mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-16 15:11:52 +00:00
3384154590
This work was based on kame-20010528-freebsd43-snap.tgz and some critical problem after the snap was out were fixed. There are many many changes since last KAME merge. TODO: - The definitions of SADB_* in sys/net/pfkeyv2.h are still different from RFC2407/IANA assignment because of binary compatibility issue. It should be fixed under 5-CURRENT. - ip6po_m member of struct ip6_pktopts is no longer used. But, it is still there because of binary compatibility issue. It should be removed under 5-CURRENT. Reviewed by: itojun Obtained from: KAME MFC after: 3 weeks
2451 lines
65 KiB
C
2451 lines
65 KiB
C
/* $FreeBSD$ */
|
|
/* $KAME: in6.c,v 1.187 2001/05/24 07:43:59 itojun Exp $ */
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in.c 8.2 (Berkeley) 11/15/93
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
#include <net/if_dl.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/if_ether.h>
|
|
#ifndef SCOPEDROUTING
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#endif
|
|
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/mld6_var.h>
|
|
#include <netinet6/ip6_mroute.h>
|
|
#include <netinet6/in6_ifattach.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#ifndef SCOPEDROUTING
|
|
#include <netinet6/in6_pcb.h>
|
|
#endif
|
|
|
|
#include "gif.h"
|
|
#if NGIF > 0
|
|
#include <net/if_gif.h>
|
|
#endif
|
|
|
|
#include <net/net_osdep.h>
|
|
|
|
MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address");
|
|
|
|
/*
|
|
* Definitions of some costant IP6 addresses.
|
|
*/
|
|
const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
|
|
const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
|
|
const struct in6_addr in6addr_nodelocal_allnodes =
|
|
IN6ADDR_NODELOCAL_ALLNODES_INIT;
|
|
const struct in6_addr in6addr_linklocal_allnodes =
|
|
IN6ADDR_LINKLOCAL_ALLNODES_INIT;
|
|
const struct in6_addr in6addr_linklocal_allrouters =
|
|
IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
|
|
|
|
const struct in6_addr in6mask0 = IN6MASK0;
|
|
const struct in6_addr in6mask32 = IN6MASK32;
|
|
const struct in6_addr in6mask64 = IN6MASK64;
|
|
const struct in6_addr in6mask96 = IN6MASK96;
|
|
const struct in6_addr in6mask128 = IN6MASK128;
|
|
|
|
const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
|
|
0, 0, IN6ADDR_ANY_INIT, 0};
|
|
|
|
static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
|
|
struct ifnet *, struct proc *));
|
|
static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
|
|
struct sockaddr_in6 *, int));
|
|
static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
|
|
|
|
struct in6_multihead in6_multihead; /* XXX BSS initialization */
|
|
|
|
/*
|
|
* Subroutine for in6_ifaddloop() and in6_ifremloop().
|
|
* This routine does actual work.
|
|
*/
|
|
static void
|
|
in6_ifloop_request(int cmd, struct ifaddr *ifa)
|
|
{
|
|
struct sockaddr_in6 all1_sa;
|
|
struct rtentry *nrt = NULL;
|
|
int e;
|
|
|
|
bzero(&all1_sa, sizeof(all1_sa));
|
|
all1_sa.sin6_family = AF_INET6;
|
|
all1_sa.sin6_len = sizeof(struct sockaddr_in6);
|
|
all1_sa.sin6_addr = in6mask128;
|
|
|
|
/*
|
|
* We specify the address itself as the gateway, and set the
|
|
* RTF_LLINFO flag, so that the corresponding host route would have
|
|
* the flag, and thus applications that assume traditional behavior
|
|
* would be happy. Note that we assume the caller of the function
|
|
* (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
|
|
* which changes the outgoing interface to the loopback interface.
|
|
*/
|
|
e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
|
|
(struct sockaddr *)&all1_sa,
|
|
RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
|
|
if (e != 0) {
|
|
log(LOG_ERR, "in6_ifloop_request: "
|
|
"%s operation failed for %s (errno=%d)\n",
|
|
cmd == RTM_ADD ? "ADD" : "DELETE",
|
|
ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
|
|
e);
|
|
}
|
|
|
|
/*
|
|
* Make sure rt_ifa be equal to IFA, the second argument of the
|
|
* function.
|
|
* We need this because when we refer to rt_ifa->ia6_flags in
|
|
* ip6_input, we assume that the rt_ifa points to the address instead
|
|
* of the loopback address.
|
|
*/
|
|
if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
|
|
IFAFREE(nrt->rt_ifa);
|
|
IFAREF(ifa);
|
|
nrt->rt_ifa = ifa;
|
|
}
|
|
|
|
/*
|
|
* Report the addition/removal of the address to the routing socket.
|
|
* XXX: since we called rtinit for a p2p interface with a destination,
|
|
* we end up reporting twice in such a case. Should we rather
|
|
* omit the second report?
|
|
*/
|
|
if (nrt) {
|
|
rt_newaddrmsg(cmd, ifa, e, nrt);
|
|
if (cmd == RTM_DELETE) {
|
|
if (nrt->rt_refcnt <= 0) {
|
|
/* XXX: we should free the entry ourselves. */
|
|
nrt->rt_refcnt++;
|
|
rtfree(nrt);
|
|
}
|
|
} else {
|
|
/* the cmd must be RTM_ADD here */
|
|
nrt->rt_refcnt--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add ownaddr as loopback rtentry. We previously add the route only if
|
|
* necessary (ex. on a p2p link). However, since we now manage addresses
|
|
* separately from prefixes, we should always add the route. We can't
|
|
* rely on the cloning mechanism from the corresponding interface route
|
|
* any more.
|
|
*/
|
|
static void
|
|
in6_ifaddloop(struct ifaddr *ifa)
|
|
{
|
|
struct rtentry *rt;
|
|
|
|
/* If there is no loopback entry, allocate one. */
|
|
rt = rtalloc1(ifa->ifa_addr, 0, 0);
|
|
if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
|
|
(rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
|
|
in6_ifloop_request(RTM_ADD, ifa);
|
|
if (rt)
|
|
rt->rt_refcnt--;
|
|
}
|
|
|
|
/*
|
|
* Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
|
|
* if it exists.
|
|
*/
|
|
static void
|
|
in6_ifremloop(struct ifaddr *ifa)
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
struct rtentry *rt;
|
|
int ia_count = 0;
|
|
|
|
/*
|
|
* Some of BSD variants do not remove cloned routes
|
|
* from an interface direct route, when removing the direct route
|
|
* (see comments in net/net_osdep.h). Even for variants that do remove
|
|
* cloned routes, they could fail to remove the cloned routes when
|
|
* we handle multple addresses that share a common prefix.
|
|
* So, we should remove the route corresponding to the deleted address
|
|
* regardless of the result of in6_is_ifloop_auto().
|
|
*/
|
|
|
|
/*
|
|
* Delete the entry only if exact one ifa exists. More than one ifa
|
|
* can exist if we assign a same single address to multiple
|
|
* (probably p2p) interfaces.
|
|
* XXX: we should avoid such a configuration in IPv6...
|
|
*/
|
|
for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
|
|
if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
|
|
ia_count++;
|
|
if (ia_count > 1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ia_count == 1) {
|
|
/*
|
|
* Before deleting, check if a corresponding loopbacked host
|
|
* route surely exists. With this check, we can avoid to
|
|
* delete an interface direct route whose destination is same
|
|
* as the address being removed. This can happen when remofing
|
|
* a subnet-router anycast address on an interface attahced
|
|
* to a shared medium.
|
|
*/
|
|
rt = rtalloc1(ifa->ifa_addr, 0, 0);
|
|
if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 &&
|
|
(rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
|
|
rt->rt_refcnt--;
|
|
in6_ifloop_request(RTM_DELETE, ifa);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
in6_ifindex2scopeid(idx)
|
|
int idx;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_in6 *sin6;
|
|
|
|
if (idx < 0 || if_index < idx)
|
|
return -1;
|
|
ifp = ifindex2ifnet[idx];
|
|
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
|
|
if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
|
|
return sin6->sin6_scope_id & 0xffff;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
in6_mask2len(mask, lim0)
|
|
struct in6_addr *mask;
|
|
u_char *lim0;
|
|
{
|
|
int x = 0, y;
|
|
u_char *lim = lim0, *p;
|
|
|
|
if (lim0 == NULL ||
|
|
lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */
|
|
lim = (u_char *)mask + sizeof(*mask);
|
|
for (p = (u_char *)mask; p < lim; x++, p++) {
|
|
if (*p != 0xff)
|
|
break;
|
|
}
|
|
y = 0;
|
|
if (p < lim) {
|
|
for (y = 0; y < 8; y++) {
|
|
if ((*p & (0x80 >> y)) == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* when the limit pointer is given, do a stricter check on the
|
|
* remaining bits.
