mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-04 12:52:15 +00:00
d10f3ce07f
structs. gcc 4.2 doesn't do it by default, and that results in unaligned access on arm. Reviewed by: gnn, imp
2436 lines
62 KiB
C
2436 lines
62 KiB
C
/* $FreeBSD$ */
|
|
/* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */
|
|
|
|
/*-
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_mac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arc.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/iso88025.h>
|
|
#include <net/fddi.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet/icmp6.h>
|
|
|
|
#include <sys/limits.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
|
|
#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
|
|
|
|
#define SIN6(s) ((struct sockaddr_in6 *)s)
|
|
#define SDL(s) ((struct sockaddr_dl *)s)
|
|
|
|
/* timer values */
|
|
int nd6_prune = 1; /* walk list every 1 seconds */
|
|
int nd6_delay = 5; /* delay first probe time 5 second */
|
|
int nd6_umaxtries = 3; /* maximum unicast query */
|
|
int nd6_mmaxtries = 3; /* maximum multicast query */
|
|
int nd6_useloopback = 1; /* use loopback interface for local traffic */
|
|
int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
|
|
|
|
/* preventing too many loops in ND option parsing */
|
|
int nd6_maxndopt = 10; /* max # of ND options allowed */
|
|
|
|
int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
|
|
int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
|
|
|
|
#ifdef ND6_DEBUG
|
|
int nd6_debug = 1;
|
|
#else
|
|
int nd6_debug = 0;
|
|
#endif
|
|
|
|
/* for debugging? */
|
|
static int nd6_inuse, nd6_allocated;
|
|
|
|
struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
|
|
struct nd_drhead nd_defrouter;
|
|
struct nd_prhead nd_prefix = { 0 };
|
|
|
|
int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
|
|
static struct sockaddr_in6 all1_sa;
|
|
|
|
static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
|
|
struct ifnet *));
|
|
static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
|
|
static void nd6_slowtimo __P((void *));
|
|
static int regen_tmpaddr __P((struct in6_ifaddr *));
|
|
static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
|
|
static void nd6_llinfo_timer __P((void *));
|
|
static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
|
|
|
|
struct callout nd6_slowtimo_ch;
|
|
struct callout nd6_timer_ch;
|
|
extern struct callout in6_tmpaddrtimer_ch;
|
|
|
|
void
|
|
nd6_init()
|
|
{
|
|
static int nd6_init_done = 0;
|
|
int i;
|
|
|
|
if (nd6_init_done) {
|
|
log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
|
|
return;
|
|
}
|
|
|
|
all1_sa.sin6_family = AF_INET6;
|
|
all1_sa.sin6_len = sizeof(struct sockaddr_in6);
|
|
for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
|
|
all1_sa.sin6_addr.s6_addr[i] = 0xff;
|
|
|
|
/* initialization of the default router list */
|
|
TAILQ_INIT(&nd_defrouter);
|
|
|
|
nd6_init_done = 1;
|
|
|
|
/* start timer */
|
|
callout_init(&nd6_slowtimo_ch, 0);
|
|
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
|
|
nd6_slowtimo, NULL);
|
|
}
|
|
|
|
struct nd_ifinfo *
|
|
nd6_ifattach(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct nd_ifinfo *nd;
|
|
|
|
nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
|
|
bzero(nd, sizeof(*nd));
|
|
|
|
nd->initialized = 1;
|
|
|
|
nd->chlim = IPV6_DEFHLIM;
|
|
nd->basereachable = REACHABLE_TIME;
|
|
nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
|
|
nd->retrans = RETRANS_TIMER;
|
|
/*
|
|
* Note that the default value of ip6_accept_rtadv is 0, which means
|
|
* we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
|
|
* here.
|
|
*/
|
|
nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
|
|
|
|
/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
|
|
nd6_setmtu0(ifp, nd);
|
|
|
|
return nd;
|
|
}
|
|
|
|
void
|
|
nd6_ifdetach(nd)
|
|
struct nd_ifinfo *nd;
|
|
{
|
|
|
|
free(nd, M_IP6NDP);
|
|
}
|
|
|
|
/*
|
|
* Reset ND level link MTU. This function is called when the physical MTU
|
|
* changes, which means we might have to adjust the ND level MTU.
|
|
*/
|
|
void
|
|
nd6_setmtu(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
|
|
nd6_setmtu0(ifp, ND_IFINFO(ifp));
|
|
}
|
|
|
|
/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
|
|
void
|
|
nd6_setmtu0(ifp, ndi)
|
|
struct ifnet *ifp;
|
|
struct nd_ifinfo *ndi;
|
|
{
|
|
u_int32_t omaxmtu;
|
|
|
|
omaxmtu = ndi->maxmtu;
|
|
|
|
switch (ifp->if_type) {
|
|
case IFT_ARCNET:
|
|
ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
|
|
break;
|
|
case IFT_FDDI:
|
|
ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
|
|
break;
|
|
case IFT_ISO88025:
|
|
ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
|
|
break;
|
|
default:
|
|
ndi->maxmtu = ifp->if_mtu;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Decreasing the interface MTU under IPV6 minimum MTU may cause
|
|
* undesirable situation. We thus notify the operator of the change
|
|
* explicitly. The check for omaxmtu is necessary to restrict the
|
|
* log to the case of changing the MTU, not initializing it.
|
|
*/
|
|
if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
|
|
log(LOG_NOTICE, "nd6_setmtu0: "
|
|
"new link MTU on %s (%lu) is too small for IPv6\n",
|
|
if_name(ifp), (unsigned long)ndi->maxmtu);
|
|
}
|
|
|
|
if (ndi->maxmtu > in6_maxmtu)
|
|
in6_setmaxmtu(); /* check all interfaces just in case */
|
|
|
|
#undef MIN
|
|
}
|
|
|
|
void
|
|
nd6_option_init(opt, icmp6len, ndopts)
|
|
void *opt;
|
|
int icmp6len;
|
|
union nd_opts *ndopts;
|
|
{
|
|
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
|
|
ndopts->nd_opts_last
|
|
= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
|
|
|
|
if (icmp6len == 0) {
|
|
ndopts->nd_opts_done = 1;
|
|
ndopts->nd_opts_search = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Take one ND option.
|
|
*/
|
|
struct nd_opt_hdr *
|
|
nd6_option(ndopts)
|
|
union nd_opts *ndopts;
|
|
{
|
|
struct nd_opt_hdr *nd_opt;
|
|
int olen;
|
|
|
|
if (ndopts == NULL)
|
|
panic("ndopts == NULL in nd6_option");
|
|
if (ndopts->nd_opts_last == NULL)
|
|
panic("uninitialized ndopts in nd6_option");
|
|
if (ndopts->nd_opts_search == NULL)
|
|
return NULL;
|
|
if (ndopts->nd_opts_done)
|
|
return NULL;
|
|
|
|
nd_opt = ndopts->nd_opts_search;
|
|
|
|
/* make sure nd_opt_len is inside the buffer */
|
|
if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
return NULL;
|
|
}
|
|
|
|
olen = nd_opt->nd_opt_len << 3;
|
|
if (olen == 0) {
|
|
/*
|
|
* Message validation requires that all included
|
|
* options have a length that is greater than zero.
|
|
*/
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
return NULL;
|
|
}
|
|
|
|
ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
|
|
if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
|
|
/* option overruns the end of buffer, invalid */
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
return NULL;
|
|
} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
|
|
/* reached the end of options chain */
|
|
ndopts->nd_opts_done = 1;
|
|
ndopts->nd_opts_search = NULL;
|
|
}
|
|
return nd_opt;
|
|
}
|
|
|
|
/*
|
|
* Parse multiple ND options.
|
|
* This function is much easier to use, for ND routines that do not need
|
|
* multiple options of the same type.
|
|
*/
|
|
int
|
|
nd6_options(ndopts)
|
|
union nd_opts *ndopts;
|
|
{
|
|
struct nd_opt_hdr *nd_opt;
|
|
int i = 0;
|
|
|
|
if (ndopts == NULL)
|
|
panic("ndopts == NULL in nd6_options");
|
|
if (ndopts->nd_opts_last == NULL)
|
|
panic("uninitialized ndopts in nd6_options");
|
|
if (ndopts->nd_opts_search == NULL)
|
|
return 0;
|
|
|
|
while (1) {
|
|
nd_opt = nd6_option(ndopts);
|
|
if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
|
|
/*
|
|
* Message validation requires that all included
|
|
* options have a length that is greater than zero.
|
|
*/
|
|
icmp6stat.icp6s_nd_badopt++;
|
|
bzero(ndopts, sizeof(*ndopts));
|
|
return -1;
|
|
}
|
|
|
|
if (nd_opt == NULL)
|
|
goto skip1;
|
|
|
|
switch (nd_opt->nd_opt_type) {
|
|
case ND_OPT_SOURCE_LINKADDR:
|
|
case ND_OPT_TARGET_LINKADDR:
|
|
case ND_OPT_MTU:
|
|
case ND_OPT_REDIRECTED_HEADER:
|
|
if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
|
|
nd6log((LOG_INFO,
|
|
"duplicated ND6 option found (type=%d)\n",
|
|
nd_opt->nd_opt_type));
|
|
/* XXX bark? */
|
|
} else {
|
|
ndopts->nd_opt_array[nd_opt->nd_opt_type]
|
|
= nd_opt;
|
|
}
|
|
break;
|
|
case ND_OPT_PREFIX_INFORMATION:
|
|
if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
|
|
ndopts->nd_opt_array[nd_opt->nd_opt_type]
|
|
= nd_opt;
|
|
}
|
|
ndopts->nd_opts_pi_end =
|
|
(struct nd_opt_prefix_info *)nd_opt;
|
|
break;
|
|
default:
|
|
/*
|
|
* Unknown options must be silently ignored,
|
|
* to accomodate future extension to the protocol.
