mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-07 13:14:51 +00:00
119051cbf9
DP83065 Saturn Gigabit Ethernet controllers. These are the successors of the Sun GEM controllers and still have a similar but extended transmit logic. As such this driver is based on gem(4). Thanks to marcel@ for providing a Sun Quad GigaSwift Ethernet UTP (QGE) card which was vital for getting this driver to work on architectures not using Open Firmware. Approved by: re (kib) MFC after: 2 weeks
2773 lines
74 KiB
C
2773 lines
74 KiB
C
/*-
|
|
* Copyright (C) 2001 Eduardo Horvath.
|
|
* Copyright (c) 2001-2003 Thomas Moestl
|
|
* Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
|
|
* from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
|
|
* Saturn Gigabit Ethernet controllers
|
|
*/
|
|
|
|
#if 0
|
|
#define CAS_DEBUG
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <machine/bus.h>
|
|
#if defined(__powerpc__) || defined(__sparc64__)
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <machine/ofw_machdep.h>
|
|
#endif
|
|
#include <machine/resource.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/cas/if_casreg.h>
|
|
#include <dev/cas/if_casvar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include "miibus_if.h"
|
|
|
|
#define RINGASSERT(n , min, max) \
|
|
CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
|
|
|
|
RINGASSERT(CAS_NRXCOMP, 128, 32768);
|
|
RINGASSERT(CAS_NRXDESC, 32, 8192);
|
|
RINGASSERT(CAS_NRXDESC2, 32, 8192);
|
|
RINGASSERT(CAS_NTXDESC, 32, 8192);
|
|
|
|
#undef RINGASSERT
|
|
|
|
#define CCDASSERT(m, a) \
|
|
CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
|
|
|
|
CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
|
|
CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
|
|
CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
|
|
|
|
#undef CCDASSERT
|
|
|
|
#define CAS_TRIES 10000
|
|
|
|
/*
|
|
* According to documentation, the hardware has support for basic TCP
|
|
* checksum offloading only, in practice this can be also used for UDP
|
|
* however (i.e. the problem of previous Sun NICs that a checksum of 0x0
|
|
* is not converted to 0xffff no longer exists).
|
|
*/
|
|
#define CAS_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
|
|
|
|
static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
|
|
static int cas_attach(struct cas_softc *sc);
|
|
static int cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
|
|
uint32_t set);
|
|
static void cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
|
|
int nsegs, int error);
|
|
static void cas_detach(struct cas_softc *sc);
|
|
static int cas_disable_rx(struct cas_softc *sc);
|
|
static int cas_disable_tx(struct cas_softc *sc);
|
|
static void cas_eint(struct cas_softc *sc, u_int status);
|
|
static void cas_free(void *arg1, void* arg2);
|
|
static void cas_init(void *xsc);
|
|
static void cas_init_locked(struct cas_softc *sc);
|
|
static void cas_init_regs(struct cas_softc *sc);
|
|
static void cas_intr(void *v);
|
|
static int cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
|
|
static int cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
|
|
static int cas_mediachange(struct ifnet *ifp);
|
|
static void cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
|
|
static void cas_meminit(struct cas_softc *sc);
|
|
static void cas_mifinit(struct cas_softc *sc);
|
|
static int cas_mii_readreg(device_t dev, int phy, int reg);
|
|
static void cas_mii_statchg(device_t dev);
|
|
static int cas_mii_writereg(device_t dev, int phy, int reg, int val);
|
|
static void cas_reset(struct cas_softc *sc);
|
|
static int cas_reset_rx(struct cas_softc *sc);
|
|
static int cas_reset_tx(struct cas_softc *sc);
|
|
static void cas_resume(struct cas_softc *sc);
|
|
static u_int cas_descsize(u_int sz);
|
|
static void cas_rint(struct cas_softc *sc);
|
|
static void cas_rint_timeout(void *arg);
|
|
static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
|
|
static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
|
|
static u_int cas_rxcompsize(u_int sz);
|
|
static void cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
|
|
int nsegs, int error);
|
|
static void cas_setladrf(struct cas_softc *sc);
|
|
static void cas_start(struct ifnet *ifp);
|
|
static void cas_start_locked(struct ifnet *ifp);
|
|
static void cas_stop(struct ifnet *ifp);
|
|
static void cas_suspend(struct cas_softc *sc);
|
|
static void cas_tick(void *arg);
|
|
static void cas_tint(struct cas_softc *sc);
|
|
static inline void cas_txkick(struct cas_softc *sc);
|
|
static int cas_watchdog(struct cas_softc *sc);
|
|
|
|
static devclass_t cas_devclass;
|
|
|
|
MODULE_DEPEND(cas, ether, 1, 1, 1);
|
|
MODULE_DEPEND(cas, miibus, 1, 1, 1);
|
|
|
|
#ifdef CAS_DEBUG
|
|
#include <sys/ktr.h>
|
|
#define KTR_CAS KTR_CT2
|
|
#endif
|
|
|
|
static int
|
|
cas_attach(struct cas_softc *sc)
|
|
{
|
|
struct cas_txsoft *txs;
|
|
struct ifnet *ifp;
|
|
int error, i;
|
|
uint32_t v;
|
|
|
|
/* Set up ifnet structure. */
|
|
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL)
|
|
return (ENOSPC);
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(sc->sc_dev),
|
|
device_get_unit(sc->sc_dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_start = cas_start;
|
|
ifp->if_ioctl = cas_ioctl;
|
|
ifp->if_init = cas_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, CAS_TXQUEUELEN);
|
|
ifp->if_snd.ifq_drv_maxlen = CAS_TXQUEUELEN;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
|
|
callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
|
|
|
|
/* Make sure the chip is stopped. */
|
|
cas_reset(sc);
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
|
|
&sc->sc_pdmatag);
|
|
if (error != 0)
|
|
goto fail_ifnet;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
|
|
if (error != 0)
|
|
goto fail_ptag;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
|
|
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
|
|
if (error != 0)
|
|
goto fail_rtag;
|
|
|
|
error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
sizeof(struct cas_control_data), 1,
|
|
sizeof(struct cas_control_data), 0,
|
|
NULL, NULL, &sc->sc_cdmatag);
|
|
if (error != 0)
|
|
goto fail_ttag;
|
|
|
|
/*
|
|
* Allocate the control data structures, create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
|
|
(void **)&sc->sc_control_data,
|
|
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
|
|
&sc->sc_cddmamap)) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to allocate control data, error = %d\n", error);
|
|
goto fail_ctag;
|
|
}
|
|
|
|
sc->sc_cddma = 0;
|
|
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct cas_control_data),
|
|
cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to load control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_cmem;
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit job descriptors.
|
|
*/
|
|
STAILQ_INIT(&sc->sc_txfreeq);
|
|
STAILQ_INIT(&sc->sc_txdirtyq);
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
error = ENOMEM;
|
|
for (i = 0; i < CAS_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
txs->txs_mbuf = NULL;
|
|
txs->txs_ndescs = 0;
|
|
if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
|
|
&txs->txs_dmamap)) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to create TX DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_txd;
|
|
}
|
|
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
/*
|
|
* Allocate the receive buffers, create and load the DMA maps
|
|
* for them.
|
|
*/
|
|
for (i = 0; i < CAS_NRXDESC; i++) {
|
|
if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
|
|
&sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
|
|
&sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to allocate RX buffer %d, error = %d\n",
|
|
i, error);
|
|
goto fail_rxmem;
|
|
}
|
|
|
|
sc->sc_rxdptr = i;
|
|
sc->sc_rxdsoft[i].rxds_paddr = 0;
|
|
if ((error = bus_dmamap_load(sc->sc_rdmatag,
|
|
sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
|
|
CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
|
|
sc->sc_rxdsoft[i].rxds_paddr == 0) {
|
|
device_printf(sc->sc_dev,
|
|
"unable to load RX DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_rxmap;
|
|
}
|
|
}
|
|
|
|
CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
|
|
|
|
cas_mifinit(sc);
|
|
|
|
/*
|
|
* Look for an external PHY.
|
|
*/
|
|
error = ENXIO;
|
|
v = CAS_READ_4(sc, CAS_MIF_CONF);
|
|
if ((v & CAS_MIF_CONF_MDI1) != 0) {
|
|
v |= CAS_MIF_CONF_PHY_SELECT;
|
|
CAS_WRITE_4(sc, CAS_MIF_CONF, v);
|
|
switch (sc->sc_variant) {
|
|
default:
|
|
sc->sc_phyad = -1;
|
|
break;
|
|
}
|
|
error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
|
|
cas_mediachange, cas_mediastatus);
|
|
}
|
|
|
|
/*
|
|
* Fall back on an internal PHY if no external PHY was found.
|
|
*/
|
|
if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
|
|
v &= ~CAS_MIF_CONF_PHY_SELECT;
|
|
CAS_WRITE_4(sc, CAS_MIF_CONF, v);
|
|
switch (sc->sc_variant) {
|
|
default:
|
|
sc->sc_phyad = -1;
|
|
break;
|
|
}
|
|
error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
|
|
cas_mediachange, cas_mediastatus);
|
|
}
|
|
|
|
/*
|
|
* Try the external PCS SERDES if we didn't find any PHYs.
|
|
*/
|
|
if (error != 0) {
|
|
CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
|
|
CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
|
|
CAS_WRITE_4(sc, CAS_PCS_CONF_EN, CAS_PCS_CONF_EN);
|
|
sc->sc_flags |= CAS_SERDES;
|
|
sc->sc_phyad = CAS_PHYAD_EXTERNAL;
|
|
error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus,
|
|
cas_mediachange, cas_mediastatus);
|
|
}
|
|
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "PHY probe failed: %d\n", error);
|
|
goto fail_rxmap;
|
|
}
|
|
sc->sc_mii = device_get_softc(sc->sc_miibus);
|
|
|
|
/*
|
|
* From this point forward, the attachment cannot fail. A failure
|
|
* before this point releases all resources that may have been
|
|
* allocated.
