1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-27 08:00:11 +00:00
freebsd/sys/kern/vfs_subr.c
Jason A. Harmening 9530182e37 VFS: update VOP_FSYNC() debug check to reflect actual locking policy
Shared vs. exclusive locking is determined not by MNT_EXTENDED_SHARED
but by MNT_SHARED_WRITES (although there are several places that
ignore this and simply always use an exclusive lock).  Also add a
comment on the possible difference between VOP_GETWRITEMOUNT(vp)
and vp->v_mount on this path.

Found by local testing of unionfs atop ZFS with DEBUG_VFS_LOCKS.

MFC after:	2 weeks
Reviewed by:	kib, olce
Differential Revision: https://reviews.freebsd.org/D43816
2024-02-18 09:16:16 -06:00

7317 lines
177 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* External virtual filesystem routines
*/
#include <sys/cdefs.h>
#include "opt_ddb.h"
#include "opt_watchdog.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/asan.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/capsicum.h>
#include <sys/condvar.h>
#include <sys/conf.h>
#include <sys/counter.h>
#include <sys/dirent.h>
#include <sys/event.h>
#include <sys/eventhandler.h>
#include <sys/extattr.h>
#include <sys/file.h>
#include <sys/fcntl.h>
#include <sys/jail.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lockf.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/pctrie.h>
#include <sys/priv.h>
#include <sys/reboot.h>
#include <sys/refcount.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sleepqueue.h>
#include <sys/smr.h>
#include <sys/smp.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <sys/watchdog.h>
#include <machine/stdarg.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#include <vm/vnode_pager.h>
#include <vm/uma.h>
#if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
#error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
#endif
#ifdef DDB
#include <ddb/ddb.h>
#endif
static void delmntque(struct vnode *vp);
static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
int slpflag, int slptimeo);
static void syncer_shutdown(void *arg, int howto);
static int vtryrecycle(struct vnode *vp, bool isvnlru);
static void v_init_counters(struct vnode *);
static void vn_seqc_init(struct vnode *);
static void vn_seqc_write_end_free(struct vnode *vp);
static void vgonel(struct vnode *);
static bool vhold_recycle_free(struct vnode *);
static void vdropl_recycle(struct vnode *vp);
static void vdrop_recycle(struct vnode *vp);
static void vfs_knllock(void *arg);
static void vfs_knlunlock(void *arg);
static void vfs_knl_assert_lock(void *arg, int what);
static void destroy_vpollinfo(struct vpollinfo *vi);
static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
daddr_t startlbn, daddr_t endlbn);
static void vnlru_recalc(void);
static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"vnode configuration and statistics");
static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"vnode configuration");
static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"vnode statistics");
static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"vnode recycling");
/*
* Number of vnodes in existence. Increased whenever getnewvnode()
* allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
*/
static u_long __exclusive_cache_line numvnodes;
SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
"Number of vnodes in existence (legacy)");
SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
"Number of vnodes in existence");
static counter_u64_t vnodes_created;
SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
"Number of vnodes created by getnewvnode (legacy)");
SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
"Number of vnodes created by getnewvnode");
/*
* Conversion tables for conversion from vnode types to inode formats
* and back.
*/
__enum_uint8(vtype) iftovt_tab[16] = {
VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
};
int vttoif_tab[10] = {
0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
};
/*
* List of allocates vnodes in the system.
*/
static TAILQ_HEAD(freelst, vnode) vnode_list;
static struct vnode *vnode_list_free_marker;
static struct vnode *vnode_list_reclaim_marker;
/*
* "Free" vnode target. Free vnodes are rarely completely free, but are
* just ones that are cheap to recycle. Usually they are for files which
* have been stat'd but not read; these usually have inode and namecache
* data attached to them. This target is the preferred minimum size of a
* sub-cache consisting mostly of such files. The system balances the size
* of this sub-cache with its complement to try to prevent either from
* thrashing while the other is relatively inactive. The targets express
* a preference for the best balance.
*
* "Above" this target there are 2 further targets (watermarks) related
* to recyling of free vnodes. In the best-operating case, the cache is
* exactly full, the free list has size between vlowat and vhiwat above the
* free target, and recycling from it and normal use maintains this state.
* Sometimes the free list is below vlowat or even empty, but this state
* is even better for immediate use provided the cache is not full.
* Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
* ones) to reach one of these states. The watermarks are currently hard-
* coded as 4% and 9% of the available space higher. These and the default
* of 25% for wantfreevnodes are too large if the memory size is large.
* E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
* whenever vnlru_proc() becomes active.
*/
static long wantfreevnodes;
static long __exclusive_cache_line freevnodes;
static long freevnodes_old;
static u_long recycles_count;
SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
"Number of vnodes recycled to meet vnode cache targets (legacy)");
SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
&recycles_count, 0,
"Number of vnodes recycled to meet vnode cache targets");
static u_long recycles_free_count;
SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
&recycles_free_count, 0,
"Number of free vnodes recycled to meet vnode cache targets (legacy)");
SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
&recycles_free_count, 0,
"Number of free vnodes recycled to meet vnode cache targets");
static counter_u64_t direct_recycles_free_count;
SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
&direct_recycles_free_count,
"Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
static counter_u64_t vnode_skipped_requeues;
SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
"Number of times LRU requeue was skipped due to lock contention");
static u_long deferred_inact;
SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
&deferred_inact, 0, "Number of times inactive processing was deferred");
/* To keep more than one thread at a time from running vfs_getnewfsid */
static struct mtx mntid_mtx;
/*
* Lock for any access to the following:
* vnode_list
* numvnodes
* freevnodes
*/
static struct mtx __exclusive_cache_line vnode_list_mtx;
/* Publicly exported FS */
struct nfs_public nfs_pub;
static uma_zone_t buf_trie_zone;
static smr_t buf_trie_smr;
/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
static uma_zone_t vnode_zone;
MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
__read_frequently smr_t vfs_smr;
/*
* The workitem queue.
*
* It is useful to delay writes of file data and filesystem metadata
* for tens of seconds so that quickly created and deleted files need
* not waste disk bandwidth being created and removed. To realize this,
* we append vnodes to a "workitem" queue. When running with a soft
* updates implementation, most pending metadata dependencies should
* not wait for more than a few seconds. Thus, mounted on block devices
* are delayed only about a half the time that file data is delayed.
* Similarly, directory updates are more critical, so are only delayed
* about a third the time that file data is delayed. Thus, there are
* SYNCER_MAXDELAY queues that are processed round-robin at a rate of
* one each second (driven off the filesystem syncer process). The
* syncer_delayno variable indicates the next queue that is to be processed.
* Items that need to be processed soon are placed in this queue:
*
* syncer_workitem_pending[syncer_delayno]
*
* A delay of fifteen seconds is done by placing the request fifteen
* entries later in the queue:
*
* syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
*
*/
static int syncer_delayno;
static long syncer_mask;
LIST_HEAD(synclist, bufobj);
static struct synclist *syncer_workitem_pending;
/*
* The sync_mtx protects:
* bo->bo_synclist
* sync_vnode_count
* syncer_delayno
* syncer_state
* syncer_workitem_pending
* syncer_worklist_len
* rushjob
*/
static struct mtx sync_mtx;
static struct cv sync_wakeup;
#define SYNCER_MAXDELAY 32
static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
static int syncdelay = 30; /* max time to delay syncing data */
static int filedelay = 30; /* time to delay syncing files */
SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
"Time to delay syncing files (in seconds)");
static int dirdelay = 29; /* time to delay syncing directories */
SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
"Time to delay syncing directories (in seconds)");
static int metadelay = 28; /* time to delay syncing metadata */
SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
"Time to delay syncing metadata (in seconds)");
static int rushjob; /* number of slots to run ASAP */
static int stat_rush_requests; /* number of times I/O speeded up */
SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
"Number of times I/O speeded up (rush requests)");
#define VDBATCH_SIZE 8
struct vdbatch {
u_int index;
struct mtx lock;
struct vnode *tab[VDBATCH_SIZE];
};
DPCPU_DEFINE_STATIC(struct vdbatch, vd);
static void vdbatch_dequeue(struct vnode *vp);
/*
* When shutting down the syncer, run it at four times normal speed.
*/
#define SYNCER_SHUTDOWN_SPEEDUP 4
static int sync_vnode_count;
static int syncer_worklist_len;
static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
syncer_state;
/* Target for maximum number of vnodes. */
u_long desiredvnodes;
static u_long gapvnodes; /* gap between wanted and desired */
static u_long vhiwat; /* enough extras after expansion */
static u_long vlowat; /* minimal extras before expansion */
static bool vstir; /* nonzero to stir non-free vnodes */
static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
static u_long vnlru_read_freevnodes(void);
/*
* Note that no attempt is made to sanitize these parameters.
*/
static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
{
u_long val;
int error;
val = desiredvnodes;
error = sysctl_handle_long(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (val == desiredvnodes)
return (0);
mtx_lock(&vnode_list_mtx);
desiredvnodes = val;
wantfreevnodes = desiredvnodes / 4;
vnlru_recalc();
mtx_unlock(&vnode_list_mtx);
/*
* XXX There is no protection against multiple threads changing
* desiredvnodes at the same time. Locking above only helps vnlru and
* getnewvnode.
*/
vfs_hash_changesize(desiredvnodes);
cache_changesize(desiredvnodes);
return (0);
}
SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
"LU", "Target for maximum number of vnodes (legacy)");
SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
"LU", "Target for maximum number of vnodes");
static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
{
u_long rfreevnodes;
rfreevnodes = vnlru_read_freevnodes();
return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
}
SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
"LU", "Number of \"free\" vnodes (legacy)");
SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
"LU", "Number of \"free\" vnodes");
static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
{
u_long val;
int error;
val = wantfreevnodes;
error = sysctl_handle_long(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (val == wantfreevnodes)
return (0);
mtx_lock(&vnode_list_mtx);
wantfreevnodes = val;
vnlru_recalc();
mtx_unlock(&vnode_list_mtx);
return (0);
}
SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
"LU", "Target for minimum number of \"free\" vnodes (legacy)");
SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
"LU", "Target for minimum number of \"free\" vnodes");
static int vnlru_nowhere;
SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
&vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
{
struct vnode *vp;
struct nameidata nd;
char *buf;
unsigned long ndflags;
int error;
if (req->newptr == NULL)
return (EINVAL);
if (req->newlen >= PATH_MAX)
return (E2BIG);
buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
error = SYSCTL_IN(req, buf, req->newlen);
if (error != 0)
goto out;
buf[req->newlen] = '\0';
ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
if ((error = namei(&nd)) != 0)
goto out;
vp = nd.ni_vp;
if (VN_IS_DOOMED(vp)) {
/*
* This vnode is being recycled. Return != 0 to let the caller
* know that the sysctl had no effect. Return EAGAIN because a
* subsequent call will likely succeed (since namei will create
* a new vnode if necessary)
*/
error = EAGAIN;
goto putvnode;
}
vgone(vp);
putvnode:
vput(vp);
NDFREE_PNBUF(&nd);
out:
free(buf, M_TEMP);
return (error);
}
static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
{
struct thread *td = curthread;
struct vnode *vp;
struct file *fp;
int error;
int fd;
if (req->newptr == NULL)
return (EBADF);
error = sysctl_handle_int(oidp, &fd, 0, req);
if (error != 0)
return (error);
error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
if (error != 0)
return (error);
vp = fp->f_vnode;
error = vn_lock(vp, LK_EXCLUSIVE);
if (error != 0)
goto drop;
vgone(vp);
VOP_UNLOCK(vp);
drop:
fdrop(fp, td);
return (error);
}
SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
sysctl_ftry_reclaim_vnode, "I",
"Try to reclaim a vnode by its file descriptor");
/* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
#define vnsz2log 8
#ifndef DEBUG_LOCKS
_Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
sizeof(struct vnode) < 1UL << (vnsz2log + 1),
"vnsz2log needs to be updated");
#endif
/*
* Support for the bufobj clean & dirty pctrie.