|
|
*/
|
|
nd6log((LOG_DEBUG,
|
|
"nd6_options: unsupported option %d - "
|
|
"option ignored\n", nd_opt->nd_opt_type));
|
|
}
|
|
|
|
skip1:
|
|
i++;
|
|
if (i > nd6_maxndopt) {
|
|
icmp6stat.icp6s_nd_toomanyopt++;
|
|
nd6log((LOG_INFO, "too many loop in nd opt\n"));
|
|
break;
|
|
}
|
|
|
|
if (ndopts->nd_opts_done)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ND6 timer routine to handle ND6 entries
|
|
*/
|
|
void
|
|
nd6_llinfo_settimer(ln, tick)
|
|
struct llinfo_nd6 *ln;
|
|
long tick;
|
|
{
|
|
if (tick < 0) {
|
|
ln->ln_expire = 0;
|
|
ln->ln_ntick = 0;
|
|
callout_stop(&ln->ln_timer_ch);
|
|
} else {
|
|
ln->ln_expire = time_second + tick / hz;
|
|
if (tick > INT_MAX) {
|
|
ln->ln_ntick = tick - INT_MAX;
|
|
callout_reset(&ln->ln_timer_ch, INT_MAX,
|
|
nd6_llinfo_timer, ln);
|
|
} else {
|
|
ln->ln_ntick = 0;
|
|
callout_reset(&ln->ln_timer_ch, tick,
|
|
nd6_llinfo_timer, ln);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nd6_llinfo_timer(arg)
|
|
void *arg;
|
|
{
|
|
struct llinfo_nd6 *ln;
|
|
struct rtentry *rt;
|
|
struct in6_addr *dst;
|
|
struct ifnet *ifp;
|
|
struct nd_ifinfo *ndi = NULL;
|
|
|
|
ln = (struct llinfo_nd6 *)arg;
|
|
|
|
if (ln->ln_ntick > 0) {
|
|
if (ln->ln_ntick > INT_MAX) {
|
|
ln->ln_ntick -= INT_MAX;
|
|
nd6_llinfo_settimer(ln, INT_MAX);
|
|
} else {
|
|
ln->ln_ntick = 0;
|
|
nd6_llinfo_settimer(ln, ln->ln_ntick);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((rt = ln->ln_rt) == NULL)
|
|
panic("ln->ln_rt == NULL");
|
|
if ((ifp = rt->rt_ifp) == NULL)
|
|
panic("ln->ln_rt->rt_ifp == NULL");
|
|
ndi = ND_IFINFO(ifp);
|
|
|
|
/* sanity check */
|
|
if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
|
|
panic("rt_llinfo(%p) is not equal to ln(%p)",
|
|
rt->rt_llinfo, ln);
|
|
if (rt_key(rt) == NULL)
|
|
panic("rt key is NULL in nd6_timer(ln=%p)", ln);
|
|
|
|
dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
|
|
|
|
switch (ln->ln_state) {
|
|
case ND6_LLINFO_INCOMPLETE:
|
|
if (ln->ln_asked < nd6_mmaxtries) {
|
|
ln->ln_asked++;
|
|
nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
|
|
nd6_ns_output(ifp, NULL, dst, ln, 0);
|
|
} else {
|
|
struct mbuf *m = ln->ln_hold;
|
|
if (m) {
|
|
struct mbuf *m0;
|
|
|
|
/*
|
|
* assuming every packet in ln_hold has the
|
|
* same IP header
|
|
*/
|
|
m0 = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
icmp6_error2(m, ICMP6_DST_UNREACH,
|
|
ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
|
|
|
|
ln->ln_hold = m0;
|
|
clear_llinfo_pqueue(ln);
|
|
}
|
|
if (rt)
|
|
(void)nd6_free(rt, 0);
|
|
ln = NULL;
|
|
}
|
|
break;
|
|
case ND6_LLINFO_REACHABLE:
|
|
if (!ND6_LLINFO_PERMANENT(ln)) {
|
|
ln->ln_state = ND6_LLINFO_STALE;
|
|
nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
|
|
}
|
|
break;
|
|
|
|
case ND6_LLINFO_STALE:
|
|
/* Garbage Collection(RFC 2461 5.3) */
|
|
if (!ND6_LLINFO_PERMANENT(ln)) {
|
|
(void)nd6_free(rt, 1);
|
|
ln = NULL;
|
|
}
|
|
break;
|
|
|
|
case ND6_LLINFO_DELAY:
|
|
if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
|
|
/* We need NUD */
|
|
ln->ln_asked = 1;
|
|
ln->ln_state = ND6_LLINFO_PROBE;
|
|
nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
|
|
nd6_ns_output(ifp, dst, dst, ln, 0);
|
|
} else {
|
|
ln->ln_state = ND6_LLINFO_STALE; /* XXX */
|
|
nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
|
|
}
|
|
break;
|
|
case ND6_LLINFO_PROBE:
|
|
if (ln->ln_asked < nd6_umaxtries) {
|
|
ln->ln_asked++;
|
|
nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
|
|
nd6_ns_output(ifp, dst, dst, ln, 0);
|
|
} else if (rt->rt_ifa != NULL &&
|
|
rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
|
|
(((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
|
|
/*
|
|
* This is an unreachable neighbor whose address is
|
|
* specified as the destination of a p2p interface
|
|
* (see in6_ifinit()). We should not free the entry
|
|
* since this is sort of a "static" entry generated
|
|
* via interface address configuration.
|
|
*/
|
|
ln->ln_asked = 0;
|
|
ln->ln_expire = 0; /* make it permanent */
|
|
ln->ln_state = ND6_LLINFO_STALE;
|
|
} else {
|
|
(void)nd6_free(rt, 0);
|
|
ln = NULL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ND6 timer routine to expire default route list and prefix list
|
|
*/
|
|
void
|
|
nd6_timer(ignored_arg)
|
|
void *ignored_arg;
|
|
{
|
|
int s;
|
|
struct nd_defrouter *dr;
|
|
struct nd_prefix *pr;
|
|
struct in6_ifaddr *ia6, *nia6;
|
|
struct in6_addrlifetime *lt6;
|
|
|
|
callout_reset(&nd6_timer_ch, nd6_prune * hz,
|
|
nd6_timer, NULL);
|
|
|
|
/* expire default router list */
|
|
s = splnet();
|
|
dr = TAILQ_FIRST(&nd_defrouter);
|
|
while (dr) {
|
|
if (dr->expire && dr->expire < time_second) {
|
|
struct nd_defrouter *t;
|
|
t = TAILQ_NEXT(dr, dr_entry);
|
|
defrtrlist_del(dr);
|
|
dr = t;
|
|
} else {
|
|
dr = TAILQ_NEXT(dr, dr_entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* expire interface addresses.
|
|
* in the past the loop was inside prefix expiry processing.
|
|
* However, from a stricter speci-confrmance standpoint, we should
|
|
* rather separate address lifetimes and prefix lifetimes.
|
|
*/
|
|
addrloop:
|
|
for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
|
|
nia6 = ia6->ia_next;
|
|
/* check address lifetime */
|
|
lt6 = &ia6->ia6_lifetime;
|
|
if (IFA6_IS_INVALID(ia6)) {
|
|
int regen = 0;
|
|
|
|
/*
|
|
* If the expiring address is temporary, try
|
|
* regenerating a new one. This would be useful when
|
|
* we suspended a laptop PC, then turned it on after a
|
|
* period that could invalidate all temporary
|
|
* addresses. Although we may have to restart the
|
|
* loop (see below), it must be after purging the
|
|
* address. Otherwise, we'd see an infinite loop of
|
|
* regeneration.
|
|
*/
|
|
if (ip6_use_tempaddr &&
|
|
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
|
|
if (regen_tmpaddr(ia6) == 0)
|
|
regen = 1;
|
|
}
|
|
|
|
in6_purgeaddr(&ia6->ia_ifa);
|
|
|
|
if (regen)
|
|
goto addrloop; /* XXX: see below */
|
|
} else if (IFA6_IS_DEPRECATED(ia6)) {
|
|
int oldflags = ia6->ia6_flags;
|
|
|
|
ia6->ia6_flags |= IN6_IFF_DEPRECATED;
|
|
|
|
/*
|
|
* If a temporary address has just become deprecated,
|
|
* regenerate a new one if possible.
|
|
*/
|
|
if (ip6_use_tempaddr &&
|
|
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
|
|
(oldflags & IN6_IFF_DEPRECATED) == 0) {
|
|
|
|
if (regen_tmpaddr(ia6) == 0) {
|
|
/*
|
|
* A new temporary address is
|
|
* generated.
|
|
* XXX: this means the address chain
|
|
* has changed while we are still in
|
|
* the loop. Although the change
|
|
* would not cause disaster (because
|
|
* it's not a deletion, but an
|
|
* addition,) we'd rather restart the
|
|
* loop just for safety. Or does this
|
|
* significantly reduce performance??
|
|
*/
|
|
goto addrloop;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* A new RA might have made a deprecated address
|
|
* preferred.
|
|
*/
|
|
ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
|
|
}
|
|
}
|
|
|
|
/* expire prefix list */
|
|
pr = nd_prefix.lh_first;
|
|
while (pr) {
|
|
/*
|
|
* check prefix lifetime.
|
|
* since pltime is just for autoconf, pltime processing for
|
|
* prefix is not necessary.
|
|
*/
|
|
if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
|
|
time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
|
|
struct nd_prefix *t;
|
|
t = pr->ndpr_next;
|
|
|
|
/*
|
|
* address expiration and prefix expiration are
|
|
* separate. NEVER perform in6_purgeaddr here.
|
|
*/
|
|
|
|
prelist_remove(pr);
|
|
pr = t;
|
|
} else
|
|
pr = pr->ndpr_next;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
static int
|
|
regen_tmpaddr(ia6)
|
|
struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
struct in6_ifaddr *public_ifa6 = NULL;
|
|
|
|
ifp = ia6->ia_ifa.ifa_ifp;
|
|
for (ifa = ifp->if_addrlist.tqh_first; ifa;
|
|
ifa = ifa->ifa_list.tqe_next) {
|
|
struct in6_ifaddr *it6;
|
|
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
|
|
it6 = (struct in6_ifaddr *)ifa;
|
|
|
|
/* ignore no autoconf addresses. */
|
|
if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
|
|
continue;
|
|
|
|
/* ignore autoconf addresses with different prefixes. */
|
|
if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
|
|
continue;
|
|
|
|
/*
|
|
* Now we are looking at an autoconf address with the same
|
|
* prefix as ours. If the address is temporary and is still
|
|
* preferred, do not create another one. It would be rare, but
|
|
* could happen, for example, when we resume a laptop PC after
|
|
* a long period.