|
|
*/
|
|
if (p < lim) {
|
|
if (y != 0 && (*p & (0x00ff >> y)) != 0)
|
|
return(-1);
|
|
for (p = p + 1; p < lim; p++)
|
|
if (*p != 0)
|
|
return(-1);
|
|
}
|
|
|
|
return x * 8 + y;
|
|
}
|
|
|
|
void
|
|
in6_len2mask(mask, len)
|
|
struct in6_addr *mask;
|
|
int len;
|
|
{
|
|
int i;
|
|
|
|
bzero(mask, sizeof(*mask));
|
|
for (i = 0; i < len / 8; i++)
|
|
mask->s6_addr8[i] = 0xff;
|
|
if (len % 8)
|
|
mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
|
|
}
|
|
|
|
#define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
|
|
#define ia62ifa(ia6) (&((ia6)->ia_ifa))
|
|
|
|
int
|
|
in6_control(so, cmd, data, ifp, p)
|
|
struct socket *so;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
struct ifnet *ifp;
|
|
struct proc *p;
|
|
{
|
|
struct in6_ifreq *ifr = (struct in6_ifreq *)data;
|
|
struct in6_ifaddr *ia = NULL;
|
|
struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
|
|
int privileged;
|
|
|
|
privileged = 0;
|
|
if (p == NULL || !suser(p))
|
|
privileged++;
|
|
|
|
switch (cmd) {
|
|
case SIOCGETSGCNT_IN6:
|
|
case SIOCGETMIFCNT_IN6:
|
|
return (mrt6_ioctl(cmd, data));
|
|
}
|
|
|
|
if (ifp == NULL)
|
|
return(EOPNOTSUPP);
|
|
|
|
switch (cmd) {
|
|
case SIOCSNDFLUSH_IN6:
|
|
case SIOCSPFXFLUSH_IN6:
|
|
case SIOCSRTRFLUSH_IN6:
|
|
case SIOCSDEFIFACE_IN6:
|
|
case SIOCSIFINFO_FLAGS:
|
|
if (!privileged)
|
|
return(EPERM);
|
|
/*fall through*/
|
|
case OSIOCGIFINFO_IN6:
|
|
case SIOCGIFINFO_IN6:
|
|
case SIOCGDRLST_IN6:
|
|
case SIOCGPRLST_IN6:
|
|
case SIOCGNBRINFO_IN6:
|
|
case SIOCGDEFIFACE_IN6:
|
|
return(nd6_ioctl(cmd, data, ifp));
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFPREFIX_IN6:
|
|
case SIOCDIFPREFIX_IN6:
|
|
case SIOCAIFPREFIX_IN6:
|
|
case SIOCCIFPREFIX_IN6:
|
|
case SIOCSGIFPREFIX_IN6:
|
|
case SIOCGIFPREFIX_IN6:
|
|
log(LOG_NOTICE,
|
|
"prefix ioctls are now invalidated. "
|
|
"please use ifconfig.\n");
|
|
return(EOPNOTSUPP);
|
|
}
|
|
|
|
switch(cmd) {
|
|
case SIOCSSCOPE6:
|
|
if (!privileged)
|
|
return(EPERM);
|
|
return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id));
|
|
break;
|
|
case SIOCGSCOPE6:
|
|
return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id));
|
|
break;
|
|
case SIOCGSCOPE6DEF:
|
|
return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id));
|
|
break;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SIOCALIFADDR:
|
|
case SIOCDLIFADDR:
|
|
if (!privileged)
|
|
return(EPERM);
|
|
/*fall through*/
|
|
case SIOCGLIFADDR:
|
|
return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
|
|
}
|
|
|
|
/*
|
|
* Find address for this interface, if it exists.
|
|
*/
|
|
if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */
|
|
struct sockaddr_in6 *sa6 =
|
|
(struct sockaddr_in6 *)&ifra->ifra_addr;
|
|
|
|
if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
|
|
if (sa6->sin6_addr.s6_addr16[1] == 0) {
|
|
/* link ID is not embedded by the user */
|
|
sa6->sin6_addr.s6_addr16[1] =
|
|
htons(ifp->if_index);
|
|
} else if (sa6->sin6_addr.s6_addr16[1] !=
|
|
htons(ifp->if_index)) {
|
|
return(EINVAL); /* link ID contradicts */
|
|
}
|
|
if (sa6->sin6_scope_id) {
|
|
if (sa6->sin6_scope_id !=
|
|
(u_int32_t)ifp->if_index)
|
|
return(EINVAL);
|
|
sa6->sin6_scope_id = 0; /* XXX: good way? */
|
|
}
|
|
}
|
|
ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFADDR_IN6:
|
|
case SIOCSIFDSTADDR_IN6:
|
|
case SIOCSIFNETMASK_IN6:
|
|
/*
|
|
* Since IPv6 allows a node to assign multiple addresses
|
|
* on a single interface, SIOCSIFxxx ioctls are not suitable
|
|
* and should be unused.
|
|
*/
|
|
/* we decided to obsolete this command (20000704) */
|
|
return(EINVAL);
|
|
|
|
case SIOCDIFADDR_IN6:
|
|
/*
|
|
* for IPv4, we look for existing in_ifaddr here to allow
|
|
* "ifconfig if0 delete" to remove first IPv4 address on the
|
|
* interface. For IPv6, as the spec allow multiple interface
|
|
* address from the day one, we consider "remove the first one"
|
|
* semantics to be not preferable.
|
|
*/
|
|
if (ia == NULL)
|
|
return(EADDRNOTAVAIL);
|
|
/* FALLTHROUGH */
|
|
case SIOCAIFADDR_IN6:
|
|
/*
|
|
* We always require users to specify a valid IPv6 address for
|
|
* the corresponding operation.
|
|
*/
|
|
if (ifra->ifra_addr.sin6_family != AF_INET6 ||
|
|
ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
|
|
return(EAFNOSUPPORT);
|
|
if (!privileged)
|
|
return(EPERM);
|
|
|
|
break;
|
|
|
|
case SIOCGIFADDR_IN6:
|
|
/* This interface is basically deprecated. use SIOCGIFCONF. */
|
|
/* fall through */
|
|
case SIOCGIFAFLAG_IN6:
|
|
case SIOCGIFNETMASK_IN6:
|
|
case SIOCGIFDSTADDR_IN6:
|
|
case SIOCGIFALIFETIME_IN6:
|
|
/* must think again about its semantics */
|
|
if (ia == NULL)
|
|
return(EADDRNOTAVAIL);
|
|
break;
|
|
case SIOCSIFALIFETIME_IN6:
|
|
{
|
|
struct in6_addrlifetime *lt;
|
|
|
|
if (!privileged)
|
|
return(EPERM);
|
|
if (ia == NULL)
|
|
return(EADDRNOTAVAIL);
|
|
/* sanity for overflow - beware unsigned */
|
|
lt = &ifr->ifr_ifru.ifru_lifetime;
|
|
if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
|
|
&& lt->ia6t_vltime + time_second < time_second) {
|
|
return EINVAL;
|
|
}
|
|
if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
|
|
&& lt->ia6t_pltime + time_second < time_second) {
|
|
return EINVAL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCGIFADDR_IN6:
|
|
ifr->ifr_addr = ia->ia_addr;
|
|
break;
|
|
|
|
case SIOCGIFDSTADDR_IN6:
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
|
|
return(EINVAL);
|
|
/*
|
|
* XXX: should we check if ifa_dstaddr is NULL and return
|
|
* an error?
|
|
*/
|
|
ifr->ifr_dstaddr = ia->ia_dstaddr;
|
|
break;
|
|
|
|
case SIOCGIFNETMASK_IN6:
|
|
ifr->ifr_addr = ia->ia_prefixmask;
|
|
break;
|
|
|
|
case SIOCGIFAFLAG_IN6:
|
|
ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
|
|
break;
|
|
|
|
case SIOCGIFSTAT_IN6:
|
|
if (ifp == NULL)
|
|
return EINVAL;
|
|
if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax
|
|
|| in6_ifstat[ifp->if_index] == NULL) {
|
|
/* return EAFNOSUPPORT? */
|
|
bzero(&ifr->ifr_ifru.ifru_stat,
|
|
sizeof(ifr->ifr_ifru.ifru_stat));
|
|
} else
|
|
ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index];
|
|
break;
|
|
|
|
case SIOCGIFSTAT_ICMP6:
|
|
if (ifp == NULL)
|
|
return EINVAL;
|
|
if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax ||
|
|
icmp6_ifstat[ifp->if_index] == NULL) {
|
|
/* return EAFNOSUPPORT? */
|
|
bzero(&ifr->ifr_ifru.ifru_stat,
|
|
sizeof(ifr->ifr_ifru.ifru_icmp6stat));
|
|
} else
|
|
ifr->ifr_ifru.ifru_icmp6stat =
|
|
*icmp6_ifstat[ifp->if_index];
|
|
break;
|
|
|
|
case SIOCGIFALIFETIME_IN6:
|
|
ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
|
|
break;
|
|
|
|
case SIOCSIFALIFETIME_IN6:
|
|
ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
|
|
/* for sanity */
|
|
if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
|
|
ia->ia6_lifetime.ia6t_expire =
|
|
time_second + ia->ia6_lifetime.ia6t_vltime;
|
|
} else
|
|
ia->ia6_lifetime.ia6t_expire = 0;
|
|
if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
|
|
ia->ia6_lifetime.ia6t_preferred =
|
|
time_second + ia->ia6_lifetime.ia6t_pltime;
|
|
} else
|
|
ia->ia6_lifetime.ia6t_preferred = 0;
|
|
break;
|
|
|
|
case SIOCAIFADDR_IN6:
|
|
{
|
|
int i, error = 0;
|
|
struct nd_prefix pr0, *pr;
|
|
|
|
/*
|
|
* first, make or update the interface address structure,
|
|
* and link it to the list.
|
|
*/
|
|
if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
|
|
return(error);
|
|
|
|
/*
|
|
* then, make the prefix on-link on the interface.
|
|
* XXX: we'd rather create the prefix before the address, but
|
|
* we need at least one address to install the corresponding
|
|
* interface route, so we configure the address first.
|
|
*/
|
|
|
|
/*
|
|
* convert mask to prefix length (prefixmask has already
|
|
* been validated in in6_update_ifa().
|
|
*/
|
|
bzero(&pr0, sizeof(pr0));
|
|
pr0.ndpr_ifp = ifp;
|
|
pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
|
|
NULL);
|
|
if (pr0.ndpr_plen == 128)
|
|
break; /* we don't need to install a host route. */
|
|
pr0.ndpr_prefix = ifra->ifra_addr;
|
|
pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
|
|
/* apply the mask for safety. */
|
|
for (i = 0; i < 4; i++) {
|
|
pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
|
|
ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
|
|
}
|
|
/*
|
|
* XXX: since we don't have enough APIs, we just set inifinity
|
|
* to lifetimes. They can be overridden by later advertised
|
|
* RAs (when accept_rtadv is non 0), but we'd rather intend
|
|
* such a behavior.
