1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-26 11:47:31 +00:00
freebsd/sys/i386/isa/seagate.c
Jordan K. Hubbard 10bfdf2bae From: "Serge V.Vakulenko" <vak@gw.cronyx.msk.su>
This is new version of Seagate ST01/02, Future Domain TMC-885, TMC-950
SCSI driver for FreeBSD.  I started from the 2.0R version and mostly
rewrote it.  New features are:

1) New probe algorithm.  Old driver read the BIOS region of the adapter
   memory and find the copyright string.  The problem was in the BIOS itself:
   it conflicted with IDE disks.  The solution was to unplug it and
   make the probe algorithm to work without it.
2) Proper timeout handling in numerous places where the driver
   polls waiting for some event.
3) Assembler flagments added in critical places, mostly for data transfer
   to of from the target.  It was possible to make it faster,
   but at the price of decreasing reliability.
4) Target-dependent delays when waiting for REQ deassert event.
   Some devices seem to be slower (CD-ROMS, some tape drives),
   and some seem to be too fast (disks).  The driver tests the REQ
   deassert timeout for each target and then uses it for polling.
5) Device flags added for SCSI parity control and sense request
   priority control.
6) Generic cleanup, after which the driver became much more readable
   (at least by me:).
7) Target data parity error logging is limited to avoid log file overflow.
8) Manual page added.

Submitted by:	serge
1994-12-31 05:31:48 +00:00

1468 lines
42 KiB
C

/*
* (Free/Net/386)BSD ST01/02, Future Domain TMC-885, TMC-950 SCSI driver for
* Julians SCSI-code
*
* Copyright 1994, Kent Palmkvist (kentp@isy.liu.se)
* Copyright 1994, Robert Knier (rknier@qgraph.com)
* Copyright 1992, 1994 Drew Eckhardt (drew@colorado.edu)
* Copyright 1994, Julian Elischer (julian@tfs.com)
* Copyright 1994, Serge Vakulenko (vak@cronyx.ru)
*
* Others that has contributed by example code is
* Glen Overby (overby@cray.com)
* Tatu Yllnen
* Brian E Litzinger
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE DEVELOPERS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* kentp 940307 alpha version based on newscsi-03 version of Julians SCSI-code
* kentp 940314 Added possibility to not use messages
* rknier 940331 Added fast transfer code
* rknier 940407 Added assembler coded data transfers
* vak 941226 New probe algorithm, based on expected behaviour
* instead of BIOS signatures analysis, better timeout handling,
* new asm fragments for data input/output, target-dependent
* delays, device flags, polling mode, generic cleanup
*
* $Id: seagate.c,v 1.3 1994/06/16 13:26:14 sean Exp $
*/
/*
* What should really be done:
*
* Restructure interrupt enable/disable code (runs too long with int disabled)
* Find bug? giving problem with tape status
* Add code to handle Future Domain 840, 841, 880 and 881
* add code to use tagged commands in SCSI2
* Add code to handle slow devices better (sleep if device not disconnecting)
* Fix unnecessary interrupts
*/
/* Note to users trying to share a disk between DOS and unix:
* The ST01/02 is a translating host-adapter. It is not giving DOS
* the same number of heads/tracks/sectors as specified by the disk.
* It is therefore important to look at what numbers DOS thinks the
* disk has. Use these to disklabel your disk in an appropriate manner
*
* About ST02+IDE coexistence: the original Seagate ST02
* BIOS cannot coexist with IDE or any other disk controller
* because it does not share BIOS disk drive numbers (80h, 81h)
* with others. New probing code allows using ST02 controller
* without BIOS: just unplug the ST02 BIOS chip from the board.
*
* Another problem is the floppy adapter on ST02 which could not be
* disabled by jumpers. I commonly use ST02 adapter as a cheap solution
* for atttaching the tape and CD-ROM drives, and an extra floppy controller
* is just a headache. I found a simple workaround: cutting off
* the AEN signal (A11 contact on ISA connector). AEN then goes high and
* disables the floppy adapter port address decoder.
*
* I also had a problem with ST02 conflicting with IDE during
* IDE data write phase. It seems than ST02 makes some noise
* on /IOW line. The /IOW line is used only for floppy controller
* part of ST02, and because I don't need it, I cut off the /IOW (contact B13)
* and it helped. (vak)
*
* Tested on the following hardware:
* Adapter: Seagate ST02
* Disk: HP D1686
* Streamers: Archive Viper 150, Wangtek 5525
* CD-ROMs: Toshiba XM-3401, NEC CDR-25
*
* Maximum data rate is about 270-280 kbytes/sec (on 386DX/40).