|
|
*/
|
|
|
|
/* Announce FIFO sizes. */
|
|
v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
|
|
device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
|
|
CAS_RX_FIFO_SIZE / 1024, v / 16);
|
|
|
|
/* Attach the interface. */
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames/checksum offloads.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU;
|
|
if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
|
|
ifp->if_capabilities |= IFCAP_HWCSUM;
|
|
ifp->if_hwassist = CAS_CSUM_FEATURES;
|
|
}
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
return (0);
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_rxmap:
|
|
for (i = 0; i < CAS_NRXDESC; i++)
|
|
if (sc->sc_rxdsoft[i].rxds_paddr != 0)
|
|
bus_dmamap_unload(sc->sc_rdmatag,
|
|
sc->sc_rxdsoft[i].rxds_dmamap);
|
|
fail_rxmem:
|
|
for (i = 0; i < CAS_NRXDESC; i++)
|
|
if (sc->sc_rxdsoft[i].rxds_buf != NULL)
|
|
bus_dmamem_free(sc->sc_rdmatag,
|
|
sc->sc_rxdsoft[i].rxds_buf,
|
|
sc->sc_rxdsoft[i].rxds_dmamap);
|
|
fail_txd:
|
|
for (i = 0; i < CAS_TXQUEUELEN; i++)
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_tdmatag,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
|
|
fail_cmem:
|
|
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
|
|
sc->sc_cddmamap);
|
|
fail_ctag:
|
|
bus_dma_tag_destroy(sc->sc_cdmatag);
|
|
fail_ttag:
|
|
bus_dma_tag_destroy(sc->sc_tdmatag);
|
|
fail_rtag:
|
|
bus_dma_tag_destroy(sc->sc_rdmatag);
|
|
fail_ptag:
|
|
bus_dma_tag_destroy(sc->sc_pdmatag);
|
|
fail_ifnet:
|
|
if_free(ifp);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
cas_detach(struct cas_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int i;
|
|
|
|
CAS_LOCK(sc);
|
|
cas_stop(ifp);
|
|
CAS_UNLOCK(sc);
|
|
callout_drain(&sc->sc_tick_ch);
|
|
callout_drain(&sc->sc_rx_ch);
|
|
ether_ifdetach(ifp);
|
|
if_free(ifp);
|
|
device_delete_child(sc->sc_dev, sc->sc_miibus);
|
|
|
|
for (i = 0; i < CAS_NRXDESC; i++)
|
|
if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
|
|
bus_dmamap_sync(sc->sc_rdmatag,
|
|
sc->sc_rxdsoft[i].rxds_dmamap,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
for (i = 0; i < CAS_NRXDESC; i++)
|
|
if (sc->sc_rxdsoft[i].rxds_paddr != 0)
|
|
bus_dmamap_unload(sc->sc_rdmatag,
|
|
sc->sc_rxdsoft[i].rxds_dmamap);
|
|
for (i = 0; i < CAS_NRXDESC; i++)
|
|
if (sc->sc_rxdsoft[i].rxds_buf != NULL)
|
|
bus_dmamem_free(sc->sc_rdmatag,
|
|
sc->sc_rxdsoft[i].rxds_buf,
|
|
sc->sc_rxdsoft[i].rxds_dmamap);
|
|
for (i = 0; i < CAS_TXQUEUELEN; i++)
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_tdmatag,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
|
|
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
|
|
sc->sc_cddmamap);
|
|
bus_dma_tag_destroy(sc->sc_cdmatag);
|
|
bus_dma_tag_destroy(sc->sc_tdmatag);
|
|
bus_dma_tag_destroy(sc->sc_rdmatag);
|
|
bus_dma_tag_destroy(sc->sc_pdmatag);
|
|
}
|
|
|
|
static void
|
|
cas_suspend(struct cas_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
CAS_LOCK(sc);
|
|
cas_stop(ifp);
|
|
CAS_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
cas_resume(struct cas_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
CAS_LOCK(sc);
|
|
/*
|
|
* On resume all registers have to be initialized again like
|
|
* after power-on.
|
|
*/
|
|
sc->sc_flags &= ~CAS_INITED;
|
|
if (ifp->if_flags & IFF_UP)
|
|
cas_init_locked(sc);
|
|
CAS_UNLOCK(sc);
|
|
}
|
|
|
|
static inline void
|
|
cas_rxcksum(struct mbuf *m, uint16_t cksum)
|
|
{
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
struct udphdr *uh;
|
|
uint16_t *opts;
|
|
int32_t hlen, len, pktlen;
|
|
uint32_t temp32;
|
|
|
|
pktlen = m->m_pkthdr.len;
|
|
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
|
|
return;
|
|
eh = mtod(m, struct ether_header *);
|
|
if (eh->ether_type != htons(ETHERTYPE_IP))
|
|
return;
|
|
ip = (struct ip *)(eh + 1);
|
|
if (ip->ip_v != IPVERSION)
|
|
return;
|
|
|
|
hlen = ip->ip_hl << 2;
|
|
pktlen -= sizeof(struct ether_header);
|
|
if (hlen < sizeof(struct ip))
|
|
return;
|
|
if (ntohs(ip->ip_len) < hlen)
|
|
return;
|
|
if (ntohs(ip->ip_len) != pktlen)
|
|
return;
|
|
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
|
|
return; /* Cannot handle fragmented packet. */
|
|
|
|
switch (ip->ip_p) {
|
|
case IPPROTO_TCP:
|
|
if (pktlen < (hlen + sizeof(struct tcphdr)))
|
|
return;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (pktlen < (hlen + sizeof(struct udphdr)))
|
|
return;
|
|
uh = (struct udphdr *)((uint8_t *)ip + hlen);
|
|
if (uh->uh_sum == 0)
|
|
return; /* no checksum */
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
cksum = ~cksum;
|
|
/* checksum fixup for IP options */
|
|
len = hlen - sizeof(struct ip);
|
|
if (len > 0) {
|
|
opts = (uint16_t *)(ip + 1);
|
|
for (; len > 0; len -= sizeof(uint16_t), opts++) {
|
|
temp32 = cksum - *opts;
|
|
temp32 = (temp32 >> 16) + (temp32 & 65535);
|
|
cksum = temp32 & 65535;
|
|
}
|
|
}
|
|
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
|
|
m->m_pkthdr.csum_data = cksum;
|
|
}
|
|
|
|
static void
|
|
cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct cas_softc *sc = xsc;
|
|
|
|
if (error != 0)
|
|
return;
|
|
if (nsegs != 1)
|
|
panic("%s: bad control buffer segment count", __func__);
|
|
sc->sc_cddma = segs[0].ds_addr;
|
|
}
|
|
|
|
static void
|
|
cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct cas_softc *sc = xsc;
|
|
|
|
if (error != 0)
|
|
return;
|
|
if (nsegs != 1)
|
|
panic("%s: bad RX buffer segment count", __func__);
|
|
sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static void
|
|
cas_tick(void *arg)
|
|
{
|
|
struct cas_softc *sc = arg;
|
|
struct ifnet *ifp;
|
|
uint32_t v;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
ifp = sc->sc_ifp;
|
|
/*
|
|
* Unload collision and error counters.
|
|
*/
|
|
ifp->if_collisions +=
|
|
CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
|
|
CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT);
|
|
v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
|
|
CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
|
|
ifp->if_collisions += v;
|
|
ifp->if_oerrors += v;
|
|
ifp->if_ierrors +=
|
|
CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
|
|
CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
|
|
CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
|
|
CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL);
|
|
|
|
/*
|
|
* Then clear the hardware counters.
|
|
*/
|
|
CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
|
|
|
|
mii_tick(sc->sc_mii);
|
|
|
|
if (cas_watchdog(sc) == EJUSTRETURN)
|
|
return;
|
|
|
|
callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
|
|
}
|
|
|
|
static int
|
|
cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
|
|
{
|
|
int i;
|
|
uint32_t reg;
|
|
|
|
for (i = CAS_TRIES; i--; DELAY(100)) {
|
|
reg = CAS_READ_4(sc, r);
|
|
if ((reg & clr) == 0 && (reg & set) == set)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cas_reset(struct cas_softc *sc)
|
|
{
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
|
|
#endif
|
|
/* Disable all interrupts in order to avoid spurious ones. */
|
|
CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
|
|
|
|
cas_reset_rx(sc);
|
|
cas_reset_tx(sc);
|
|
|
|
/*
|
|
* Do a full reset modulo the result of the last auto-negotiation
|
|
* when using the SERDES.
|
|
*/
|
|
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
|
|
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
|
|
CAS_BARRIER(sc, CAS_RESET, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
DELAY(3000);
|
|
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
|
|
device_printf(sc->sc_dev, "cannot reset device\n");
|
|
}
|
|
|
|
static void
|
|
cas_stop(struct ifnet *ifp)
|
|
{
|
|
struct cas_softc *sc = ifp->if_softc;
|
|
struct cas_txsoft *txs;
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
|
|
#endif
|
|
|
|
callout_stop(&sc->sc_tick_ch);
|
|
callout_stop(&sc->sc_rx_ch);
|
|
|
|
/* Disable all interrupts in order to avoid spurious ones. */
|
|
CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
|
|
|
|
cas_reset_tx(sc);
|
|
cas_reset_rx(sc);
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
if (txs->txs_ndescs != 0) {
|
|
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
|
|
if (txs->txs_mbuf != NULL) {
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
}
|
|
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc->sc_flags &= ~CAS_LINK;
|
|
sc->sc_wdog_timer = 0;
|
|
}
|
|
|
|
static int
|
|
cas_reset_rx(struct cas_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* Resetting while DMA is in progress can cause a bus hang, so we
|
|
* disable DMA first.