|
|
*/
|
|
if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
|
|
!IFA6_IS_DEPRECATED(it6)) {
|
|
public_ifa6 = NULL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This is a public autoconf address that has the same prefix
|
|
* as ours. If it is preferred, keep it. We can't break the
|
|
* loop here, because there may be a still-preferred temporary
|
|
* address with the prefix.
|
|
*/
|
|
if (!IFA6_IS_DEPRECATED(it6))
|
|
public_ifa6 = it6;
|
|
}
|
|
|
|
if (public_ifa6 != NULL) {
|
|
int e;
|
|
|
|
if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
|
|
log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
|
|
" tmp addr,errno=%d\n", e);
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Nuke neighbor cache/prefix/default router management table, right before
|
|
* ifp goes away.
|
|
*/
|
|
void
|
|
nd6_purge(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct llinfo_nd6 *ln, *nln;
|
|
struct nd_defrouter *dr, *ndr;
|
|
struct nd_prefix *pr, *npr;
|
|
|
|
/*
|
|
* Nuke default router list entries toward ifp.
|
|
* We defer removal of default router list entries that is installed
|
|
* in the routing table, in order to keep additional side effects as
|
|
* small as possible.
|
|
*/
|
|
for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
|
|
ndr = TAILQ_NEXT(dr, dr_entry);
|
|
if (dr->installed)
|
|
continue;
|
|
|
|
if (dr->ifp == ifp)
|
|
defrtrlist_del(dr);
|
|
}
|
|
|
|
for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
|
|
ndr = TAILQ_NEXT(dr, dr_entry);
|
|
if (!dr->installed)
|
|
continue;
|
|
|
|
if (dr->ifp == ifp)
|
|
defrtrlist_del(dr);
|
|
}
|
|
|
|
/* Nuke prefix list entries toward ifp */
|
|
for (pr = nd_prefix.lh_first; pr; pr = npr) {
|
|
npr = pr->ndpr_next;
|
|
if (pr->ndpr_ifp == ifp) {
|
|
/*
|
|
* Because if_detach() does *not* release prefixes
|
|
* while purging addresses the reference count will
|
|
* still be above zero. We therefore reset it to
|
|
* make sure that the prefix really gets purged.
|
|
*/
|
|
pr->ndpr_refcnt = 0;
|
|
|
|
/*
|
|
* Previously, pr->ndpr_addr is removed as well,
|
|
* but I strongly believe we don't have to do it.
|
|
* nd6_purge() is only called from in6_ifdetach(),
|
|
* which removes all the associated interface addresses
|
|
* by itself.
|
|
* (jinmei@kame.net 20010129)
|
|
*/
|
|
prelist_remove(pr);
|
|
}
|
|
}
|
|
|
|
/* cancel default outgoing interface setting */
|
|
if (nd6_defifindex == ifp->if_index)
|
|
nd6_setdefaultiface(0);
|
|
|
|
if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
|
|
/* refresh default router list */
|
|
defrouter_select();
|
|
}
|
|
|
|
/*
|
|
* Nuke neighbor cache entries for the ifp.
|
|
* Note that rt->rt_ifp may not be the same as ifp,
|
|
* due to KAME goto ours hack. See RTM_RESOLVE case in
|
|
* nd6_rtrequest(), and ip6_input().
|
|
*/
|
|
ln = llinfo_nd6.ln_next;
|
|
while (ln && ln != &llinfo_nd6) {
|
|
struct rtentry *rt;
|
|
struct sockaddr_dl *sdl;
|
|
|
|
nln = ln->ln_next;
|
|
rt = ln->ln_rt;
|
|
if (rt && rt->rt_gateway &&
|
|
rt->rt_gateway->sa_family == AF_LINK) {
|
|
sdl = (struct sockaddr_dl *)rt->rt_gateway;
|
|
if (sdl->sdl_index == ifp->if_index)
|
|
nln = nd6_free(rt, 0);
|
|
}
|
|
ln = nln;
|
|
}
|
|
}
|
|
|
|
struct rtentry *
|
|
nd6_lookup(addr6, create, ifp)
|
|
struct in6_addr *addr6;
|
|
int create;
|
|
struct ifnet *ifp;
|
|
{
|
|
struct rtentry *rt;
|
|
struct sockaddr_in6 sin6;
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
|
|
bzero(&sin6, sizeof(sin6));
|
|
sin6.sin6_len = sizeof(struct sockaddr_in6);
|
|
sin6.sin6_family = AF_INET6;
|
|
sin6.sin6_addr = *addr6;
|
|
rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
|
|
if (rt) {
|
|
if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
|
|
/*
|
|
* This is the case for the default route.
|
|
* If we want to create a neighbor cache for the
|
|
* address, we should free the route for the
|
|
* destination and allocate an interface route.
|
|
*/
|
|
RTFREE_LOCKED(rt);
|
|
rt = NULL;
|
|
}
|
|
}
|
|
if (rt == NULL) {
|
|
if (create && ifp) {
|
|
int e;
|
|
|
|
/*
|
|
* If no route is available and create is set,
|
|
* we allocate a host route for the destination
|
|
* and treat it like an interface route.
|
|
* This hack is necessary for a neighbor which can't
|
|
* be covered by our own prefix.
|
|
*/
|
|
struct ifaddr *ifa =
|
|
ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
|
|
if (ifa == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Create a new route. RTF_LLINFO is necessary
|
|
* to create a Neighbor Cache entry for the
|
|
* destination in nd6_rtrequest which will be
|
|
* called in rtrequest via ifa->ifa_rtrequest.
|
|
*/
|
|
if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
|
|
ifa->ifa_addr, (struct sockaddr *)&all1_sa,
|
|
(ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
|
|
~RTF_CLONING, &rt)) != 0) {
|
|
log(LOG_ERR,
|
|
"nd6_lookup: failed to add route for a "
|
|
"neighbor(%s), errno=%d\n",
|
|
ip6_sprintf(ip6buf, addr6), e);
|
|
}
|
|
if (rt == NULL)
|
|
return (NULL);
|
|
RT_LOCK(rt);
|
|
if (rt->rt_llinfo) {
|
|
struct llinfo_nd6 *ln =
|
|
(struct llinfo_nd6 *)rt->rt_llinfo;
|
|
ln->ln_state = ND6_LLINFO_NOSTATE;
|
|
}
|
|
} else
|
|
return (NULL);
|
|
}
|
|
RT_LOCK_ASSERT(rt);
|
|
RT_REMREF(rt);
|
|
/*
|
|
* Validation for the entry.
|
|
* Note that the check for rt_llinfo is necessary because a cloned
|
|
* route from a parent route that has the L flag (e.g. the default
|
|
* route to a p2p interface) may have the flag, too, while the
|
|
* destination is not actually a neighbor.
|
|
* XXX: we can't use rt->rt_ifp to check for the interface, since
|
|
* it might be the loopback interface if the entry is for our
|
|
* own address on a non-loopback interface. Instead, we should
|
|
* use rt->rt_ifa->ifa_ifp, which would specify the REAL
|
|
* interface.
|
|
* Note also that ifa_ifp and ifp may differ when we connect two
|
|
* interfaces to a same link, install a link prefix to an interface,
|
|
* and try to install a neighbor cache on an interface that does not
|
|
* have a route to the prefix.
|
|
*/
|
|
if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
|
|
rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
|
|
(ifp && rt->rt_ifa->ifa_ifp != ifp)) {
|
|
if (create) {
|
|
nd6log((LOG_DEBUG,
|
|
"nd6_lookup: failed to lookup %s (if = %s)\n",
|
|
ip6_sprintf(ip6buf, addr6),
|
|
ifp ? if_name(ifp) : "unspec"));
|
|
}
|
|
RT_UNLOCK(rt);
|
|
return (NULL);
|
|
}
|
|
RT_UNLOCK(rt); /* XXX not ready to return rt locked */
|
|
return (rt);
|
|
}
|
|
|
|
/*
|
|
* Test whether a given IPv6 address is a neighbor or not, ignoring
|
|
* the actual neighbor cache. The neighbor cache is ignored in order
|
|
* to not reenter the routing code from within itself.
|
|
*/
|
|
static int
|
|
nd6_is_new_addr_neighbor(addr, ifp)
|
|
struct sockaddr_in6 *addr;
|
|
struct ifnet *ifp;
|
|
{
|
|
struct nd_prefix *pr;
|
|
struct ifaddr *dstaddr;
|
|
|
|
/*
|
|
* A link-local address is always a neighbor.
|
|
* XXX: a link does not necessarily specify a single interface.
|
|
*/
|
|
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
|
|
struct sockaddr_in6 sin6_copy;
|
|
u_int32_t zone;
|
|
|
|
/*
|
|
* We need sin6_copy since sa6_recoverscope() may modify the
|
|
* content (XXX).
|
|
*/
|
|
sin6_copy = *addr;
|
|
if (sa6_recoverscope(&sin6_copy))
|
|
return (0); /* XXX: should be impossible */
|
|
if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
|
|
return (0);
|
|
if (sin6_copy.sin6_scope_id == zone)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the address matches one of our addresses,
|
|
* it should be a neighbor.
|
|
* If the address matches one of our on-link prefixes, it should be a
|
|
* neighbor.
|
|
*/
|
|
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
|
|
if (pr->ndpr_ifp != ifp)
|
|
continue;
|
|
|
|
if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
|
|
continue;
|
|
|
|
if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
|
|
&addr->sin6_addr, &pr->ndpr_mask))
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* If the address is assigned on the node of the other side of
|
|
* a p2p interface, the address should be a neighbor.
|
|
*/
|
|
dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
|
|
if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
|
|
return (1);
|
|
|
|
/*
|
|
* If the default router list is empty, all addresses are regarded
|
|
* as on-link, and thus, as a neighbor.
|
|
* XXX: we restrict the condition to hosts, because routers usually do
|
|
* not have the "default router list".