* (vak)
*/
#undef DEBUG
#include "sea.h"
#if NSEA > 0
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/devconf.h>
#include <i386/isa/isa_device.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#ifdef DEBUG
# define PRINT(s) printf s
#else
# define PRINT(s) /*void*/
#endif
#define SEA_SCB_MAX 8 /* allow maximally 8 scsi control blocks */
#define SCB_TABLE_SIZE 8 /* start with 8 scb entries in table */
#define BLOCK_SIZE 512 /* size of READ/WRITE areas on SCSI card */
#define SEA_SCSI_ADDR 7 /* address of the adapter on the SCSI bus */
/*
* Defice config flags
*/
#define FLAG_NOPARITY 0x01 /* disable SCSI bus parity check */
#define FLAG_SENSEFIRST 0x02 /* place REQUEST_SENSE ops ahead of queue */
/*
* Board CONTROL register
*/
#define CMD_RST 0x01 /* scsi reset */
#define CMD_SEL 0x02 /* scsi select */
#define CMD_BSY 0x04 /* scsi busy */
#define CMD_ATTN 0x08 /* scsi attention */
#define CMD_START_ARB 0x10 /* start arbitration bit */
#define CMD_EN_PARITY 0x20 /* enable scsi parity generation */
#define CMD_INTR 0x40 /* enable scsi interrupts */
#define CMD_DRVR_ENABLE 0x80 /* scsi enable */
/*
* Board STATUS register
*/
#define STAT_BSY 0x01 /* scsi busy */
#define STAT_MSG 0x02 /* scsi msg */
#define STAT_IO 0x04 /* scsi I/O */
#define STAT_CD 0x08 /* scsi C/D */
#define STAT_REQ 0x10 /* scsi req */
#define STAT_SEL 0x20 /* scsi select */
#define STAT_PARITY 0x40 /* parity error bit */
#define STAT_ARB_CMPL 0x80 /* arbitration complete bit */
#define STAT_BITS "\20\1bsy\2msg\3i/o\4c/d\5req\6sel\7parity\10arb"
/*
* SCSI bus requests
*/
#define REQ_MASK (STAT_MSG | STAT_CD | STAT_IO)
#define REQ_DATAOUT 0
#define REQ_DATAIN STAT_IO
#define REQ_CMDOUT STAT_CD
#define REQ_STATIN (STAT_CD | STAT_IO)
#define REQ_MSGOUT (STAT_MSG | STAT_CD)
#define REQ_MSGIN (STAT_MSG | STAT_CD | STAT_IO)
#define REQ_UNKNOWN 0xff
static char *sea_phase_name[] = {
"DATAOUT", "Phase1?", "Phase2?", "Phase3?",
"DATAIN", "Phase5?", "Phase6?", "Phase7?",
"CMDOUT", "Phase9?", "MSGOUT", "Phase11?",
"STATIN", "Phase13?", "MSGIN", "Phase15?",
};
/*
* SCSI message codes
*/
#define MSG_COMMAND_COMPLETE 0x00
#define MSG_SAVE_POINTERS 0x02
#define MSG_RESTORE_POINTERS 0x03
#define MSG_DISCONNECT 0x04
#define MSG_ABORT 0x06
#define MSG_MESSAGE_REJECT 0x07
#define MSG_NOP 0x08
#define MSG_BUS_DEV_RESET 0x0c
#define MSG_IDENTIFY(lun) (0xc0 | ((lun) & 0x7))
#define MSG_ISIDENT(m) ((m) & 0x80)
/*
* SCSI control block used to keep info about a scsi command
*/
struct sea_scb {
int flags; /* status of the instruction */
#define SCB_FREE 0
#define SCB_ACTIVE 1
#define SCB_ABORTED 2
#define SCB_TIMEOUT 4
#define SCB_ERROR 8
#define SCB_TIMECHK 16 /* We have set a timeout on this one */
struct sea_scb *next; /* in free list */
struct scsi_xfer *xfer; /* the scsi_xfer for this cmd */
u_char *data; /* position in data buffer so far */
int32 datalen; /* bytes remaining to transfer */;
};
typedef enum {
CTLR_NONE,
CTLR_SEAGATE,
CTLR_FUTURE_DOMAIN,
} ctlr_t;
char *sea_name[] = {
"Unknown",
"Seagate ST01/ST02",
"Future Domain TMC-885/TMC-950",
};
/*
* Flags for waiting for REQ deassert during some SCSI bus phases.
*/
struct sea_phase {
unsigned cmdout1 : 1; /* after CMDOUT[0] byte */
unsigned cmdout : 1; /* after CMDOUT[1..N] bytes */
unsigned msgout : 1; /* after MSGOUT byte */
unsigned statin : 1; /* after STATIN byte */
};
/*
* Data structure describing the target state.
*/
struct sea_target {
struct sea_data *adapter; /* pointer to the adapter structure */
volatile u_char busy; /* mask of busy luns at device target */
u_long perrcnt; /* counter of target parity errors */
struct sea_phase ndelay; /* "don't delay" flags */
struct sea_phase init; /* "initialized" flags */
};
/*
* Data structure describing current status of the scsi bus. One for each
* controller card.
*/
struct sea_data {
ctlr_t type; /* Seagate or Future Domain */
volatile u_char *addr; /* base address for card */
volatile u_char *CONTROL; /* address of control register */
volatile u_char *STATUS; /* address of status register */
volatile u_char *DATA; /* address of data register */
u_char scsi_addr; /* our scsi address, 0..7 */
u_char scsi_id; /* our scsi id mask */
u_char parity; /* parity flag: CMD_EN_PARITY or 0 */
u_char irq; /* IRQ number used or 0 if no IRQ */
unsigned sensefirst : 1; /* place REQUEST_SENSE ops ahead */
unsigned timeout_active : 1; /* sea_timeout active (requested) */
struct scsi_link sc_link; /* struct connecting different data */
struct sea_scb *connected; /* currently connected command */
struct sea_scb *issue_queue; /* waiting to be issued */
struct sea_scb *disconnected_queue; /* waiting to reconnect */
int numscb; /* number of scsi control blocks */
struct sea_scb scbs[SCB_TABLE_SIZE];
struct sea_scb *free_scb; /* free scb list */
struct sea_target target[8]; /* target state data */
} seadata[NSEA];
#define IS_BUSY(a,b) ((a)->target[(b)->xfer->sc_link->target].busy &\
(1 << (b)->xfer->sc_link->lun))
#define SET_BUSY(a,b) ((a)->target[(b)->xfer->sc_link->target].busy |=\
(1 << (b)->xfer->sc_link->lun))
#define CLEAR_BUSY(a,b) ((a)->target[(b)->xfer->sc_link->target].busy &=\
~(1 << (b)->xfer->sc_link->lun))
/*
* Wait for condition, given as an boolean expression.
* Print the message on timeout (approx 10 msec).
*/
#define WAITFOR(condition,message) {\
register long cnt = 100000; char *msg = message;\
while (cnt-- && ! (condition)) continue;\
if (cnt == -1 && msg)\
printf ("sea: timeout waiting for %s\n", msg); }
/*
* Seagate adapter does not support in hardware
* waiting for REQ deassert after transferring each data byte.
* We must do it in software.
* The problem is that some SCSI devices deassert REQ so fast that
* we can miss it. We the flag for each target sayind if we should (not)
* wait for REQ deassert. This flag is initialized when the first
* operation on the target is done.
* 1) Test if we don't need to wait for REQ deassert (`nodelay' flag).
* Initially the flag is off, i.e. wait. If the flag is set,
* go to the step 4.
* 2) Wait for REQ deassert (call sea_wait_for_req_deassert function).
* If REQ deassert got, go to the step 4. If REQ did not cleared
* during timeout period, go to the next step.