|
|
*/
|
|
pr0.ndpr_raf_onlink = 1; /* should be configurable? */
|
|
pr0.ndpr_raf_auto =
|
|
((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
|
|
pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
|
|
pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
|
|
|
|
/* add the prefix if there's one. */
|
|
if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
|
|
/*
|
|
* nd6_prelist_add will install the corresponding
|
|
* interface route.
|
|
*/
|
|
if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
|
|
return(error);
|
|
if (pr == NULL) {
|
|
log(LOG_ERR, "nd6_prelist_add succedded but "
|
|
"no prefix\n");
|
|
return(EINVAL); /* XXX panic here? */
|
|
}
|
|
}
|
|
if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
|
|
== NULL) {
|
|
/* XXX: this should not happen! */
|
|
log(LOG_ERR, "in6_control: addition succeeded, but"
|
|
" no ifaddr\n");
|
|
} else {
|
|
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
|
|
ia->ia6_ndpr == NULL) { /* new autoconfed addr */
|
|
ia->ia6_ndpr = pr;
|
|
pr->ndpr_refcnt++;
|
|
|
|
/*
|
|
* If this is the first autoconf address from
|
|
* the prefix, create a temporary address
|
|
* as well (when specified).
|
|
*/
|
|
if (ip6_use_tempaddr &&
|
|
pr->ndpr_refcnt == 1) {
|
|
int e;
|
|
if ((e = in6_tmpifadd(ia, 1)) != 0) {
|
|
log(LOG_NOTICE, "in6_control: "
|
|
"failed to create a "
|
|
"temporary address, "
|
|
"errno=%d\n",
|
|
e);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this might affect the status of autoconfigured
|
|
* addresses, that is, this address might make
|
|
* other addresses detached.
|
|
*/
|
|
pfxlist_onlink_check();
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SIOCDIFADDR_IN6:
|
|
{
|
|
int i = 0;
|
|
struct nd_prefix pr0, *pr;
|
|
|
|
/*
|
|
* If the address being deleted is the only one that owns
|
|
* the corresponding prefix, expire the prefix as well.
|
|
* XXX: theoretically, we don't have to warry about such
|
|
* relationship, since we separate the address management
|
|
* and the prefix management. We do this, however, to provide
|
|
* as much backward compatibility as possible in terms of
|
|
* the ioctl operation.
|
|
*/
|
|
bzero(&pr0, sizeof(pr0));
|
|
pr0.ndpr_ifp = ifp;
|
|
pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
|
|
NULL);
|
|
if (pr0.ndpr_plen == 128)
|
|
goto purgeaddr;
|
|
pr0.ndpr_prefix = ia->ia_addr;
|
|
pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
|
|
for (i = 0; i < 4; i++) {
|
|
pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
|
|
ia->ia_prefixmask.sin6_addr.s6_addr32[i];
|
|
}
|
|
/*
|
|
* The logic of the following condition is a bit complicated.
|
|
* We expire the prefix when
|
|
* 1. the address obeys autoconfiguration and it is the
|
|
* only owner of the associated prefix, or
|
|
* 2. the address does not obey autoconf and there is no
|
|
* other owner of the prefix.
|
|
*/
|
|
if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
|
|
(((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
|
|
pr->ndpr_refcnt == 1) ||
|
|
((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 &&
|
|
pr->ndpr_refcnt == 0))) {
|
|
pr->ndpr_expire = 1; /* XXX: just for expiration */
|
|
}
|
|
|
|
purgeaddr:
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
if (ifp == NULL || ifp->if_ioctl == 0)
|
|
return(EOPNOTSUPP);
|
|
return((*ifp->if_ioctl)(ifp, cmd, data));
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Update parameters of an IPv6 interface address.
|
|
* If necessary, a new entry is created and linked into address chains.
|
|
* This function is separated from in6_control().
|
|
* XXX: should this be performed under splnet()?
|
|
*/
|
|
int
|
|
in6_update_ifa(ifp, ifra, ia)
|
|
struct ifnet *ifp;
|
|
struct in6_aliasreq *ifra;
|
|
struct in6_ifaddr *ia;
|
|
{
|
|
int error = 0, hostIsNew = 0, plen = -1;
|
|
struct in6_ifaddr *oia;
|
|
struct sockaddr_in6 dst6;
|
|
struct in6_addrlifetime *lt;
|
|
|
|
/* Validate parameters */
|
|
if (ifp == NULL || ifra == NULL) /* this maybe redundant */
|
|
return(EINVAL);
|
|
|
|
/*
|
|
* The destination address for a p2p link must have a family
|
|
* of AF_UNSPEC or AF_INET6.
|
|
*/
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
|
|
ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
|
|
ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
|
|
return(EAFNOSUPPORT);
|
|
/*
|
|
* validate ifra_prefixmask. don't check sin6_family, netmask
|
|
* does not carry fields other than sin6_len.
|
|
*/
|
|
if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
|
|
return(EINVAL);
|
|
/*
|
|
* Because the IPv6 address architecture is classless, we require
|
|
* users to specify a (non 0) prefix length (mask) for a new address.
|
|
* We also require the prefix (when specified) mask is valid, and thus
|
|
* reject a non-consecutive mask.
|
|
*/
|
|
if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
|
|
return(EINVAL);
|
|
if (ifra->ifra_prefixmask.sin6_len != 0) {
|
|
plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
|
|
(u_char *)&ifra->ifra_prefixmask +
|
|
ifra->ifra_prefixmask.sin6_len);
|
|
if (plen <= 0)
|
|
return(EINVAL);
|
|
}
|
|
else {
|
|
/*
|
|
* In this case, ia must not be NULL. We just use its prefix
|
|
* length.
|
|
*/
|
|
plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
|
|
}
|
|
/*
|
|
* If the destination address on a p2p interface is specified,
|
|
* and the address is a scoped one, validate/set the scope
|
|
* zone identifier.
|
|
*/
|
|
dst6 = ifra->ifra_dstaddr;
|
|
if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) &&
|
|
(dst6.sin6_family == AF_INET6)) {
|
|
int scopeid;
|
|
|
|
#ifndef SCOPEDROUTING
|
|
if ((error = in6_recoverscope(&dst6,
|
|
&ifra->ifra_dstaddr.sin6_addr,
|
|
ifp)) != 0)
|
|
return(error);
|
|
#endif
|
|
scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr);
|
|
if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */
|
|
dst6.sin6_scope_id = scopeid;
|
|
else if (dst6.sin6_scope_id != scopeid)
|
|
return(EINVAL); /* scope ID mismatch. */
|
|
#ifndef SCOPEDROUTING
|
|
if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL))
|
|
!= 0)
|
|
return(error);
|
|
dst6.sin6_scope_id = 0; /* XXX */
|
|
#endif
|
|
}
|
|
/*
|
|
* The destination address can be specified only for a p2p or a
|
|
* loopback interface. If specified, the corresponding prefix length
|
|
* must be 128.
|
|
*/
|
|
if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
|
|
if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
|
|
/* XXX: noisy message */
|
|
log(LOG_INFO, "in6_update_ifa: a destination can be "
|
|
"specified for a p2p or a loopback IF only\n");
|
|
return(EINVAL);
|
|
}
|
|
if (plen != 128) {
|
|
/*
|
|
* The following message seems noisy, but we dare to
|
|
* add it for diagnosis.
|
|
*/
|
|
log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 "
|
|
"when dstaddr is specified\n");
|
|
return(EINVAL);
|
|
}
|
|
}
|
|
/* lifetime consistency check */
|
|
lt = &ifra->ifra_lifetime;
|
|
if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
|
|
&& lt->ia6t_vltime + time_second < time_second) {
|
|
return EINVAL;
|
|
}
|
|
if (lt->ia6t_vltime == 0) {
|
|
/*
|
|
* the following log might be noisy, but this is a typical
|
|
* configuration mistake or a tool's bug.
|
|
*/
|
|
log(LOG_INFO,
|
|
"in6_update_ifa: valid lifetime is 0 for %s\n",
|
|
ip6_sprintf(&ifra->ifra_addr.sin6_addr));
|
|
}
|
|
if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
|
|
&& lt->ia6t_pltime + time_second < time_second) {
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If this is a new address, allocate a new ifaddr and link it
|
|
* into chains.
|
|
*/
|
|
if (ia == NULL) {
|
|
hostIsNew = 1;
|
|
ia = (struct in6_ifaddr *)
|
|
malloc(sizeof(*ia), M_IFADDR, M_WAITOK);
|
|
if (ia == NULL)
|
|
return (ENOBUFS);
|
|
bzero((caddr_t)ia, sizeof(*ia));
|
|
/* Initialize the address and masks */
|
|
ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
|
|
ia->ia_addr.sin6_family = AF_INET6;
|
|
ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
|
|
if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
|
|
/*
|
|
* XXX: some functions expect that ifa_dstaddr is not
|
|
* NULL for p2p interfaces.
|
|
*/
|
|
ia->ia_ifa.ifa_dstaddr
|
|
= (struct sockaddr *)&ia->ia_dstaddr;
|
|
} else {
|
|
ia->ia_ifa.ifa_dstaddr = NULL;
|
|
}
|
|
ia->ia_ifa.ifa_netmask
|
|
= (struct sockaddr *)&ia->ia_prefixmask;
|
|
|
|
ia->ia_ifp = ifp;
|
|
if ((oia = in6_ifaddr) != NULL) {
|
|
for ( ; oia->ia_next; oia = oia->ia_next)
|
|
continue;
|
|
oia->ia_next = ia;
|
|
} else
|
|
in6_ifaddr = ia;
|
|
|
|
TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
|
|
ifa_list);
|
|
}
|
|
|
|
/* set prefix mask */
|
|
if (ifra->ifra_prefixmask.sin6_len) {
|
|
/*
|
|
* We prohibit changing the prefix length of an existing
|
|
* address, because
|
|
* + such an operation should be rare in IPv6, and
|
|
* + the operation would confuse prefix management.