|
|
*/
|
|
if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
|
|
nd6_defifindex == ifp->if_index) {
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Detect if a given IPv6 address identifies a neighbor on a given link.
|
|
* XXX: should take care of the destination of a p2p link?
|
|
*/
|
|
int
|
|
nd6_is_addr_neighbor(addr, ifp)
|
|
struct sockaddr_in6 *addr;
|
|
struct ifnet *ifp;
|
|
{
|
|
|
|
if (nd6_is_new_addr_neighbor(addr, ifp))
|
|
return (1);
|
|
|
|
/*
|
|
* Even if the address matches none of our addresses, it might be
|
|
* in the neighbor cache.
|
|
*/
|
|
if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free an nd6 llinfo entry.
|
|
* Since the function would cause significant changes in the kernel, DO NOT
|
|
* make it global, unless you have a strong reason for the change, and are sure
|
|
* that the change is safe.
|
|
*/
|
|
static struct llinfo_nd6 *
|
|
nd6_free(rt, gc)
|
|
struct rtentry *rt;
|
|
int gc;
|
|
{
|
|
struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
|
|
struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
|
|
struct nd_defrouter *dr;
|
|
|
|
/*
|
|
* we used to have pfctlinput(PRC_HOSTDEAD) here.
|
|
* even though it is not harmful, it was not really necessary.
|
|
*/
|
|
|
|
/* cancel timer */
|
|
nd6_llinfo_settimer(ln, -1);
|
|
|
|
if (!ip6_forwarding) {
|
|
int s;
|
|
s = splnet();
|
|
dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
|
|
rt->rt_ifp);
|
|
|
|
if (dr != NULL && dr->expire &&
|
|
ln->ln_state == ND6_LLINFO_STALE && gc) {
|
|
/*
|
|
* If the reason for the deletion is just garbage
|
|
* collection, and the neighbor is an active default
|
|
* router, do not delete it. Instead, reset the GC
|
|
* timer using the router's lifetime.
|
|
* Simply deleting the entry would affect default
|
|
* router selection, which is not necessarily a good
|
|
* thing, especially when we're using router preference
|
|
* values.
|
|
* XXX: the check for ln_state would be redundant,
|
|
* but we intentionally keep it just in case.
|
|
*/
|
|
if (dr->expire > time_second)
|
|
nd6_llinfo_settimer(ln,
|
|
(dr->expire - time_second) * hz);
|
|
else
|
|
nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
|
|
splx(s);
|
|
return (ln->ln_next);
|
|
}
|
|
|
|
if (ln->ln_router || dr) {
|
|
/*
|
|
* rt6_flush must be called whether or not the neighbor
|
|
* is in the Default Router List.
|
|
* See a corresponding comment in nd6_na_input().
|
|
*/
|
|
rt6_flush(&in6, rt->rt_ifp);
|
|
}
|
|
|
|
if (dr) {
|
|
/*
|
|
* Unreachablity of a router might affect the default
|
|
* router selection and on-link detection of advertised
|
|
* prefixes.
|
|
*/
|
|
|
|
/*
|
|
* Temporarily fake the state to choose a new default
|
|
* router and to perform on-link determination of
|
|
* prefixes correctly.
|
|
* Below the state will be set correctly,
|
|
* or the entry itself will be deleted.
|
|
*/
|
|
ln->ln_state = ND6_LLINFO_INCOMPLETE;
|
|
|
|
/*
|
|
* Since defrouter_select() does not affect the
|
|
* on-link determination and MIP6 needs the check
|
|
* before the default router selection, we perform
|
|
* the check now.
|
|
*/
|
|
pfxlist_onlink_check();
|
|
|
|
/*
|
|
* refresh default router list
|
|
*/
|
|
defrouter_select();
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Before deleting the entry, remember the next entry as the
|
|
* return value. We need this because pfxlist_onlink_check() above
|
|
* might have freed other entries (particularly the old next entry) as
|
|
* a side effect (XXX).
|
|
*/
|
|
next = ln->ln_next;
|
|
|
|
/*
|
|
* Detach the route from the routing tree and the list of neighbor
|
|
* caches, and disable the route entry not to be used in already
|
|
* cached routes.
|
|
*/
|
|
rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
|
|
rt_mask(rt), 0, (struct rtentry **)0);
|
|
|
|
return (next);
|
|
}
|
|
|
|
/*
|
|
* Upper-layer reachability hint for Neighbor Unreachability Detection.
|
|
*
|
|
* XXX cost-effective methods?
|
|
*/
|
|
void
|
|
nd6_nud_hint(rt, dst6, force)
|
|
struct rtentry *rt;
|
|
struct in6_addr *dst6;
|
|
int force;
|
|
{
|
|
struct llinfo_nd6 *ln;
|
|
|
|
/*
|
|
* If the caller specified "rt", use that. Otherwise, resolve the
|
|
* routing table by supplied "dst6".
|
|
*/
|
|
if (rt == NULL) {
|
|
if (dst6 == NULL)
|
|
return;
|
|
if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
|
|
return;
|
|
}
|
|
|
|
if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
|
|
(rt->rt_flags & RTF_LLINFO) == 0 ||
|
|
rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
|
|
rt->rt_gateway->sa_family != AF_LINK) {
|
|
/* This is not a host route. */
|
|
return;
|
|
}
|
|
|
|
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
|
|
if (ln->ln_state < ND6_LLINFO_REACHABLE)
|
|
return;
|
|
|
|
/*
|
|
* if we get upper-layer reachability confirmation many times,
|
|
* it is possible we have false information.
|
|
*/
|
|
if (!force) {
|
|
ln->ln_byhint++;
|
|
if (ln->ln_byhint > nd6_maxnudhint)
|
|
return;
|
|
}
|
|
|
|
ln->ln_state = ND6_LLINFO_REACHABLE;
|
|
if (!ND6_LLINFO_PERMANENT(ln)) {
|
|
nd6_llinfo_settimer(ln,
|
|
(long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
|
|
}
|
|
}
|
|
|
|
void
|
|
nd6_rtrequest(req, rt, info)
|
|
int req;
|
|
struct rtentry *rt;
|
|
struct rt_addrinfo *info; /* xxx unused */
|
|
{
|
|
struct sockaddr *gate = rt->rt_gateway;
|
|
struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
|
|
static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
|
|
struct ifnet *ifp = rt->rt_ifp;
|
|
struct ifaddr *ifa;
|
|
|
|
RT_LOCK_ASSERT(rt);
|
|
|
|
if ((rt->rt_flags & RTF_GATEWAY) != 0)
|
|
return;
|
|
|
|
if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
|
|
/*
|
|
* This is probably an interface direct route for a link
|
|
* which does not need neighbor caches (e.g. fe80::%lo0/64).
|
|
* We do not need special treatment below for such a route.
|
|
* Moreover, the RTF_LLINFO flag which would be set below
|
|
* would annoy the ndp(8) command.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (req == RTM_RESOLVE &&
|
|
(nd6_need_cache(ifp) == 0 || /* stf case */
|
|
!nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
|
|
ifp))) {
|
|
/*
|
|
* FreeBSD and BSD/OS often make a cloned host route based
|
|
* on a less-specific route (e.g. the default route).
|
|
* If the less specific route does not have a "gateway"
|
|
* (this is the case when the route just goes to a p2p or an
|
|
* stf interface), we'll mistakenly make a neighbor cache for
|
|
* the host route, and will see strange neighbor solicitation
|
|
* for the corresponding destination. In order to avoid the
|
|
* confusion, we check if the destination of the route is
|
|
* a neighbor in terms of neighbor discovery, and stop the
|
|
* process if not. Additionally, we remove the LLINFO flag
|
|
* so that ndp(8) will not try to get the neighbor information
|
|
* of the destination.
|
|
*/
|
|
rt->rt_flags &= ~RTF_LLINFO;
|
|
return;
|
|
}
|
|
|
|
switch (req) {
|
|
case RTM_ADD:
|
|
/*
|
|
* There is no backward compatibility :)
|
|
*
|
|
* if ((rt->rt_flags & RTF_HOST) == 0 &&
|
|
* SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
|
|
* rt->rt_flags |= RTF_CLONING;
|
|
*/
|
|
if ((rt->rt_flags & RTF_CLONING) ||
|
|
((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
|
|
/*
|
|
* Case 1: This route should come from a route to
|
|
* interface (RTF_CLONING case) or the route should be
|
|
* treated as on-link but is currently not
|
|
* (RTF_LLINFO && ln == NULL case).
|
|
*/
|
|
rt_setgate(rt, rt_key(rt),
|
|
(struct sockaddr *)&null_sdl);
|
|
gate = rt->rt_gateway;
|
|
SDL(gate)->sdl_type = ifp->if_type;
|
|
SDL(gate)->sdl_index = ifp->if_index;
|
|
if (ln)
|
|
nd6_llinfo_settimer(ln, 0);
|
|
if ((rt->rt_flags & RTF_CLONING) != 0)
|
|
break;
|
|
}
|
|
/*
|
|
* In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
|
|
* We don't do that here since llinfo is not ready yet.
|
|
*
|
|
* There are also couple of other things to be discussed:
|
|
* - unsolicited NA code needs improvement beforehand
|
|
* - RFC2461 says we MAY send multicast unsolicited NA
|
|
* (7.2.6 paragraph 4), however, it also says that we
|
|
* SHOULD provide a mechanism to prevent multicast NA storm.
|
|
* we don't have anything like it right now.
|
|
* note that the mechanism needs a mutual agreement
|
|
* between proxies, which means that we need to implement
|
|
* a new protocol, or a new kludge.
|
|
* - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
|
|
* we need to check ip6forwarding before sending it.
|
|
* (or should we allow proxy ND configuration only for
|
|
* routers? there's no mention about proxy ND from hosts)
|
|
*/
|
|
/* FALLTHROUGH */
|
|
case RTM_RESOLVE:
|
|
if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
|
|
/*
|
|
* Address resolution isn't necessary for a point to
|
|
* point link, so we can skip this test for a p2p link.