* 3) If `nodelay' flag did not initialized yet (`init' flag),
* then set `ndelay' flag.
* 4) Set `init' flag. Done.
*/
#define WAITREQ(t,op,cnt) {\
if (! t->ndelay.op &&\
! sea_wait_for_req_deassert (t->adapter, cnt, #op) &&\
! t->init.op)\
t->ndelay.op = 1;\
t->init.op = 1; }
int sea_probe (struct isa_device *dev);
int sea_detect (struct sea_data *sea, struct isa_device *dev);
int sea_attach (struct isa_device *dev);
int seaintr (int unit);
int32 sea_scsi_cmd (struct scsi_xfer *xs);
u_int32 sea_adapter_info (int unit);
void sea_timeout (void *scb);
void seaminphys (struct buf *bp);
void sea_done (int unit, struct sea_scb *scb);
struct sea_scb *sea_get_scb (int unit, int flags);
void sea_free_scb (int unit, struct sea_scb *scb, int flags);
static void sea_start (void);
static void sea_information_transfer (struct sea_data *sea);
int sea_poll (struct scsi_xfer *xs);
int sea_init (struct sea_data *sea, struct isa_device *dev);
int sea_send_scb (struct sea_data *sea, struct sea_scb *scb);
int sea_reselect (struct sea_data *sea);
int sea_select (struct sea_data *sea, struct sea_scb *scb);
int sea_abort (int unit, struct sea_scb *scb);
void sea_msg_output (struct sea_data *sea, u_char msg);
u_char sea_msg_input (struct sea_data *sea);
struct scsi_adapter sea_switch = {
sea_scsi_cmd, seaminphys, 0, 0,
sea_adapter_info, "sea", {0},
};
/* the below structure is so we have a default dev struct for our link struct */
struct scsi_device sea_dev = {
NULL, /* use default error handler */
NULL, /* have a queue, served by this */
NULL, /* have no async handler */
NULL, /* Use default 'done' routine */
"sea", 0, {0},
};
struct isa_driver seadriver = { sea_probe, sea_attach, "sea" };
/*
* Check if the device can be found at the port given and if so,
* detect the type of board. Set it up ready for further work.
* Takes the isa_dev structure from autoconf as an argument.
* Returns 1 if card recognized, 0 if errors.
*/
int sea_probe (struct isa_device *dev)
{
struct sea_data *sea = &seadata[dev->id_unit];
static const addrtab[] = {
0xc8000, 0xca000, 0xcc000, 0xce000, 0xdc000, 0xde000, 0,
};
int i;
dev->id_msize = 0x4000;
if (! dev->id_maddr)
for (i=0; addrtab[i]; ++i) {
dev->id_maddr = (u_char*) KERNBASE + addrtab[i];
if (sea_detect (sea, dev))
return (1);
}
else if (sea_detect (sea, dev))
return (1);
sea->type = CTLR_NONE;
return (0);
}
int sea_detect (struct sea_data *sea, struct isa_device *dev)
{
sea->addr = dev->id_maddr;
/* Try Seagate. */
sea->type = CTLR_SEAGATE;
sea->CONTROL = sea->addr + 0x1a00; /* ST01/ST02 register offsets */
sea->STATUS = sea->addr + 0x1a00;
sea->DATA = sea->addr + 0x1c00;
if (sea_init (sea, dev) == 0)
return (1);
/* Try Future Domain. */
sea->type = CTLR_FUTURE_DOMAIN;
sea->CONTROL = sea->addr + 0x1c00; /* TMC-885/TMC-950 reg. offsets */
sea->STATUS = sea->addr + 0x1c00;
sea->DATA = sea->addr + 0x1e00;
if (sea_init (sea, dev) == 0)
return (1);
return (0);
}
/*
* Probe the adapter, and if found,
* reset the board and the scsi bus.
*/
int sea_init (struct sea_data *sea, struct isa_device *dev)
{
volatile u_char *p;
u_char c;
int i;
/* Check that STATUS..STATUS+200h are equal. */
p = sea->STATUS;
c = *p;
if (c == 0xff)
return (2);
while (++p < sea->STATUS+0x200)
if (*p != c)
return (3);
/* Check that DATA..DATA+200h are equal. */
for (p=sea->DATA, c= *p++; p<sea->DATA+0x200; ++p)
if (*p != c)
return (4);
/* Check that addr..addr+1800h are not writable. */
for (p=sea->addr; p<sea->addr+0x1800; ++p) {
c = *p;
*p = ~c;
if (*p == ~c) {
*p = c;
return (5);
}
}
/* Check that addr+1800h..addr+1880h are writable. */
for (p=sea->addr+0x1800; p<sea->addr+0x1880; ++p) {
c = *p;
*p = 0x55;
if (*p != 0x55) {
*p = c;
return (6);
}
*p = 0xaa;
if (*p != 0xaa) {
*p = c;
return (7);
}
}
/* Parse device flags. */
sea->parity = (dev->id_flags & FLAG_NOPARITY) ? 0 : CMD_EN_PARITY;
/* Reset the scsi bus (I don't know if this is needed). */
*sea->CONTROL = CMD_RST | CMD_DRVR_ENABLE;
/* Hold reset for at least 25 microseconds. */
DELAY (25);
/* Check that status cleared. */
if (*sea->STATUS != 0) {
*sea->CONTROL = 0;
return (8);
}
/* Check that DATA register is writable. */
for (i=0; i<256; ++i) {
*sea->DATA = i;
if (*sea->DATA != i) {
*sea->CONTROL = 0;
return (9);
}
}
/* Enable the adapter. */
*sea->CONTROL = CMD_INTR | sea->parity;
/* Wait a Bus Clear Delay (800 ns + bus free delay 800 ns). */
DELAY (10);
/* Check that DATA register is NOT writable. */
c = *sea->DATA;
for (i=0; i<256; ++i) {
*sea->DATA = i;
if (*sea->DATA != c) {
*sea->CONTROL = 0;
return (10);
}
}
/* Init fields used by our routines */
sea->sensefirst = (dev->id_flags & FLAG_SENSEFIRST) ? 1 : 0;
sea->scsi_addr = SEA_SCSI_ADDR;
sea->scsi_id = 1 << sea->scsi_addr;
sea->irq = dev->id_irq ? ffs (dev->id_irq) - 1 : 0;
sea->connected = 0;
sea->issue_queue = 0;
sea->disconnected_queue = 0;
for (i=0; i<8; i++) {
sea->target[i].adapter = sea;
sea->target[i].busy = 0;
}
/* Link up the free list of scbs */
sea->numscb = SCB_TABLE_SIZE;
sea->free_scb = sea->scbs;
for (i=1; i<SCB_TABLE_SIZE; i++)
sea->scbs[i-1].next = sea->scbs + i;
sea->scbs[SCB_TABLE_SIZE-1].next = 0;
return (0);
}
static char sea_description [80];
static struct kern_devconf sea_kdc[NSEA] = {{
0, 0, 0, "sea", 0, { MDDT_ISA, 0, "bio" },
isa_generic_externalize, 0, 0, ISA_EXTERNALLEN, &kdc_isa0, 0,
DC_BUSY, sea_description,
}};
/*
* Attach all sub-devices we can find.