|
|
*/
|
|
if (ia->ia_prefixmask.sin6_len &&
|
|
in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
|
|
log(LOG_INFO, "in6_update_ifa: the prefix length of an"
|
|
" existing (%s) address should not be changed\n",
|
|
ip6_sprintf(&ia->ia_addr.sin6_addr));
|
|
error = EINVAL;
|
|
goto unlink;
|
|
}
|
|
ia->ia_prefixmask = ifra->ifra_prefixmask;
|
|
}
|
|
|
|
/*
|
|
* If a new destination address is specified, scrub the old one and
|
|
* install the new destination. Note that the interface must be
|
|
* p2p or loopback (see the check above.)
|
|
*/
|
|
if (dst6.sin6_family == AF_INET6 &&
|
|
!IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr,
|
|
&ia->ia_dstaddr.sin6_addr)) {
|
|
int e;
|
|
|
|
if ((ia->ia_flags & IFA_ROUTE) != 0 &&
|
|
(e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
|
|
!= 0) {
|
|
log(LOG_ERR, "in6_update_ifa: failed to remove "
|
|
"a route to the old destination: %s\n",
|
|
ip6_sprintf(&ia->ia_addr.sin6_addr));
|
|
/* proceed anyway... */
|
|
}
|
|
else
|
|
ia->ia_flags &= ~IFA_ROUTE;
|
|
ia->ia_dstaddr = dst6;
|
|
}
|
|
|
|
/* reset the interface and routing table appropriately. */
|
|
if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
|
|
goto unlink;
|
|
|
|
/*
|
|
* Beyond this point, we should call in6_purgeaddr upon an error,
|
|
* not just go to unlink.
|
|
*/
|
|
|
|
#if 0 /* disable this mechanism for now */
|
|
/* update prefix list */
|
|
if (hostIsNew &&
|
|
(ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */
|
|
int iilen;
|
|
|
|
iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen;
|
|
if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) {
|
|
in6_purgeaddr((struct ifaddr *)ia);
|
|
return(error);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if ((ifp->if_flags & IFF_MULTICAST) != 0) {
|
|
struct sockaddr_in6 mltaddr, mltmask;
|
|
struct in6_multi *in6m;
|
|
|
|
if (hostIsNew) {
|
|
/*
|
|
* join solicited multicast addr for new host id
|
|
*/
|
|
struct in6_addr llsol;
|
|
bzero(&llsol, sizeof(struct in6_addr));
|
|
llsol.s6_addr16[0] = htons(0xff02);
|
|
llsol.s6_addr16[1] = htons(ifp->if_index);
|
|
llsol.s6_addr32[1] = 0;
|
|
llsol.s6_addr32[2] = htonl(1);
|
|
llsol.s6_addr32[3] =
|
|
ifra->ifra_addr.sin6_addr.s6_addr32[3];
|
|
llsol.s6_addr8[12] = 0xff;
|
|
(void)in6_addmulti(&llsol, ifp, &error);
|
|
if (error != 0) {
|
|
log(LOG_WARNING,
|
|
"in6_update_ifa: addmulti failed for "
|
|
"%s on %s (errno=%d)\n",
|
|
ip6_sprintf(&llsol), if_name(ifp),
|
|
error);
|
|
in6_purgeaddr((struct ifaddr *)ia);
|
|
return(error);
|
|
}
|
|
}
|
|
|
|
bzero(&mltmask, sizeof(mltmask));
|
|
mltmask.sin6_len = sizeof(struct sockaddr_in6);
|
|
mltmask.sin6_family = AF_INET6;
|
|
mltmask.sin6_addr = in6mask32;
|
|
|
|
/*
|
|
* join link-local all-nodes address
|
|
*/
|
|
bzero(&mltaddr, sizeof(mltaddr));
|
|
mltaddr.sin6_len = sizeof(struct sockaddr_in6);
|
|
mltaddr.sin6_family = AF_INET6;
|
|
mltaddr.sin6_addr = in6addr_linklocal_allnodes;
|
|
mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
|
|
|
|
IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
|
|
if (in6m == NULL) {
|
|
rtrequest(RTM_ADD,
|
|
(struct sockaddr *)&mltaddr,
|
|
(struct sockaddr *)&ia->ia_addr,
|
|
(struct sockaddr *)&mltmask,
|
|
RTF_UP|RTF_CLONING, /* xxx */
|
|
(struct rtentry **)0);
|
|
(void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
|
|
if (error != 0) {
|
|
log(LOG_WARNING,
|
|
"in6_update_ifa: addmulti failed for "
|
|
"%s on %s (errno=%d)\n",
|
|
ip6_sprintf(&mltaddr.sin6_addr),
|
|
if_name(ifp), error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* join node information group address
|
|
*/
|
|
#define hostnamelen strlen(hostname)
|
|
if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
|
|
== 0) {
|
|
IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
|
|
if (in6m == NULL && ia != NULL) {
|
|
(void)in6_addmulti(&mltaddr.sin6_addr,
|
|
ifp, &error);
|
|
if (error != 0) {
|
|
log(LOG_WARNING, "in6_update_ifa: "
|
|
"addmulti failed for "
|
|
"%s on %s (errno=%d)\n",
|
|
ip6_sprintf(&mltaddr.sin6_addr),
|
|
if_name(ifp), error);
|
|
}
|
|
}
|
|
}
|
|
#undef hostnamelen
|
|
|
|
/*
|
|
* join node-local all-nodes address, on loopback.
|
|
* XXX: since "node-local" is obsoleted by interface-local,
|
|
* we have to join the group on every interface with
|
|
* some interface-boundary restriction.
|
|
*/
|
|
if (ifp->if_flags & IFF_LOOPBACK) {
|
|
struct in6_addr loop6 = in6addr_loopback;
|
|
ia = in6ifa_ifpwithaddr(ifp, &loop6);
|
|
|
|
mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
|
|
|
|
IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
|
|
if (in6m == NULL && ia != NULL) {
|
|
rtrequest(RTM_ADD,
|
|
(struct sockaddr *)&mltaddr,
|
|
(struct sockaddr *)&ia->ia_addr,
|
|
(struct sockaddr *)&mltmask,
|
|
RTF_UP,
|
|
(struct rtentry **)0);
|
|
(void)in6_addmulti(&mltaddr.sin6_addr, ifp,
|
|
&error);
|
|
if (error != 0) {
|
|
log(LOG_WARNING, "in6_update_ifa: "
|
|
"addmulti failed for %s on %s "
|
|
"(errno=%d)\n",
|
|
ip6_sprintf(&mltaddr.sin6_addr),
|
|
if_name(ifp), error);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ia->ia6_flags = ifra->ifra_flags;
|
|
ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/
|
|
ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */
|
|
|
|
ia->ia6_lifetime = ifra->ifra_lifetime;
|
|
/* for sanity */
|
|
if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
|
|
ia->ia6_lifetime.ia6t_expire =
|
|
time_second + ia->ia6_lifetime.ia6t_vltime;
|
|
} else
|
|
ia->ia6_lifetime.ia6t_expire = 0;
|
|
if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
|
|
ia->ia6_lifetime.ia6t_preferred =
|
|
time_second + ia->ia6_lifetime.ia6t_pltime;
|
|
} else
|
|
ia->ia6_lifetime.ia6t_preferred = 0;
|
|
|
|
/*
|
|
* make sure to initialize ND6 information. this is to workaround
|
|
* issues with interfaces with IPv6 addresses, which have never brought
|
|
* up. We are assuming that it is safe to nd6_ifattach multiple times.
|
|
*/
|
|
nd6_ifattach(ifp);
|
|
|
|
/*
|
|
* Perform DAD, if needed.
|
|
* XXX It may be of use, if we can administratively
|
|
* disable DAD.
|
|
*/
|
|
if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) {
|
|
ia->ia6_flags |= IN6_IFF_TENTATIVE;
|
|
nd6_dad_start((struct ifaddr *)ia, NULL);
|
|
}
|
|
|
|
return(error);
|
|
|
|
unlink:
|
|
/*
|
|
* XXX: if a change of an existing address failed, keep the entry
|
|
* anyway.
|
|
*/
|
|
if (hostIsNew)
|
|
in6_unlink_ifa(ia, ifp);
|
|
return(error);
|
|
}
|
|
|
|
void
|
|
in6_purgeaddr(ifa)
|
|
struct ifaddr *ifa;
|
|
{
|
|
struct ifnet *ifp = ifa->ifa_ifp;
|
|
struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
|
|
|
|
/* stop DAD processing */
|
|
nd6_dad_stop(ifa);
|
|
|
|
/*
|
|
* delete route to the destination of the address being purged.
|
|
* The interface must be p2p or loopback in this case.