*/
static void *
buf_trie_alloc(struct pctrie *ptree)
{
return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
}
static void
buf_trie_free(struct pctrie *ptree, void *node)
{
uma_zfree_smr(buf_trie_zone, node);
}
PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
buf_trie_smr);
/*
* Initialize the vnode management data structures.
*
* Reevaluate the following cap on the number of vnodes after the physical
* memory size exceeds 512GB. In the limit, as the physical memory size
* grows, the ratio of the memory size in KB to vnodes approaches 64:1.
*/
#ifndef MAXVNODES_MAX
#define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
#endif
static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
static struct vnode *
vn_alloc_marker(struct mount *mp)
{
struct vnode *vp;
vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
vp->v_type = VMARKER;
vp->v_mount = mp;
return (vp);
}
static void
vn_free_marker(struct vnode *vp)
{
MPASS(vp->v_type == VMARKER);
free(vp, M_VNODE_MARKER);
}
#ifdef KASAN
static int
vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
{
kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
return (0);
}
static void
vnode_dtor(void *mem, int size, void *arg __unused)
{
size_t end1, end2, off1, off2;
_Static_assert(offsetof(struct vnode, v_vnodelist) <
offsetof(struct vnode, v_dbatchcpu),
"KASAN marks require updating");
off1 = offsetof(struct vnode, v_vnodelist);
off2 = offsetof(struct vnode, v_dbatchcpu);
end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
/*
* Access to the v_vnodelist and v_dbatchcpu fields are permitted even
* after the vnode has been freed. Try to get some KASAN coverage by
* marking everything except those two fields as invalid. Because
* KASAN's tracking is not byte-granular, any preceding fields sharing
* the same 8-byte aligned word must also be marked valid.
*/
/* Handle the area from the start until v_vnodelist... */
off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
/* ... then the area between v_vnodelist and v_dbatchcpu ... */
off1 = roundup2(end1, KASAN_SHADOW_SCALE);
off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
if (off2 > off1)
kasan_mark((void *)((char *)mem + off1), off2 - off1,
off2 - off1, KASAN_UMA_FREED);
/* ... and finally the area from v_dbatchcpu to the end. */
off2 = roundup2(end2, KASAN_SHADOW_SCALE);
kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
KASAN_UMA_FREED);
}
#endif /* KASAN */
/*
* Initialize a vnode as it first enters the zone.
*/
static int
vnode_init(void *mem, int size, int flags)
{
struct vnode *vp;
vp = mem;
bzero(vp, size);
/*
* Setup locks.
*/
vp->v_vnlock = &vp->v_lock;
mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
/*
* By default, don't allow shared locks unless filesystems opt-in.
*/
lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
LK_NOSHARE | LK_IS_VNODE);
/*
* Initialize bufobj.
*/
bufobj_init(&vp->v_bufobj, vp);
/*
* Initialize namecache.
*/
cache_vnode_init(vp);
/*
* Initialize rangelocks.
*/
rangelock_init(&vp->v_rl);
vp->v_dbatchcpu = NOCPU;
vp->v_state = VSTATE_DEAD;
/*
* Check vhold_recycle_free for an explanation.
*/
vp->v_holdcnt = VHOLD_NO_SMR;
vp->v_type = VNON;
mtx_lock(&vnode_list_mtx);
TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
mtx_unlock(&vnode_list_mtx);
return (0);
}
/*
* Free a vnode when it is cleared from the zone.
*/
static void
vnode_fini(void *mem, int size)
{
struct vnode *vp;
struct bufobj *bo;
vp = mem;
vdbatch_dequeue(vp);
mtx_lock(&vnode_list_mtx);
TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
mtx_unlock(&vnode_list_mtx);
rangelock_destroy(&vp->v_rl);
lockdestroy(vp->v_vnlock);
mtx_destroy(&vp->v_interlock);
bo = &vp->v_bufobj;
rw_destroy(BO_LOCKPTR(bo));
kasan_mark(mem, size, size, 0);
}
/*
* Provide the size of NFS nclnode and NFS fh for calculation of the
* vnode memory consumption. The size is specified directly to
* eliminate dependency on NFS-private header.
*
* Other filesystems may use bigger or smaller (like UFS and ZFS)
* private inode data, but the NFS-based estimation is ample enough.
* Still, we care about differences in the size between 64- and 32-bit
* platforms.
*
* Namecache structure size is heuristically
* sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
*/
#ifdef _LP64
#define NFS_NCLNODE_SZ (528 + 64)
#define NC_SZ 148
#else
#define NFS_NCLNODE_SZ (360 + 32)
#define NC_SZ 92
#endif
static void
vntblinit(void *dummy __unused)
{
struct vdbatch *vd;
uma_ctor ctor;
uma_dtor dtor;
int cpu, physvnodes, virtvnodes;
/*
* Desiredvnodes is a function of the physical memory size and the
* kernel's heap size. Generally speaking, it scales with the
* physical memory size. The ratio of desiredvnodes to the physical
* memory size is 1:16 until desiredvnodes exceeds 98,304.
* Thereafter, the
* marginal ratio of desiredvnodes to the physical memory size is
* 1:64. However, desiredvnodes is limited by the kernel's heap
* size. The memory required by desiredvnodes vnodes and vm objects
* must not exceed 1/10th of the kernel's heap size.
*/
physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
desiredvnodes = min(physvnodes, virtvnodes);
if (desiredvnodes > MAXVNODES_MAX) {
if (bootverbose)
printf("Reducing kern.maxvnodes %lu -> %lu\n",
desiredvnodes, MAXVNODES_MAX);
desiredvnodes = MAXVNODES_MAX;
}
wantfreevnodes = desiredvnodes / 4;
mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
TAILQ_INIT(&vnode_list);
mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
/*
* The lock is taken to appease WITNESS.
*/
mtx_lock(&vnode_list_mtx);
vnlru_recalc();
mtx_unlock(&vnode_list_mtx);
vnode_list_free_marker = vn_alloc_marker(NULL);
TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
vnode_list_reclaim_marker = vn_alloc_marker(NULL);
TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
#ifdef KASAN
ctor = vnode_ctor;
dtor = vnode_dtor;
#else
ctor = NULL;
dtor = NULL;
#endif
vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
uma_zone_set_smr(vnode_zone, vfs_smr);
/*
* Preallocate enough nodes to support one-per buf so that
* we can not fail an insert. reassignbuf() callers can not
* tolerate the insertion failure.
*/
buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
UMA_ZONE_NOFREE | UMA_ZONE_SMR);
buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
uma_prealloc(buf_trie_zone, nbuf);
vnodes_created = counter_u64_alloc(M_WAITOK);
direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
/*
* Initialize the filesystem syncer.
*/
syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
&syncer_mask);
syncer_maxdelay = syncer_mask + 1;
mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
cv_init(&sync_wakeup, "syncer");
CPU_FOREACH(cpu) {
vd = DPCPU_ID_PTR((cpu), vd);
bzero(vd, sizeof(*vd));
mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
}
}
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
/*
* Mark a mount point as busy. Used to synchronize access and to delay
* unmounting. Eventually, mountlist_mtx is not released on failure.
*
* vfs_busy() is a custom lock, it can block the caller.
* vfs_busy() only sleeps if the unmount is active on the mount point.
* For a mountpoint mp, vfs_busy-enforced lock is before lock of any
* vnode belonging to mp.
*
* Lookup uses vfs_busy() to traverse mount points.
* root fs var fs
* / vnode lock A / vnode lock (/var) D
* /var vnode lock B /log vnode lock(/var/log) E
* vfs_busy lock C vfs_busy lock F
*
* Within each file system, the lock order is C->A->B and F->D->E.
*
* When traversing across mounts, the system follows that lock order:
*
* C->A->B
* |
* +->F->D->E
*
* The lookup() process for namei("/var") illustrates the process:
* 1. VOP_LOOKUP() obtains B while A is held
* 2. vfs_busy() obtains a shared lock on F while A and B are held
* 3. vput() releases lock on B
* 4. vput() releases lock on A
* 5. VFS_ROOT() obtains lock on D while shared lock on F is held
* 6. vfs_unbusy() releases shared lock on F
* 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
* Attempt to lock A (instead of vp_crossmp) while D is held would
* violate the global order, causing deadlocks.
*
* dounmount() locks B while F is drained. Note that for stacked
* filesystems, D and B in the example above may be the same lock,
* which introdues potential lock order reversal deadlock between
* dounmount() and step 5 above. These filesystems may avoid the LOR
* by setting VV_CROSSLOCK on the covered vnode so that lock B will
* remain held until after step 5.
*/
int
vfs_busy(struct mount *mp, int flags)
{
struct mount_pcpu *mpcpu;
MPASS((flags & ~MBF_MASK) == 0);
CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
if (vfs_op_thread_enter(mp, mpcpu)) {
MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
vfs_mp_count_add_pcpu(mpcpu, ref, 1);
vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
vfs_op_thread_exit(mp, mpcpu);
if (flags & MBF_MNTLSTLOCK)
mtx_unlock(&mountlist_mtx);
return (0);
}
MNT_ILOCK(mp);
vfs_assert_mount_counters(mp);
MNT_REF(mp);
/*
* If mount point is currently being unmounted, sleep until the
* mount point fate is decided. If thread doing the unmounting fails,
* it will clear MNTK_UNMOUNT flag before waking us up, indicating
* that this mount point has survived the unmount attempt and vfs_busy
* should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
* flag in addition to MNTK_UNMOUNT, indicating that mount point is
* about to be really destroyed. vfs_busy needs to release its
* reference on the mount point in this case and return with ENOENT,
* telling the caller the mount it tried to busy is no longer valid.