*/
int sea_attach (struct isa_device *dev)
{
int unit = dev->id_unit;
struct sea_data *sea = &seadata[unit];
sprintf (sea_description, "%s SCSI controller", sea_name[sea->type]);
printf ("\n");
printf ("sea%d: type %s%s%s\n", unit, sea_name[sea->type],
(dev->id_flags & FLAG_NOPARITY) ? ", no parity" : "",
(dev->id_flags & FLAG_SENSEFIRST) ? ", sense ahead" : "");
/* fill in the prototype scsi_link */
sea->sc_link.adapter_unit = unit;
sea->sc_link.adapter_targ = sea->scsi_addr;
sea->sc_link.adapter = &sea_switch;
sea->sc_link.device = &sea_dev;
/* ask the adapter what subunits are present */
scsi_attachdevs (&(sea->sc_link));
if (dev->id_unit)
sea_kdc[dev->id_unit] = sea_kdc[0];
sea_kdc[dev->id_unit].kdc_unit = dev->id_unit;
sea_kdc[dev->id_unit].kdc_isa = dev;
dev_attach (&sea_kdc[dev->id_unit]);
return (1);
}
/*
* Return some information to the caller about
* the adapter and its capabilities.
*/
u_int32 sea_adapter_info (int unit)
{
return (1);
}
void seaminphys (struct buf *bp)
{
}
/*
* Catch an interrupt from the adaptor.
*/
int seaintr (int unit)
{
struct sea_data *sea = &seadata[unit];
PRINT (("sea%d: interrupt status=%b\n", unit, *sea->STATUS, STAT_BITS));
while ((*sea->STATUS & (STAT_SEL | STAT_IO)) == (STAT_SEL | STAT_IO)) {
/* Reselect interrupt */
sea_reselect (sea);
sea_start ();
}
return (1);
}
/*
* Get a free scb. If there are none, see if we can allocate a new one. If so,
* put it in the hash table too, otherwise return an error or sleep.
*/
struct sea_scb *sea_get_scb (int unit, int flags)
{
struct sea_data *sea = &seadata[unit];
struct sea_scb *scbp;
int x = 0;
if (! (flags & SCSI_NOMASK))
x = splbio ();
/*
* If we can and have to, sleep waiting for one to come free
* but only if we can't allocate a new one.
*/
while (! (scbp = sea->free_scb))
if (sea->numscb < SEA_SCB_MAX) {
PRINT (("malloced new scb\n"));
scbp = (struct sea_scb*) malloc (sizeof (struct sea_scb),
M_TEMP, M_NOWAIT);
if (scbp) {
bzero (scbp, sizeof (struct sea_scb));
sea->numscb++;
scbp->flags = SCB_ACTIVE;
scbp->next = 0;
} else
printf ("sea%d: can't malloc scb\n",unit);
goto ret;
} else if (! (flags & SCSI_NOSLEEP))
tsleep ((caddr_t)&sea->free_scb, PRIBIO, "seascb", 0);
if (scbp) {
/* Get SCB from free list */
sea->free_scb = scbp->next;
scbp->next = 0;
scbp->flags = SCB_ACTIVE;
}
ret: if (! (flags & SCSI_NOMASK))
splx (x);
return (scbp);
}
void sea_free_scb (int unit, struct sea_scb *scb, int flags)
{
struct sea_data *sea = &seadata[unit];
int x = 0;
if (! (flags & SCSI_NOMASK))
x = splbio ();
scb->next = sea->free_scb;
sea->free_scb = scb;
scb->flags = SCB_FREE;
/*
* If there were none, wake anybody waiting for one to come free,
* starting with queued entries.
*/
if (! scb->next)
wakeup ((caddr_t) &sea->free_scb);
if (! (flags & SCSI_NOMASK))
splx (x);
}
/*
* Start a scsi operation given the command and the data address.
* Also needs the unit, target and lu. Get a free scb and set it up.
* Call send_scb. Either start timer or wait until done.
*/
int32 sea_scsi_cmd (struct scsi_xfer *xs)
{
int unit = xs->sc_link->adapter_unit, flags = xs->flags, x = 0;
struct sea_data *sea = &seadata[unit];
struct sea_scb *scb;
PRINT (("sea%d:%d:%d command 0x%x\n", unit, xs->sc_link->target,
xs->sc_link->lun, xs->cmd->opcode));
if (xs->bp)
flags |= SCSI_NOSLEEP;
if (flags & ITSDONE) {
printf ("sea%d: already done?", unit);
xs->flags &= ~ITSDONE;
}
if (! (flags & INUSE)) {
printf ("sea%d: not in use?", unit);
xs->flags |= INUSE;
}
scb = sea_get_scb (unit, flags);
if (! scb) {
xs->error = XS_DRIVER_STUFFUP;
return (TRY_AGAIN_LATER);
}
/* Put all the arguments for the xfer in the scb */
scb->xfer = xs;
scb->datalen = xs->datalen;
scb->data = xs->data;
if (flags & SCSI_RESET)
/* Try to send a reset command to the card. This is done
* by calling the Reset function. Should then return COMPLETE.
* Need to take care of the possible current connected command.