|
|
*/
|
|
if (gate->sa_family != AF_LINK ||
|
|
gate->sa_len < sizeof(null_sdl)) {
|
|
log(LOG_DEBUG,
|
|
"nd6_rtrequest: bad gateway value: %s\n",
|
|
if_name(ifp));
|
|
break;
|
|
}
|
|
SDL(gate)->sdl_type = ifp->if_type;
|
|
SDL(gate)->sdl_index = ifp->if_index;
|
|
}
|
|
if (ln != NULL)
|
|
break; /* This happens on a route change */
|
|
/*
|
|
* Case 2: This route may come from cloning, or a manual route
|
|
* add with a LL address.
|
|
*/
|
|
R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
|
|
rt->rt_llinfo = (caddr_t)ln;
|
|
if (ln == NULL) {
|
|
log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
|
|
break;
|
|
}
|
|
nd6_inuse++;
|
|
nd6_allocated++;
|
|
bzero(ln, sizeof(*ln));
|
|
RT_ADDREF(rt);
|
|
ln->ln_rt = rt;
|
|
callout_init(&ln->ln_timer_ch, 0);
|
|
|
|
/* this is required for "ndp" command. - shin */
|
|
if (req == RTM_ADD) {
|
|
/*
|
|
* gate should have some valid AF_LINK entry,
|
|
* and ln->ln_expire should have some lifetime
|
|
* which is specified by ndp command.
|
|
*/
|
|
ln->ln_state = ND6_LLINFO_REACHABLE;
|
|
ln->ln_byhint = 0;
|
|
} else {
|
|
/*
|
|
* When req == RTM_RESOLVE, rt is created and
|
|
* initialized in rtrequest(), so rt_expire is 0.
|
|
*/
|
|
ln->ln_state = ND6_LLINFO_NOSTATE;
|
|
nd6_llinfo_settimer(ln, 0);
|
|
}
|
|
rt->rt_flags |= RTF_LLINFO;
|
|
ln->ln_next = llinfo_nd6.ln_next;
|
|
llinfo_nd6.ln_next = ln;
|
|
ln->ln_prev = &llinfo_nd6;
|
|
ln->ln_next->ln_prev = ln;
|
|
|
|
/*
|
|
* check if rt_key(rt) is one of my address assigned
|
|
* to the interface.
|
|
*/
|
|
ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
|
|
&SIN6(rt_key(rt))->sin6_addr);
|
|
if (ifa) {
|
|
caddr_t macp = nd6_ifptomac(ifp);
|
|
nd6_llinfo_settimer(ln, -1);
|
|
ln->ln_state = ND6_LLINFO_REACHABLE;
|
|
ln->ln_byhint = 0;
|
|
if (macp) {
|
|
bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
|
|
SDL(gate)->sdl_alen = ifp->if_addrlen;
|
|
}
|
|
if (nd6_useloopback) {
|
|
rt->rt_ifp = &loif[0]; /* XXX */
|
|
/*
|
|
* Make sure rt_ifa be equal to the ifaddr
|
|
* corresponding to the address.
|
|
* We need this because when we refer
|
|
* rt_ifa->ia6_flags in ip6_input, we assume
|
|
* that the rt_ifa points to the address instead
|
|
* of the loopback address.
|
|
*/
|
|
if (ifa != rt->rt_ifa) {
|
|
IFAFREE(rt->rt_ifa);
|
|
IFAREF(ifa);
|
|
rt->rt_ifa = ifa;
|
|
}
|
|
}
|
|
} else if (rt->rt_flags & RTF_ANNOUNCE) {
|
|
nd6_llinfo_settimer(ln, -1);
|
|
ln->ln_state = ND6_LLINFO_REACHABLE;
|
|
ln->ln_byhint = 0;
|
|
|
|
/* join solicited node multicast for proxy ND */
|
|
if (ifp->if_flags & IFF_MULTICAST) {
|
|
struct in6_addr llsol;
|
|
int error;
|
|
|
|
llsol = SIN6(rt_key(rt))->sin6_addr;
|
|
llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
|
|
llsol.s6_addr32[1] = 0;
|
|
llsol.s6_addr32[2] = htonl(1);
|
|
llsol.s6_addr8[12] = 0xff;
|
|
if (in6_setscope(&llsol, ifp, NULL))
|
|
break;
|
|
if (in6_addmulti(&llsol, ifp,
|
|
&error, 0) == NULL) {
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
nd6log((LOG_ERR, "%s: failed to join "
|
|
"%s (errno=%d)\n", if_name(ifp),
|
|
ip6_sprintf(ip6buf, &llsol),
|
|
error));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RTM_DELETE:
|
|
if (ln == NULL)
|
|
break;
|
|
/* leave from solicited node multicast for proxy ND */
|
|
if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
|
|
(ifp->if_flags & IFF_MULTICAST) != 0) {
|
|
struct in6_addr llsol;
|
|
struct in6_multi *in6m;
|
|
|
|
llsol = SIN6(rt_key(rt))->sin6_addr;
|
|
llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
|
|
llsol.s6_addr32[1] = 0;
|
|
llsol.s6_addr32[2] = htonl(1);
|
|
llsol.s6_addr8[12] = 0xff;
|
|
if (in6_setscope(&llsol, ifp, NULL) == 0) {
|
|
IN6_LOOKUP_MULTI(llsol, ifp, in6m);
|
|
if (in6m)
|
|
in6_delmulti(in6m);
|
|
} else
|
|
; /* XXX: should not happen. bark here? */
|
|
}
|
|
nd6_inuse--;
|
|
ln->ln_next->ln_prev = ln->ln_prev;
|
|
ln->ln_prev->ln_next = ln->ln_next;
|
|
ln->ln_prev = NULL;
|
|
nd6_llinfo_settimer(ln, -1);
|
|
RT_REMREF(rt);
|
|
rt->rt_llinfo = 0;
|
|
rt->rt_flags &= ~RTF_LLINFO;
|
|
clear_llinfo_pqueue(ln);
|
|
Free((caddr_t)ln);
|
|
}
|
|
}
|
|
|
|
int
|
|
nd6_ioctl(cmd, data, ifp)
|
|
u_long cmd;
|
|
caddr_t data;
|
|
struct ifnet *ifp;
|
|
{
|
|
struct in6_drlist *drl = (struct in6_drlist *)data;
|
|
struct in6_oprlist *oprl = (struct in6_oprlist *)data;
|
|
struct in6_ndireq *ndi = (struct in6_ndireq *)data;
|
|
struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
|
|
struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
|
|
struct nd_defrouter *dr;
|
|
struct nd_prefix *pr;
|
|
struct rtentry *rt;
|
|
int i = 0, error = 0;
|
|
int s;
|
|
|
|
switch (cmd) {
|
|
case SIOCGDRLST_IN6:
|
|
/*
|
|
* obsolete API, use sysctl under net.inet6.icmp6
|
|
*/
|
|
bzero(drl, sizeof(*drl));
|
|
s = splnet();
|
|
dr = TAILQ_FIRST(&nd_defrouter);
|
|
while (dr && i < DRLSTSIZ) {
|
|
drl->defrouter[i].rtaddr = dr->rtaddr;
|
|
in6_clearscope(&drl->defrouter[i].rtaddr);
|
|
|
|
drl->defrouter[i].flags = dr->flags;
|
|
drl->defrouter[i].rtlifetime = dr->rtlifetime;
|
|
drl->defrouter[i].expire = dr->expire;
|
|
drl->defrouter[i].if_index = dr->ifp->if_index;
|
|
i++;
|
|
dr = TAILQ_NEXT(dr, dr_entry);
|
|
}
|
|
splx(s);
|
|
break;
|
|
case SIOCGPRLST_IN6:
|
|
/*
|
|
* obsolete API, use sysctl under net.inet6.icmp6
|
|
*
|
|
* XXX the structure in6_prlist was changed in backward-
|
|
* incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
|
|
* in6_prlist is used for nd6_sysctl() - fill_prlist().
|
|
*/
|
|
/*
|
|
* XXX meaning of fields, especialy "raflags", is very
|
|
* differnet between RA prefix list and RR/static prefix list.
|
|
* how about separating ioctls into two?
|
|
*/
|
|
bzero(oprl, sizeof(*oprl));
|
|
s = splnet();
|
|
pr = nd_prefix.lh_first;
|
|
while (pr && i < PRLSTSIZ) {
|
|
struct nd_pfxrouter *pfr;
|
|
int j;
|
|
|
|
oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
|
|
oprl->prefix[i].raflags = pr->ndpr_raf;
|
|
oprl->prefix[i].prefixlen = pr->ndpr_plen;
|
|
oprl->prefix[i].vltime = pr->ndpr_vltime;
|
|
oprl->prefix[i].pltime = pr->ndpr_pltime;
|
|
oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
|
|
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
|
|
oprl->prefix[i].expire = 0;
|
|
else {
|
|
time_t maxexpire;
|
|
|
|
/* XXX: we assume time_t is signed. */
|
|
maxexpire = (-1) &
|
|
~((time_t)1 <<
|
|
((sizeof(maxexpire) * 8) - 1));
|
|
if (pr->ndpr_vltime <
|
|
maxexpire - pr->ndpr_lastupdate) {
|
|
oprl->prefix[i].expire =
|
|
pr->ndpr_lastupdate +
|
|
pr->ndpr_vltime;
|
|
} else
|
|
oprl->prefix[i].expire = maxexpire;
|
|
}
|
|
|
|
pfr = pr->ndpr_advrtrs.lh_first;
|
|
j = 0;
|
|
while (pfr) {
|
|
if (j < DRLSTSIZ) {
|
|
#define RTRADDR oprl->prefix[i].advrtr[j]
|
|
RTRADDR = pfr->router->rtaddr;
|
|
in6_clearscope(&RTRADDR);
|
|
#undef RTRADDR
|
|
}
|
|
j++;
|
|
pfr = pfr->pfr_next;
|
|
}
|
|
oprl->prefix[i].advrtrs = j;
|
|
oprl->prefix[i].origin = PR_ORIG_RA;
|
|
|
|
i++;
|
|
pr = pr->ndpr_next;
|
|
}
|
|
splx(s);
|
|
|
|
break;
|
|
case OSIOCGIFINFO_IN6:
|
|
#define ND ndi->ndi
|
|
/* XXX: old ndp(8) assumes a positive value for linkmtu. */
|
|
bzero(&ND, sizeof(ND));
|
|
ND.linkmtu = IN6_LINKMTU(ifp);
|
|
ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
|
|
ND.basereachable = ND_IFINFO(ifp)->basereachable;
|
|
ND.reachable = ND_IFINFO(ifp)->reachable;
|
|
ND.retrans = ND_IFINFO(ifp)->retrans;
|
|
ND.flags = ND_IFINFO(ifp)->flags;
|
|
ND.recalctm = ND_IFINFO(ifp)->recalctm;
|
|
ND.chlim = ND_IFINFO(ifp)->chlim;
|
|
break;
|
|
case SIOCGIFINFO_IN6:
|
|
ND = *ND_IFINFO(ifp);
|
|
break;
|
|
case SIOCSIFINFO_IN6:
|
|
/*
|
|
* used to change host variables from userland.