|
|
*/
|
|
cas_disable_rx(sc);
|
|
CAS_WRITE_4(sc, CAS_RX_CONF, 0);
|
|
CAS_BARRIER(sc, CAS_RX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX DMA\n");
|
|
|
|
/* Finally, reset the ERX. */
|
|
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
|
|
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
|
|
CAS_BARRIER(sc, CAS_RESET, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) {
|
|
device_printf(sc->sc_dev, "cannot reset receiver\n");
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cas_reset_tx(struct cas_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* Resetting while DMA is in progress can cause a bus hang, so we
|
|
* disable DMA first.
|
|
*/
|
|
cas_disable_tx(sc);
|
|
CAS_WRITE_4(sc, CAS_TX_CONF, 0);
|
|
CAS_BARRIER(sc, CAS_TX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
|
|
device_printf(sc->sc_dev, "cannot disable TX DMA\n");
|
|
|
|
/* Finally, reset the ETX. */
|
|
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
|
|
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
|
|
CAS_BARRIER(sc, CAS_RESET, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) {
|
|
device_printf(sc->sc_dev, "cannot reset transmitter\n");
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cas_disable_rx(struct cas_softc *sc)
|
|
{
|
|
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
|
|
CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
|
|
CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
return (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0));
|
|
}
|
|
|
|
static int
|
|
cas_disable_tx(struct cas_softc *sc)
|
|
{
|
|
|
|
CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
|
|
CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
|
|
CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
return (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0));
|
|
}
|
|
|
|
static inline void
|
|
cas_rxcompinit(struct cas_rx_comp *rxcomp)
|
|
{
|
|
|
|
rxcomp->crc_word1 = 0;
|
|
rxcomp->crc_word2 = 0;
|
|
rxcomp->crc_word3 =
|
|
htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
|
|
rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
|
|
}
|
|
|
|
static void
|
|
cas_meminit(struct cas_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
for (i = 0; i < CAS_NTXDESC; i++) {
|
|
sc->sc_txdescs[i].cd_flags = 0;
|
|
sc->sc_txdescs[i].cd_buf_ptr = 0;
|
|
}
|
|
sc->sc_txfree = CAS_MAXTXFREE;
|
|
sc->sc_txnext = 0;
|
|
sc->sc_txwin = 0;
|
|
|
|
/*
|
|
* Initialize the receive completion ring.
|
|
*/
|
|
for (i = 0; i < CAS_NRXCOMP; i++)
|
|
cas_rxcompinit(&sc->sc_rxcomps[i]);
|
|
sc->sc_rxcptr = 0;
|
|
|
|
/*
|
|
* Initialize the first receive descriptor ring. We leave
|
|
* the second one zeroed as we don't actually use it.
|
|
*/
|
|
for (i = 0; i < CAS_NRXDESC; i++)
|
|
CAS_INIT_RXDESC(sc, i, i);
|
|
sc->sc_rxdptr = 0;
|
|
|
|
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static u_int
|
|
cas_descsize(u_int sz)
|
|
{
|
|
|
|
switch (sz) {
|
|
case 32:
|
|
return (CAS_DESC_32);
|
|
case 64:
|
|
return (CAS_DESC_64);
|
|
case 128:
|
|
return (CAS_DESC_128);
|
|
case 256:
|
|
return (CAS_DESC_256);
|
|
case 512:
|
|
return (CAS_DESC_512);
|
|
case 1024:
|
|
return (CAS_DESC_1K);
|
|
case 2048:
|
|
return (CAS_DESC_2K);
|
|
case 4096:
|
|
return (CAS_DESC_4K);
|
|
case 8192:
|
|
return (CAS_DESC_8K);
|
|
default:
|
|
printf("%s: invalid descriptor ring size %d\n", __func__, sz);
|
|
return (CAS_DESC_32);
|
|
}
|
|
}
|
|
|
|
static u_int
|
|
cas_rxcompsize(u_int sz)
|
|
{
|
|
|
|
switch (sz) {
|
|
case 128:
|
|
return (CAS_RX_CONF_COMP_128);
|
|
case 256:
|
|
return (CAS_RX_CONF_COMP_256);
|
|
case 512:
|
|
return (CAS_RX_CONF_COMP_512);
|
|
case 1024:
|
|
return (CAS_RX_CONF_COMP_1K);
|
|
case 2048:
|
|
return (CAS_RX_CONF_COMP_2K);
|
|
case 4096:
|
|
return (CAS_RX_CONF_COMP_4K);
|
|
case 8192:
|
|
return (CAS_RX_CONF_COMP_8K);
|
|
case 16384:
|
|
return (CAS_RX_CONF_COMP_16K);
|
|
case 32768:
|
|
return (CAS_RX_CONF_COMP_32K);
|
|
default:
|
|
printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
|
|
return (CAS_RX_CONF_COMP_128);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cas_init(void *xsc)
|
|
{
|
|
struct cas_softc *sc = xsc;
|
|
|
|
CAS_LOCK(sc);
|
|
cas_init_locked(sc);
|
|
CAS_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Initialization of interface; set up initialization block
|
|
* and transmit/receive descriptor rings.
|
|
*/
|
|
static void
|
|
cas_init_locked(struct cas_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
uint32_t v;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
|
|
__func__);
|
|
#endif
|
|
/*
|
|
* Initialization sequence. The numbered steps below correspond
|
|
* to the sequence outlined in section 6.3.5.1 in the Ethernet
|
|
* Channel Engine manual (part of the PCIO manual).
|
|
* See also the STP2002-STQ document from Sun Microsystems.
|
|
*/
|
|
|
|
/* step 1 & 2. Reset the Ethernet Channel. */
|
|
cas_stop(ifp);
|
|
cas_reset(sc);
|
|
#ifdef CAS_DEBUG
|
|
CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
|
|
__func__);
|
|
#endif
|
|
|
|
/* Re-initialize the MIF. */
|
|
cas_mifinit(sc);
|
|
|
|
/* step 3. Setup data structures in host memory. */
|
|
cas_meminit(sc);
|
|
|
|
/* step 4. TX MAC registers & counters */
|
|
cas_init_regs(sc);
|
|
|
|
/* step 5. RX MAC registers & counters */
|
|
cas_setladrf(sc);
|
|
|
|
/* step 6 & 7. Program Ring Base Addresses. */
|
|
CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
|
|
(((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
|
|
CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
|
|
CAS_CDTXDADDR(sc, 0) & 0xffffffff);
|
|
|
|
CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
|
|
(((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
|
|
CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
|
|
CAS_CDRXCADDR(sc, 0) & 0xffffffff);
|
|
|
|
CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
|
|
(((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
|
|
CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
|
|
CAS_CDRXDADDR(sc, 0) & 0xffffffff);
|
|
|
|
if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
|
|
CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
|
|
(((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
|
|
CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
|
|
CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
|
|
}
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR5(KTR_CAS,
|
|
"loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
|
|
CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
|
|
CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
|
|
#endif
|
|
|
|
/* step 8. Global Configuration & Interrupt Masks */
|
|
|
|
/* Disable weighted round robin. */
|
|
CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
|
|
|
|
/*
|
|
* Enable infinite bursts for revisions without PCI issues if
|
|
* applicable. Doing so greatly improves the TX performance on
|
|
* !__sparc64__.
|
|
*/
|
|
CAS_WRITE_4(sc, CAS_INF_BURST,
|
|
#if !defined(__sparc64__)
|
|
(sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
|
|
#endif
|
|
0);
|
|
|
|
/* Set up interrupts. */
|
|
CAS_WRITE_4(sc, CAS_INTMASK,
|
|
~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_TAG_ERR |
|
|
CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
|
|
CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
|
|
CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
|
|
CAS_INTR_PCI_ERROR_INT
|
|
#ifdef CAS_DEBUG
|
|
| CAS_INTR_PCS_INT | CAS_INTR_MIF
|
|
#endif
|
|
));
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
|
|
CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
|
|
~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
|
|
#ifdef CAS_DEBUG
|
|
CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
|
|
~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
|
|
CAS_MAC_CTRL_NON_PAUSE));
|
|
#else
|
|
CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
|
|
CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
|
|
CAS_MAC_CTRL_NON_PAUSE);
|
|
#endif
|
|
|
|
/* Enable PCI error interrupts. */
|
|
CAS_WRITE_4(sc, CAS_ERROR_MASK,
|
|
~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
|
|
CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
|
|
|
|
/* Enable PCI error interrupts in BIM configuration. */
|
|
CAS_WRITE_4(sc, CAS_BIM_CONF,
|
|
CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
|
|
|
|
/*
|
|
* step 9. ETX Configuration: encode receive descriptor ring size,
|
|
* enable DMA and disable pre-interrupt writeback completion.
|
|
*/
|
|
v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
|
|
CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
|
|
CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
|
|
|
|
/* step 10. ERX Configuration */
|
|
|
|
/*
|
|
* Encode receive completion and descriptor ring sizes, set the
|
|
* swivel offset.