*/
while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
("%s: non-empty upper mount list with pending unmount",
__func__));
if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
MNT_REL(mp);
MNT_IUNLOCK(mp);
CTR1(KTR_VFS, "%s: failed busying before sleeping",
__func__);
return (ENOENT);
}
if (flags & MBF_MNTLSTLOCK)
mtx_unlock(&mountlist_mtx);
mp->mnt_kern_flag |= MNTK_MWAIT;
msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
if (flags & MBF_MNTLSTLOCK)
mtx_lock(&mountlist_mtx);
MNT_ILOCK(mp);
}
if (flags & MBF_MNTLSTLOCK)
mtx_unlock(&mountlist_mtx);
mp->mnt_lockref++;
MNT_IUNLOCK(mp);
return (0);
}
/*
* Free a busy filesystem.
*/
void
vfs_unbusy(struct mount *mp)
{
struct mount_pcpu *mpcpu;
int c;
CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
if (vfs_op_thread_enter(mp, mpcpu)) {
MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
vfs_op_thread_exit(mp, mpcpu);
return;
}
MNT_ILOCK(mp);
vfs_assert_mount_counters(mp);
MNT_REL(mp);
c = --mp->mnt_lockref;
if (mp->mnt_vfs_ops == 0) {
MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
MNT_IUNLOCK(mp);
return;
}
if (c < 0)
vfs_dump_mount_counters(mp);
if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
CTR1(KTR_VFS, "%s: waking up waiters", __func__);
mp->mnt_kern_flag &= ~MNTK_DRAINING;
wakeup(&mp->mnt_lockref);
}
MNT_IUNLOCK(mp);
}
/*
* Lookup a mount point by filesystem identifier.
*/
struct mount *
vfs_getvfs(fsid_t *fsid)
{
struct mount *mp;
CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
mtx_lock(&mountlist_mtx);
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
vfs_ref(mp);
mtx_unlock(&mountlist_mtx);
return (mp);
}
}
mtx_unlock(&mountlist_mtx);
CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
return ((struct mount *) 0);
}
/*
* Lookup a mount point by filesystem identifier, busying it before
* returning.
*
* To avoid congestion on mountlist_mtx, implement simple direct-mapped
* cache for popular filesystem identifiers. The cache is lockess, using
* the fact that struct mount's are never freed. In worst case we may
* get pointer to unmounted or even different filesystem, so we have to
* check what we got, and go slow way if so.
*/
struct mount *
vfs_busyfs(fsid_t *fsid)
{
#define FSID_CACHE_SIZE 256
typedef struct mount * volatile vmp_t;
static vmp_t cache[FSID_CACHE_SIZE];
struct mount *mp;
int error;
uint32_t hash;
CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
hash = fsid->val[0] ^ fsid->val[1];
hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
mp = cache[hash];
if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
goto slow;
if (vfs_busy(mp, 0) != 0) {
cache[hash] = NULL;
goto slow;
}
if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
return (mp);
else
vfs_unbusy(mp);
slow:
mtx_lock(&mountlist_mtx);
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
error = vfs_busy(mp, MBF_MNTLSTLOCK);
if (error) {
cache[hash] = NULL;
mtx_unlock(&mountlist_mtx);
return (NULL);
}
cache[hash] = mp;
return (mp);
}
}
CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
mtx_unlock(&mountlist_mtx);
return ((struct mount *) 0);
}
/*
* Check if a user can access privileged mount options.
*/
int
vfs_suser(struct mount *mp, struct thread *td)
{
int error;
if (jailed(td->td_ucred)) {
/*
* If the jail of the calling thread lacks permission for
* this type of file system, deny immediately.
*/
if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
return (EPERM);
/*
* If the file system was mounted outside the jail of the
* calling thread, deny immediately.
*/
if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
return (EPERM);
}
/*
* If file system supports delegated administration, we don't check
* for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
* by the file system itself.
* If this is not the user that did original mount, we check for
* the PRIV_VFS_MOUNT_OWNER privilege.
*/
if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
return (error);
}
return (0);
}
/*
* Get a new unique fsid. Try to make its val[0] unique, since this value
* will be used to create fake device numbers for stat(). Also try (but
* not so hard) make its val[0] unique mod 2^16, since some emulators only
* support 16-bit device numbers. We end up with unique val[0]'s for the
* first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
*
* Keep in mind that several mounts may be running in parallel. Starting
* the search one past where the previous search terminated is both a
* micro-optimization and a defense against returning the same fsid to
* different mounts.
*/
void
vfs_getnewfsid(struct mount *mp)
{
static uint16_t mntid_base;
struct mount *nmp;
fsid_t tfsid;
int mtype;
CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
mtx_lock(&mntid_mtx);
mtype = mp->mnt_vfc->vfc_typenum;
tfsid.val[1] = mtype;
mtype = (mtype & 0xFF) << 24;
for (;;) {
tfsid.val[0] = makedev(255,
mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
mntid_base++;
if ((nmp = vfs_getvfs(&tfsid)) == NULL)
break;
vfs_rel(nmp);
}
mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
mtx_unlock(&mntid_mtx);
}
/*
* Knob to control the precision of file timestamps:
*
* 0 = seconds only; nanoseconds zeroed.
* 1 = seconds and nanoseconds, accurate within 1/HZ.
* 2 = seconds and nanoseconds, truncated to microseconds.
* >=3 = seconds and nanoseconds, maximum precision.
*/
enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
static int timestamp_precision = TSP_USEC;
SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
&timestamp_precision, 0, "File timestamp precision (0: seconds, "
"1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
"3+: sec + ns (max. precision))");
/*
* Get a current timestamp.
*/
void
vfs_timestamp(struct timespec *tsp)
{
struct timeval tv;
switch (timestamp_precision) {
case TSP_SEC:
tsp->tv_sec = time_second;
tsp->tv_nsec = 0;
break;
case TSP_HZ:
getnanotime(tsp);
break;
case TSP_USEC:
microtime(&tv);
TIMEVAL_TO_TIMESPEC(&tv, tsp);
break;
case TSP_NSEC:
default:
nanotime(tsp);
break;
}
}
/*
* Set vnode attributes to VNOVAL
*/
void
vattr_null(struct vattr *vap)
{
vap->va_type = VNON;
vap->va_size = VNOVAL;
vap->va_bytes = VNOVAL;
vap->va_mode = VNOVAL;
vap->va_nlink = VNOVAL;
vap->va_uid = VNOVAL;
vap->va_gid = VNOVAL;
vap->va_fsid = VNOVAL;
vap->va_fileid = VNOVAL;
vap->va_blocksize = VNOVAL;
vap->va_rdev = VNOVAL;
vap->va_atime.tv_sec = VNOVAL;
vap->va_atime.tv_nsec = VNOVAL;
vap->va_mtime.tv_sec = VNOVAL;
vap->va_mtime.tv_nsec = VNOVAL;
vap->va_ctime.tv_sec = VNOVAL;
vap->va_ctime.tv_nsec = VNOVAL;
vap->va_birthtime.tv_sec = VNOVAL;
vap->va_birthtime.tv_nsec = VNOVAL;
vap->va_flags = VNOVAL;
vap->va_gen = VNOVAL;
vap->va_vaflags = 0;
}
/*
* Try to reduce the total number of vnodes.
*
* This routine (and its user) are buggy in at least the following ways:
* - all parameters were picked years ago when RAM sizes were significantly
* smaller
* - it can pick vnodes based on pages used by the vm object, but filesystems
* like ZFS don't use it making the pick broken
* - since ZFS has its own aging policy it gets partially combated by this one
* - a dedicated method should be provided for filesystems to let them decide
* whether the vnode should be recycled
*
* This routine is called when we have too many vnodes. It attempts
* to free <count> vnodes and will potentially free vnodes that still
* have VM backing store (VM backing store is typically the cause
* of a vnode blowout so we want to do this). Therefore, this operation
* is not considered cheap.
*
* A number of conditions may prevent a vnode from being reclaimed.
* the buffer cache may have references on the vnode, a directory
* vnode may still have references due to the namei cache representing
* underlying files, or the vnode may be in active use. It is not
* desirable to reuse such vnodes. These conditions may cause the
* number of vnodes to reach some minimum value regardless of what
* you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
*
* @param reclaim_nc_src Only reclaim directories with outgoing namecache
* entries if this argument is strue
* @param trigger Only reclaim vnodes with fewer than this many resident
* pages.
* @param target How many vnodes to reclaim.
* @return The number of vnodes that were reclaimed.
*/
static int
vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
{
struct vnode *vp, *mvp;
struct mount *mp;
struct vm_object *object;
u_long done;
bool retried;
mtx_assert(&vnode_list_mtx, MA_OWNED);
retried = false;
done = 0;
mvp = vnode_list_reclaim_marker;
restart:
vp = mvp;
while (done < target) {
vp = TAILQ_NEXT(vp, v_vnodelist);
if (__predict_false(vp == NULL))
break;
if (__predict_false(vp->v_type == VMARKER))
continue;
/*
* If it's been deconstructed already, it's still
* referenced, or it exceeds the trigger, skip it.
* Also skip free vnodes. We are trying to make space
* for more free vnodes, not reduce their count.
*/
if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
(!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
goto next_iter;
if (vp->v_type == VBAD || vp->v_type == VNON)
goto next_iter;
object = atomic_load_ptr(&vp->v_object);
if (object == NULL || object->resident_page_count > trigger) {
goto next_iter;
}
/*
* Handle races against vnode allocation. Filesystems lock the
* vnode some time after it gets returned from getnewvnode,
* despite type and hold count being manipulated earlier.
* Resorting to checking v_mount restores guarantees present
* before the global list was reworked to contain all vnodes.
*/
if (!VI_TRYLOCK(vp))
goto next_iter;
if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
VI_UNLOCK(vp);
goto next_iter;
}
if (vp->v_mount == NULL) {
VI_UNLOCK(vp);
goto next_iter;
}
vholdl(vp);
VI_UNLOCK(vp);
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
mtx_unlock(&vnode_list_mtx);
if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
vdrop_recycle(vp);
goto next_iter_unlocked;
}
if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
vdrop_recycle(vp);
vn_finished_write(mp);
goto next_iter_unlocked;
}
VI_LOCK(vp);
if (vp->v_usecount > 0 ||
(!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
(vp->v_object != NULL && vp->v_object->handle == vp &&
vp->v_object->resident_page_count > trigger)) {
VOP_UNLOCK(vp);
vdropl_recycle(vp);
vn_finished_write(mp);
goto next_iter_unlocked;
}
recycles_count++;
vgonel(vp);
VOP_UNLOCK(vp);
vdropl_recycle(vp);
vn_finished_write(mp);
done++;
next_iter_unlocked:
maybe_yield();
mtx_lock(&vnode_list_mtx);
goto restart;
next_iter:
MPASS(vp->v_type != VMARKER);
if (!should_yield())
continue;
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
mtx_unlock(&vnode_list_mtx);
kern_yield(PRI_USER);
mtx_lock(&vnode_list_mtx);
goto restart;
}
if (done == 0 && !retried) {
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
retried = true;
goto restart;
}
return (done);
}
static int max_free_per_call = 10000;
SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
"limit on vnode free requests per call to the vnlru_free routine (legacy)");
SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
&max_free_per_call, 0,
"limit on vnode free requests per call to the vnlru_free routine");
/*
* Attempt to recycle requested amount of free vnodes.