|
|
* intented for a use on router to reflect RA configurations.
|
|
*/
|
|
/* 0 means 'unspecified' */
|
|
if (ND.linkmtu != 0) {
|
|
if (ND.linkmtu < IPV6_MMTU ||
|
|
ND.linkmtu > IN6_LINKMTU(ifp)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
|
|
}
|
|
|
|
if (ND.basereachable != 0) {
|
|
int obasereachable = ND_IFINFO(ifp)->basereachable;
|
|
|
|
ND_IFINFO(ifp)->basereachable = ND.basereachable;
|
|
if (ND.basereachable != obasereachable)
|
|
ND_IFINFO(ifp)->reachable =
|
|
ND_COMPUTE_RTIME(ND.basereachable);
|
|
}
|
|
if (ND.retrans != 0)
|
|
ND_IFINFO(ifp)->retrans = ND.retrans;
|
|
if (ND.chlim != 0)
|
|
ND_IFINFO(ifp)->chlim = ND.chlim;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFINFO_FLAGS:
|
|
ND_IFINFO(ifp)->flags = ND.flags;
|
|
break;
|
|
#undef ND
|
|
case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
|
|
/* sync kernel routing table with the default router list */
|
|
defrouter_reset();
|
|
defrouter_select();
|
|
break;
|
|
case SIOCSPFXFLUSH_IN6:
|
|
{
|
|
/* flush all the prefix advertised by routers */
|
|
struct nd_prefix *pr, *next;
|
|
|
|
s = splnet();
|
|
for (pr = nd_prefix.lh_first; pr; pr = next) {
|
|
struct in6_ifaddr *ia, *ia_next;
|
|
|
|
next = pr->ndpr_next;
|
|
|
|
if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
|
|
continue; /* XXX */
|
|
|
|
/* do we really have to remove addresses as well? */
|
|
for (ia = in6_ifaddr; ia; ia = ia_next) {
|
|
/* ia might be removed. keep the next ptr. */
|
|
ia_next = ia->ia_next;
|
|
|
|
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
|
|
continue;
|
|
|
|
if (ia->ia6_ndpr == pr)
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
}
|
|
prelist_remove(pr);
|
|
}
|
|
splx(s);
|
|
break;
|
|
}
|
|
case SIOCSRTRFLUSH_IN6:
|
|
{
|
|
/* flush all the default routers */
|
|
struct nd_defrouter *dr, *next;
|
|
|
|
s = splnet();
|
|
defrouter_reset();
|
|
for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
|
|
next = TAILQ_NEXT(dr, dr_entry);
|
|
defrtrlist_del(dr);
|
|
}
|
|
defrouter_select();
|
|
splx(s);
|
|
break;
|
|
}
|
|
case SIOCGNBRINFO_IN6:
|
|
{
|
|
struct llinfo_nd6 *ln;
|
|
struct in6_addr nb_addr = nbi->addr; /* make local for safety */
|
|
|
|
if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
|
|
return (error);
|
|
|
|
s = splnet();
|
|
if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
|
|
error = EINVAL;
|
|
splx(s);
|
|
break;
|
|
}
|
|
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
|
|
nbi->state = ln->ln_state;
|
|
nbi->asked = ln->ln_asked;
|
|
nbi->isrouter = ln->ln_router;
|
|
nbi->expire = ln->ln_expire;
|
|
splx(s);
|
|
|
|
break;
|
|
}
|
|
case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
|
|
ndif->ifindex = nd6_defifindex;
|
|
break;
|
|
case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
|
|
return (nd6_setdefaultiface(ndif->ifindex));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create neighbor cache entry and cache link-layer address,
|
|
* on reception of inbound ND6 packets. (RS/RA/NS/redirect)
|
|
*/
|
|
struct rtentry *
|
|
nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
|
|
struct ifnet *ifp;
|
|
struct in6_addr *from;
|
|
char *lladdr;
|
|
int lladdrlen;
|
|
int type; /* ICMP6 type */
|
|
int code; /* type dependent information */
|
|
{
|
|
struct rtentry *rt = NULL;
|
|
struct llinfo_nd6 *ln = NULL;
|
|
int is_newentry;
|
|
struct sockaddr_dl *sdl = NULL;
|
|
int do_update;
|
|
int olladdr;
|
|
int llchange;
|
|
int newstate = 0;
|
|
|
|
if (ifp == NULL)
|
|
panic("ifp == NULL in nd6_cache_lladdr");
|
|
if (from == NULL)
|
|
panic("from == NULL in nd6_cache_lladdr");
|
|
|
|
/* nothing must be updated for unspecified address */
|
|
if (IN6_IS_ADDR_UNSPECIFIED(from))
|
|
return NULL;
|
|
|
|
/*
|
|
* Validation about ifp->if_addrlen and lladdrlen must be done in
|
|
* the caller.
|
|
*
|
|
* XXX If the link does not have link-layer adderss, what should
|
|
* we do? (ifp->if_addrlen == 0)
|
|
* Spec says nothing in sections for RA, RS and NA. There's small
|
|
* description on it in NS section (RFC 2461 7.2.3).
|
|
*/
|
|
|
|
rt = nd6_lookup(from, 0, ifp);
|
|
if (rt == NULL) {
|
|
rt = nd6_lookup(from, 1, ifp);
|
|
is_newentry = 1;
|
|
} else {
|
|
/* do nothing if static ndp is set */
|
|
if (rt->rt_flags & RTF_STATIC)
|
|
return NULL;
|
|
is_newentry = 0;
|
|
}
|
|
|
|
if (rt == NULL)
|
|
return NULL;
|
|
if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
|
|
fail:
|
|
(void)nd6_free(rt, 0);
|
|
return NULL;
|
|
}
|
|
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
|
|
if (ln == NULL)
|
|
goto fail;
|
|
if (rt->rt_gateway == NULL)
|
|
goto fail;
|
|
if (rt->rt_gateway->sa_family != AF_LINK)
|
|
goto fail;
|
|
sdl = SDL(rt->rt_gateway);
|
|
|
|
olladdr = (sdl->sdl_alen) ? 1 : 0;
|
|
if (olladdr && lladdr) {
|
|
if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
|
|
llchange = 1;
|
|
else
|
|
llchange = 0;
|
|
} else
|
|
llchange = 0;
|
|
|
|
/*
|
|
* newentry olladdr lladdr llchange (*=record)
|
|
* 0 n n -- (1)
|
|
* 0 y n -- (2)
|
|
* 0 n y -- (3) * STALE
|
|
* 0 y y n (4) *
|
|
* 0 y y y (5) * STALE
|
|
* 1 -- n -- (6) NOSTATE(= PASSIVE)
|
|
* 1 -- y -- (7) * STALE
|
|
*/
|
|
|
|
if (lladdr) { /* (3-5) and (7) */
|
|
/*
|
|
* Record source link-layer address
|
|
* XXX is it dependent to ifp->if_type?
|
|
*/
|
|
sdl->sdl_alen = ifp->if_addrlen;
|
|
bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
|
|
}
|
|
|
|
if (!is_newentry) {
|
|
if ((!olladdr && lladdr != NULL) || /* (3) */
|
|
(olladdr && lladdr != NULL && llchange)) { /* (5) */
|
|
do_update = 1;
|
|
newstate = ND6_LLINFO_STALE;
|
|
} else /* (1-2,4) */
|
|
do_update = 0;
|
|
} else {
|
|
do_update = 1;
|
|
if (lladdr == NULL) /* (6) */
|
|
newstate = ND6_LLINFO_NOSTATE;
|
|
else /* (7) */
|
|
newstate = ND6_LLINFO_STALE;
|
|
}
|
|
|
|
if (do_update) {
|
|
/*
|
|
* Update the state of the neighbor cache.
|
|
*/
|
|
ln->ln_state = newstate;
|
|
|
|
if (ln->ln_state == ND6_LLINFO_STALE) {
|
|
/*
|
|
* XXX: since nd6_output() below will cause
|
|
* state tansition to DELAY and reset the timer,
|
|
* we must set the timer now, although it is actually
|
|
* meaningless.
|
|
*/
|
|
nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
|
|
|
|
if (ln->ln_hold) {
|
|
struct mbuf *m_hold, *m_hold_next;
|
|
|
|
/*
|
|
* reset the ln_hold in advance, to explicitly
|
|
* prevent a ln_hold lookup in nd6_output()
|
|
* (wouldn't happen, though...)
|
|
*/
|
|
for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
|
|
m_hold; m_hold = m_hold_next) {
|
|
m_hold_next = m_hold->m_nextpkt;
|
|
m_hold->m_nextpkt = NULL;
|
|
|
|
/*
|
|
* we assume ifp is not a p2p here, so
|
|
* just set the 2nd argument as the
|
|
* 1st one.
|
|
*/
|
|
nd6_output(ifp, ifp, m_hold,
|
|
(struct sockaddr_in6 *)rt_key(rt),
|
|
rt);
|
|
}
|
|
}
|
|
} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
|
|
/* probe right away */
|
|
nd6_llinfo_settimer((void *)ln, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ICMP6 type dependent behavior.