|
|
*/
|
|
if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
|
|
int e;
|
|
|
|
if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
|
|
!= 0) {
|
|
log(LOG_ERR, "in6_purgeaddr: failed to remove "
|
|
"a route to the p2p destination: %s on %s, "
|
|
"errno=%d\n",
|
|
ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
|
|
e);
|
|
/* proceed anyway... */
|
|
}
|
|
else
|
|
ia->ia_flags &= ~IFA_ROUTE;
|
|
}
|
|
|
|
/* Remove ownaddr's loopback rtentry, if it exists. */
|
|
in6_ifremloop(&(ia->ia_ifa));
|
|
|
|
if (ifp->if_flags & IFF_MULTICAST) {
|
|
/*
|
|
* delete solicited multicast addr for deleting host id
|
|
*/
|
|
struct in6_multi *in6m;
|
|
struct in6_addr llsol;
|
|
bzero(&llsol, sizeof(struct in6_addr));
|
|
llsol.s6_addr16[0] = htons(0xff02);
|
|
llsol.s6_addr16[1] = htons(ifp->if_index);
|
|
llsol.s6_addr32[1] = 0;
|
|
llsol.s6_addr32[2] = htonl(1);
|
|
llsol.s6_addr32[3] =
|
|
ia->ia_addr.sin6_addr.s6_addr32[3];
|
|
llsol.s6_addr8[12] = 0xff;
|
|
|
|
IN6_LOOKUP_MULTI(llsol, ifp, in6m);
|
|
if (in6m)
|
|
in6_delmulti(in6m);
|
|
}
|
|
|
|
in6_unlink_ifa(ia, ifp);
|
|
}
|
|
|
|
static void
|
|
in6_unlink_ifa(ia, ifp)
|
|
struct in6_ifaddr *ia;
|
|
struct ifnet *ifp;
|
|
{
|
|
int plen, iilen;
|
|
struct in6_ifaddr *oia;
|
|
int s = splnet();
|
|
|
|
TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
|
|
|
|
oia = ia;
|
|
if (oia == (ia = in6_ifaddr))
|
|
in6_ifaddr = ia->ia_next;
|
|
else {
|
|
while (ia->ia_next && (ia->ia_next != oia))
|
|
ia = ia->ia_next;
|
|
if (ia->ia_next)
|
|
ia->ia_next = oia->ia_next;
|
|
else {
|
|
/* search failed */
|
|
printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
|
|
}
|
|
}
|
|
|
|
if (oia->ia6_ifpr) { /* check for safety */
|
|
plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL);
|
|
iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen;
|
|
in6_prefix_remove_ifid(iilen, oia);
|
|
}
|
|
|
|
/*
|
|
* When an autoconfigured address is being removed, release the
|
|
* reference to the base prefix. Also, since the release might
|
|
* affect the status of other (detached) addresses, call
|
|
* pfxlist_onlink_check().
|
|
*/
|
|
if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
|
|
if (oia->ia6_ndpr == NULL) {
|
|
log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
|
|
"%p has no prefix\n", oia);
|
|
} else {
|
|
oia->ia6_ndpr->ndpr_refcnt--;
|
|
oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
|
|
oia->ia6_ndpr = NULL;
|
|
}
|
|
|
|
pfxlist_onlink_check();
|
|
}
|
|
|
|
/*
|
|
* release another refcnt for the link from in6_ifaddr.
|
|
* Note that we should decrement the refcnt at least once for all *BSD.
|
|
*/
|
|
IFAFREE(&oia->ia_ifa);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
in6_purgeif(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct ifaddr *ifa, *nifa;
|
|
|
|
for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
|
|
{
|
|
nifa = TAILQ_NEXT(ifa, ifa_list);
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
in6_purgeaddr(ifa);
|
|
}
|
|
|
|
in6_ifdetach(ifp);
|
|
}
|
|
|
|
/*
|
|
* SIOC[GAD]LIFADDR.
|
|
* SIOCGLIFADDR: get first address. (?)
|
|
* SIOCGLIFADDR with IFLR_PREFIX:
|
|
* get first address that matches the specified prefix.
|
|
* SIOCALIFADDR: add the specified address.
|
|
* SIOCALIFADDR with IFLR_PREFIX:
|
|
* add the specified prefix, filling hostid part from
|
|
* the first link-local address. prefixlen must be <= 64.
|
|
* SIOCDLIFADDR: delete the specified address.
|
|
* SIOCDLIFADDR with IFLR_PREFIX:
|
|
* delete the first address that matches the specified prefix.
|
|
* return values:
|
|
* EINVAL on invalid parameters
|
|
* EADDRNOTAVAIL on prefix match failed/specified address not found
|
|
* other values may be returned from in6_ioctl()
|
|
*
|
|
* NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
|
|
* this is to accomodate address naming scheme other than RFC2374,
|
|
* in the future.
|
|
* RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
|
|
* address encoding scheme. (see figure on page 8)
|
|
*/
|
|
static int
|
|
in6_lifaddr_ioctl(so, cmd, data, ifp, p)
|
|
struct socket *so;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
struct ifnet *ifp;
|
|
struct proc *p;
|
|
{
|
|
struct if_laddrreq *iflr = (struct if_laddrreq *)data;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr *sa;
|
|
|
|
/* sanity checks */
|
|
if (!data || !ifp) {
|
|
panic("invalid argument to in6_lifaddr_ioctl");
|
|
/*NOTRECHED*/
|
|
}
|
|
|
|
switch (cmd) {
|
|
case SIOCGLIFADDR:
|
|
/* address must be specified on GET with IFLR_PREFIX */
|
|
if ((iflr->flags & IFLR_PREFIX) == 0)
|
|
break;
|
|
/*FALLTHROUGH*/
|
|
case SIOCALIFADDR:
|
|
case SIOCDLIFADDR:
|
|
/* address must be specified on ADD and DELETE */
|
|
sa = (struct sockaddr *)&iflr->addr;
|
|
if (sa->sa_family != AF_INET6)
|
|
return EINVAL;
|
|
if (sa->sa_len != sizeof(struct sockaddr_in6))
|
|
return EINVAL;
|
|
/* XXX need improvement */
|
|
sa = (struct sockaddr *)&iflr->dstaddr;
|
|
if (sa->sa_family && sa->sa_family != AF_INET6)
|
|
return EINVAL;
|
|
if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
|
|
return EINVAL;
|
|
break;
|
|
default: /*shouldn't happen*/
|
|
#if 0
|
|
panic("invalid cmd to in6_lifaddr_ioctl");
|
|
/*NOTREACHED*/
|
|
#else
|
|
return EOPNOTSUPP;
|
|
#endif
|
|
}
|
|
if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
|
|
return EINVAL;
|
|
|
|
switch (cmd) {
|
|
case SIOCALIFADDR:
|
|
{
|
|
struct in6_aliasreq ifra;
|
|
struct in6_addr *hostid = NULL;
|
|
int prefixlen;
|
|
|
|
if ((iflr->flags & IFLR_PREFIX) != 0) {
|
|
struct sockaddr_in6 *sin6;
|
|
|
|
/*
|
|
* hostid is to fill in the hostid part of the
|
|
* address. hostid points to the first link-local
|
|
* address attached to the interface.
|
|
*/
|
|
ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
|
|
if (!ifa)
|
|
return EADDRNOTAVAIL;
|
|
hostid = IFA_IN6(ifa);
|
|
|
|
/* prefixlen must be <= 64. */
|
|
if (64 < iflr->prefixlen)
|
|
return EINVAL;
|
|
prefixlen = iflr->prefixlen;
|
|
|
|
/* hostid part must be zero. */
|
|
sin6 = (struct sockaddr_in6 *)&iflr->addr;
|
|
if (sin6->sin6_addr.s6_addr32[2] != 0
|
|
|| sin6->sin6_addr.s6_addr32[3] != 0) {
|
|
return EINVAL;
|
|
}
|
|
} else
|
|
prefixlen = iflr->prefixlen;
|
|
|
|
/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
|
|
bzero(&ifra, sizeof(ifra));
|
|
bcopy(iflr->iflr_name, ifra.ifra_name,
|
|
sizeof(ifra.ifra_name));
|
|
|
|
bcopy(&iflr->addr, &ifra.ifra_addr,
|
|
((struct sockaddr *)&iflr->addr)->sa_len);
|
|
if (hostid) {
|
|
/* fill in hostid part */
|
|
ifra.ifra_addr.sin6_addr.s6_addr32[2] =
|
|
hostid->s6_addr32[2];
|
|
ifra.ifra_addr.sin6_addr.s6_addr32[3] =
|
|
hostid->s6_addr32[3];
|
|
}
|
|
|
|
if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
|
|
bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
|
|
((struct sockaddr *)&iflr->dstaddr)->sa_len);
|
|
if (hostid) {
|
|
ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
|
|
hostid->s6_addr32[2];
|
|
ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
|
|
hostid->s6_addr32[3];
|
|
}
|
|
}
|
|
|
|
ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
|
|
in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
|
|
|
|
ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
|
|
return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
|
|
}
|
|
case SIOCGLIFADDR:
|
|
case SIOCDLIFADDR:
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
struct in6_addr mask, candidate, match;
|
|
struct sockaddr_in6 *sin6;
|
|
int cmp;
|
|
|
|
bzero(&mask, sizeof(mask));
|
|
if (iflr->flags & IFLR_PREFIX) {
|
|
/* lookup a prefix rather than address. */
|
|
in6_len2mask(&mask, iflr->prefixlen);
|
|
|
|
sin6 = (struct sockaddr_in6 *)&iflr->addr;
|
|
bcopy(&sin6->sin6_addr, &match, sizeof(match));
|
|
match.s6_addr32[0] &= mask.s6_addr32[0];
|
|
match.s6_addr32[1] &= mask.s6_addr32[1];
|
|
match.s6_addr32[2] &= mask.s6_addr32[2];
|
|
match.s6_addr32[3] &= mask.s6_addr32[3];
|
|
|
|
/* if you set extra bits, that's wrong */
|
|
if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
|
|
return EINVAL;
|
|
|
|
cmp = 1;
|
|
} else {
|
|
if (cmd == SIOCGLIFADDR) {
|
|
/* on getting an address, take the 1st match */
|
|
cmp = 0; /*XXX*/
|
|
} else {
|
|
/* on deleting an address, do exact match */
|
|
in6_len2mask(&mask, 128);
|
|
sin6 = (struct sockaddr_in6 *)&iflr->addr;
|
|
bcopy(&sin6->sin6_addr, &match, sizeof(match));
|
|
|
|
cmp = 1;
|
|
}
|
|
}
|
|
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
if (!cmp)
|
|
break;
|
|
|
|
bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
|
|
#ifndef SCOPEDROUTING
|
|
/*
|
|
* XXX: this is adhoc, but is necessary to allow
|
|
* a user to specify fe80::/64 (not /10) for a
|
|
* link-local address.