|
|
*/
|
|
v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
|
|
v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
|
|
if ((sc->sc_flags & CAS_REG_PLUS) != 0)
|
|
v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
|
|
CAS_WRITE_4(sc, CAS_RX_CONF,
|
|
v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
|
|
|
|
/* Set the PAUSE thresholds. We use the maximum OFF threshold. */
|
|
CAS_WRITE_4(sc, CAS_RX_PTHRS,
|
|
((111 * 64) << CAS_RX_PTHRS_XOFF_SHFT) |
|
|
((15 * 64) << CAS_RX_PTHRS_XON_SHFT));
|
|
|
|
/* RX blanking */
|
|
CAS_WRITE_4(sc, CAS_RX_BLANK,
|
|
(15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
|
|
|
|
/* Set RX_COMP_AFULL threshold to half of the RX completions. */
|
|
CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
|
|
(CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
|
|
|
|
/* Initialize the RX page size register as appropriate for 8k. */
|
|
CAS_WRITE_4(sc, CAS_RX_PSZ,
|
|
(CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
|
|
(4 << CAS_RX_PSZ_MB_CNT_SHFT) |
|
|
(CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
|
|
(CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
|
|
|
|
/* Disable RX random early detection. */
|
|
CAS_WRITE_4(sc, CAS_RX_RED, 0);
|
|
|
|
/* Zero the RX reassembly DMA table. */
|
|
for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
|
|
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_ADDR, v);
|
|
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_LO, 0);
|
|
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_MD, 0);
|
|
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_HI, 0);
|
|
}
|
|
|
|
/* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
|
|
CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
|
|
CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
|
|
|
|
/* Finally, enable RX DMA. */
|
|
CAS_WRITE_4(sc, CAS_RX_CONF,
|
|
CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
|
|
|
|
/* step 11. Configure Media. */
|
|
|
|
/* step 12. RX_MAC Configuration Register */
|
|
v = CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_STRPPAD;
|
|
v |= CAS_MAC_RX_CONF_EN | CAS_MAC_RX_CONF_STRPFCS;
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 0);
|
|
CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
|
|
device_printf(sc->sc_dev, "cannot configure RX MAC\n");
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
|
|
|
|
/* step 13. TX_MAC Configuration Register */
|
|
v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
|
|
v |= CAS_MAC_TX_CONF_EN;
|
|
CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 0);
|
|
CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
|
|
device_printf(sc->sc_dev, "cannot configure TX MAC\n");
|
|
CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
|
|
|
|
/* step 14. Issue Transmit Pending command. */
|
|
|
|
/* step 15. Give the reciever a swift kick. */
|
|
CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
|
|
CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
|
|
if ((sc->sc_flags & CAS_REG_PLUS) != 0)
|
|
CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
mii_mediachg(sc->sc_mii);
|
|
|
|
/* Start the one second timer. */
|
|
sc->sc_wdog_timer = 0;
|
|
callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
|
|
}
|
|
|
|
static int
|
|
cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
|
|
{
|
|
bus_dma_segment_t txsegs[CAS_NTXSEGS];
|
|
struct cas_txsoft *txs;
|
|
struct ip *ip;
|
|
struct mbuf *m;
|
|
uint64_t cflags;
|
|
int error, nexttx, nsegs, offset, seg;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
/* Get a work queue entry. */
|
|
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
|
|
/* Ran out of descriptors. */
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
cflags = 0;
|
|
if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
|
|
if (M_WRITABLE(*m_head) == 0) {
|
|
m = m_dup(*m_head, M_DONTWAIT);
|
|
m_freem(*m_head);
|
|
*m_head = m;
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
}
|
|
offset = sizeof(struct ether_header);
|
|
m = m_pullup(*m_head, offset + sizeof(struct ip));
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m, caddr_t) + offset);
|
|
offset += (ip->ip_hl << 2);
|
|
cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
|
|
((offset + m->m_pkthdr.csum_data) <<
|
|
CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
|
|
*m_head = m;
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
|
|
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_DONTWAIT, CAS_NTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
|
|
txs->txs_dmamap, *m_head, txsegs, &nsegs,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
/* If nsegs is wrong then the stack is corrupt. */
|
|
KASSERT(nsegs <= CAS_NTXSEGS,
|
|
("%s: too many DMA segments (%d)", __func__, nsegs));
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet. Note, we always reserve one descriptor
|
|
* at the end of the ring as a termination point, in
|
|
* order to prevent wrap-around.
|
|
*/
|
|
if (nsegs > sc->sc_txfree - 1) {
|
|
txs->txs_ndescs = 0;
|
|
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
txs->txs_ndescs = nsegs;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
nexttx = txs->txs_firstdesc;
|
|
for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
|
|
#ifdef CAS_DEBUG
|
|
CTR6(KTR_CAS,
|
|
"%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
|
|
__func__, seg, nexttx, txsegs[seg].ds_len,
|
|
txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
|
|
#endif
|
|
sc->sc_txdescs[nexttx].cd_buf_ptr =
|
|
htole64(txsegs[seg].ds_addr);
|
|
KASSERT(txsegs[seg].ds_len <
|
|
CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
|
|
("%s: segment size too large!", __func__));
|
|
sc->sc_txdescs[nexttx].cd_flags =
|
|
htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
|
|
txs->txs_lastdesc = nexttx;
|
|
}
|
|
|
|
/* Set EOF on the last descriptor. */
|
|
#ifdef CAS_DEBUG
|
|
CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
|
|
__func__, seg, nexttx);
|
|
#endif
|
|
sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
|
|
htole64(CAS_TD_END_OF_FRAME);
|
|
|
|
/* Lastly set SOF on the first descriptor. */
|
|
#ifdef CAS_DEBUG
|
|
CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
|
|
__func__, seg, nexttx);
|
|
#endif
|
|
if (sc->sc_txwin += nsegs > CAS_NTXSEGS * 2 / 3) {
|
|
sc->sc_txwin = 0;
|
|
sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
|
|
htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
|
|
} else
|
|
sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
|
|
htole64(cflags | CAS_TD_START_OF_FRAME);
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
|
|
__func__, txs->txs_firstdesc, txs->txs_lastdesc,
|
|
txs->txs_ndescs);
|
|
#endif
|
|
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
|
|
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
|
|
txs->txs_mbuf = *m_head;
|
|
|
|
sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
|
|
sc->sc_txfree -= txs->txs_ndescs;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cas_init_regs(struct cas_softc *sc)
|
|
{
|
|
int i;
|
|
const u_char *laddr = IF_LLADDR(sc->sc_ifp);
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
/* These registers are not cleared on reset. */
|
|
if ((sc->sc_flags & CAS_INITED) == 0) {
|
|
/* magic values */
|
|
CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
|
|
CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
|
|
|
|
/* min frame length */
|
|
CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
|
|
/* max frame length and max burst size */
|
|
CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
|
|
((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
|
|
CAS_MAC_MAX_BF_FRM_SHFT) |
|
|
(0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
|
|
|
|
/* more magic values */
|
|
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
|
|
CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
|
|
CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
|
|
CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8088);
|
|
|
|
/* random number seed */
|
|
CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
|
|
((laddr[5] << 8) | laddr[4]) & 0x3ff);
|
|
|
|
/* secondary MAC addresses: 0:0:0:0:0:0 */
|
|
for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
|
|
i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
|
|
CAS_WRITE_4(sc, i, 0);
|
|
|
|
/* MAC control address: 01:80:c2:00:00:01 */
|
|
CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
|
|
CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
|
|
CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
|
|
|
|
/* MAC filter address: 0:0:0:0:0:0 */
|
|
CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
|
|
|
|
/* Zero the hash table. */
|
|
for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
|
|
i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
|
|
CAS_WRITE_4(sc, i, 0);
|
|
|
|
sc->sc_flags |= CAS_INITED;
|
|
}
|
|
|
|
/* Counters need to be zeroed. */
|
|
CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
|
|
|
|
/* Set XOFF PAUSE time. */
|
|
CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
|
|
|
|
/* Set the station address. */
|
|
CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
|
|
CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
|
|
CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
|
|
|
|
/* Enable MII outputs. */
|
|
CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
|
|
}
|
|
|
|
static void
|
|
cas_start(struct ifnet *ifp)
|
|
{
|
|
struct cas_softc *sc = ifp->if_softc;
|
|
|
|
CAS_LOCK(sc);
|
|
cas_start_locked(ifp);
|
|
CAS_UNLOCK(sc);
|
|
}
|
|
|
|
static inline void
|
|
cas_txkick(struct cas_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* Update the TX kick register. This register has to point to the
|
|
* descriptor after the last valid one and for optimum performance
|
|
* should be incremented in multiples of 4 (the DMA engine fetches/
|
|
* updates descriptors in batches of 4).
|
|
*/
|
|
#ifdef CAS_DEBUG
|
|
CTR3(KTR_CAS, "%s: %s: kicking TX %d",
|
|
device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
|
|
#endif
|
|
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
|
|
}
|
|
|
|
static void
|
|
cas_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct cas_softc *sc = ifp->if_softc;
|
|
struct mbuf *m;
|
|
int kicked, ntx;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0)
|
|
return;
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
|
|
device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
|
|
sc->sc_txnext);
|
|
#endif
|
|
ntx = 0;
|
|
kicked = 0;
|
|
for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
if (cas_load_txmbuf(sc, &m) != 0) {
|
|
if (m == NULL)
|
|
break;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m);
|
|
break;
|
|
}
|
|
if ((sc->sc_txnext % 4) == 0) {
|
|
cas_txkick(sc);
|
|
kicked = 1;
|
|
} else
|
|
kicked = 0;
|
|
ntx++;
|
|
BPF_MTAP(ifp, m);
|
|
}
|
|
|
|
if (ntx > 0) {
|
|
if (kicked == 0)
|
|
cas_txkick(sc);
|
|
#ifdef CAS_DEBUG
|
|
CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
|
|
device_get_name(sc->sc_dev), sc->sc_txnext);
|
|
#endif
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
sc->sc_wdog_timer = 5;
|
|
#ifdef CAS_DEBUG
|
|
CTR3(KTR_CAS, "%s: %s: watchdog %d",
|
|
device_get_name(sc->sc_dev), __func__,
|
|
sc->sc_wdog_timer);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
cas_tint(struct cas_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct cas_txsoft *txs;
|
|
int progress;
|
|
uint32_t txlast;
|
|
#ifdef CAS_DEBUG
|
|
int i;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
|
|
#endif
|
|
|
|
/*
|
|
* Go through our TX list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
progress = 0;
|
|
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
|
|
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
#ifdef CAS_DEBUG
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0) {
|
|
printf(" txsoft %p transmit chain:\n", txs);
|
|
for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
|
|
printf("descriptor %d: ", i);
|
|
printf("cd_flags: 0x%016llx\t",
|
|
(long long)le64toh(
|
|
sc->sc_txdescs[i].cd_flags));
|
|
printf("cd_buf_ptr: 0x%016llx\n",
|
|
(long long)le64toh(
|
|
sc->sc_txdescs[i].cd_buf_ptr));
|
|
if (i == txs->txs_lastdesc)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In theory, we could harvest some descriptors before
|
|
* the ring is empty, but that's a bit complicated.