* Not implemented right now. */
printf ("sea%d: got a SCSI_RESET!\n", unit);
if (! (flags & SCSI_NOMASK))
x = splbio ();
/* Setup the scb to contain necessary values.
* The interesting values can be read from the xs that is saved.
* I therefore think that the structure can be kept very small.
* The driver doesn't use DMA so the scatter/gather is not needed? */
/* A check is done to see if the command contains
* a REQUEST_SENSE command, and if so the command is put first
* in the queue, otherwise the command is added to the end
* of the queue. ?? Not correct ?? */
if (! sea->issue_queue ||
(sea->sensefirst && xs->cmd->opcode == REQUEST_SENSE)) {
scb->next = sea->issue_queue;
sea->issue_queue = scb;
} else {
struct sea_scb *q;
for (q=sea->issue_queue; q->next; q=q->next)
continue;
q->next = scb;
scb->next = 0; /* placed at the end of the queue */
}
/* Try to send this command to the board. Because this board
* does not use any mailboxes, this routine simply adds the command
* to the queue held by the sea_data structure. */
sea_start ();
/* Usually return SUCCESSFULLY QUEUED. */
if (! (flags & SCSI_NOMASK)) {
splx (x);
if (xs->flags & ITSDONE)
/* Timeout timer not started, already finished.
* Tried to return COMPLETE but the machine hanged
* with this. */
return (SUCCESSFULLY_QUEUED);
timeout (sea_timeout, (caddr_t) scb, (xs->timeout * hz) / 1000);
scb->flags |= SCB_TIMECHK;
PRINT (("sea%d:%d:%d command queued\n", unit,
xs->sc_link->target, xs->sc_link->lun));
return (SUCCESSFULLY_QUEUED);
}
/* If we can't use interrupts, poll on completion. */
if (! sea_poll (xs)) {
/* We timed out, so call the timeout handler manually,
* accounting for the fact that the clock is not running yet
* by taking out the clock queue entry it makes. */
sea_timeout ((void*) scb);
/* Because we are polling, take out the timeout entry
* sea_timeout made. */
untimeout (sea_timeout, (void*) scb);
if (! sea_poll (xs))
/* We timed out again... This is bad. Notice that
* this time there is no clock queue entry to remove. */
sea_timeout ((void*) scb);
}
PRINT (("sea%d:%d:%d command %s\n", unit,
xs->sc_link->target, xs->sc_link->lun,
xs->error ? "failed" : "done"));
return (xs->error ? HAD_ERROR : COMPLETE);
}
/*
* Coroutine that runs as long as more work can be done.
* Both sea_scsi_cmd and sea_intr will try to start it in
* case it is not running.
* Always called with interrupts disabled.
*/
static void sea_start (void)
{
int unit, done;
again: done = 1;
for (unit=0; unit<NSEA && seadata[unit].type; ++unit) {
struct sea_data *sea = &seadata[unit];
if (! sea->connected) {
/* Search through the issue_queue for a command
* destined for a target that's not busy. */
struct sea_scb *q, *prev = 0;
for (q=sea->issue_queue; q; prev=q, q=q->next) {
if (IS_BUSY (sea, q))
continue;
/* First check that if any device has tried
* a reconnect while we have done other things
* with interrupts disabled. */
if ((*sea->STATUS & (STAT_SEL | STAT_IO)) ==
(STAT_SEL | STAT_IO)) {
sea_reselect (sea);
break;
}
/* When we find the command, remove it
* from the issue queue. */
if (prev)
prev->next = q->next;
else
sea->issue_queue = q->next;
q->next = 0;
/* Attempt to establish an I_T_L nexus here.
* On success, sea->connected is set.
* On failure, we must add the command back to
* the issue queue so we can keep trying. */
if (sea_select (sea, q))
break;
q->next = sea->issue_queue;
sea->issue_queue = q;
printf ("sea_start: select failed\n");
}
}
if (sea->connected) {
/* We are connected. Do the task. */
sea_information_transfer (sea);
done = 0;
}
}
if (! done)
goto again;
}
void sea_timeout (void *arg)
{
struct sea_scb *scb = (struct sea_scb*) arg;
int unit = scb->xfer->sc_link->adapter_unit;
int x = splbio ();
if (! (scb->xfer->flags & SCSI_NOMASK))
printf ("sea%d:%d:%d (%s%d) timed out\n", unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun,
scb->xfer->sc_link->device->name,
scb->xfer->sc_link->dev_unit);
/*
* If it has been through before, then a previous abort has failed,
* don't try abort again.
*/
if (! (scb->flags & SCB_ABORTED) /*&& sea_abort (unit, scb)*/) {
sea_abort (unit, scb);
/* 2 seconds for the abort */
timeout (sea_timeout, (caddr_t)scb, 2*hz);
scb->flags |= (SCB_ABORTED | SCB_TIMECHK);
} else {
/* abort timed out */
scb->flags |= SCB_ABORTED;
scb->xfer->retries = 0;
sea_done (unit, scb);
}
splx (x);
}
/*
* Establish I_T_L or I_T_L_Q nexus for new or existing command
* including ARBITRATION, SELECTION, and initial message out
* for IDENTIFY and queue messages.
* Return 0 if selection could not execute for some reason, 1 if selection
* succeded or failed because the target did not respond.
*/
int sea_select (struct sea_data *sea, struct sea_scb *scb)
{
PRINT (("sea%d:%d:%d select\n", sea->sc_link.adapter_unit,
scb->xfer->sc_link->target, scb->xfer->sc_link->lun));
*sea->CONTROL = sea->parity;
*sea->DATA = sea->scsi_id;
*sea->CONTROL = CMD_START_ARB | sea->parity;
/* Wait for arbitration to complete. */
WAITFOR (*sea->STATUS & STAT_ARB_CMPL, "arbitration");
if (! (*sea->STATUS & STAT_ARB_CMPL)) {
if (*sea->STATUS & STAT_SEL) {
printf ("sea: arbitration lost\n");
scb->flags |= SCB_ERROR;
} else {
printf ("sea: arbitration timeout\n");
scb->flags |= SCB_TIMEOUT;
}
*sea->CONTROL = CMD_INTR | sea->parity;
return (0);
}
DELAY (2);
*sea->DATA = (1 << scb->xfer->sc_link->target) | sea->scsi_id;
*sea->CONTROL = CMD_DRVR_ENABLE | CMD_SEL | CMD_ATTN | sea->parity;
DELAY (1);
/* Wait for a bsy from target.