*/
static int
vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
{
struct vnode *vp;
struct mount *mp;
int ocount;
bool retried;
mtx_assert(&vnode_list_mtx, MA_OWNED);
if (count > max_free_per_call)
count = max_free_per_call;
if (count == 0) {
mtx_unlock(&vnode_list_mtx);
return (0);
}
ocount = count;
retried = false;
vp = mvp;
for (;;) {
vp = TAILQ_NEXT(vp, v_vnodelist);
if (__predict_false(vp == NULL)) {
/*
* The free vnode marker can be past eligible vnodes:
* 1. if vdbatch_process trylock failed
* 2. if vtryrecycle failed
*
* If so, start the scan from scratch.
*/
if (!retried && vnlru_read_freevnodes() > 0) {
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
vp = mvp;
retried = true;
continue;
}
/*
* Give up
*/
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
mtx_unlock(&vnode_list_mtx);
break;
}
if (__predict_false(vp->v_type == VMARKER))
continue;
if (vp->v_holdcnt > 0)
continue;
/*
* Don't recycle if our vnode is from different type
* of mount point. Note that mp is type-safe, the
* check does not reach unmapped address even if
* vnode is reclaimed.
*/
if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
mp->mnt_op != mnt_op) {
continue;
}
if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
continue;
}
if (!vhold_recycle_free(vp))
continue;
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
mtx_unlock(&vnode_list_mtx);
/*
* FIXME: ignores the return value, meaning it may be nothing
* got recycled but it claims otherwise to the caller.
*
* Originally the value started being ignored in 2005 with
* 114a1006a8204aa156e1f9ad6476cdff89cada7f .
*
* Respecting the value can run into significant stalls if most
* vnodes belong to one file system and it has writes
* suspended. In presence of many threads and millions of
* vnodes they keep contending on the vnode_list_mtx lock only
* to find vnodes they can't recycle.
*
* The solution would be to pre-check if the vnode is likely to
* be recycle-able, but it needs to happen with the
* vnode_list_mtx lock held. This runs into a problem where
* VOP_GETWRITEMOUNT (currently needed to find out about if
* writes are frozen) can take locks which LOR against it.
*
* Check nullfs for one example (null_getwritemount).
*/
vtryrecycle(vp, isvnlru);
count--;
if (count == 0) {
break;
}
mtx_lock(&vnode_list_mtx);
vp = mvp;
}
mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
return (ocount - count);
}
/*
* XXX: returns without vnode_list_mtx locked!
*/
static int
vnlru_free_locked_direct(int count)
{
int ret;
mtx_assert(&vnode_list_mtx, MA_OWNED);
ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
return (ret);
}
static int
vnlru_free_locked_vnlru(int count)
{
int ret;
mtx_assert(&vnode_list_mtx, MA_OWNED);
ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
return (ret);
}
static int
vnlru_free_vnlru(int count)
{
mtx_lock(&vnode_list_mtx);
return (vnlru_free_locked_vnlru(count));
}
void
vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
{
MPASS(mnt_op != NULL);
MPASS(mvp != NULL);
VNPASS(mvp->v_type == VMARKER, mvp);
mtx_lock(&vnode_list_mtx);
vnlru_free_impl(count, mnt_op, mvp, true);
mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
}
struct vnode *
vnlru_alloc_marker(void)
{
struct vnode *mvp;
mvp = vn_alloc_marker(NULL);
mtx_lock(&vnode_list_mtx);
TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
mtx_unlock(&vnode_list_mtx);
return (mvp);
}
void
vnlru_free_marker(struct vnode *mvp)
{
mtx_lock(&vnode_list_mtx);
TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
mtx_unlock(&vnode_list_mtx);
vn_free_marker(mvp);
}
static void
vnlru_recalc(void)
{
mtx_assert(&vnode_list_mtx, MA_OWNED);
gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
vlowat = vhiwat / 2;
}
/*
* Attempt to recycle vnodes in a context that is always safe to block.
* Calling vlrurecycle() from the bowels of filesystem code has some
* interesting deadlock problems.
*/
static struct proc *vnlruproc;
static int vnlruproc_sig;
static u_long vnlruproc_kicks;
SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
"Number of times vnlru awakened due to vnode shortage");
#define VNLRU_COUNT_SLOP 100
/*
* The main freevnodes counter is only updated when a counter local to CPU
* diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
* walked to compute a more accurate total.
*
* Note: the actual value at any given moment can still exceed slop, but it
* should not be by significant margin in practice.
*/
#define VNLRU_FREEVNODES_SLOP 126
static void __noinline
vfs_freevnodes_rollup(int8_t *lfreevnodes)
{
atomic_add_long(&freevnodes, *lfreevnodes);
*lfreevnodes = 0;
critical_exit();
}
static __inline void
vfs_freevnodes_inc(void)
{
int8_t *lfreevnodes;
critical_enter();
lfreevnodes = PCPU_PTR(vfs_freevnodes);
(*lfreevnodes)++;
if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
vfs_freevnodes_rollup(lfreevnodes);
else
critical_exit();
}
static __inline void
vfs_freevnodes_dec(void)
{
int8_t *lfreevnodes;
critical_enter();
lfreevnodes = PCPU_PTR(vfs_freevnodes);
(*lfreevnodes)--;
if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
vfs_freevnodes_rollup(lfreevnodes);
else
critical_exit();
}
static u_long
vnlru_read_freevnodes(void)
{
long slop, rfreevnodes, rfreevnodes_old;
int cpu;
rfreevnodes = atomic_load_long(&freevnodes);
rfreevnodes_old = atomic_load_long(&freevnodes_old);
if (rfreevnodes > rfreevnodes_old)
slop = rfreevnodes - rfreevnodes_old;
else
slop = rfreevnodes_old - rfreevnodes;
if (slop < VNLRU_FREEVNODES_SLOP)
return (rfreevnodes >= 0 ? rfreevnodes : 0);
CPU_FOREACH(cpu) {
rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
}
atomic_store_long(&freevnodes_old, rfreevnodes);
return (freevnodes_old >= 0 ? freevnodes_old : 0);
}
static bool
vnlru_under(u_long rnumvnodes, u_long limit)
{
u_long rfreevnodes, space;
if (__predict_false(rnumvnodes > desiredvnodes))
return (true);
space = desiredvnodes - rnumvnodes;
if (space < limit) {
rfreevnodes = vnlru_read_freevnodes();
if (rfreevnodes > wantfreevnodes)
space += rfreevnodes - wantfreevnodes;
}
return (space < limit);
}
static void
vnlru_kick_locked(void)
{
mtx_assert(&vnode_list_mtx, MA_OWNED);
if (vnlruproc_sig == 0) {
vnlruproc_sig = 1;
vnlruproc_kicks++;
wakeup(vnlruproc);
}
}
static void
vnlru_kick_cond(void)
{
if (vnlru_read_freevnodes() > wantfreevnodes)
return;
if (vnlruproc_sig)
return;
mtx_lock(&vnode_list_mtx);
vnlru_kick_locked();
mtx_unlock(&vnode_list_mtx);
}
static void
vnlru_proc_sleep(void)
{
if (vnlruproc_sig) {
vnlruproc_sig = 0;
wakeup(&vnlruproc_sig);
}
msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
}
/*
* A lighter version of the machinery below.
*
* Tries to reach goals only by recycling free vnodes and does not invoke
* uma_reclaim(UMA_RECLAIM_DRAIN).
*
* This works around pathological behavior in vnlru in presence of tons of free
* vnodes, but without having to rewrite the machinery at this time. Said
* behavior boils down to continuously trying to reclaim all kinds of vnodes
* (cycling through all levels of "force") when the count is transiently above
* limit. This happens a lot when all vnodes are used up and vn_alloc
* speculatively increments the counter.
*
* Sample testcase: vnode limit 8388608, 20 separate directory trees each with
* 1 million files in total and 20 find(1) processes stating them in parallel
* (one per each tree).
*
* On a kernel with only stock machinery this needs anywhere between 60 and 120
* seconds to execute (time varies *wildly* between runs). With the workaround
* it consistently stays around 20 seconds [it got further down with later
* changes].
*
* That is to say the entire thing needs a fundamental redesign (most notably
* to accommodate faster recycling), the above only tries to get it ouf the way.
*
* Return values are:
* -1 -- fallback to regular vnlru loop
* 0 -- do nothing, go to sleep
* >0 -- recycle this many vnodes
*/
static long
vnlru_proc_light_pick(void)
{
u_long rnumvnodes, rfreevnodes;
if (vstir || vnlruproc_sig == 1)
return (-1);
rnumvnodes = atomic_load_long(&numvnodes);
rfreevnodes = vnlru_read_freevnodes();
/*
* vnode limit might have changed and now we may be at a significant
* excess. Bail if we can't sort it out with free vnodes.
*
* Due to atomic updates the count can legitimately go above
* the limit for a short period, don't bother doing anything in
* that case.
*/
if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
if (rnumvnodes - rfreevnodes >= desiredvnodes ||
rfreevnodes <= wantfreevnodes) {
return (-1);
}
return (rnumvnodes - desiredvnodes);
}
/*
* Don't try to reach wantfreevnodes target if there are too few vnodes
* to begin with.
*/
if (rnumvnodes < wantfreevnodes) {
return (0);
}
if (rfreevnodes < wantfreevnodes) {
return (-1);
}
return (0);
}
static bool
vnlru_proc_light(void)
{
long freecount;
mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
freecount = vnlru_proc_light_pick();
if (freecount == -1)
return (false);
if (freecount != 0) {
vnlru_free_vnlru(freecount);
}
mtx_lock(&vnode_list_mtx);
vnlru_proc_sleep();
mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
return (true);
}
static u_long uma_reclaim_calls;
SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
&uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
static void
vnlru_proc(void)
{
u_long rnumvnodes, rfreevnodes, target;
unsigned long onumvnodes;
int done, force, trigger, usevnodes;
bool reclaim_nc_src, want_reread;
EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
SHUTDOWN_PRI_FIRST);
force = 0;
want_reread = false;
for (;;) {
kproc_suspend_check(vnlruproc);
if (force == 0 && vnlru_proc_light())
continue;
mtx_lock(&vnode_list_mtx);
rnumvnodes = atomic_load_long(&numvnodes);
if (want_reread) {
force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
want_reread = false;
}
/*
* If numvnodes is too large (due to desiredvnodes being
* adjusted using its sysctl, or emergency growth), first
* try to reduce it by discarding free vnodes.
*/
if (rnumvnodes > desiredvnodes + 10) {
vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
mtx_lock(&vnode_list_mtx);
rnumvnodes = atomic_load_long(&numvnodes);
}
/*
* Sleep if the vnode cache is in a good state. This is
* when it is not over-full and has space for about a 4%
* or 9% expansion (by growing its size or inexcessively
* reducing free vnode count). Otherwise, try to reclaim
* space for a 10% expansion.