|
|
*
|
|
* CAS_TX_COMPn points to the last descriptor
|
|
* processed + 1.
|
|
*/
|
|
txlast = CAS_READ_4(sc, CAS_TX_COMP3);
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
|
|
"txs->txs_lastdesc = %d, txlast = %d",
|
|
__func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
|
|
#endif
|
|
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
|
|
if ((txlast >= txs->txs_firstdesc) &&
|
|
(txlast <= txs->txs_lastdesc))
|
|
break;
|
|
} else {
|
|
/* Ick -- this command wraps. */
|
|
if ((txlast >= txs->txs_firstdesc) ||
|
|
(txlast <= txs->txs_lastdesc))
|
|
break;
|
|
}
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
|
|
#endif
|
|
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
|
|
sc->sc_txfree += txs->txs_ndescs;
|
|
|
|
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
|
|
if (txs->txs_mbuf != NULL) {
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
|
|
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
|
|
ifp->if_opackets++;
|
|
progress = 1;
|
|
}
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: CAS_TX_STATE_MACHINE %x CAS_TX_DESC_BASE %llx "
|
|
"CAS_TX_COMP3 %x",
|
|
__func__, CAS_READ_4(sc, CAS_TX_STATE_MACHINE),
|
|
((long long)CAS_READ_4(sc, CAS_TX_DESC_BASE_HI3) << 32) |
|
|
CAS_READ_4(sc, CAS_TX_DESC_BASE_LO3),
|
|
CAS_READ_4(sc, CAS_TX_COMP3));
|
|
#endif
|
|
|
|
if (progress) {
|
|
if (sc->sc_txfree == CAS_NTXDESC - 1)
|
|
sc->sc_txwin = 0;
|
|
|
|
/*
|
|
* We freed some descriptors, so reset IFF_DRV_OACTIVE
|
|
* and restart.
|
|
*/
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
if (STAILQ_EMPTY(&sc->sc_txdirtyq))
|
|
sc->sc_wdog_timer = 0;
|
|
cas_start_locked(ifp);
|
|
}
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR3(KTR_CAS, "%s: %s: watchdog %d",
|
|
device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
cas_rint_timeout(void *arg)
|
|
{
|
|
struct cas_softc *sc = arg;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
cas_rint(sc);
|
|
}
|
|
|
|
static void
|
|
cas_rint(struct cas_softc *sc)
|
|
{
|
|
struct cas_rxdsoft *rxds, *rxds2;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct mbuf *m, *m2;
|
|
uint64_t word1, word2, word3, word4;
|
|
uint32_t rxhead;
|
|
u_int idx, idx2, len, off, skip;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
callout_stop(&sc->sc_rx_ch);
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
|
|
#endif
|
|
|
|
#define PRINTWORD(n, delimiter) \
|
|
printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
|
|
|
|
#define SKIPASSERT(n) \
|
|
KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0, \
|
|
("%s: word ## n not 0", __func__))
|
|
|
|
#define WORDTOH(n) \
|
|
word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
|
|
|
|
/*
|
|
* Read the completion head register once. This limits
|
|
* how long the following loop can execute.
|
|
*/
|
|
rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
|
|
__func__, sc->rxcptr, sc->sc_rxdptr, rxhead);
|
|
#endif
|
|
skip = 0;
|
|
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
for (; sc->sc_rxcptr != rxhead;
|
|
sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
|
|
if (skip != 0) {
|
|
SKIPASSERT(1);
|
|
SKIPASSERT(2);
|
|
SKIPASSERT(3);
|
|
|
|
--skip;
|
|
goto skip;
|
|
}
|
|
|
|
WORDTOH(1);
|
|
WORDTOH(2);
|
|
WORDTOH(3);
|
|
WORDTOH(4);
|
|
|
|
#ifdef CAS_DEBUG
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0) {
|
|
printf(" completion %d: ", sc->sc_rxcptr);
|
|
PRINTWORD(1, '\t');
|
|
PRINTWORD(2, '\t');
|
|
PRINTWORD(3, '\t');
|
|
PRINTWORD(4, '\n');
|
|
}
|
|
#endif
|
|
|
|
if (__predict_false(
|
|
(word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
|
|
(word4 & CAS_RC4_ZERO) != 0)) {
|
|
/*
|
|
* The descriptor is still marked as owned, although
|
|
* it is supposed to have completed. This has been
|
|
* observed on some machines. Just exiting here
|
|
* might leave the packet sitting around until another
|
|
* one arrives to trigger a new interrupt, which is
|
|
* generally undesirable, so set up a timeout.
|
|
*/
|
|
callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
|
|
cas_rint_timeout, sc);
|
|
break;
|
|
}
|
|
|
|
if (__predict_false(
|
|
(word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
|
|
ifp->if_ierrors++;
|
|
device_printf(sc->sc_dev,
|
|
"receive error: CRC error\n");
|
|
continue;
|
|
}
|
|
|
|
KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
|
|
CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
|
|
("%s: data and header present", __func__));
|
|
KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
|
|
CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
|
|
("%s: split and header present", __func__));
|
|
KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
|
|
(word1 & CAS_RC1_RELEASE_HDR) == 0,
|
|
("%s: data present but header release", __func__));
|
|
KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
|
|
(word1 & CAS_RC1_RELEASE_DATA) == 0,
|
|
("%s: header present but data release", __func__));
|
|
|
|
if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
|
|
idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
|
|
off = CAS_GET(word2, CAS_RC2_HDR_OFF);
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
|
|
__func__, idx, off, len);
|
|
#endif
|
|
rxds = &sc->sc_rxdsoft[idx];
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m != NULL) {
|
|
refcount_acquire(&rxds->rxds_refcount);
|
|
bus_dmamap_sync(sc->sc_rdmatag,
|
|
rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
|
|
MEXTADD(m, (caddr_t)rxds->rxds_buf +
|
|
off * 256 + ETHER_ALIGN, len, cas_free,
|
|
#if __FreeBSD_version < 800016
|
|
rxds,
|
|
#else
|
|
sc, (void *)(uintptr_t)idx,
|
|
#endif
|
|
M_RDONLY, EXT_NET_DRV);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
m = NULL;
|
|
}
|
|
}
|
|
if (m != NULL) {
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
ifp->if_ipackets++;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
cas_rxcksum(m, CAS_GET(word4,
|
|
CAS_RC4_TCP_CSUM));
|
|
/* Pass it on. */
|
|
CAS_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
CAS_LOCK(sc);
|
|
} else
|
|
ifp->if_ierrors++;
|
|
|
|
if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
|
|
refcount_release(&rxds->rxds_refcount) != 0)
|
|
cas_add_rxdesc(sc, idx);
|
|
} else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
|
|
idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
|
|
off = CAS_GET(word1, CAS_RC1_DATA_OFF);
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
|
|
__func__, idx, off, len);
|
|
#endif
|
|
rxds = &sc->sc_rxdsoft[idx];
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m != NULL) {
|
|
refcount_acquire(&rxds->rxds_refcount);
|
|
off += ETHER_ALIGN;
|
|
m->m_len = min(CAS_PAGE_SIZE - off, len);
|
|
bus_dmamap_sync(sc->sc_rdmatag,
|
|
rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
|
|
MEXTADD(m, (caddr_t)rxds->rxds_buf + off,
|
|
m->m_len, cas_free,
|
|
#if __FreeBSD_version < 800016
|
|
rxds,
|
|
#else
|
|
sc, (void *)(uintptr_t)idx,
|
|
#endif
|
|
M_RDONLY, EXT_NET_DRV);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
m = NULL;
|
|
}
|
|
}
|
|
idx2 = 0;
|
|
rxds2 = NULL;
|
|
if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
|
|
KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
|
|
("%s: split but no release next",
|
|
__func__));
|
|
|
|
idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
|
|
#ifdef CAS_DEBUG
|
|
CTR2(KTR_CAS, "%s: split at idx %d",
|
|
__func__, idx2);
|
|
#endif
|
|
rxds2 = &sc->sc_rxdsoft[idx2];
|
|
MGET(m2, M_DONTWAIT, MT_DATA);
|
|
if (m2 != NULL) {
|
|
refcount_acquire(
|
|
&rxds2->rxds_refcount);
|
|
m2->m_len = len - m->m_len;
|
|
bus_dmamap_sync(sc->sc_rdmatag,
|
|
rxds2->rxds_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
MEXTADD(m2, (caddr_t)rxds2->rxds_buf,
|
|
m2->m_len, cas_free,
|
|
#if __FreeBSD_version < 800016
|
|
rxds2,
|
|
#else
|
|
sc, (void *)(uintptr_t)idx2,
|
|
#endif
|
|
M_RDONLY, EXT_NET_DRV);
|
|
if ((m2->m_flags & M_EXT) == 0) {
|
|
m_freem(m2);
|
|
m2 = NULL;
|
|
}
|
|
}
|
|
if (m2 != NULL)
|
|
m->m_next = m2;
|
|
else {
|
|
m_freem(m);
|
|
m = NULL;
|
|
}
|
|
}
|
|
if (m != NULL) {
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = len;
|
|
ifp->if_ipackets++;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
cas_rxcksum(m, CAS_GET(word4,
|
|
CAS_RC4_TCP_CSUM));
|
|
/* Pass it on. */
|
|
CAS_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
CAS_LOCK(sc);
|
|
} else
|
|
ifp->if_ierrors++;
|
|
|
|
if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
|
|
refcount_release(&rxds->rxds_refcount) != 0)
|
|
cas_add_rxdesc(sc, idx);
|
|
if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
|
|
refcount_release(&rxds2->rxds_refcount) != 0)
|
|
cas_add_rxdesc(sc, idx2);
|
|
}
|
|
|
|
skip = CAS_GET(word1, CAS_RC1_SKIP);
|
|
|
|
skip:
|
|
cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
|
|
}
|
|
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
|
|
|
|
#undef PRINTWORD
|
|
#undef SKIPASSERT
|
|
#undef WORDTOH
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
|
|
__func__, sc->rxcptr, sc->sc_rxdptr,
|
|
CAS_READ_4(sc, CAS_RX_COMP_HEAD));
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
cas_free(void *arg1, void *arg2)
|
|
{
|
|
struct cas_rxdsoft *rxds;
|
|
struct cas_softc *sc;
|
|
u_int idx, locked;
|
|
|
|
#if __FreeBSD_version < 800016
|
|
rxds = arg2;
|
|
sc = rxds->rxds_sc;
|
|
idx = rxds->rxds_idx;
|
|
#else
|
|
sc = arg1;
|
|
idx = (uintptr_t)arg2;
|
|
rxds = &sc->sc_rxdsoft[idx];
|
|
#endif
|
|
if (refcount_release(&rxds->rxds_refcount) == 0)
|
|
return;
|
|
|
|
/*
|
|
* NB: this function can be called via m_freem(9) within
|
|
* this driver!