|
|
*
|
|
* NS: clear IsRouter if new entry
|
|
* RS: clear IsRouter
|
|
* RA: set IsRouter if there's lladdr
|
|
* redir: clear IsRouter if new entry
|
|
*
|
|
* RA case, (1):
|
|
* The spec says that we must set IsRouter in the following cases:
|
|
* - If lladdr exist, set IsRouter. This means (1-5).
|
|
* - If it is old entry (!newentry), set IsRouter. This means (7).
|
|
* So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
|
|
* A quetion arises for (1) case. (1) case has no lladdr in the
|
|
* neighbor cache, this is similar to (6).
|
|
* This case is rare but we figured that we MUST NOT set IsRouter.
|
|
*
|
|
* newentry olladdr lladdr llchange NS RS RA redir
|
|
* D R
|
|
* 0 n n -- (1) c ? s
|
|
* 0 y n -- (2) c s s
|
|
* 0 n y -- (3) c s s
|
|
* 0 y y n (4) c s s
|
|
* 0 y y y (5) c s s
|
|
* 1 -- n -- (6) c c c s
|
|
* 1 -- y -- (7) c c s c s
|
|
*
|
|
* (c=clear s=set)
|
|
*/
|
|
switch (type & 0xff) {
|
|
case ND_NEIGHBOR_SOLICIT:
|
|
/*
|
|
* New entry must have is_router flag cleared.
|
|
*/
|
|
if (is_newentry) /* (6-7) */
|
|
ln->ln_router = 0;
|
|
break;
|
|
case ND_REDIRECT:
|
|
/*
|
|
* If the icmp is a redirect to a better router, always set the
|
|
* is_router flag. Otherwise, if the entry is newly created,
|
|
* clear the flag. [RFC 2461, sec 8.3]
|
|
*/
|
|
if (code == ND_REDIRECT_ROUTER)
|
|
ln->ln_router = 1;
|
|
else if (is_newentry) /* (6-7) */
|
|
ln->ln_router = 0;
|
|
break;
|
|
case ND_ROUTER_SOLICIT:
|
|
/*
|
|
* is_router flag must always be cleared.
|
|
*/
|
|
ln->ln_router = 0;
|
|
break;
|
|
case ND_ROUTER_ADVERT:
|
|
/*
|
|
* Mark an entry with lladdr as a router.
|
|
*/
|
|
if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
|
|
(is_newentry && lladdr)) { /* (7) */
|
|
ln->ln_router = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* When the link-layer address of a router changes, select the
|
|
* best router again. In particular, when the neighbor entry is newly
|
|
* created, it might affect the selection policy.
|
|
* Question: can we restrict the first condition to the "is_newentry"
|
|
* case?
|
|
* XXX: when we hear an RA from a new router with the link-layer
|
|
* address option, defrouter_select() is called twice, since
|
|
* defrtrlist_update called the function as well. However, I believe
|
|
* we can compromise the overhead, since it only happens the first
|
|
* time.
|
|
* XXX: although defrouter_select() should not have a bad effect
|
|
* for those are not autoconfigured hosts, we explicitly avoid such
|
|
* cases for safety.
|
|
*/
|
|
if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
|
|
defrouter_select();
|
|
|
|
return rt;
|
|
}
|
|
|
|
static void
|
|
nd6_slowtimo(ignored_arg)
|
|
void *ignored_arg;
|
|
{
|
|
struct nd_ifinfo *nd6if;
|
|
struct ifnet *ifp;
|
|
|
|
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
|
|
nd6_slowtimo, NULL);
|
|
IFNET_RLOCK();
|
|
for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
|
|
nd6if = ND_IFINFO(ifp);
|
|
if (nd6if->basereachable && /* already initialized */
|
|
(nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
|
|
/*
|
|
* Since reachable time rarely changes by router
|
|
* advertisements, we SHOULD insure that a new random
|
|
* value gets recomputed at least once every few hours.
|
|
* (RFC 2461, 6.3.4)
|
|
*/
|
|
nd6if->recalctm = nd6_recalc_reachtm_interval;
|
|
nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
|
|
}
|
|
}
|
|
IFNET_RUNLOCK();
|
|
}
|
|
|
|
#define senderr(e) { error = (e); goto bad;}
|
|
int
|
|
nd6_output(ifp, origifp, m0, dst, rt0)
|
|
struct ifnet *ifp;
|
|
struct ifnet *origifp;
|
|
struct mbuf *m0;
|
|
struct sockaddr_in6 *dst;
|
|
struct rtentry *rt0;
|
|
{
|
|
struct mbuf *m = m0;
|
|
struct rtentry *rt = rt0;
|
|
struct sockaddr_in6 *gw6 = NULL;
|
|
struct llinfo_nd6 *ln = NULL;
|
|
int error = 0;
|
|
|
|
if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
|
|
goto sendpkt;
|
|
|
|
if (nd6_need_cache(ifp) == 0)
|
|
goto sendpkt;
|
|
|
|
/*
|
|
* next hop determination. This routine is derived from ether_output.
|
|
*/
|
|
/* NB: the locking here is tortuous... */
|
|
if (rt != NULL)
|
|
RT_LOCK(rt);
|
|
again:
|
|
if (rt != NULL) {
|
|
if ((rt->rt_flags & RTF_UP) == 0) {
|
|
RT_UNLOCK(rt);
|
|
rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
|
|
if (rt != NULL) {
|
|
RT_REMREF(rt);
|
|
if (rt->rt_ifp != ifp)
|
|
/*
|
|
* XXX maybe we should update ifp too,
|
|
* but the original code didn't and I
|
|
* don't know what is correct here.
|
|
*/
|
|
goto again;
|
|
} else
|
|
senderr(EHOSTUNREACH);
|
|
}
|
|
|
|
if (rt->rt_flags & RTF_GATEWAY) {
|
|
gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
|
|
|
|
/*
|
|
* We skip link-layer address resolution and NUD
|
|
* if the gateway is not a neighbor from ND point
|
|
* of view, regardless of the value of nd_ifinfo.flags.
|
|
* The second condition is a bit tricky; we skip
|
|
* if the gateway is our own address, which is
|
|
* sometimes used to install a route to a p2p link.
|
|
*/
|
|
if (!nd6_is_addr_neighbor(gw6, ifp) ||
|
|
in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
|
|
RT_UNLOCK(rt);
|
|
/*
|
|
* We allow this kind of tricky route only
|
|
* when the outgoing interface is p2p.
|
|
* XXX: we may need a more generic rule here.
|
|
*/
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
|
|
senderr(EHOSTUNREACH);
|
|
|
|
goto sendpkt;
|
|
}
|
|
|
|
if (rt->rt_gwroute == NULL)
|
|
goto lookup;
|
|
rt = rt->rt_gwroute;
|
|
RT_LOCK(rt); /* NB: gwroute */
|
|
if ((rt->rt_flags & RTF_UP) == 0) {
|
|
rtfree(rt); /* unlock gwroute */
|
|
rt = rt0;
|
|
lookup:
|
|
RT_UNLOCK(rt0);
|
|
rt = rtalloc1(rt->rt_gateway, 1, 0UL);
|
|
if (rt == rt0) {
|
|
rt0->rt_gwroute = NULL;
|
|
RT_REMREF(rt0);
|
|
RT_UNLOCK(rt0);
|
|
senderr(EHOSTUNREACH);
|
|
}
|
|
RT_LOCK(rt0);
|
|
rt0->rt_gwroute = rt;
|
|
if (rt == NULL) {
|
|
RT_UNLOCK(rt0);
|
|
senderr(EHOSTUNREACH);
|
|
}
|
|
}
|
|
RT_UNLOCK(rt0);
|
|
}
|
|
RT_UNLOCK(rt);
|
|
}
|
|
|
|
/*
|
|
* Address resolution or Neighbor Unreachability Detection
|
|
* for the next hop.
|
|
* At this point, the destination of the packet must be a unicast
|
|
* or an anycast address(i.e. not a multicast).
|
|
*/
|
|
|
|
/* Look up the neighbor cache for the nexthop */
|
|
if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
|
|
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
|
|
else {
|
|
/*
|
|
* Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
|
|
* the condition below is not very efficient. But we believe
|
|
* it is tolerable, because this should be a rare case.
|
|
*/
|
|
if (nd6_is_addr_neighbor(dst, ifp) &&
|
|
(rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
|
|
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
|
|
}
|
|
if (ln == NULL || rt == NULL) {
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
|
|
!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
log(LOG_DEBUG,
|
|
"nd6_output: can't allocate llinfo for %s "
|
|
"(ln=%p, rt=%p)\n",
|
|
ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
|
|
senderr(EIO); /* XXX: good error? */
|
|
}
|
|
|
|
goto sendpkt; /* send anyway */
|
|
}
|
|
|
|
/* We don't have to do link-layer address resolution on a p2p link. */
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
|
|
ln->ln_state < ND6_LLINFO_REACHABLE) {
|
|
ln->ln_state = ND6_LLINFO_STALE;
|
|
nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
|
|
}
|
|
|
|
/*
|
|
* The first time we send a packet to a neighbor whose entry is
|
|
* STALE, we have to change the state to DELAY and a sets a timer to
|
|
* expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
|
|
* neighbor unreachability detection on expiration.
|
|
* (RFC 2461 7.3.3)
|
|
*/
|
|
if (ln->ln_state == ND6_LLINFO_STALE) {
|
|
ln->ln_asked = 0;
|
|
ln->ln_state = ND6_LLINFO_DELAY;
|
|
nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
|
|
}
|
|
|
|
/*
|
|
* If the neighbor cache entry has a state other than INCOMPLETE
|
|
* (i.e. its link-layer address is already resolved), just
|
|
* send the packet.
|
|
*/
|
|
if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
|
|
goto sendpkt;
|
|
|
|
/*
|
|
* There is a neighbor cache entry, but no ethernet address
|
|
* response yet. Append this latest packet to the end of the
|
|
* packet queue in the mbuf, unless the number of the packet
|
|
* does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
|
|
* the oldest packet in the queue will be removed.