*/
if (vstir && force == 0) {
force = 1;
vstir = false;
}
if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
vnlru_proc_sleep();
continue;
}
rfreevnodes = vnlru_read_freevnodes();
onumvnodes = rnumvnodes;
/*
* Calculate parameters for recycling. These are the same
* throughout the loop to give some semblance of fairness.
* The trigger point is to avoid recycling vnodes with lots
* of resident pages. We aren't trying to free memory; we
* are trying to recycle or at least free vnodes.
*/
if (rnumvnodes <= desiredvnodes)
usevnodes = rnumvnodes - rfreevnodes;
else
usevnodes = rnumvnodes;
if (usevnodes <= 0)
usevnodes = 1;
/*
* The trigger value is chosen to give a conservatively
* large value to ensure that it alone doesn't prevent
* making progress. The value can easily be so large that
* it is effectively infinite in some congested and
* misconfigured cases, and this is necessary. Normally
* it is about 8 to 100 (pages), which is quite large.
*/
trigger = vm_cnt.v_page_count * 2 / usevnodes;
if (force < 2)
trigger = vsmalltrigger;
reclaim_nc_src = force >= 3;
target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
target = target / 10 + 1;
done = vlrureclaim(reclaim_nc_src, trigger, target);
mtx_unlock(&vnode_list_mtx);
/*
* Total number of vnodes can transiently go slightly above the
* limit (see vn_alloc_hard), no need to call uma_reclaim if
* this happens.
*/
if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
numvnodes <= desiredvnodes) {
uma_reclaim_calls++;
uma_reclaim(UMA_RECLAIM_DRAIN);
}
if (done == 0) {
if (force == 0 || force == 1) {
force = 2;
continue;
}
if (force == 2) {
force = 3;
continue;
}
want_reread = true;
force = 0;
vnlru_nowhere++;
tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
} else {
want_reread = true;
kern_yield(PRI_USER);
}
}
}
static struct kproc_desc vnlru_kp = {
"vnlru",
vnlru_proc,
&vnlruproc
};
SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
&vnlru_kp);
/*
* Routines having to do with the management of the vnode table.
*/
/*
* Try to recycle a freed vnode.
*/
static int
vtryrecycle(struct vnode *vp, bool isvnlru)
{
struct mount *vnmp;
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
VNPASS(vp->v_holdcnt > 0, vp);
/*
* This vnode may found and locked via some other list, if so we
* can't recycle it yet.
*/
if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
CTR2(KTR_VFS,
"%s: impossible to recycle, vp %p lock is already held",
__func__, vp);
vdrop_recycle(vp);
return (EWOULDBLOCK);
}
/*
* Don't recycle if its filesystem is being suspended.
*/
if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
VOP_UNLOCK(vp);
CTR2(KTR_VFS,
"%s: impossible to recycle, cannot start the write for %p",
__func__, vp);
vdrop_recycle(vp);
return (EBUSY);
}
/*
* If we got this far, we need to acquire the interlock and see if
* anyone picked up this vnode from another list. If not, we will
* mark it with DOOMED via vgonel() so that anyone who does find it
* will skip over it.
*/
VI_LOCK(vp);
if (vp->v_usecount) {
VOP_UNLOCK(vp);
vdropl_recycle(vp);
vn_finished_write(vnmp);
CTR2(KTR_VFS,
"%s: impossible to recycle, %p is already referenced",
__func__, vp);
return (EBUSY);
}
if (!VN_IS_DOOMED(vp)) {
if (isvnlru)
recycles_free_count++;
else
counter_u64_add(direct_recycles_free_count, 1);
vgonel(vp);
}
VOP_UNLOCK(vp);
vdropl_recycle(vp);
vn_finished_write(vnmp);
return (0);
}
/*
* Allocate a new vnode.
*
* The operation never returns an error. Returning an error was disabled
* in r145385 (dated 2005) with the following comment:
*
* XXX Not all VFS_VGET/ffs_vget callers check returns.
*
* Given the age of this commit (almost 15 years at the time of writing this
* comment) restoring the ability to fail requires a significant audit of
* all codepaths.
*
* The routine can try to free a vnode or stall for up to 1 second waiting for
* vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
*/
static u_long vn_alloc_cyclecount;
static u_long vn_alloc_sleeps;
SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
"Number of times vnode allocation blocked waiting on vnlru");
static struct vnode * __noinline
vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
{
u_long rfreevnodes;
if (bumped) {
if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
atomic_subtract_long(&numvnodes, 1);
bumped = false;
}
}
mtx_lock(&vnode_list_mtx);
if (vn_alloc_cyclecount != 0) {
rnumvnodes = atomic_load_long(&numvnodes);
if (rnumvnodes + 1 < desiredvnodes) {
vn_alloc_cyclecount = 0;
mtx_unlock(&vnode_list_mtx);
goto alloc;
}
rfreevnodes = vnlru_read_freevnodes();
if (rfreevnodes < wantfreevnodes) {
if (vn_alloc_cyclecount++ >= rfreevnodes) {
vn_alloc_cyclecount = 0;
vstir = true;
}
} else {
vn_alloc_cyclecount = 0;
}
}
/*
* Grow the vnode cache if it will not be above its target max after
* growing. Otherwise, if there is at least one free vnode, try to
* reclaim 1 item from it before growing the cache (possibly above its
* target max if the reclamation failed or is delayed).
*/
if (vnlru_free_locked_direct(1) > 0)
goto alloc;
mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
/*
* Wait for space for a new vnode.
*/
if (bumped) {
atomic_subtract_long(&numvnodes, 1);
bumped = false;
}
mtx_lock(&vnode_list_mtx);
vnlru_kick_locked();
vn_alloc_sleeps++;
msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
vnlru_read_freevnodes() > 1)
vnlru_free_locked_direct(1);
else
mtx_unlock(&vnode_list_mtx);
}
alloc:
mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
if (!bumped)
atomic_add_long(&numvnodes, 1);
vnlru_kick_cond();
return (uma_zalloc_smr(vnode_zone, M_WAITOK));
}
static struct vnode *
vn_alloc(struct mount *mp)
{
u_long rnumvnodes;
if (__predict_false(vn_alloc_cyclecount != 0))
return (vn_alloc_hard(mp, 0, false));
rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
return (vn_alloc_hard(mp, rnumvnodes, true));
}
return (uma_zalloc_smr(vnode_zone, M_WAITOK));
}
static void
vn_free(struct vnode *vp)
{
atomic_subtract_long(&numvnodes, 1);
uma_zfree_smr(vnode_zone, vp);
}
/*
* Allocate a new vnode.
*/
int
getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
struct vnode **vpp)
{
struct vnode *vp;
struct thread *td;
struct lock_object *lo;
CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
KASSERT(vops->registered,
("%s: not registered vector op %p\n", __func__, vops));
cache_validate_vop_vector(mp, vops);
td = curthread;
if (td->td_vp_reserved != NULL) {
vp = td->td_vp_reserved;
td->td_vp_reserved = NULL;
} else {
vp = vn_alloc(mp);
}
counter_u64_add(vnodes_created, 1);
vn_set_state(vp, VSTATE_UNINITIALIZED);
/*
* Locks are given the generic name "vnode" when created.
* Follow the historic practice of using the filesystem
* name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
*
* Locks live in a witness group keyed on their name. Thus,
* when a lock is renamed, it must also move from the witness
* group of its old name to the witness group of its new name.
*
* The change only needs to be made when the vnode moves
* from one filesystem type to another. We ensure that each
* filesystem use a single static name pointer for its tag so
* that we can compare pointers rather than doing a strcmp().
*/
lo = &vp->v_vnlock->lock_object;
#ifdef WITNESS
if (lo->lo_name != tag) {
#endif
lo->lo_name = tag;
#ifdef WITNESS
WITNESS_DESTROY(lo);
WITNESS_INIT(lo, tag);
}
#endif
/*
* By default, don't allow shared locks unless filesystems opt-in.
*/
vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
/*
* Finalize various vnode identity bits.
*/
KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
vp->v_type = VNON;
vp->v_op = vops;
vp->v_irflag = 0;
v_init_counters(vp);
vn_seqc_init(vp);
vp->v_bufobj.bo_ops = &buf_ops_bio;
#ifdef DIAGNOSTIC
if (mp == NULL && vops != &dead_vnodeops)
printf("NULL mp in getnewvnode(9), tag %s\n", tag);
#endif
#ifdef MAC
mac_vnode_init(vp);
if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
mac_vnode_associate_singlelabel(mp, vp);
#endif
if (mp != NULL) {
vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
}
/*
* For the filesystems which do not use vfs_hash_insert(),
* still initialize v_hash to have vfs_hash_index() useful.
* E.g., nullfs uses vfs_hash_index() on the lower vnode for
* its own hashing.
*/
vp->v_hash = (uintptr_t)vp >> vnsz2log;
*vpp = vp;
return (0);
}
void
getnewvnode_reserve(void)
{
struct thread *td;
td = curthread;
MPASS(td->td_vp_reserved == NULL);
td->td_vp_reserved = vn_alloc(NULL);
}
void
getnewvnode_drop_reserve(void)
{
struct thread *td;
td = curthread;
if (td->td_vp_reserved != NULL) {
vn_free(td->td_vp_reserved);
td->td_vp_reserved = NULL;
}
}
static void __noinline
freevnode(struct vnode *vp)
{
struct bufobj *bo;
/*
* The vnode has been marked for destruction, so free it.
*
* The vnode will be returned to the zone where it will
* normally remain until it is needed for another vnode. We
* need to cleanup (or verify that the cleanup has already
* been done) any residual data left from its current use
* so as not to contaminate the freshly allocated vnode.
*/
CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
/*
* Paired with vgone.
*/
vn_seqc_write_end_free(vp);
bo = &vp->v_bufobj;
VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
("clean blk trie not empty"));
VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
("dirty blk trie not empty"));
VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
("Dangling rangelock waiters"));
VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
("Leaked inactivation"));
VI_UNLOCK(vp);
cache_assert_no_entries(vp);
#ifdef MAC
mac_vnode_destroy(vp);
#endif
if (vp->v_pollinfo != NULL) {
/*
* Use LK_NOWAIT to shut up witness about the lock. We may get
* here while having another vnode locked when trying to
* satisfy a lookup and needing to recycle.
*/
VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
destroy_vpollinfo(vp->v_pollinfo);
VOP_UNLOCK(vp);
vp->v_pollinfo = NULL;
}
vp->v_mountedhere = NULL;
vp->v_unpcb = NULL;
vp->v_rdev = NULL;
vp->v_fifoinfo = NULL;
vp->v_iflag = 0;
vp->v_vflag = 0;
bo->bo_flag = 0;
vn_free(vp);
}
/*
* Delete from old mount point vnode list, if on one.