|
|
*/
|
|
if ((locked = CAS_LOCK_OWNED(sc)) == 0)
|
|
CAS_LOCK(sc);
|
|
cas_add_rxdesc(sc, idx);
|
|
if (locked == 0)
|
|
CAS_UNLOCK(sc);
|
|
}
|
|
|
|
static inline void
|
|
cas_add_rxdesc(struct cas_softc *sc, u_int idx)
|
|
{
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
|
|
sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
|
|
|
|
/*
|
|
* Update the RX kick register. This register has to point to the
|
|
* descriptor after the last valid one (before the current batch)
|
|
* and for optimum performance should be incremented in multiples
|
|
* of 4 (the DMA engine fetches/updates descriptors in batches of 4).
|
|
*/
|
|
if ((sc->sc_rxdptr % 4) == 0) {
|
|
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
CAS_WRITE_4(sc, CAS_RX_KICK,
|
|
(sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cas_eint(struct cas_softc *sc, u_int status)
|
|
{
|
|
|
|
sc->sc_ifp->if_ierrors++;
|
|
|
|
device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
|
|
if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
|
|
status = CAS_READ_4(sc, CAS_ERROR_STATUS);
|
|
printf(", PCI bus error 0x%x", status);
|
|
if ((status & CAS_ERROR_OTHER) != 0) {
|
|
status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
|
|
printf(", PCI status 0x%x", status);
|
|
pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
|
|
}
|
|
}
|
|
printf("\n");
|
|
|
|
cas_init_locked(sc);
|
|
cas_start_locked(sc->sc_ifp);
|
|
}
|
|
|
|
static void
|
|
cas_intr(void *v)
|
|
{
|
|
struct cas_softc *sc = v;
|
|
uint32_t status, status2;
|
|
|
|
status = CAS_READ_4(sc, CAS_STATUS);
|
|
if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
|
|
return;
|
|
|
|
CAS_LOCK(sc);
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
|
|
device_get_name(sc->sc_dev), __func__,
|
|
(status >> CAS_STATUS_TX_COMP3_SHIFT), (u_int)status);
|
|
|
|
/*
|
|
* PCS interrupts must be cleared, otherwise no traffic is passed!
|
|
*/
|
|
if ((status & CAS_INTR_PCS_INT) != 0) {
|
|
status2 =
|
|
CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
|
|
CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
|
|
if ((status2 & CAS_PCS_INTR_LINK) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: PCS link status changed\n", __func__);
|
|
}
|
|
if ((status & CAS_MAC_CTRL_STATUS) != 0) {
|
|
status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
|
|
if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: PAUSE received (PAUSE time %d slots)\n",
|
|
__func__,
|
|
(status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
|
|
CAS_MAC_CTRL_STATUS_PT_SHFT);
|
|
if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: transited to PAUSE state\n", __func__);
|
|
if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"%s: transited to non-PAUSE state\n", __func__);
|
|
}
|
|
if ((status & CAS_INTR_MIF) != 0)
|
|
device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
|
|
#endif
|
|
|
|
if (__predict_false((status &
|
|
(CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
|
|
CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
|
|
cas_eint(sc, status);
|
|
CAS_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
|
|
status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
|
|
if ((status2 &
|
|
(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
|
|
sc->sc_ifp->if_oerrors++;
|
|
else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"MAC TX fault, status %x\n", status2);
|
|
}
|
|
|
|
if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
|
|
status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
|
|
if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
|
|
sc->sc_ifp->if_ierrors++;
|
|
else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
|
|
device_printf(sc->sc_dev,
|
|
"MAC RX fault, status %x\n", status2);
|
|
}
|
|
|
|
if ((status &
|
|
(CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
|
|
CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
|
|
cas_rint(sc);
|
|
if (__predict_false((status &
|
|
(CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
|
|
CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
|
|
device_printf(sc->sc_dev,
|
|
"RX fault, status %x\n", status);
|
|
}
|
|
|
|
if ((status &
|
|
(CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0)
|
|
cas_tint(sc);
|
|
|
|
CAS_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
cas_watchdog(struct cas_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
#ifdef CAS_DEBUG
|
|
CTR4(KTR_CAS,
|
|
"%s: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONFIG %x",
|
|
__func__, CAS_READ_4(sc, CAS_RX_CONFIG),
|
|
CAS_READ_4(sc, CAS_MAC_RX_STATUS),
|
|
CAS_READ_4(sc, CAS_MAC_RX_CONFIG));
|
|
CTR4(KTR_CAS,
|
|
"%s: CAS_TX_CONFIG %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONFIG %x",
|
|
__func__, CAS_READ_4(sc, CAS_TX_CONFIG),
|
|
CAS_READ_4(sc, CAS_MAC_TX_STATUS),
|
|
CAS_READ_4(sc, CAS_MAC_TX_CONFIG));
|
|
#endif
|
|
|
|
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
|
|
return (0);
|
|
|
|
if ((sc->sc_flags & CAS_LINK) != 0)
|
|
device_printf(sc->sc_dev, "device timeout\n");
|
|
else if (bootverbose)
|
|
device_printf(sc->sc_dev, "device timeout (no link)\n");
|
|
++ifp->if_oerrors;
|
|
|
|
/* Try to get more packets going. */
|
|
cas_init_locked(sc);
|
|
cas_start_locked(ifp);
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
static void
|
|
cas_mifinit(struct cas_softc *sc)
|
|
{
|
|
|
|
/* Configure the MIF in frame mode. */
|
|
CAS_WRITE_4(sc, CAS_MIF_CONF,
|
|
CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
|
|
}
|
|
|
|
/*
|
|
* MII interface
|
|
*
|
|
* The MII interface supports at least three different operating modes:
|
|
*
|
|
* Bitbang mode is implemented using data, clock and output enable registers.
|
|
*
|
|
* Frame mode is implemented by loading a complete frame into the frame
|
|
* register and polling the valid bit for completion.
|
|
*
|
|
* Polling mode uses the frame register but completion is indicated by
|
|
* an interrupt.