* If the target is not present on the bus, we get
* the timeout. Don't PRINT any message -- it's not an error. */
WAITFOR (*sea->STATUS & STAT_BSY, 0);
if (! (*sea->STATUS & STAT_BSY)) {
/* The target does not respond. Not an error, though.
* Should return some error to the higher level driver? */
*sea->CONTROL = CMD_INTR | sea->parity;
scb->flags |= SCB_TIMEOUT;
return (1);
}
/* Try to make the target to take a message from us. */
*sea->CONTROL = CMD_DRVR_ENABLE | CMD_ATTN | sea->parity;
DELAY (1);
/* Should start a msg_out phase. */
WAITFOR (*sea->STATUS & STAT_REQ, 0);
if (! (*sea->STATUS & STAT_REQ)) {
/* This should not be taken as an error, but more like
* an unsupported feature!
* Should set a flag indicating that the target don't support
* messages, and continue without failure.
* (THIS IS NOT AN ERROR!)
*/
printf ("sea: target does not support messages, canceled\n");
scb->flags |= SCB_ERROR;
*sea->CONTROL = CMD_INTR | sea->parity;
return (0);
}
sea->connected = scb;
SET_BUSY (sea, scb);
*sea->CONTROL = CMD_DRVR_ENABLE | sea->parity;
/* Allow disconnects. */
sea_msg_output (sea, MSG_IDENTIFY (scb->xfer->sc_link->lun));
if (! (*sea->STATUS & STAT_BSY))
printf ("sea: target disconnected after successful arbitrate\n");
*sea->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | sea->parity;
return (1);
}
int sea_reselect (struct sea_data *sea)
{
struct sea_scb *q = 0, *prev = 0;
u_char msg, target_mask;
PRINT (("sea%d reselect: ", sea->sc_link.adapter_unit));
if (! (*sea->STATUS & STAT_SEL)) {
printf ("sea: wrong state 0x%x\n", *sea->STATUS);
return (0);
}
/* Wait for a device to win the reselection phase. */
/* Signals this by asserting the I/O signal. */
WAITFOR ((*sea->STATUS & (STAT_SEL | STAT_IO | STAT_BSY)) ==
(STAT_SEL | STAT_IO), "reselection phase");
/* The data bus contains original initiator id ORed with target id. */
/* See that we really are the initiator. */
target_mask = *sea->DATA;
if (! (target_mask & sea->scsi_id)) {
printf ("sea: polled reselection was not for me: %x\n",
target_mask);
return (0);
}
/* Find target who won. */
/* Host responds by asserting the BSY signal. */
/* Target should respond by deasserting the SEL signal. */
target_mask &= ~sea->scsi_id;
*sea->CONTROL = CMD_DRVR_ENABLE | CMD_BSY | sea->parity;
WAITFOR (! (*sea->STATUS & STAT_SEL), "reselection acknowledge");
/* Remove the busy status. */
*sea->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | sea->parity;
/* We are connected. Now we wait for the MSGIN condition. */
WAITFOR (*sea->STATUS & STAT_REQ, "identify message");
/* Hope we get an IDENTIFY message. */
msg = sea_msg_input (sea);
if (! MSG_ISIDENT (msg))
printf ("sea: expecting IDENTIFY message, got 0x%x\n", msg);
else {
/* Find the command corresponding to the I_T_L or I_T_L_Q
* nexus we just restablished, and remove it from
* the disconnected queue. */
unsigned char lun = (msg & 7);
for (q=sea->disconnected_queue; q; prev=q, q=q->next) {
if (target_mask != (1 << q->xfer->sc_link->target))
continue;
if (lun != q->xfer->sc_link->lun)
continue;
if (prev)
prev->next = q->next;
else
sea->disconnected_queue = q->next;
q->next = 0;
sea->connected = q;
PRINT (("lun %d done\n", lun));
return (1);
}
/* Since we have an established nexus that we can't
* do anything with, we must abort it. */
PRINT (("lun %d aborted\n", lun));
}
/* Abort the connection. */
*sea->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | CMD_ATTN | sea->parity;
sea_msg_output (sea, MSG_ABORT);
*sea->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | sea->parity;
return (0);
}
/*
* Send an abort to the target.
* Return 1 success, 0 on failure.
* Called on splbio level.
*/
int sea_abort (int unit, struct sea_scb *scb)
{
struct sea_data *sea = &seadata[unit];
struct sea_scb *q, **prev;
/* If the command hasn't been issued yet, we simply remove it
* from the issue queue. */
prev = &sea->issue_queue;
for (q=sea->issue_queue; q; q=q->next) {
if (scb == q) {
(*prev) = q->next;
q->next = 0;
return (1);
}
prev = &q->next;
}
/* If any commands are connected, we're going to fail the abort
* and let the high level SCSI driver retry at a later time
* or issue a reset. */
if (sea->connected)
return (0);
/* If the command is currently disconnected from the bus,
* and there are no connected commands, we reconnect
* the I_T_L or I_T_L_Q nexus associated with it,
* go into message out, and send an abort message. */
for (q=sea->disconnected_queue; q; q=q->next) {
if (scb != q)
continue;
if (! sea_select (sea, scb))
return (0);
*sea->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | CMD_ATTN | sea->parity;
sea_msg_output (sea, MSG_ABORT);
*sea->CONTROL = CMD_INTR | CMD_DRVR_ENABLE | sea->parity;
prev = &sea->disconnected_queue;
for (q=sea->disconnected_queue; q; q=q->next) {
if (scb == q) {
*prev = q->next;
q->next = 0;
/* Set some type of error result
* for the operation. */
return (1);
}
prev = &q->next;
}
}
/* Command not found in any queue, race condition in the code? */
return (1);
}
void sea_done (int unit, struct sea_scb *scb)
{
struct scsi_xfer *xs = scb->xfer;
if (scb->flags & SCB_TIMECHK)
untimeout (sea_timeout, (caddr_t) scb);
/* How much of the buffer was not touched. */
xs->resid = scb->datalen;
if (scb->flags != SCB_ACTIVE && ! (xs->flags & SCSI_ERR_OK))
if (scb->flags & (SCB_TIMEOUT | SCB_ABORTED))
xs->error = XS_TIMEOUT;
else if (scb->flags & SCB_ERROR)
xs->error = XS_DRIVER_STUFFUP;
xs->flags |= ITSDONE;
sea_free_scb (unit, scb, xs->flags);
scsi_done (xs);
}
/*
* Wait for completion of command in polled mode.