*/
static void
delmntque(struct vnode *vp)
{
struct mount *mp;
VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
mp = vp->v_mount;
MNT_ILOCK(mp);
VI_LOCK(vp);
vp->v_mount = NULL;
VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
("bad mount point vnode list size"));
TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
mp->mnt_nvnodelistsize--;
MNT_REL(mp);
MNT_IUNLOCK(mp);
/*
* The caller expects the interlock to be still held.
*/
ASSERT_VI_LOCKED(vp, __func__);
}
static int
insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
{
KASSERT(vp->v_mount == NULL,
("insmntque: vnode already on per mount vnode list"));
VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
} else {
KASSERT(!dtr,
("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
__func__));
}
/*
* We acquire the vnode interlock early to ensure that the
* vnode cannot be recycled by another process releasing a
* holdcnt on it before we get it on both the vnode list
* and the active vnode list. The mount mutex protects only
* manipulation of the vnode list and the vnode freelist
* mutex protects only manipulation of the active vnode list.
* Hence the need to hold the vnode interlock throughout.
*/
MNT_ILOCK(mp);
VI_LOCK(vp);
if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
mp->mnt_nvnodelistsize == 0)) &&
(vp->v_vflag & VV_FORCEINSMQ) == 0) {
VI_UNLOCK(vp);
MNT_IUNLOCK(mp);
if (dtr) {
vp->v_data = NULL;
vp->v_op = &dead_vnodeops;
vgone(vp);
vput(vp);
}
return (EBUSY);
}
vp->v_mount = mp;
MNT_REF(mp);
TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
("neg mount point vnode list size"));
mp->mnt_nvnodelistsize++;
VI_UNLOCK(vp);
MNT_IUNLOCK(mp);
return (0);
}
/*
* Insert into list of vnodes for the new mount point, if available.
* insmntque() reclaims the vnode on insertion failure, insmntque1()
* leaves handling of the vnode to the caller.
*/
int
insmntque(struct vnode *vp, struct mount *mp)
{
return (insmntque1_int(vp, mp, true));
}
int
insmntque1(struct vnode *vp, struct mount *mp)
{
return (insmntque1_int(vp, mp, false));
}
/*
* Flush out and invalidate all buffers associated with a bufobj
* Called with the underlying object locked.
*/
int
bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
{
int error;
BO_LOCK(bo);
if (flags & V_SAVE) {
error = bufobj_wwait(bo, slpflag, slptimeo);
if (error) {
BO_UNLOCK(bo);
return (error);
}
if (bo->bo_dirty.bv_cnt > 0) {
BO_UNLOCK(bo);
do {
error = BO_SYNC(bo, MNT_WAIT);
} while (error == ERELOOKUP);
if (error != 0)
return (error);
BO_LOCK(bo);
if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
BO_UNLOCK(bo);
return (EBUSY);
}
}
}
/*
* If you alter this loop please notice that interlock is dropped and
* reacquired in flushbuflist. Special care is needed to ensure that
* no race conditions occur from this.
*/
do {
error = flushbuflist(&bo->bo_clean,
flags, bo, slpflag, slptimeo);
if (error == 0 && !(flags & V_CLEANONLY))
error = flushbuflist(&bo->bo_dirty,
flags, bo, slpflag, slptimeo);
if (error != 0 && error != EAGAIN) {
BO_UNLOCK(bo);
return (error);
}
} while (error != 0);
/*
* Wait for I/O to complete. XXX needs cleaning up. The vnode can
* have write I/O in-progress but if there is a VM object then the
* VM object can also have read-I/O in-progress.
*/
do {
bufobj_wwait(bo, 0, 0);
if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
BO_UNLOCK(bo);
vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
BO_LOCK(bo);
}
} while (bo->bo_numoutput > 0);
BO_UNLOCK(bo);
/*
* Destroy the copy in the VM cache, too.
*/
if (bo->bo_object != NULL &&
(flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
VM_OBJECT_WLOCK(bo->bo_object);
vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
OBJPR_CLEANONLY : 0);
VM_OBJECT_WUNLOCK(bo->bo_object);
}
#ifdef INVARIANTS
BO_LOCK(bo);
if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
bo->bo_clean.bv_cnt > 0))
panic("vinvalbuf: flush failed");
if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
bo->bo_dirty.bv_cnt > 0)
panic("vinvalbuf: flush dirty failed");
BO_UNLOCK(bo);
#endif
return (0);
}
/*
* Flush out and invalidate all buffers associated with a vnode.
* Called with the underlying object locked.
*/
int
vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
{
CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
ASSERT_VOP_LOCKED(vp, "vinvalbuf");
if (vp->v_object != NULL && vp->v_object->handle != vp)
return (0);
return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
}
/*
* Flush out buffers on the specified list.
*
*/
static int
flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
int slptimeo)
{
struct buf *bp, *nbp;
int retval, error;
daddr_t lblkno;
b_xflags_t xflags;
ASSERT_BO_WLOCKED(bo);
retval = 0;
TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
/*
* If we are flushing both V_NORMAL and V_ALT buffers then
* do not skip any buffers. If we are flushing only V_NORMAL
* buffers then skip buffers marked as BX_ALTDATA. If we are
* flushing only V_ALT buffers then skip buffers not marked
* as BX_ALTDATA.
*/
if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
(((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
continue;
}
if (nbp != NULL) {
lblkno = nbp->b_lblkno;
xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
}
retval = EAGAIN;
error = BUF_TIMELOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
"flushbuf", slpflag, slptimeo);
if (error) {
BO_LOCK(bo);
return (error != ENOLCK ? error : EAGAIN);
}
KASSERT(bp->b_bufobj == bo,
("bp %p wrong b_bufobj %p should be %p",
bp, bp->b_bufobj, bo));
/*
* XXX Since there are no node locks for NFS, I
* believe there is a slight chance that a delayed
* write will occur while sleeping just above, so
* check for it.
*/
if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
(flags & V_SAVE)) {
bremfree(bp);
bp->b_flags |= B_ASYNC;
bwrite(bp);
BO_LOCK(bo);
return (EAGAIN); /* XXX: why not loop ? */
}
bremfree(bp);
bp->b_flags |= (B_INVAL | B_RELBUF);
bp->b_flags &= ~B_ASYNC;
brelse(bp);
BO_LOCK(bo);
if (nbp == NULL)
break;
nbp = gbincore(bo, lblkno);
if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
!= xflags)
break; /* nbp invalid */
}
return (retval);
}
int
bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
{
struct buf *bp;
int error;
daddr_t lblkno;
ASSERT_BO_LOCKED(bo);
for (lblkno = startn;;) {
again:
bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
if (bp == NULL || bp->b_lblkno >= endn ||
bp->b_lblkno < startn)
break;
error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
if (error != 0) {
BO_RLOCK(bo);
if (error == ENOLCK)
goto again;
return (error);
}
KASSERT(bp->b_bufobj == bo,
("bp %p wrong b_bufobj %p should be %p",
bp, bp->b_bufobj, bo));
lblkno = bp->b_lblkno + 1;
if ((bp->b_flags & B_MANAGED) == 0)
bremfree(bp);
bp->b_flags |= B_RELBUF;
/*
* In the VMIO case, use the B_NOREUSE flag to hint that the
* pages backing each buffer in the range are unlikely to be
* reused. Dirty buffers will have the hint applied once
* they've been written.
*/
if ((bp->b_flags & B_VMIO) != 0)
bp->b_flags |= B_NOREUSE;
brelse(bp);
BO_RLOCK(bo);
}
return (0);
}
/*
* Truncate a file's buffer and pages to a specified length. This
* is in lieu of the old vinvalbuf mechanism, which performed unneeded
* sync activity.
*/
int
vtruncbuf(struct vnode *vp, off_t length, int blksize)
{
struct buf *bp, *nbp;
struct bufobj *bo;
daddr_t startlbn;
CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
vp, blksize, (uintmax_t)length);
/*
* Round up to the *next* lbn.
*/
startlbn = howmany(length, blksize);
ASSERT_VOP_LOCKED(vp, "vtruncbuf");
bo = &vp->v_bufobj;
restart_unlocked:
BO_LOCK(bo);
while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
;
if (length > 0) {
/*
* Write out vnode metadata, e.g. indirect blocks.
*/
restartsync:
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (bp->b_lblkno >= 0)
continue;
/*
* Since we hold the vnode lock this should only
* fail if we're racing with the buf daemon.
*/
if (BUF_LOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_LOCKPTR(bo)) == ENOLCK)
goto restart_unlocked;
VNASSERT((bp->b_flags & B_DELWRI), vp,
("buf(%p) on dirty queue without DELWRI", bp));
bremfree(bp);
bawrite(bp);
BO_LOCK(bo);
goto restartsync;
}
}
bufobj_wwait(bo, 0, 0);
BO_UNLOCK(bo);
vnode_pager_setsize(vp, length);
return (0);
}
/*
* Invalidate the cached pages of a file's buffer within the range of block
* numbers [startlbn, endlbn).
*/
void
v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
int blksize)
{
struct bufobj *bo;
off_t start, end;
ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
start = blksize * startlbn;
end = blksize * endlbn;
bo = &vp->v_bufobj;
BO_LOCK(bo);
MPASS(blksize == bo->bo_bsize);
while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
;
BO_UNLOCK(bo);
vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
}
static int
v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
daddr_t startlbn, daddr_t endlbn)
{
struct buf *bp, *nbp;
bool anyfreed;
ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
ASSERT_BO_LOCKED(bo);
do {
anyfreed = false;
TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
continue;
if (BUF_LOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_LOCKPTR(bo)) == ENOLCK) {
BO_LOCK(bo);
return (EAGAIN);
}
bremfree(bp);
bp->b_flags |= B_INVAL | B_RELBUF;
bp->b_flags &= ~B_ASYNC;
brelse(bp);
anyfreed = true;
BO_LOCK(bo);
if (nbp != NULL &&
(((nbp->b_xflags & BX_VNCLEAN) == 0) ||
nbp->b_vp != vp ||
(nbp->b_flags & B_DELWRI) != 0))
return (EAGAIN);
}
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
continue;
if (BUF_LOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_LOCKPTR(bo)) == ENOLCK) {
BO_LOCK(bo);
return (EAGAIN);
}
bremfree(bp);
bp->b_flags |= B_INVAL | B_RELBUF;
bp->b_flags &= ~B_ASYNC;
brelse(bp);
anyfreed = true;
BO_LOCK(bo);
if (nbp != NULL &&
(((nbp->b_xflags & BX_VNDIRTY) == 0) ||
(nbp->b_vp != vp) ||
(nbp->b_flags & B_DELWRI) == 0))
return (EAGAIN);
}
} while (anyfreed);
return (0);
}
static void
buf_vlist_remove(struct buf *bp)
{
struct bufv *bv;
b_xflags_t flags;
flags = bp->b_xflags;
KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
ASSERT_BO_WLOCKED(bp->b_bufobj);
KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
(flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
("%s: buffer %p has invalid queue state", __func__, bp));
if ((flags & BX_VNDIRTY) != 0)
bv = &bp->b_bufobj->bo_dirty;
else
bv = &bp->b_bufobj->bo_clean;
BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
bv->bv_cnt--;
bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
}
/*
* Add the buffer to the sorted clean or dirty block list.