|
|
*
|
|
*/
|
|
static int
|
|
cas_mii_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct cas_softc *sc;
|
|
int n;
|
|
uint32_t v;
|
|
|
|
#ifdef CAS_DEBUG_PHY
|
|
printf("%s: phy %d reg %d\n", __func__, phy, reg);
|
|
#endif
|
|
|
|
sc = device_get_softc(dev);
|
|
if (sc->sc_phyad != -1 && phy != sc->sc_phyad)
|
|
return (0);
|
|
|
|
if ((sc->sc_flags & CAS_SERDES) != 0) {
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
reg = CAS_PCS_CTRL;
|
|
break;
|
|
case MII_BMSR:
|
|
reg = CAS_PCS_STATUS;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
case MII_PHYIDR2:
|
|
return (0);
|
|
case MII_ANAR:
|
|
reg = CAS_PCS_ANAR;
|
|
break;
|
|
case MII_ANLPAR:
|
|
reg = CAS_PCS_ANLPAR;
|
|
break;
|
|
case MII_EXTSR:
|
|
return (EXTSR_1000XFDX | EXTSR_1000XHDX);
|
|
default:
|
|
device_printf(sc->sc_dev,
|
|
"%s: unhandled register %d\n", __func__, reg);
|
|
return (0);
|
|
}
|
|
return (CAS_READ_4(sc, reg));
|
|
}
|
|
|
|
/* Construct the frame command. */
|
|
v = CAS_MIF_FRAME_READ |
|
|
(phy << CAS_MIF_FRAME_PHY_SHFT) |
|
|
(reg << CAS_MIF_FRAME_REG_SHFT);
|
|
|
|
CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
|
|
CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = CAS_READ_4(sc, CAS_MIF_FRAME);
|
|
if (v & CAS_MIF_FRAME_TA_LSB)
|
|
return (v & CAS_MIF_FRAME_DATA);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cas_mii_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct cas_softc *sc;
|
|
int n;
|
|
uint32_t v;
|
|
|
|
#ifdef CAS_DEBUG_PHY
|
|
printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
|
|
#endif
|
|
|
|
sc = device_get_softc(dev);
|
|
if (sc->sc_phyad != -1 && phy != sc->sc_phyad)
|
|
return (0);
|
|
|
|
if ((sc->sc_flags & CAS_SERDES) != 0) {
|
|
switch (reg) {
|
|
case MII_BMSR:
|
|
reg = CAS_PCS_STATUS;
|
|
break;
|
|
case MII_BMCR:
|
|
reg = CAS_PCS_CTRL;
|
|
if ((val & CAS_PCS_CTRL_RESET) == 0)
|
|
break;
|
|
CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
|
|
CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_PCS_CTRL,
|
|
CAS_PCS_CTRL_RESET, 0))
|
|
device_printf(sc->sc_dev,
|
|
"cannot reset PCS\n");
|
|
/* FALLTHROUGH */
|
|
case MII_ANAR:
|
|
CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
|
|
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
|
|
BUS_SPACE_BARRIER_WRITE);
|
|
CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
|
|
CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
|
|
CAS_PCS_SERDES_CTRL_ESD);
|
|
CAS_WRITE_4(sc, CAS_PCS_CONF,
|
|
CAS_PCS_CONF_EN);
|
|
return (0);
|
|
case MII_ANLPAR:
|
|
reg = CAS_PCS_ANLPAR;
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev,
|
|
"%s: unhandled register %d\n", __func__, reg);
|
|
return (0);
|
|
}
|
|
CAS_WRITE_4(sc, reg, val);
|
|
return (0);
|
|
}
|
|
|
|
/* Construct the frame command. */
|
|
v = CAS_MIF_FRAME_WRITE |
|
|
(phy << CAS_MIF_FRAME_PHY_SHFT) |
|
|
(reg << CAS_MIF_FRAME_REG_SHFT) |
|
|
(val & CAS_MIF_FRAME_DATA);
|
|
|
|
CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
|
|
CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
for (n = 0; n < 100; n++) {
|
|
DELAY(1);
|
|
v = CAS_READ_4(sc, CAS_MIF_FRAME);
|
|
if (v & CAS_MIF_FRAME_TA_LSB)
|
|
return (1);
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
cas_mii_statchg(device_t dev)
|
|
{
|
|
struct cas_softc *sc;
|
|
struct ifnet *ifp;
|
|
int gigabit;
|
|
uint32_t rxcfg, txcfg, v;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->sc_ifp;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
#ifdef CAS_DEBUG
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0)
|
|
device_printf(sc->sc_dev, "%s: status change: PHY = %d\n",
|
|
__func__, sc->sc_phyad);
|
|
#endif
|
|
|
|
if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
|
|
IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
|
|
sc->sc_flags |= CAS_LINK;
|
|
else
|
|
sc->sc_flags &= ~CAS_LINK;
|
|
|
|
switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
|
|
case IFM_1000_SX:
|
|
case IFM_1000_LX:
|
|
case IFM_1000_CX:
|
|
case IFM_1000_T:
|
|
gigabit = 1;
|
|
break;
|
|
default:
|
|
gigabit = 0;
|
|
}
|
|
|
|
/*
|
|
* The configuration done here corresponds to the steps F) and
|
|
* G) and as far as enabling of RX and TX MAC goes also step H)
|
|
* of the initialization sequence outlined in section 11.2.1 of
|
|
* the Cassini+ ASIC Specification.
|
|
*/
|
|
|
|
rxcfg = CAS_READ_4(sc, CAS_MAC_RX_CONF);
|
|
rxcfg &= ~(CAS_MAC_RX_CONF_EN | CAS_MAC_RX_CONF_CARR);
|
|
txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
|
|
CAS_MAC_TX_CONF_NGUL;
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
|
|
txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
|
|
else if (gigabit != 0) {
|
|
rxcfg |= CAS_MAC_RX_CONF_CARR;
|
|
txcfg |= CAS_MAC_TX_CONF_CARR;
|
|
}
|
|
CAS_WRITE_4(sc, CAS_MAC_TX_CONF, 0);
|
|
CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
|
|
device_printf(sc->sc_dev, "cannot disable TX MAC\n");
|
|
CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, 0);
|
|
CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
|
|
|
|
v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
|
|
~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
|
|
#ifdef notyet
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
|
|
IFM_ETH_RXPAUSE) != 0)
|
|
v |= CAS_MAC_CTRL_CONF_RXP;
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
|
|
IFM_ETH_TXPAUSE) != 0)
|
|
v |= CAS_MAC_CTRL_CONF_TXP;
|
|
#endif
|
|
CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
|
|
|
|
/*
|
|
* All supported chips have a bug causing incorrect checksum
|
|
* to be calculated when letting them strip the FCS in half-
|
|
* duplex mode. In theory we could disable FCS stripping and
|
|
* manually adjust the checksum accordingly. It seems to make
|
|
* more sense to optimze for the common case and just disable
|
|
* hardware checksumming in half-duplex mode though.
|
|
*/
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
|
|
ifp->if_capenable &= ~IFCAP_HWCSUM;
|
|
ifp->if_hwassist = 0;
|
|
} else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
ifp->if_hwassist = CAS_CSUM_FEATURES;
|
|
}
|
|
|
|
if (sc->sc_variant == CAS_SATURN) {
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
|
|
/* silicon bug workaround */
|
|
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
|
|
else
|
|
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
|
|
}
|
|
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
|
|
gigabit != 0)
|
|
CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
|
|
CAS_MAC_SLOT_TIME_CARR);
|
|
else
|
|
CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
|
|
CAS_MAC_SLOT_TIME_NORM);
|
|
|
|
/* XIF Configuration */
|
|
v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
|
|
if ((sc->sc_flags & CAS_SERDES) == 0) {
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
|
|
v |= CAS_MAC_XIF_CONF_NOECHO;
|
|
v |= CAS_MAC_XIF_CONF_BUF_OE;
|
|
}
|
|
if (gigabit != 0)
|
|
v |= CAS_MAC_XIF_CONF_GMII;
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
|
|
v |= CAS_MAC_XIF_CONF_FDXLED;
|
|
CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
|
|
|
|
if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
(sc->sc_flags & CAS_LINK) != 0) {
|
|
CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
|
|
txcfg | CAS_MAC_TX_CONF_EN);
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
|
|
rxcfg | CAS_MAC_RX_CONF_EN);
|
|
}
|
|
}
|
|
|
|
static int
|
|
cas_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct cas_softc *sc = ifp->if_softc;
|
|
int error;
|
|
|
|
/* XXX add support for serial media. */
|
|
|
|
CAS_LOCK(sc);
|
|
error = mii_mediachg(sc->sc_mii);
|
|
CAS_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct cas_softc *sc = ifp->if_softc;
|
|
|
|
CAS_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
CAS_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
mii_pollstat(sc->sc_mii);
|
|
ifmr->ifm_active = sc->sc_mii->mii_media_active;
|
|
ifmr->ifm_status = sc->sc_mii->mii_media_status;
|
|
CAS_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct cas_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error;
|
|
|
|
error = 0;
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
CAS_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
((ifp->if_flags ^ sc->sc_ifflags) &
|
|
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
|
|
cas_setladrf(sc);
|
|
else
|
|
cas_init_locked(sc);
|
|
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
cas_stop(ifp);
|
|
sc->sc_ifflags = ifp->if_flags;
|
|
CAS_UNLOCK(sc);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
CAS_LOCK(sc);
|
|
if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
|
|
error = EINVAL;
|
|
CAS_UNLOCK(sc);
|
|
break;
|
|
}
|
|
ifp->if_capenable = ifr->ifr_reqcap;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist = CAS_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist = 0;
|
|
CAS_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
CAS_LOCK(sc);
|
|
cas_setladrf(sc);
|
|
CAS_UNLOCK(sc);
|
|
break;
|
|
case SIOCSIFMTU:
|
|
if ((ifr->ifr_mtu < ETHERMIN) ||
|
|
(ifr->ifr_mtu > ETHERMTU_JUMBO))
|
|
error = EINVAL;
|
|
else
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
cas_setladrf(struct cas_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ifmultiaddr *inm;
|
|
int i;
|
|
uint32_t hash[16];
|
|
uint32_t crc, v;
|
|
|
|
CAS_LOCK_ASSERT(sc, MA_OWNED);
|
|
|
|
/* Get the current RX configuration. */
|
|
v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
|
|
|
|
/*
|
|
* Turn off promiscuous mode, promiscuous group mode (all multicast),
|
|
* and hash filter. Depending on the case, the right bit will be
|
|
* enabled.
|
|
*/
|
|
v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_HFILTER |
|
|
CAS_MAC_RX_CONF_PGRP);
|
|
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
|
|
CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER, 0))
|
|
device_printf(sc->sc_dev, "cannot disable RX hash filter\n");
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0) {
|
|
v |= CAS_MAC_RX_CONF_PROMISC;
|
|
goto chipit;
|
|
}
|
|
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
|
|
v |= CAS_MAC_RX_CONF_PGRP;
|
|
goto chipit;
|
|
}
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast
|
|
* addresses through a crc generator, and then using the high
|
|
* order 8 bits as an index into the 256 bit logical address
|
|
* filter. The high order 4 bits selects the word, while the
|
|
* other 4 bits select the bit within the word (where bit 0
|
|
* is the MSB).