|
|
*/
|
|
if (IN6_IS_ADDR_LINKLOCAL(&candidate))
|
|
candidate.s6_addr16[1] = 0;
|
|
#endif
|
|
candidate.s6_addr32[0] &= mask.s6_addr32[0];
|
|
candidate.s6_addr32[1] &= mask.s6_addr32[1];
|
|
candidate.s6_addr32[2] &= mask.s6_addr32[2];
|
|
candidate.s6_addr32[3] &= mask.s6_addr32[3];
|
|
if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
|
|
break;
|
|
}
|
|
if (!ifa)
|
|
return EADDRNOTAVAIL;
|
|
ia = ifa2ia6(ifa);
|
|
|
|
if (cmd == SIOCGLIFADDR) {
|
|
#ifndef SCOPEDROUTING
|
|
struct sockaddr_in6 *s6;
|
|
#endif
|
|
|
|
/* fill in the if_laddrreq structure */
|
|
bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
|
|
#ifndef SCOPEDROUTING /* XXX see above */
|
|
s6 = (struct sockaddr_in6 *)&iflr->addr;
|
|
if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
|
|
s6->sin6_addr.s6_addr16[1] = 0;
|
|
s6->sin6_scope_id =
|
|
in6_addr2scopeid(ifp, &s6->sin6_addr);
|
|
}
|
|
#endif
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
|
|
bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
|
|
ia->ia_dstaddr.sin6_len);
|
|
#ifndef SCOPEDROUTING /* XXX see above */
|
|
s6 = (struct sockaddr_in6 *)&iflr->dstaddr;
|
|
if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
|
|
s6->sin6_addr.s6_addr16[1] = 0;
|
|
s6->sin6_scope_id =
|
|
in6_addr2scopeid(ifp,
|
|
&s6->sin6_addr);
|
|
}
|
|
#endif
|
|
} else
|
|
bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
|
|
|
|
iflr->prefixlen =
|
|
in6_mask2len(&ia->ia_prefixmask.sin6_addr,
|
|
NULL);
|
|
|
|
iflr->flags = ia->ia6_flags; /*XXX*/
|
|
|
|
return 0;
|
|
} else {
|
|
struct in6_aliasreq ifra;
|
|
|
|
/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
|
|
bzero(&ifra, sizeof(ifra));
|
|
bcopy(iflr->iflr_name, ifra.ifra_name,
|
|
sizeof(ifra.ifra_name));
|
|
|
|
bcopy(&ia->ia_addr, &ifra.ifra_addr,
|
|
ia->ia_addr.sin6_len);
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
|
|
bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
|
|
ia->ia_dstaddr.sin6_len);
|
|
} else {
|
|
bzero(&ifra.ifra_dstaddr,
|
|
sizeof(ifra.ifra_dstaddr));
|
|
}
|
|
bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
|
|
ia->ia_prefixmask.sin6_len);
|
|
|
|
ifra.ifra_flags = ia->ia6_flags;
|
|
return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
|
|
ifp, p);
|
|
}
|
|
}
|
|
}
|
|
|
|
return EOPNOTSUPP; /*just for safety*/
|
|
}
|
|
|
|
/*
|
|
* Initialize an interface's intetnet6 address
|
|
* and routing table entry.
|
|
*/
|
|
static int
|
|
in6_ifinit(ifp, ia, sin6, newhost)
|
|
struct ifnet *ifp;
|
|
struct in6_ifaddr *ia;
|
|
struct sockaddr_in6 *sin6;
|
|
int newhost;
|
|
{
|
|
int error = 0, plen, ifacount = 0;
|
|
int s = splimp();
|
|
struct ifaddr *ifa;
|
|
|
|
/*
|
|
* Give the interface a chance to initialize
|
|
* if this is its first address,
|
|
* and to validate the address if necessary.
|
|
*/
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
if (ifa->ifa_addr == NULL)
|
|
continue; /* just for safety */
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
ifacount++;
|
|
}
|
|
|
|
ia->ia_addr = *sin6;
|
|
|
|
if (ifacount <= 1 && ifp->if_ioctl &&
|
|
(error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
|
|
splx(s);
|
|
return(error);
|
|
}
|
|
splx(s);
|
|
|
|
ia->ia_ifa.ifa_metric = ifp->if_metric;
|
|
|
|
/* we could do in(6)_socktrim here, but just omit it at this moment. */
|
|
|
|
/*
|
|
* Special case:
|
|
* If the destination address is specified for a point-to-point
|
|
* interface, install a route to the destination as an interface
|
|
* direct route.
|
|
*/
|
|
plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
|
|
if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
|
|
if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
|
|
RTF_UP | RTF_HOST)) != 0)
|
|
return(error);
|
|
ia->ia_flags |= IFA_ROUTE;
|
|
}
|
|
if (plen < 128) {
|
|
/*
|
|
* The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
|
|
*/
|
|
ia->ia_ifa.ifa_flags |= RTF_CLONING;
|
|
}
|
|
|
|
/* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */
|
|
if (newhost) {
|
|
/* set the rtrequest function to create llinfo */
|
|
ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
|
|
in6_ifaddloop(&(ia->ia_ifa));
|
|
}
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Add an address to the list of IP6 multicast addresses for a
|
|
* given interface.
|
|
*/
|
|
struct in6_multi *
|
|
in6_addmulti(maddr6, ifp, errorp)
|
|
struct in6_addr *maddr6;
|
|
struct ifnet *ifp;
|
|
int *errorp;
|
|
{
|
|
struct in6_multi *in6m;
|
|
struct sockaddr_in6 sin6;
|
|
struct ifmultiaddr *ifma;
|
|
int s = splnet();
|
|
|
|
*errorp = 0;
|
|
|
|
/*
|
|
* Call generic routine to add membership or increment
|
|
* refcount. It wants addresses in the form of a sockaddr,
|
|
* so we build one here (being careful to zero the unused bytes).
|
|
*/
|
|
bzero(&sin6, sizeof sin6);
|
|
sin6.sin6_family = AF_INET6;
|
|
sin6.sin6_len = sizeof sin6;
|
|
sin6.sin6_addr = *maddr6;
|
|
*errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma);
|
|
if (*errorp) {
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If ifma->ifma_protospec is null, then if_addmulti() created
|
|
* a new record. Otherwise, we are done.
|
|
*/
|
|
if (ifma->ifma_protospec != 0)
|
|
return ifma->ifma_protospec;
|
|
|
|
/* XXX - if_addmulti uses M_WAITOK. Can this really be called
|
|
at interrupt time? If so, need to fix if_addmulti. XXX */
|
|
in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
|
|
if (in6m == NULL) {
|
|
splx(s);
|
|
return (NULL);
|
|
}
|
|
|
|
bzero(in6m, sizeof *in6m);
|
|
in6m->in6m_addr = *maddr6;
|
|
in6m->in6m_ifp = ifp;
|
|
in6m->in6m_ifma = ifma;
|
|
ifma->ifma_protospec = in6m;
|
|
LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry);
|
|
|
|
/*
|
|
* Let MLD6 know that we have joined a new IP6 multicast
|
|
* group.
|
|
*/
|
|
mld6_start_listening(in6m);
|
|
splx(s);
|
|
return(in6m);
|
|
}
|
|
|
|
/*
|
|
* Delete a multicast address record.
|
|
*/
|
|
void
|
|
in6_delmulti(in6m)
|
|
struct in6_multi *in6m;
|
|
{
|
|
struct ifmultiaddr *ifma = in6m->in6m_ifma;
|
|
int s = splnet();
|
|
|
|
if (ifma->ifma_refcount == 1) {
|
|
/*
|
|
* No remaining claims to this record; let MLD6 know
|
|
* that we are leaving the multicast group.
|
|
*/
|
|
mld6_stop_listening(in6m);
|
|
ifma->ifma_protospec = 0;
|
|
LIST_REMOVE(in6m, in6m_entry);
|
|
free(in6m, M_IPMADDR);
|
|
}
|
|
/* XXX - should be separate API for when we have an ifma? */
|
|
if_delmulti(ifma->ifma_ifp, ifma->ifma_addr);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Find an IPv6 interface link-local address specific to an interface.
|
|
*/
|
|
struct in6_ifaddr *
|
|
in6ifa_ifpforlinklocal(ifp, ignoreflags)
|
|
struct ifnet *ifp;
|
|
int ignoreflags;
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
if (ifa->ifa_addr == NULL)
|
|
continue; /* just for safety */
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
|
|
if ((((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
ignoreflags) != 0)
|
|
continue;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return((struct in6_ifaddr *)ifa);
|
|
}
|
|
|
|
|
|
/*
|
|
* find the internet address corresponding to a given interface and address.
|
|
*/
|
|
struct in6_ifaddr *
|
|
in6ifa_ifpwithaddr(ifp, addr)
|
|
struct ifnet *ifp;
|
|
struct in6_addr *addr;
|
|
{
|
|
struct ifaddr *ifa;
|
|
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
if (ifa->ifa_addr == NULL)
|
|
continue; /* just for safety */
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
|
|
break;
|
|
}
|
|
|
|
return((struct in6_ifaddr *)ifa);
|
|
}
|
|
|
|
/*
|
|
* Convert IP6 address to printable (loggable) representation.