*
* NOTE: xflags is passed as a constant, optimizing this inline function!
*/
static void
buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
{
struct bufv *bv;
struct buf *n;
int error;
ASSERT_BO_WLOCKED(bo);
KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
("buf_vlist_add: bo %p does not allow bufs", bo));
KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
("dead bo %p", bo));
KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
bp->b_xflags |= xflags;
if (xflags & BX_VNDIRTY)
bv = &bo->bo_dirty;
else
bv = &bo->bo_clean;
/*
* Keep the list ordered. Optimize empty list insertion. Assume
* we tend to grow at the tail so lookup_le should usually be cheaper
* than _ge.
*/
if (bv->bv_cnt == 0 ||
bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
else
TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
if (error)
panic("buf_vlist_add: Preallocated nodes insufficient.");
bv->bv_cnt++;
}
/*
* Look up a buffer using the buffer tries.
*/
struct buf *
gbincore(struct bufobj *bo, daddr_t lblkno)
{
struct buf *bp;
ASSERT_BO_LOCKED(bo);
bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
if (bp != NULL)
return (bp);
return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
}
/*
* Look up a buf using the buffer tries, without the bufobj lock. This relies
* on SMR for safe lookup, and bufs being in a no-free zone to provide type
* stability of the result. Like other lockless lookups, the found buf may
* already be invalid by the time this function returns.
*/
struct buf *
gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
{
struct buf *bp;
ASSERT_BO_UNLOCKED(bo);
bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
if (bp != NULL)
return (bp);
return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
}
/*
* Associate a buffer with a vnode.
*/
void
bgetvp(struct vnode *vp, struct buf *bp)
{
struct bufobj *bo;
bo = &vp->v_bufobj;
ASSERT_BO_WLOCKED(bo);
VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
("bgetvp: bp already attached! %p", bp));
vhold(vp);
bp->b_vp = vp;
bp->b_bufobj = bo;
/*
* Insert onto list for new vnode.
*/
buf_vlist_add(bp, bo, BX_VNCLEAN);
}
/*
* Disassociate a buffer from a vnode.
*/
void
brelvp(struct buf *bp)
{
struct bufobj *bo;
struct vnode *vp;
CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
/*
* Delete from old vnode list, if on one.
*/
vp = bp->b_vp; /* XXX */
bo = bp->b_bufobj;
BO_LOCK(bo);
buf_vlist_remove(bp);
if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
bo->bo_flag &= ~BO_ONWORKLST;
mtx_lock(&sync_mtx);
LIST_REMOVE(bo, bo_synclist);
syncer_worklist_len--;
mtx_unlock(&sync_mtx);
}
bp->b_vp = NULL;
bp->b_bufobj = NULL;
BO_UNLOCK(bo);
vdrop(vp);
}
/*
* Add an item to the syncer work queue.
*/
static void
vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
{
int slot;
ASSERT_BO_WLOCKED(bo);
mtx_lock(&sync_mtx);
if (bo->bo_flag & BO_ONWORKLST)
LIST_REMOVE(bo, bo_synclist);
else {
bo->bo_flag |= BO_ONWORKLST;
syncer_worklist_len++;
}
if (delay > syncer_maxdelay - 2)
delay = syncer_maxdelay - 2;
slot = (syncer_delayno + delay) & syncer_mask;
LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
mtx_unlock(&sync_mtx);
}
static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
{
int error, len;
mtx_lock(&sync_mtx);
len = syncer_worklist_len - sync_vnode_count;
mtx_unlock(&sync_mtx);
error = SYSCTL_OUT(req, &len, sizeof(len));
return (error);
}
SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
static struct proc *updateproc;
static void sched_sync(void);
static struct kproc_desc up_kp = {
"syncer",
sched_sync,
&updateproc
};
SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
static int
sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
{
struct vnode *vp;
struct mount *mp;
*bo = LIST_FIRST(slp);
if (*bo == NULL)
return (0);
vp = bo2vnode(*bo);
if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
return (1);
/*
* We use vhold in case the vnode does not
* successfully sync. vhold prevents the vnode from
* going away when we unlock the sync_mtx so that
* we can acquire the vnode interlock.
*/
vholdl(vp);
mtx_unlock(&sync_mtx);
VI_UNLOCK(vp);
if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
vdrop(vp);
mtx_lock(&sync_mtx);
return (*bo == LIST_FIRST(slp));
}
MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
(mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
("suspended mp syncing vp %p", vp));
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
(void) VOP_FSYNC(vp, MNT_LAZY, td);
VOP_UNLOCK(vp);
vn_finished_write(mp);
BO_LOCK(*bo);
if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
/*
* Put us back on the worklist. The worklist
* routine will remove us from our current
* position and then add us back in at a later
* position.
*/
vn_syncer_add_to_worklist(*bo, syncdelay);
}
BO_UNLOCK(*bo);
vdrop(vp);
mtx_lock(&sync_mtx);
return (0);
}
static int first_printf = 1;
/*
* System filesystem synchronizer daemon.
*/
static void
sched_sync(void)
{
struct synclist *next, *slp;
struct bufobj *bo;
long starttime;
struct thread *td = curthread;
int last_work_seen;
int net_worklist_len;
int syncer_final_iter;
int error;
last_work_seen = 0;
syncer_final_iter = 0;
syncer_state = SYNCER_RUNNING;
starttime = time_uptime;
td->td_pflags |= TDP_NORUNNINGBUF;
EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
SHUTDOWN_PRI_LAST);
mtx_lock(&sync_mtx);
for (;;) {
if (syncer_state == SYNCER_FINAL_DELAY &&
syncer_final_iter == 0) {
mtx_unlock(&sync_mtx);
kproc_suspend_check(td->td_proc);
mtx_lock(&sync_mtx);
}
net_worklist_len = syncer_worklist_len - sync_vnode_count;
if (syncer_state != SYNCER_RUNNING &&
starttime != time_uptime) {
if (first_printf) {
printf("\nSyncing disks, vnodes remaining... ");
first_printf = 0;
}
printf("%d ", net_worklist_len);
}
starttime = time_uptime;
/*
* Push files whose dirty time has expired. Be careful
* of interrupt race on slp queue.
*
* Skip over empty worklist slots when shutting down.
*/
do {
slp = &syncer_workitem_pending[syncer_delayno];
syncer_delayno += 1;
if (syncer_delayno == syncer_maxdelay)
syncer_delayno = 0;
next = &syncer_workitem_pending[syncer_delayno];
/*
* If the worklist has wrapped since the
* it was emptied of all but syncer vnodes,
* switch to the FINAL_DELAY state and run
* for one more second.
*/
if (syncer_state == SYNCER_SHUTTING_DOWN &&
net_worklist_len == 0 &&
last_work_seen == syncer_delayno) {
syncer_state = SYNCER_FINAL_DELAY;
syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
}
} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
syncer_worklist_len > 0);
/*
* Keep track of the last time there was anything
* on the worklist other than syncer vnodes.
* Return to the SHUTTING_DOWN state if any
* new work appears.
*/
if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
last_work_seen = syncer_delayno;
if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
syncer_state = SYNCER_SHUTTING_DOWN;
while (!LIST_EMPTY(slp)) {
error = sync_vnode(slp, &bo, td);
if (error == 1) {
LIST_REMOVE(bo, bo_synclist);
LIST_INSERT_HEAD(next, bo, bo_synclist);
continue;
}
if (first_printf == 0) {
/*
* Drop the sync mutex, because some watchdog
* drivers need to sleep while patting
*/
mtx_unlock(&sync_mtx);
wdog_kern_pat(WD_LASTVAL);
mtx_lock(&sync_mtx);
}
}
if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
syncer_final_iter--;
/*
* The variable rushjob allows the kernel to speed up the
* processing of the filesystem syncer process. A rushjob
* value of N tells the filesystem syncer to process the next
* N seconds worth of work on its queue ASAP. Currently rushjob
* is used by the soft update code to speed up the filesystem
* syncer process when the incore state is getting so far
* ahead of the disk that the kernel memory pool is being
* threatened with exhaustion.
*/
if (rushjob > 0) {
rushjob -= 1;
continue;
}
/*
* Just sleep for a short period of time between
* iterations when shutting down to allow some I/O
* to happen.
*
* If it has taken us less than a second to process the
* current work, then wait. Otherwise start right over
* again. We can still lose time if any single round
* takes more than two seconds, but it does not really
* matter as we are just trying to generally pace the
* filesystem activity.
*/
if (syncer_state != SYNCER_RUNNING ||
time_uptime == starttime) {
thread_lock(td);
sched_prio(td, PPAUSE);
thread_unlock(td);
}
if (syncer_state != SYNCER_RUNNING)
cv_timedwait(&sync_wakeup, &sync_mtx,
hz / SYNCER_SHUTDOWN_SPEEDUP);
else if (time_uptime == starttime)
cv_timedwait(&sync_wakeup, &sync_mtx, hz);
}
}
/*
* Request the syncer daemon to speed up its work.
* We never push it to speed up more than half of its
* normal turn time, otherwise it could take over the cpu.
*/
int
speedup_syncer(void)
{
int ret = 0;
mtx_lock(&sync_mtx);
if (rushjob < syncdelay / 2) {
rushjob += 1;
stat_rush_requests += 1;
ret = 1;
}
mtx_unlock(&sync_mtx);
cv_broadcast(&sync_wakeup);
return (ret);
}
/*
* Tell the syncer to speed up its work and run though its work
* list several times, then tell it to shut down.
*/
static void
syncer_shutdown(void *arg, int howto)
{
if (howto & RB_NOSYNC)
return;
mtx_lock(&sync_mtx);
syncer_state = SYNCER_SHUTTING_DOWN;
rushjob = 0;
mtx_unlock(&sync_mtx);
cv_broadcast(&sync_wakeup);
kproc_shutdown(arg, howto);
}
void
syncer_suspend(void)
{
syncer_shutdown(updateproc, 0);
}
void
syncer_resume(void)
{
mtx_lock(&sync_mtx);
first_printf = 1;
syncer_state = SYNCER_RUNNING;
mtx_unlock(&sync_mtx);
cv_broadcast(&sync_wakeup);
kproc_resume(updateproc);
}
/*
* Move the buffer between the clean and dirty lists of its vnode.
*/
void
reassignbuf(struct buf *bp)
{
struct vnode *vp;
struct bufobj *bo;
int delay;
#ifdef INVARIANTS
struct bufv *bv;
#endif
vp = bp->b_vp;
bo = bp->b_bufobj;
KASSERT((bp->b_flags & B_PAGING) == 0,
("%s: cannot reassign paging buffer %p", __func__, bp));
CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
bp, bp->b_vp, bp->b_flags);
BO_LOCK(bo);
buf_vlist_remove(bp);
/*
* If dirty, put on list of dirty buffers; otherwise insert onto list
* of clean buffers.
