMAX
&& slot < devmax
&& func <= PCI_FUNCMAX
&& reg <= PCI_REGMAX
&& bytes != 3
&& (unsigned) bytes <= 4
&& (reg & (bytes -1)) == 0) {
switch (cfgmech) {
case 1:
outl(CONF1_ADDR_PORT, (1 << 31)
| (bus << 16) | (slot << 11)
| (func << 8) | (reg & ~0x03));
dataport = CONF1_DATA_PORT + (reg & 0x03);
break;
case 2:
outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1));
outb(CONF2_FORWARD_PORT, bus);
dataport = 0xc000 | (slot << 8) | reg;
break;
}
}
return (dataport);
}
/* disable configuration space accesses */
static void
pci_cfgdisable(void)
{
switch (cfgmech) {
case 1:
outl(CONF1_ADDR_PORT, 0);
break;
case 2:
outb(CONF2_ENABLE_PORT, 0);
outb(CONF2_FORWARD_PORT, 0);
break;
}
}
static int
pcireg_cfgread(int bus, int slot, int func, int reg, int bytes)
{
int data = -1;
int port;
port = pci_cfgenable(bus, slot, func, reg, bytes);
if (port != 0) {
switch (bytes) {
case 1:
data = inb(port);
break;
case 2:
data = inw(port);
break;
case 4:
data = inl(port);
break;
}
pci_cfgdisable();
}
return (data);
}
static void
pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
{
int port;
port = pci_cfgenable(bus, slot, func, reg, bytes);
if (port != 0) {
switch (bytes) {
case 1:
outb(port, data);
break;
case 2:
outw(port, data);
break;
case 4:
outl(port, data);
break;
}
pci_cfgdisable();
}
}
/* check whether the configuration mechanism has been correctly identified */
static int
pci_cfgcheck(int maxdev)
{
u_char device;
if (bootverbose)
printf("pci_cfgcheck:\tdevice ");
for (device = 0; device < maxdev; device++) {
unsigned id, class, header;
if (bootverbose)
printf("%d ", device);
id = inl(pci_cfgenable(0, device, 0, 0, 4));
if (id == 0 || id == -1)
continue;
class = inl(pci_cfgenable(0, device, 0, 8, 4)) >> 8;
if (bootverbose)
printf("[class=%06x] ", class);
if (class == 0 || (class & 0xf870ff) != 0)
continue;
header = inb(pci_cfgenable(0, device, 0, 14, 1));
if (bootverbose)
printf("[hdr=%02x] ", header);
if ((header & 0x7e) != 0)
continue;
if (bootverbose)
printf("is there (id=%08x)\n", id);
pci_cfgdisable();
return (1);
}
if (bootverbose)
printf("-- nothing found\n");
pci_cfgdisable();
return (0);
}
static int
pcireg_cfgopen(void)
{
unsigned long mode1res,oldval1;
unsigned char mode2res,oldval2;
oldval1 = inl(CONF1_ADDR_PORT);
if (bootverbose) {
printf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08lx\n",
oldval1);
}
if ((oldval1 & CONF1_ENABLE_MSK) == 0) {
cfgmech = 1;
devmax = 32;
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK);
outb(CONF1_ADDR_PORT +3, 0);
mode1res = inl(CONF1_ADDR_PORT);
outl(CONF1_ADDR_PORT, oldval1);
if (bootverbose)
printf("pci_open(1a):\tmode1res=0x%08lx (0x%08lx)\n",
mode1res, CONF1_ENABLE_CHK);
if (mode1res) {
if (pci_cfgcheck(32))
return (cfgmech);
}
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1);
mode1res = inl(CONF1_ADDR_PORT);
outl(CONF1_ADDR_PORT, oldval1);
if (bootverbose)
printf("pci_open(1b):\tmode1res=0x%08lx (0x%08lx)\n",
mode1res, CONF1_ENABLE_CHK1);
if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) {
if (pci_cfgcheck(32))
return (cfgmech);
}
}
oldval2 = inb(CONF2_ENABLE_PORT);
if (bootverbose) {
printf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n",
oldval2);
}
if ((oldval2 & 0xf0) == 0) {
cfgmech = 2;
devmax = 16;
outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK);
mode2res = inb(CONF2_ENABLE_PORT);
outb(CONF2_ENABLE_PORT, oldval2);
if (bootverbose)
printf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n",
mode2res, CONF2_ENABLE_CHK);
if (mode2res == CONF2_ENABLE_RES) {
if (bootverbose)
printf("pci_open(2a):\tnow trying mechanism 2\n");
if (pci_cfgcheck(16))
return (cfgmech);
}
}
cfgmech = 0;
devmax = 0;
return (cfgmech);
}