|
|
*/
|
|
static char digits[] = "0123456789abcdef";
|
|
static int ip6round = 0;
|
|
char *
|
|
ip6_sprintf(addr)
|
|
const struct in6_addr *addr;
|
|
{
|
|
static char ip6buf[8][48];
|
|
int i;
|
|
char *cp;
|
|
u_short *a = (u_short *)addr;
|
|
u_char *d;
|
|
int dcolon = 0;
|
|
|
|
ip6round = (ip6round + 1) & 7;
|
|
cp = ip6buf[ip6round];
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (dcolon == 1) {
|
|
if (*a == 0) {
|
|
if (i == 7)
|
|
*cp++ = ':';
|
|
a++;
|
|
continue;
|
|
} else
|
|
dcolon = 2;
|
|
}
|
|
if (*a == 0) {
|
|
if (dcolon == 0 && *(a + 1) == 0) {
|
|
if (i == 0)
|
|
*cp++ = ':';
|
|
*cp++ = ':';
|
|
dcolon = 1;
|
|
} else {
|
|
*cp++ = '0';
|
|
*cp++ = ':';
|
|
}
|
|
a++;
|
|
continue;
|
|
}
|
|
d = (u_char *)a;
|
|
*cp++ = digits[*d >> 4];
|
|
*cp++ = digits[*d++ & 0xf];
|
|
*cp++ = digits[*d >> 4];
|
|
*cp++ = digits[*d & 0xf];
|
|
*cp++ = ':';
|
|
a++;
|
|
}
|
|
*--cp = 0;
|
|
return(ip6buf[ip6round]);
|
|
}
|
|
|
|
int
|
|
in6_localaddr(in6)
|
|
struct in6_addr *in6;
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
|
|
if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
|
|
return 1;
|
|
|
|
for (ia = in6_ifaddr; ia; ia = ia->ia_next)
|
|
if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
|
|
&ia->ia_prefixmask.sin6_addr))
|
|
return 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
in6_is_addr_deprecated(sa6)
|
|
struct sockaddr_in6 *sa6;
|
|
{
|
|
struct in6_ifaddr *ia;
|
|
|
|
for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
|
|
if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
|
|
&sa6->sin6_addr) &&
|
|
#ifdef SCOPEDROUTING
|
|
ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
|
|
#endif
|
|
(ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
|
|
return(1); /* true */
|
|
|
|
/* XXX: do we still have to go thru the rest of the list? */
|
|
}
|
|
|
|
return(0); /* false */
|
|
}
|
|
|
|
/*
|
|
* return length of part which dst and src are equal
|
|
* hard coding...
|
|
*/
|
|
int
|
|
in6_matchlen(src, dst)
|
|
struct in6_addr *src, *dst;
|
|
{
|
|
int match = 0;
|
|
u_char *s = (u_char *)src, *d = (u_char *)dst;
|
|
u_char *lim = s + 16, r;
|
|
|
|
while (s < lim)
|
|
if ((r = (*d++ ^ *s++)) != 0) {
|
|
while (r < 128) {
|
|
match++;
|
|
r <<= 1;
|
|
}
|
|
break;
|
|
} else
|
|
match += 8;
|
|
return match;
|
|
}
|
|
|
|
/* XXX: to be scope conscious */
|
|
int
|
|
in6_are_prefix_equal(p1, p2, len)
|
|
struct in6_addr *p1, *p2;
|
|
int len;
|
|
{
|
|
int bytelen, bitlen;
|
|
|
|
/* sanity check */
|
|
if (0 > len || len > 128) {
|
|
log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
|
|
len);
|
|
return(0);
|
|
}
|
|
|
|
bytelen = len / 8;
|
|
bitlen = len % 8;
|
|
|
|
if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
|
|
return(0);
|
|
if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
|
|
p2->s6_addr[bytelen] >> (8 - bitlen))
|
|
return(0);
|
|
|
|
return(1);
|
|
}
|
|
|
|
void
|
|
in6_prefixlen2mask(maskp, len)
|
|
struct in6_addr *maskp;
|
|
int len;
|
|
{
|
|
u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
|
|
int bytelen, bitlen, i;
|
|
|
|
/* sanity check */
|
|
if (0 > len || len > 128) {
|
|
log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
|
|
len);
|
|
return;
|
|
}
|
|
|
|
bzero(maskp, sizeof(*maskp));
|
|
bytelen = len / 8;
|
|
bitlen = len % 8;
|
|
for (i = 0; i < bytelen; i++)
|
|
maskp->s6_addr[i] = 0xff;
|
|
if (bitlen)
|
|
maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
|
|
}
|
|
|
|
/*
|
|
* return the best address out of the same scope
|
|
*/
|
|
struct in6_ifaddr *
|
|
in6_ifawithscope(oifp, dst)
|
|
struct ifnet *oifp;
|
|
struct in6_addr *dst;
|
|
{
|
|
int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
|
|
int blen = -1;
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
struct in6_ifaddr *ifa_best = NULL;
|
|
|
|
if (oifp == NULL) {
|
|
#if 0
|
|
printf("in6_ifawithscope: output interface is not specified\n");
|
|
#endif
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* We search for all addresses on all interfaces from the beginning.
|
|
* Comparing an interface with the outgoing interface will be done
|
|
* only at the final stage of tiebreaking.
|
|
*/
|
|
for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
|
|
{
|
|
/*
|
|
* We can never take an address that breaks the scope zone
|
|
* of the destination.
|
|
*/
|
|
if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
|
|
continue;
|
|
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
int tlen = -1, dscopecmp, bscopecmp, matchcmp;
|
|
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
|
|
src_scope = in6_addrscope(IFA_IN6(ifa));
|
|
|
|
/*
|
|
* Don't use an address before completing DAD
|
|
* nor a duplicated address.
|
|
*/
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_NOTREADY)
|
|
continue;
|
|
|
|
/* XXX: is there any case to allow anycasts? */
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_ANYCAST)
|
|
continue;
|
|
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_DETACHED)
|
|
continue;
|
|
|
|
/*
|
|
* If this is the first address we find,
|
|
* keep it anyway.
|
|
*/
|
|
if (ifa_best == NULL)
|
|
goto replace;
|
|
|
|
/*
|
|
* ifa_best is never NULL beyond this line except
|
|
* within the block labeled "replace".
|
|
*/
|
|
|
|
/*
|
|
* If ifa_best has a smaller scope than dst and
|
|
* the current address has a larger one than
|
|
* (or equal to) dst, always replace ifa_best.
|
|
* Also, if the current address has a smaller scope
|
|
* than dst, ignore it unless ifa_best also has a
|
|
* smaller scope.
|
|
* Consequently, after the two if-clause below,
|
|
* the followings must be satisfied:
|
|
* (scope(src) < scope(dst) &&
|
|
* scope(best) < scope(dst))
|
|
* OR
|
|
* (scope(best) >= scope(dst) &&
|
|
* scope(src) >= scope(dst))
|
|
*/
|
|
if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
|
|
IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
|
|
goto replace; /* (A) */
|
|
if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
|
|
IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
|
|
continue; /* (B) */
|
|
|
|
/*
|
|
* A deprecated address SHOULD NOT be used in new
|
|
* communications if an alternate (non-deprecated)
|
|
* address is available and has sufficient scope.
|
|
* RFC 2462, Section 5.5.4.
|
|
*/
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_DEPRECATED) {
|
|
/*
|
|
* Ignore any deprecated addresses if
|
|
* specified by configuration.
|
|
*/
|
|
if (!ip6_use_deprecated)
|
|
continue;
|
|
|
|
/*
|
|
* If we have already found a non-deprecated
|
|
* candidate, just ignore deprecated addresses.
|
|
*/
|
|
if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
|
|
== 0)
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* A non-deprecated address is always preferred
|
|
* to a deprecated one regardless of scopes and
|
|
* address matching (Note invariants ensured by the
|
|
* conditions (A) and (B) above.)
|
|
*/
|
|
if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
|
|
(((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
IN6_IFF_DEPRECATED) == 0)
|
|
goto replace;
|
|
|
|
/*
|
|
* When we use temporary addresses described in
|
|
* RFC 3041, we prefer temporary addresses to
|
|
* public autoconf addresses. Again, note the
|
|
* invariants from (A) and (B). Also note that we
|
|
* don't have any preference between static addresses
|
|
* and autoconf addresses (despite of whether or not
|
|
* the latter is temporary or public.)
|
|
*/
|
|
if (ip6_use_tempaddr) {
|
|
struct in6_ifaddr *ifat;
|
|
|
|
ifat = (struct in6_ifaddr *)ifa;
|
|
if ((ifa_best->ia6_flags &
|
|
(IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
|
|
== IN6_IFF_AUTOCONF &&
|
|
(ifat->ia6_flags &
|
|
(IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
|
|
== (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) {
|
|
goto replace;
|
|
}
|
|
if ((ifa_best->ia6_flags &
|
|
(IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
|
|
== (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) &&
|
|
(ifat->ia6_flags &
|
|
(IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
|
|
== IN6_IFF_AUTOCONF) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, we have two cases:
|
|
* 1. we are looking at a non-deprecated address,
|
|
* and ifa_best is also non-deprecated.
|
|
* 2. we are looking at a deprecated address,
|
|
* and ifa_best is also deprecated.
|
|
* Also, we do not have to consider a case where
|
|
* the scope of if_best is larger(smaller) than dst and
|
|
* the scope of the current address is smaller(larger)
|
|
* than dst. Such a case has already been covered.
|
|
* Tiebreaking is done according to the following
|
|
* items:
|
|
* - the scope comparison between the address and
|
|
* dst (dscopecmp)
|
|
* - the scope comparison between the address and
|
|
* ifa_best (bscopecmp)
|
|
* - if the address match dst longer than ifa_best
|
|
* (matchcmp)
|
|
* - if the address is on the outgoing I/F (outI/F)
|
|
*
|
|
* Roughly speaking, the selection policy is
|
|
* - the most important item is scope. The same scope
|
|
* is best. Then search for a larger scope.
|
|
* Smaller scopes are the last resort.
|
|
* - A deprecated address is chosen only when we have
|
|
* no address that has an enough scope, but is
|
|
* prefered to any addresses of smaller scopes
|
|
* (this must be already done above.)
|
|
* - addresses on the outgoing I/F are preferred to
|
|
* ones on other interfaces if none of above
|
|
* tiebreaks. In the table below, the column "bI"
|
|
* means if the best_ifa is on the outgoing
|
|
* interface, and the column "sI" means if the ifa
|
|
* is on the outgoing interface.