|
|
*/
|
|
|
|
/* Clear the hash table. */
|
|
memset(hash, 0, sizeof(hash));
|
|
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
|
|
if (inm->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
|
|
inm->ifma_addr), ETHER_ADDR_LEN);
|
|
|
|
/* We just want the 8 most significant bits. */
|
|
crc >>= 24;
|
|
|
|
/* Set the corresponding bit in the filter. */
|
|
hash[crc >> 4] |= 1 << (15 - (crc & 15));
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
v |= CAS_MAC_RX_CONF_HFILTER;
|
|
|
|
/* Now load the hash table into the chip (if we are using it). */
|
|
for (i = 0; i < 16; i++)
|
|
CAS_WRITE_4(sc,
|
|
CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
|
|
hash[i]);
|
|
|
|
chipit:
|
|
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
|
|
}
|
|
|
|
static int cas_pci_attach(device_t dev);
|
|
static int cas_pci_detach(device_t dev);
|
|
static int cas_pci_probe(device_t dev);
|
|
static int cas_pci_resume(device_t dev);
|
|
static int cas_pci_suspend(device_t dev);
|
|
|
|
static device_method_t cas_pci_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, cas_pci_probe),
|
|
DEVMETHOD(device_attach, cas_pci_attach),
|
|
DEVMETHOD(device_detach, cas_pci_detach),
|
|
DEVMETHOD(device_suspend, cas_pci_suspend),
|
|
DEVMETHOD(device_resume, cas_pci_resume),
|
|
/* Use the suspend handler here, it is all that is required. */
|
|
DEVMETHOD(device_shutdown, cas_pci_suspend),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, cas_mii_readreg),
|
|
DEVMETHOD(miibus_writereg, cas_mii_writereg),
|
|
DEVMETHOD(miibus_statchg, cas_mii_statchg),
|
|
|
|
KOBJMETHOD_END
|
|
};
|
|
|
|
static driver_t cas_pci_driver = {
|
|
"cas",
|
|
cas_pci_methods,
|
|
sizeof(struct cas_softc)
|
|
};
|
|
|
|
DRIVER_MODULE(cas, pci, cas_pci_driver, cas_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, cas, miibus_driver, miibus_devclass, 0, 0);
|
|
MODULE_DEPEND(cas, pci, 1, 1, 1);
|
|
|
|
static const struct cas_pci_dev {
|
|
uint32_t cpd_devid;
|
|
uint8_t cpd_revid;
|
|
int cpd_variant;
|
|
const char *cpd_desc;
|
|
} const cas_pci_devlist[] = {
|
|
{ 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
|
|
{ 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
|
|
{ 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
|
|
{ 0, 0, 0, NULL }
|
|
};
|
|
|
|
static int
|
|
cas_pci_probe(device_t dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
|
|
if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
|
|
pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
|
|
device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static struct resource_spec cas_pci_res_spec[] = {
|
|
{ SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE }, /* CAS_RES_INTR */
|
|
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* CAS_RES_MEM */
|
|
{ -1, 0 }
|
|
};
|
|
|
|
static int
|
|
cas_pci_attach(device_t dev)
|
|
{
|
|
struct cas_softc *sc;
|
|
int i;
|
|
#if !(defined(__powerpc__) || defined(__sparc64__))
|
|
u_char enaddr[4][ETHER_ADDR_LEN];
|
|
char lma[sizeof("local-mac-address")];
|
|
int found, j;
|
|
#endif
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->sc_variant = CAS_UNKNOWN;
|
|
for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
|
|
if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
|
|
pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
|
|
sc->sc_variant = cas_pci_devlist[i].cpd_variant;
|
|
break;
|
|
}
|
|
}
|
|
if (sc->sc_variant == CAS_UNKNOWN) {
|
|
device_printf(dev, "unknown adaptor\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
pci_enable_busmaster(dev);
|
|
|
|
sc->sc_dev = dev;
|
|
if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
|
|
/* Hardware checksumming may hang TX. */
|
|
sc->sc_flags |= CAS_NO_CSUM;
|
|
if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
|
|
sc->sc_flags |= CAS_REG_PLUS;
|
|
if (sc->sc_variant == CAS_CAS ||
|
|
(sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
|
|
sc->sc_flags |= CAS_TABORT;
|
|
if (bootverbose)
|
|
device_printf(dev, "flags=0x%x\n", sc->sc_flags);
|
|
|
|
if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
|
|
device_printf(dev, "failed to allocate resources\n");
|
|
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
|
|
return (ENXIO);
|
|
}
|
|
|
|
CAS_LOCK_INIT(sc, device_get_nameunit(dev));
|
|
|
|
#if defined(__powerpc__) || defined(__sparc64__)
|
|
OF_getetheraddr(dev, sc->sc_enaddr);
|
|
#else
|
|
/*
|
|
* Dig out VPD (vital product data) and read the MAX address.
|
|
* The VPD resides in the PCI Expansion ROM (PCI FCode) and
|
|
* can't be accessed via the PCI capability pointer.
|
|
* SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format
|
|
* described in US Patent 7149820.
|
|
*/
|
|
|
|
#define PCI_ROMHDR_SIZE 0x1c
|
|
#define PCI_ROMHDR_SIG 0x00
|
|
#define PCI_ROMHDR_SIG_MAGIC 0xaa55 /* little endian */
|
|
#define PCI_ROMHDR_PTR_DATA 0x18
|
|
#define PCI_ROM_SIZE 0x18
|
|
#define PCI_ROM_SIG 0x00
|
|
#define PCI_ROM_SIG_MAGIC 0x52494350 /* "PCIR", endian */
|
|
/* reversed */
|
|
#define PCI_ROM_VENDOR 0x04
|
|
#define PCI_ROM_DEVICE 0x06
|
|
#define PCI_ROM_PTR_VPD 0x08
|
|
#define PCI_VPDRES_BYTE0 0x00
|
|
#define PCI_VPDRES_ISLARGE(x) ((x) & 0x80)
|
|
#define PCI_VPDRES_LARGE_NAME(x) ((x) & 0x7f)
|
|
#define PCI_VPDRES_LARGE_LEN_LSB 0x01
|
|
#define PCI_VPDRES_LARGE_LEN_MSB 0x02
|
|
#define PCI_VPDRES_LARGE_SIZE 0x03
|
|
#define PCI_VPDRES_TYPE_ID_STRING 0x02 /* large */
|
|
#define PCI_VPDRES_TYPE_VPD 0x10 /* large */
|
|
#define PCI_VPD_KEY0 0x00
|
|
#define PCI_VPD_KEY1 0x01
|
|
#define PCI_VPD_LEN 0x02
|
|
#define PCI_VPD_SIZE 0x03
|
|
|
|
#define CAS_ROM_READ_1(sc, offs) \
|
|
CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
|
|
#define CAS_ROM_READ_2(sc, offs) \
|
|
CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
|
|
#define CAS_ROM_READ_4(sc, offs) \
|
|
CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
|
|
|
|
found = 0;
|
|
/* Enable PCI Expansion ROM access. */
|
|
CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
|
|
CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
|
|
|
|
/* Read PCI Expansion ROM header. */
|
|
if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
|
|
(i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
|
|
PCI_ROMHDR_SIZE) {
|
|
device_printf(dev, "unexpected PCI Expansion ROM header\n");
|
|
goto fail_prom;
|
|
}
|
|
|
|
/* Read PCI Expansion ROM data. */
|
|
if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
|
|
CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
|
|
CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
|
|
(j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
|
|
i + PCI_ROM_SIZE) {
|
|
device_printf(dev, "unexpected PCI Expansion ROM data\n");
|
|
goto fail_prom;
|
|
}
|
|
|
|
/* Read PCI VPD. */
|
|
next:
|
|
if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
|
|
j + PCI_VPDRES_BYTE0)) == 0) {
|
|
device_printf(dev, "no large PCI VPD\n");
|
|
goto fail_prom;
|
|
}
|
|
|
|
i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
|
|
CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
|
|
switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
|
|
j + PCI_VPDRES_BYTE0))) {
|
|
case PCI_VPDRES_TYPE_ID_STRING:
|
|
/* Skip identifier string. */
|
|
j += PCI_VPDRES_LARGE_SIZE + i;
|
|
goto next;
|
|
case PCI_VPDRES_TYPE_VPD:
|
|
for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
|
|
i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
|
|
j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
|
|
if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
|
|
/* no Enhanced VPD */
|
|
continue;
|
|
if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
|
|
/* no instance property */
|
|
continue;
|
|
if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) != 'B')
|
|
/* no byte array */
|
|
continue;
|
|
if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 4) !=
|
|
ETHER_ADDR_LEN)
|
|
continue;
|
|
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
|
|
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
|
|
lma, sizeof(lma));
|
|
if (strcmp(lma, "local-mac-address") != 0)
|
|
continue;
|
|
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
|
|
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5 +
|
|
sizeof(lma), enaddr[found],
|
|
sizeof(enaddr[found]));
|
|
if (found++ == 4)
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
device_printf(dev, "unexpected PCI VPD\n");
|
|
goto fail_prom;
|
|
}
|
|
|
|
fail_prom:
|
|
CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
|
|
|
|
if (found == 0) {
|
|
device_printf(dev, "could not determine Ethernet address\n");
|
|
goto fail;
|
|
}
|
|
i = 0;
|
|
if (found > 1 && pci_get_slot(dev) < sizeof(enaddr) / sizeof(*enaddr))
|
|
i = pci_get_slot(dev);
|
|
memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
|
|
#endif
|
|
|
|
if (cas_attach(sc) != 0) {
|
|
device_printf(dev, "could not be attached\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
|
|
INTR_MPSAFE, NULL, cas_intr, sc, &sc->sc_ih) != 0) {
|
|
device_printf(dev, "failed to set up interrupt\n");
|
|
cas_detach(sc);
|
|
goto fail;
|
|
}
|
|
return (0);
|
|
|
|
fail:
|
|
CAS_LOCK_DESTROY(sc);
|
|
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
cas_pci_detach(device_t dev)
|
|
{
|
|
struct cas_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
|
|
cas_detach(sc);
|
|
CAS_LOCK_DESTROY(sc);
|
|
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cas_pci_suspend(device_t dev)
|
|
{
|
|
|
|
cas_suspend(device_get_softc(dev));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cas_pci_resume(device_t dev)
|
|
{
|
|
|
|
cas_resume(device_get_softc(dev));
|
|
return (0);
|
|
}
|