* Always called with interrupts masked out.
*/
int sea_poll (struct scsi_xfer *xs)
{
int count;
for (count=0; count<1000; ++count) {
if (xs->flags & ITSDONE)
return (1);
/* Try to do something. */
DELAY (30);
sea_start ();
}
return (0);
}
/*
* Wait until REQ goes down. This is needed for some devices (CDROMs)
* after every MSGOUT, MSGIN, CMDOUT, STATIN request.
* Return true if REQ deassert found.
*/
static inline int sea_wait_for_req_deassert (struct sea_data *sea,
int cnt, char *msg)
{
asm ("
1: testb $0x10, %2
jz 2f
loop 1b
2:"
: "=c" (cnt) /* output */
: "0" (cnt), "m" (*sea->STATUS)); /* input */
if (! cnt) {
PRINT (("sea%d:%d:%d (%s) timeout waiting for !REQ\n",
sea->sc_link.adapter_unit,
sea->connected->xfer->sc_link->target,
sea->connected->xfer->sc_link->lun, msg));
return (0);
}
/* PRINT (("sea_wait_for_req_deassert %s count=%d\n", msg, cnt)); */
return (1);
}
/*
* Send the command to the target.
*/
void sea_cmd_output (struct sea_data *sea, u_char *cmd, int cmdlen)
{
struct sea_target *t = &sea->target[sea->connected->xfer->sc_link->target];
if (! cmdlen || ! cmd) {
printf ("sea%d:%d:%d no command\n",
sea->sc_link.adapter_unit,
sea->connected->xfer->sc_link->target,
sea->connected->xfer->sc_link->lun);
*sea->DATA = 0;
sea_wait_for_req_deassert (sea, 1000, "ZCMDOUT");
return;
}
PRINT (("sea%d:%d:%d (CMDOUT) send %d bytes ",
sea->sc_link.adapter_unit,
sea->connected->xfer->sc_link->target,
sea->connected->xfer->sc_link->lun, cmdlen));
PRINT (("%x", *cmd));
*sea->DATA = *cmd++;
WAITREQ (t, cmdout1, 10000);
--cmdlen;
while (cmdlen) {
/* Check for target disconnect. */
u_char sts = *sea->STATUS;
if (! (sts & STAT_BSY))
break;
/* Check for phase mismatch. */
if ((sts & REQ_MASK) != REQ_CMDOUT) {
printf ("sea: sending command: invalid phase %s\n",
sea_phase_name[sts & REQ_MASK]);
return;
}
/* Wait for REQ. */
if (! (sts & STAT_REQ))
continue;
PRINT (("-%x", *cmd));
*sea->DATA = *cmd++;
WAITREQ (t, cmdout, 1000);
--cmdlen;
}
PRINT (("\n"));
}
/*
* Send the message to the target.
*/
void sea_msg_output (struct sea_data *sea, u_char msg)
{
struct sea_target *t = sea->connected ?
&sea->target[sea->connected->xfer->sc_link->target] : 0;
register u_long cnt = 0;
register u_char sts;
/* Wait for REQ, after which the phase bits will be valid. */
again: sts = *sea->STATUS;
if (! (sts & STAT_REQ)) {
if (++cnt > 1000000L) {
printf ("sea: sending message: no REQ\n");
return;
}
goto again;
}
/* Check for phase mismatch. */
if ((sts & REQ_MASK) != REQ_MSGOUT) {
printf ("sea: sending message: invalid phase %s\n",
sea_phase_name[sts & REQ_MASK]);
return;
}
*sea->DATA = msg;
if (! t)
sea_wait_for_req_deassert (sea, 1000, "MSG_OUTPUT");
else
WAITREQ (t, msgout, 1000);
PRINT (("sea%d:%d:%d (MSGOUT) send 0x%x\n",
sea->sc_link.adapter_unit,
sea->connected ? sea->connected->xfer->sc_link->target : 9,
sea->connected ? sea->connected->xfer->sc_link->lun : 9,
msg));
}
/*
* Get the message from the target.
* Return the length of the received message.
*/
u_char sea_msg_input (struct sea_data *sea)
{
register u_long cnt = 0;
register u_char sts, msg;
/* Wait for REQ, after which the phase bits will be valid. */
again: sts = *sea->STATUS;
if (! (sts & STAT_REQ)) {
if (++cnt > 1000000L) {
printf ("sea: receiving message: no REQ\n");
return (MSG_ABORT);
}
goto again;
}
/* Check for phase mismatch.
* Reached if the target decides that it has finished
* the transfer. */
if ((sts & REQ_MASK) != REQ_MSGIN) {
printf ("sea: sending message: invalid phase %s\n",
sea_phase_name[sts & REQ_MASK]);
return (MSG_ABORT);
}
/* Do actual transfer from SCSI bus to/from memory. */
msg = *sea->DATA;
sea_wait_for_req_deassert (sea, 1000, "MSG_INPUT");
PRINT (("sea%d:%d:%d (MSG_INPUT) got 0x%x\n",
sea->sc_link.adapter_unit,
sea->connected ? sea->connected->xfer->sc_link->target : 9,
sea->connected ? sea->connected->xfer->sc_link->lun : 9, msg));
return (msg);
}
/*
* This routine is used in the case when we have no IRQ line (sea->irq == 0).
* It is called every timer tick and polls for reconnect from target.
*/
void sea_tick (void *arg)
{
struct sea_data *sea = arg;
int x = splbio ();
sea->timeout_active = 0;
while ((*sea->STATUS & (STAT_SEL | STAT_IO)) == (STAT_SEL | STAT_IO)) {
/* Reselect interrupt */
sea_reselect (sea);
sea_start ();
}
if (sea->disconnected_queue && ! sea->timeout_active) {
timeout (sea_tick, sea, 1);
sea->timeout_active = 1;
}
splx (x);
}
/*
* Do the transfer. We know we are connected. Update the flags,
* call sea_done when task accomplished. Dialog controlled by the target.