|
|
*/
|
|
if (ln->ln_state == ND6_LLINFO_NOSTATE)
|
|
ln->ln_state = ND6_LLINFO_INCOMPLETE;
|
|
if (ln->ln_hold) {
|
|
struct mbuf *m_hold;
|
|
int i;
|
|
|
|
i = 0;
|
|
for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
|
|
i++;
|
|
if (m_hold->m_nextpkt == NULL) {
|
|
m_hold->m_nextpkt = m;
|
|
break;
|
|
}
|
|
}
|
|
while (i >= nd6_maxqueuelen) {
|
|
m_hold = ln->ln_hold;
|
|
ln->ln_hold = ln->ln_hold->m_nextpkt;
|
|
m_freem(m_hold);
|
|
i--;
|
|
}
|
|
} else {
|
|
ln->ln_hold = m;
|
|
}
|
|
|
|
/*
|
|
* If there has been no NS for the neighbor after entering the
|
|
* INCOMPLETE state, send the first solicitation.
|
|
*/
|
|
if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
|
|
ln->ln_asked++;
|
|
nd6_llinfo_settimer(ln,
|
|
(long)ND_IFINFO(ifp)->retrans * hz / 1000);
|
|
nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
|
|
}
|
|
return (0);
|
|
|
|
sendpkt:
|
|
/* discard the packet if IPv6 operation is disabled on the interface */
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
|
|
error = ENETDOWN; /* better error? */
|
|
goto bad;
|
|
}
|
|
|
|
#ifdef IPSEC
|
|
/* clean ipsec history once it goes out of the node */
|
|
ipsec_delaux(m);
|
|
#endif
|
|
|
|
#ifdef MAC
|
|
mac_create_mbuf_linklayer(ifp, m);
|
|
#endif
|
|
if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
|
|
return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
|
|
rt));
|
|
}
|
|
return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
|
|
|
|
bad:
|
|
if (m)
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
#undef senderr
|
|
|
|
int
|
|
nd6_need_cache(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
/*
|
|
* XXX: we currently do not make neighbor cache on any interface
|
|
* other than ARCnet, Ethernet, FDDI and GIF.
|
|
*
|
|
* RFC2893 says:
|
|
* - unidirectional tunnels needs no ND
|
|
*/
|
|
switch (ifp->if_type) {
|
|
case IFT_ARCNET:
|
|
case IFT_ETHER:
|
|
case IFT_FDDI:
|
|
case IFT_IEEE1394:
|
|
#ifdef IFT_L2VLAN
|
|
case IFT_L2VLAN:
|
|
#endif
|
|
#ifdef IFT_IEEE80211
|
|
case IFT_IEEE80211:
|
|
#endif
|
|
#ifdef IFT_CARP
|
|
case IFT_CARP:
|
|
#endif
|
|
case IFT_GIF: /* XXX need more cases? */
|
|
case IFT_PPP:
|
|
case IFT_TUNNEL:
|
|
case IFT_BRIDGE:
|
|
case IFT_PROPVIRTUAL:
|
|
return (1);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
int
|
|
nd6_storelladdr(ifp, rt0, m, dst, desten)
|
|
struct ifnet *ifp;
|
|
struct rtentry *rt0;
|
|
struct mbuf *m;
|
|
struct sockaddr *dst;
|
|
u_char *desten;
|
|
{
|
|
struct sockaddr_dl *sdl;
|
|
struct rtentry *rt;
|
|
int error;
|
|
|
|
if (m->m_flags & M_MCAST) {
|
|
int i;
|
|
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER:
|
|
case IFT_FDDI:
|
|
#ifdef IFT_L2VLAN
|
|
case IFT_L2VLAN:
|
|
#endif
|
|
#ifdef IFT_IEEE80211
|
|
case IFT_IEEE80211:
|
|
#endif
|
|
case IFT_BRIDGE:
|
|
case IFT_ISO88025:
|
|
ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
|
|
desten);
|
|
return (0);
|
|
case IFT_IEEE1394:
|
|
/*
|
|
* netbsd can use if_broadcastaddr, but we don't do so
|
|
* to reduce # of ifdef.
|
|
*/
|
|
for (i = 0; i < ifp->if_addrlen; i++)
|
|
desten[i] = ~0;
|
|
return (0);
|
|
case IFT_ARCNET:
|
|
*desten = 0;
|
|
return (0);
|
|
default:
|
|
m_freem(m);
|
|
return (EAFNOSUPPORT);
|
|
}
|
|
}
|
|
|
|
if (rt0 == NULL) {
|
|
/* this could happen, if we could not allocate memory */
|
|
m_freem(m);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
error = rt_check(&rt, &rt0, dst);
|
|
if (error) {
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
RT_UNLOCK(rt);
|
|
|
|
if (rt->rt_gateway->sa_family != AF_LINK) {
|
|
printf("nd6_storelladdr: something odd happens\n");
|
|
m_freem(m);
|
|
return (EINVAL);
|
|
}
|
|
sdl = SDL(rt->rt_gateway);
|
|
if (sdl->sdl_alen == 0) {
|
|
/* this should be impossible, but we bark here for debugging */
|
|
printf("nd6_storelladdr: sdl_alen == 0\n");
|
|
m_freem(m);
|
|
return (EINVAL);
|
|
}
|
|
|
|
bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
clear_llinfo_pqueue(ln)
|
|
struct llinfo_nd6 *ln;
|
|
{
|
|
struct mbuf *m_hold, *m_hold_next;
|
|
|
|
for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
|
|
m_hold_next = m_hold->m_nextpkt;
|
|
m_hold->m_nextpkt = NULL;
|
|
m_freem(m_hold);
|
|
}
|
|
|
|
ln->ln_hold = NULL;
|
|
return;
|
|
}
|
|
|
|
static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
|
|
static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
|
|
#ifdef SYSCTL_DECL
|
|
SYSCTL_DECL(_net_inet6_icmp6);
|
|
#endif
|
|
SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
|
|
CTLFLAG_RD, nd6_sysctl_drlist, "");
|
|
SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
|
|
CTLFLAG_RD, nd6_sysctl_prlist, "");
|
|
SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
|
|
CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
|
|
|
|
static int
|
|
nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
char buf[1024] __aligned(4);
|
|
struct in6_defrouter *d, *de;
|
|
struct nd_defrouter *dr;
|
|
|
|
if (req->newptr)
|
|
return EPERM;
|
|
error = 0;
|
|
|
|
for (dr = TAILQ_FIRST(&nd_defrouter); dr;
|
|
dr = TAILQ_NEXT(dr, dr_entry)) {
|
|
d = (struct in6_defrouter *)buf;
|
|
de = (struct in6_defrouter *)(buf + sizeof(buf));
|
|
|
|
if (d + 1 <= de) {
|
|
bzero(d, sizeof(*d));
|
|
d->rtaddr.sin6_family = AF_INET6;
|
|
d->rtaddr.sin6_len = sizeof(d->rtaddr);
|
|
d->rtaddr.sin6_addr = dr->rtaddr;
|
|
sa6_recoverscope(&d->rtaddr);
|
|
d->flags = dr->flags;
|
|
d->rtlifetime = dr->rtlifetime;
|
|
d->expire = dr->expire;
|
|
d->if_index = dr->ifp->if_index;
|
|
} else
|
|
panic("buffer too short");
|
|
|
|
error = SYSCTL_OUT(req, buf, sizeof(*d));
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
char buf[1024] __aligned(4);
|
|
struct in6_prefix *p, *pe;
|
|
struct nd_prefix *pr;
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
|
|
if (req->newptr)
|
|
return EPERM;
|
|
error = 0;
|
|
|
|
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
|
|
u_short advrtrs;
|
|
size_t advance;
|
|
struct sockaddr_in6 *sin6, *s6;
|
|
struct nd_pfxrouter *pfr;
|
|
|
|
p = (struct in6_prefix *)buf;
|
|
pe = (struct in6_prefix *)(buf + sizeof(buf));
|
|
|
|
if (p + 1 <= pe) {
|
|
bzero(p, sizeof(*p));
|
|
sin6 = (struct sockaddr_in6 *)(p + 1);
|
|
|
|
p->prefix = pr->ndpr_prefix;
|
|
if (sa6_recoverscope(&p->prefix)) {
|
|
log(LOG_ERR,
|
|
"scope error in prefix list (%s)\n",
|
|
ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
|
|
/* XXX: press on... */
|
|
}
|
|
p->raflags = pr->ndpr_raf;
|
|
p->prefixlen = pr->ndpr_plen;
|
|
p->vltime = pr->ndpr_vltime;
|
|
p->pltime = pr->ndpr_pltime;
|
|
p->if_index = pr->ndpr_ifp->if_index;
|
|
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
|
|
p->expire = 0;
|
|
else {
|
|
time_t maxexpire;
|
|
|
|
/* XXX: we assume time_t is signed. */
|
|
maxexpire = (-1) &
|
|
~((time_t)1 <<
|
|
((sizeof(maxexpire) * 8) - 1));
|
|
if (pr->ndpr_vltime <
|
|
maxexpire - pr->ndpr_lastupdate) {
|
|
p->expire = pr->ndpr_lastupdate +
|
|
pr->ndpr_vltime;
|
|
} else
|
|
p->expire = maxexpire;
|
|
}
|
|
p->refcnt = pr->ndpr_refcnt;
|
|
p->flags = pr->ndpr_stateflags;
|
|
p->origin = PR_ORIG_RA;
|
|
advrtrs = 0;
|
|
for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
|
|
pfr = pfr->pfr_next) {
|
|
if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
|
|
advrtrs++;
|
|
continue;
|
|
}
|
|
s6 = &sin6[advrtrs];
|
|
bzero(s6, sizeof(*s6));
|
|
s6->sin6_family = AF_INET6;
|
|
s6->sin6_len = sizeof(*sin6);
|
|
s6->sin6_addr = pfr->router->rtaddr;
|
|
if (sa6_recoverscope(s6)) {
|
|
log(LOG_ERR,
|
|
"scope error in "
|
|
"prefix list (%s)\n",
|
|
ip6_sprintf(ip6buf,
|
|
&pfr->router->rtaddr));
|
|
}
|
|
advrtrs++;
|
|
}
|
|
p->advrtrs = advrtrs;
|
|
} else
|
|
panic("buffer too short");
|
|
|
|
advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
|
|
error = SYSCTL_OUT(req, buf, advance);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|