|
|
* - If there is no other reasons to choose one,
|
|
* longest address match against dst is considered.
|
|
*
|
|
* The precise decision table is as follows:
|
|
* dscopecmp bscopecmp match bI oI | replace?
|
|
* N/A equal N/A Y N | No (1)
|
|
* N/A equal N/A N Y | Yes (2)
|
|
* N/A equal larger N/A | Yes (3)
|
|
* N/A equal !larger N/A | No (4)
|
|
* larger larger N/A N/A | No (5)
|
|
* larger smaller N/A N/A | Yes (6)
|
|
* smaller larger N/A N/A | Yes (7)
|
|
* smaller smaller N/A N/A | No (8)
|
|
* equal smaller N/A N/A | Yes (9)
|
|
* equal larger (already done at A above)
|
|
*/
|
|
dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
|
|
bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
|
|
|
|
if (bscopecmp == 0) {
|
|
struct ifnet *bifp = ifa_best->ia_ifp;
|
|
|
|
if (bifp == oifp && ifp != oifp) /* (1) */
|
|
continue;
|
|
if (bifp != oifp && ifp == oifp) /* (2) */
|
|
goto replace;
|
|
|
|
/*
|
|
* Both bifp and ifp are on the outgoing
|
|
* interface, or both two are on a different
|
|
* interface from the outgoing I/F.
|
|
* now we need address matching against dst
|
|
* for tiebreaking.
|
|
*/
|
|
tlen = in6_matchlen(IFA_IN6(ifa), dst);
|
|
matchcmp = tlen - blen;
|
|
if (matchcmp > 0) /* (3) */
|
|
goto replace;
|
|
continue; /* (4) */
|
|
}
|
|
if (dscopecmp > 0) {
|
|
if (bscopecmp > 0) /* (5) */
|
|
continue;
|
|
goto replace; /* (6) */
|
|
}
|
|
if (dscopecmp < 0) {
|
|
if (bscopecmp > 0) /* (7) */
|
|
goto replace;
|
|
continue; /* (8) */
|
|
}
|
|
|
|
/* now dscopecmp must be 0 */
|
|
if (bscopecmp < 0)
|
|
goto replace; /* (9) */
|
|
|
|
replace:
|
|
ifa_best = (struct in6_ifaddr *)ifa;
|
|
blen = tlen >= 0 ? tlen :
|
|
in6_matchlen(IFA_IN6(ifa), dst);
|
|
best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
|
|
}
|
|
}
|
|
|
|
/* count statistics for future improvements */
|
|
if (ifa_best == NULL)
|
|
ip6stat.ip6s_sources_none++;
|
|
else {
|
|
if (oifp == ifa_best->ia_ifp)
|
|
ip6stat.ip6s_sources_sameif[best_scope]++;
|
|
else
|
|
ip6stat.ip6s_sources_otherif[best_scope]++;
|
|
|
|
if (best_scope == dst_scope)
|
|
ip6stat.ip6s_sources_samescope[best_scope]++;
|
|
else
|
|
ip6stat.ip6s_sources_otherscope[best_scope]++;
|
|
|
|
if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
|
|
ip6stat.ip6s_sources_deprecated[best_scope]++;
|
|
}
|
|
|
|
return(ifa_best);
|
|
}
|
|
|
|
/*
|
|
* return the best address out of the same scope. if no address was
|
|
* found, return the first valid address from designated IF.
|
|
*/
|
|
struct in6_ifaddr *
|
|
in6_ifawithifp(ifp, dst)
|
|
struct ifnet *ifp;
|
|
struct in6_addr *dst;
|
|
{
|
|
int dst_scope = in6_addrscope(dst), blen = -1, tlen;
|
|
struct ifaddr *ifa;
|
|
struct in6_ifaddr *besta = 0;
|
|
struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/
|
|
|
|
dep[0] = dep[1] = NULL;
|
|
|
|
/*
|
|
* We first look for addresses in the same scope.
|
|
* If there is one, return it.
|
|
* If two or more, return one which matches the dst longest.
|
|
* If none, return one of global addresses assigned other ifs.
|
|
*/
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
|
|
continue; /* XXX: is there any case to allow anycast? */
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
|
|
continue; /* don't use this interface */
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
|
|
continue;
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
|
|
if (ip6_use_deprecated)
|
|
dep[0] = (struct in6_ifaddr *)ifa;
|
|
continue;
|
|
}
|
|
|
|
if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
|
|
/*
|
|
* call in6_matchlen() as few as possible
|
|
*/
|
|
if (besta) {
|
|
if (blen == -1)
|
|
blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
|
|
tlen = in6_matchlen(IFA_IN6(ifa), dst);
|
|
if (tlen > blen) {
|
|
blen = tlen;
|
|
besta = (struct in6_ifaddr *)ifa;
|
|
}
|
|
} else
|
|
besta = (struct in6_ifaddr *)ifa;
|
|
}
|
|
}
|
|
if (besta)
|
|
return(besta);
|
|
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
|
|
continue; /* XXX: is there any case to allow anycast? */
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
|
|
continue; /* don't use this interface */
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
|
|
continue;
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
|
|
if (ip6_use_deprecated)
|
|
dep[1] = (struct in6_ifaddr *)ifa;
|
|
continue;
|
|
}
|
|
|
|
return (struct in6_ifaddr *)ifa;
|
|
}
|
|
|
|
/* use the last-resort values, that are, deprecated addresses */
|
|
if (dep[0])
|
|
return dep[0];
|
|
if (dep[1])
|
|
return dep[1];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* perform DAD when interface becomes IFF_UP.
|
|
*/
|
|
void
|
|
in6_if_up(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct in6_ifaddr *ia;
|
|
int dad_delay; /* delay ticks before DAD output */
|
|
|
|
/*
|
|
* special cases, like 6to4, are handled in in6_ifattach
|
|
*/
|
|
in6_ifattach(ifp, NULL);
|
|
|
|
dad_delay = 0;
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
|
|
{
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
ia = (struct in6_ifaddr *)ifa;
|
|
if (ia->ia6_flags & IN6_IFF_TENTATIVE)
|
|
nd6_dad_start(ifa, &dad_delay);
|
|
}
|
|
}
|
|
|
|
int
|
|
in6if_do_dad(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
if ((ifp->if_flags & IFF_LOOPBACK) != 0)
|
|
return(0);
|
|
|
|
switch (ifp->if_type) {
|
|
#ifdef IFT_DUMMY
|
|
case IFT_DUMMY:
|
|
#endif
|
|
case IFT_FAITH:
|
|
/*
|
|
* These interfaces do not have the IFF_LOOPBACK flag,
|
|
* but loop packets back. We do not have to do DAD on such
|
|
* interfaces. We should even omit it, because loop-backed
|
|
* NS would confuse the DAD procedure.
|
|
*/
|
|
return(0);
|
|
default:
|
|
/*
|
|
* Our DAD routine requires the interface up and running.
|
|
* However, some interfaces can be up before the RUNNING
|
|
* status. Additionaly, users may try to assign addresses
|
|
* before the interface becomes up (or running).
|
|
* We simply skip DAD in such a case as a work around.
|
|
* XXX: we should rather mark "tentative" on such addresses,
|
|
* and do DAD after the interface becomes ready.
|
|
*/
|
|
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
|
|
(IFF_UP|IFF_RUNNING))
|
|
return(0);
|
|
|
|
return(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate max IPv6 MTU through all the interfaces and store it
|
|
* to in6_maxmtu.
|
|
*/
|
|
void
|
|
in6_setmaxmtu()
|
|
{
|
|
unsigned long maxmtu = 0;
|
|
struct ifnet *ifp;
|
|
|
|
for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
|
|
{
|
|
if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
|
|
nd_ifinfo[ifp->if_index].linkmtu > maxmtu)
|
|
maxmtu = nd_ifinfo[ifp->if_index].linkmtu;
|
|
}
|
|
if (maxmtu) /* update only when maxmtu is positive */
|
|
in6_maxmtu = maxmtu;
|
|
}
|
|
|
|
/*
|
|
* Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
|
|
* v4 mapped addr or v4 compat addr
|
|
*/
|
|
void
|
|
in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
|
|
{
|
|
bzero(sin, sizeof(*sin));
|
|
sin->sin_len = sizeof(struct sockaddr_in);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_port = sin6->sin6_port;
|
|
sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
|
|
}
|
|
|
|
/* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
|
|
void
|
|
in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
|
|
{
|
|
bzero(sin6, sizeof(*sin6));
|
|
sin6->sin6_len = sizeof(struct sockaddr_in6);
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_port = sin->sin_port;
|
|
sin6->sin6_addr.s6_addr32[0] = 0;
|
|
sin6->sin6_addr.s6_addr32[1] = 0;
|
|
sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
|
|
sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
|
|
}
|
|
|
|
/* Convert sockaddr_in6 into sockaddr_in. */
|
|
void
|
|
in6_sin6_2_sin_in_sock(struct sockaddr *nam)
|
|
{
|
|
struct sockaddr_in *sin_p;
|
|
struct sockaddr_in6 sin6;
|
|
|
|
/*
|
|
* Save original sockaddr_in6 addr and convert it
|
|
* to sockaddr_in.
|
|
*/
|
|
sin6 = *(struct sockaddr_in6 *)nam;
|
|
sin_p = (struct sockaddr_in *)nam;
|
|
in6_sin6_2_sin(sin_p, &sin6);
|
|
}
|
|
|
|
/* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
|
|
void
|
|
in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
|
|
{
|
|
struct sockaddr_in *sin_p;
|
|
struct sockaddr_in6 *sin6_p;
|
|
|
|
MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
|
|
M_WAITOK);
|
|
sin_p = (struct sockaddr_in *)*nam;
|
|
in6_sin_2_v4mapsin6(sin_p, sin6_p);
|
|
FREE(*nam, M_SONAME);
|
|
*nam = (struct sockaddr *)sin6_p;
|
|
}
|