* Always called with interrupts disabled.
*/
static void sea_information_transfer (register struct sea_data *sea)
{
struct sea_scb *scb = sea->connected; /* current control block */
u_char *data = scb->data; /* current data buffer */
u_long datalen = scb->datalen; /* current data transfer size */
struct sea_target *t = &sea->target[scb->xfer->sc_link->target];
register u_char sts;
u_char msg;
while ((sts = *sea->STATUS) & STAT_BSY) {
/* We only have a valid SCSI phase when REQ is asserted. */
if (! (sts & STAT_REQ))
continue;
if (sts & STAT_PARITY) {
int target = scb->xfer->sc_link->target;
if (++sea->target[target].perrcnt < 8)
printf ("sea%d:%d:%d parity error\n",
sea->sc_link.adapter_unit, target,
scb->xfer->sc_link->lun);
else if (sea->target[target].perrcnt == 8)
printf ("sea%d:%d:%d too many parity errors, not logging any more\n",
sea->sc_link.adapter_unit, target,
scb->xfer->sc_link->lun);
}
switch (sts & REQ_MASK) {
case REQ_DATAOUT:
if (datalen <= 0) {
printf ("sea%d:%d:%d data length underflow\n",
sea->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun);
*sea->DATA = 0;
break;
}
asm ("cld
1: movb (%%ebx), %%al
xorb $1, %%al
testb $0xf, %%al
jnz 2f
testb $0x10, %%al
jz 1b
lodsb
movb %%al, (%%edi)
loop 1b
2:"
: "=S" (data), "=c" (datalen) /* output */
: "D" (sea->DATA), "b" (sea->STATUS), /* input */
"0" (data), "1" (datalen)
: "eax", "ebx", "edi"); /* clobbered */
PRINT (("sea%d:%d:%d (DATAOUT) send %ld bytes\n",
sea->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun,
scb->datalen - datalen));
break;
case REQ_DATAIN:
if (datalen <= 0) {
PRINT (("@"));
sts = *sea->DATA;
break;
}
if (datalen >= 512) {
asm (" cld
1: movb (%%esi), %%al
xorb $5, %%al
testb $0xf, %%al
jnz 2f
testb $0x10, %%al
jz 1b
movb (%%ebx), %%al
stosb
loop 1b
2:"
: "=D" (data), "=c" (datalen) /* output */
: "b" (sea->DATA), "S" (sea->STATUS),
"0" (data), "1" (datalen) /* input */
: "eax", "ebx", "esi"); /* clobbered */
} else {
asm (" cld
1: movb (%%esi), %%al
xorb $5, %%al
testb $0xf, %%al
jnz 2f
testb $0x10, %%al
jz 1b
movb (%%ebx), %%al
stosb
movb $1000, %%al
3: testb $0x10, (%%esi)
jz 4f
dec %%al
jnz 3b
4: loop 1b
2:"
: "=D" (data), "=c" (datalen) /* output */
: "b" (sea->DATA), "S" (sea->STATUS),
"0" (data), "1" (datalen) /* input */
: "eax", "ebx", "esi"); /* clobbered */
}
PRINT (("sea%d:%d:%d (DATAIN) got %ld bytes\n",
sea->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun,
scb->datalen - datalen));
break;
case REQ_CMDOUT:
sea_cmd_output (sea, (u_char*) scb->xfer->cmd,
scb->xfer->cmdlen);
break;
case REQ_STATIN:
scb->xfer->status = *sea->DATA;
WAITREQ (t, statin, 2000);
PRINT (("sea%d:%d:%d (STATIN) got 0x%x\n",
sea->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun,
(u_char) scb->xfer->status));
break;
case REQ_MSGOUT:
*sea->DATA = MSG_NOP;
sea_wait_for_req_deassert (sea, 1000, "MSGOUT");
PRINT (("sea%d:%d:%d (MSGOUT) send NOP\n",
sea->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun));
break;
case REQ_MSGIN:
/* Don't handle multi-byte messages here, because they
* should not be present here. */
msg = *sea->DATA;
sea_wait_for_req_deassert (sea, 2000, "MSGIN");
PRINT (("sea%d:%d:%d (MSGIN) got 0x%x\n",
sea->sc_link.adapter_unit,
scb->xfer->sc_link->target,
scb->xfer->sc_link->lun, msg));
switch (msg) {
case MSG_COMMAND_COMPLETE:
scb->data = data;
scb->datalen = datalen;
goto done;
case MSG_ABORT:
printf ("sea: command aborted by target\n");
scb->flags = SCB_ABORTED;
goto done;
case MSG_DISCONNECT:
scb->next = sea->disconnected_queue;
sea->disconnected_queue = scb;
sea->connected = 0;
*sea->CONTROL = CMD_INTR | sea->parity;
if (! sea->irq && ! sea->timeout_active) {
timeout (sea_tick, sea, 1);
sea->timeout_active = 1;
}
return;
case MSG_SAVE_POINTERS:
scb->data = data;
scb->datalen = datalen;
break;
case MSG_RESTORE_POINTERS:
data = scb->data;
datalen = scb->datalen;
break;
case MSG_MESSAGE_REJECT:
PRINT (("sea: message_reject received\n"));
break;
default:
printf ("sea%d:%d:%d unknown message: 0x%x\n",
sea->sc_link.adapter_unit, scb->xfer->sc_link->target,
scb->xfer->sc_link->lun, msg);
break;
}
break;
default:
printf ("sea: unknown phase: %b\n",
sts & REQ_MASK, STAT_BITS);
}
}
printf ("sea%d:%d:%d unexpected target disconnect\n",
sea->sc_link.adapter_unit, scb->xfer->sc_link->target,
scb->xfer->sc_link->lun);
scb->flags = SCB_ERROR;
done: sea->connected = 0;
CLEAR_BUSY (sea, scb);
*sea->CONTROL = CMD_INTR | sea->parity;
sea_done (sea->sc_link.adapter_unit, scb);
}
#endif /* NSEA */