*/
if (bp->b_flags & B_DELWRI) {
if ((bo->bo_flag & BO_ONWORKLST) == 0) {
switch (vp->v_type) {
case VDIR:
delay = dirdelay;
break;
case VCHR:
delay = metadelay;
break;
default:
delay = filedelay;
}
vn_syncer_add_to_worklist(bo, delay);
}
buf_vlist_add(bp, bo, BX_VNDIRTY);
} else {
buf_vlist_add(bp, bo, BX_VNCLEAN);
if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
mtx_lock(&sync_mtx);
LIST_REMOVE(bo, bo_synclist);
syncer_worklist_len--;
mtx_unlock(&sync_mtx);
bo->bo_flag &= ~BO_ONWORKLST;
}
}
#ifdef INVARIANTS
bv = &bo->bo_clean;
bp = TAILQ_FIRST(&bv->bv_hd);
KASSERT(bp == NULL || bp->b_bufobj == bo,
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
bp = TAILQ_LAST(&bv->bv_hd, buflists);
KASSERT(bp == NULL || bp->b_bufobj == bo,
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
bv = &bo->bo_dirty;
bp = TAILQ_FIRST(&bv->bv_hd);
KASSERT(bp == NULL || bp->b_bufobj == bo,
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
bp = TAILQ_LAST(&bv->bv_hd, buflists);
KASSERT(bp == NULL || bp->b_bufobj == bo,
("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
#endif
BO_UNLOCK(bo);
}
static void
v_init_counters(struct vnode *vp)
{
VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
vp, ("%s called for an initialized vnode", __FUNCTION__));
ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
refcount_init(&vp->v_holdcnt, 1);
refcount_init(&vp->v_usecount, 1);
}
/*
* Get a usecount on a vnode.
*
* vget and vget_finish may fail to lock the vnode if they lose a race against
* it being doomed. LK_RETRY can be passed in flags to lock it anyway.
*
* Consumers which don't guarantee liveness of the vnode can use SMR to
* try to get a reference. Note this operation can fail since the vnode
* may be awaiting getting freed by the time they get to it.
*/
enum vgetstate
vget_prep_smr(struct vnode *vp)
{
enum vgetstate vs;
VFS_SMR_ASSERT_ENTERED();
if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
vs = VGET_USECOUNT;
} else {
if (vhold_smr(vp))
vs = VGET_HOLDCNT;
else
vs = VGET_NONE;
}
return (vs);
}
enum vgetstate
vget_prep(struct vnode *vp)
{
enum vgetstate vs;
if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
vs = VGET_USECOUNT;
} else {
vhold(vp);
vs = VGET_HOLDCNT;
}
return (vs);
}
void
vget_abort(struct vnode *vp, enum vgetstate vs)
{
switch (vs) {
case VGET_USECOUNT:
vrele(vp);
break;
case VGET_HOLDCNT:
vdrop(vp);
break;
default:
__assert_unreachable();
}
}
int
vget(struct vnode *vp, int flags)
{
enum vgetstate vs;
vs = vget_prep(vp);
return (vget_finish(vp, flags, vs));
}
int
vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
{
int error;
if ((flags & LK_INTERLOCK) != 0)
ASSERT_VI_LOCKED(vp, __func__);
else
ASSERT_VI_UNLOCKED(vp, __func__);
VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
VNPASS(vp->v_holdcnt > 0, vp);
VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
error = vn_lock(vp, flags);
if (__predict_false(error != 0)) {
vget_abort(vp, vs);
CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
vp);
return (error);
}
vget_finish_ref(vp, vs);
return (0);
}
void
vget_finish_ref(struct vnode *vp, enum vgetstate vs)
{
int old;
VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
VNPASS(vp->v_holdcnt > 0, vp);
VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
if (vs == VGET_USECOUNT)
return;
/*
* We hold the vnode. If the usecount is 0 it will be utilized to keep
* the vnode around. Otherwise someone else lended their hold count and
* we have to drop ours.
*/
old = atomic_fetchadd_int(&vp->v_usecount, 1);
VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
if (old != 0) {
#ifdef INVARIANTS
old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
#else
refcount_release(&vp->v_holdcnt);
#endif
}
}
void
vref(struct vnode *vp)
{
enum vgetstate vs;
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
vs = vget_prep(vp);
vget_finish_ref(vp, vs);
}
void
vrefact(struct vnode *vp)
{
int old __diagused;
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
old = refcount_acquire(&vp->v_usecount);
VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
}
void
vlazy(struct vnode *vp)
{
struct mount *mp;
VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
if ((vp->v_mflag & VMP_LAZYLIST) != 0)
return;
/*
* We may get here for inactive routines after the vnode got doomed.
*/
if (VN_IS_DOOMED(vp))
return;
mp = vp->v_mount;
mtx_lock(&mp->mnt_listmtx);
if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
vp->v_mflag |= VMP_LAZYLIST;
TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
mp->mnt_lazyvnodelistsize++;
}
mtx_unlock(&mp->mnt_listmtx);
}
static void
vunlazy(struct vnode *vp)
{
struct mount *mp;
ASSERT_VI_LOCKED(vp, __func__);
VNPASS(!VN_IS_DOOMED(vp), vp);
mp = vp->v_mount;
mtx_lock(&mp->mnt_listmtx);
VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
/*
* Don't remove the vnode from the lazy list if another thread
* has increased the hold count. It may have re-enqueued the
* vnode to the lazy list and is now responsible for its
* removal.
*/
if (vp->v_holdcnt == 0) {
vp->v_mflag &= ~VMP_LAZYLIST;
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
mp->mnt_lazyvnodelistsize--;
}
mtx_unlock(&mp->mnt_listmtx);
}
/*
* This routine is only meant to be called from vgonel prior to dooming
* the vnode.
*/
static void
vunlazy_gone(struct vnode *vp)
{
struct mount *mp;
ASSERT_VOP_ELOCKED(vp, __func__);
ASSERT_VI_LOCKED(vp, __func__);
VNPASS(!VN_IS_DOOMED(vp), vp);
if (vp->v_mflag & VMP_LAZYLIST) {
mp = vp->v_mount;
mtx_lock(&mp->mnt_listmtx);
VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
vp->v_mflag &= ~VMP_LAZYLIST;
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
mp->mnt_lazyvnodelistsize--;
mtx_unlock(&mp->mnt_listmtx);
}
}
static void
vdefer_inactive(struct vnode *vp)
{
ASSERT_VI_LOCKED(vp, __func__);
VNPASS(vp->v_holdcnt > 0, vp);
if (VN_IS_DOOMED(vp)) {
vdropl(vp);
return;
}
if (vp->v_iflag & VI_DEFINACT) {
VNPASS(vp->v_holdcnt > 1, vp);
vdropl(vp);
return;
}
if (vp->v_usecount > 0) {
vp->v_iflag &= ~VI_OWEINACT;
vdropl(vp);
return;
}
vlazy(vp);
vp->v_iflag |= VI_DEFINACT;
VI_UNLOCK(vp);
atomic_add_long(&deferred_inact, 1);
}
static void
vdefer_inactive_unlocked(struct vnode *vp)
{
VI_LOCK(vp);
if ((vp->v_iflag & VI_OWEINACT) == 0) {
vdropl(vp);
return;
}
vdefer_inactive(vp);
}
enum vput_op { VRELE, VPUT, VUNREF };
/*
* Handle ->v_usecount transitioning to 0.
*
* By releasing the last usecount we take ownership of the hold count which
* provides liveness of the vnode, meaning we have to vdrop.
*
* For all vnodes we may need to perform inactive processing. It requires an
* exclusive lock on the vnode, while it is legal to call here with only a
* shared lock (or no locks). If locking the vnode in an expected manner fails,
* inactive processing gets deferred to the syncer.
*
* XXX Some filesystems pass in an exclusively locked vnode and strongly depend
* on the lock being held all the way until VOP_INACTIVE. This in particular
* happens with UFS which adds half-constructed vnodes to the hash, where they
* can be found by other code.
*/
static void
vput_final(struct vnode *vp, enum vput_op func)
{
int error;
bool want_unlock;
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
VNPASS(vp->v_holdcnt > 0, vp);
VI_LOCK(vp);
/*
* By the time we got here someone else might have transitioned
* the count back to > 0.
*/
if (vp->v_usecount > 0)
goto out;
/*
* If the vnode is doomed vgone already performed inactive processing
* (if needed).
*/
if (VN_IS_DOOMED(vp))
goto out;
if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
goto out;
if (vp->v_iflag & VI_DOINGINACT)
goto out;
/*
* Locking operations here will drop the interlock and possibly the
* vnode lock, opening a window where the vnode can get doomed all the
* while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
* perform inactive.
*/
vp->v_iflag |= VI_OWEINACT;
want_unlock = false;
error = 0;
switch (func) {
case VRELE:
switch (VOP_ISLOCKED(vp)) {
case LK_EXCLUSIVE:
break;
case LK_EXCLOTHER:
case 0:
want_unlock = true;
error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
VI_LOCK(vp);
break;
default:
/*
* The lock has at least one sharer, but we have no way
* to conclude whether this is us. Play it safe and
* defer processing.
*/
error = EAGAIN;
break;
}
break;
case VPUT:
want_unlock = true;
if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
LK_NOWAIT);
VI_LOCK(vp);
}
break;
case VUNREF:
if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
VI_LOCK(vp);
}
break;
}
if (error == 0) {
if (func == VUNREF) {
VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
("recursive vunref"));
vp->v_vflag |= VV_UNREF;
}
for (;;) {
error = vinactive(vp);
if (want_unlock)
VOP_UNLOCK(vp);
if (error != ERELOOKUP || !want_unlock)
break;
VOP_LOCK(vp, LK_EXCLUSIVE);
}
if (func == VUNREF)
vp->v_vflag &= ~VV_UNREF;
vdropl(vp);
} else {
vdefer_inactive(vp);
}
return;
out:
if (func == VPUT)
VOP_UNLOCK(vp);
vdropl(vp);
}
/*
* Decrement ->v_usecount for a vnode.
*
* Releasing the last use count requires additional processing, see vput_final
* above for details.
*
* Comment above each variant denotes lock state on entry and exit.
*/
/*
* in: any
* out: same as passed in
*/
void
vrele(struct vnode *vp)
{
ASSERT_VI_UNLOCKED(vp, __func__);
if (!refcount_release(&vp->v_usecount))
return;
vput_final(vp, VRELE);
}
/*
* in: locked
* out: unlocked
*/
void
vput(struct vnode *vp)
{
ASSERT_VOP_LOCKED(vp, __func__);
ASSERT_VI_UNLOCKED(vp, __func__);
if (!refcount_release(&vp->v_usecount)) {
VOP_UNLOCK(vp);
return;
}
vput_final(vp, VPUT);
}
/*
* in: locked
* out: locked
*/
void
vunref(struct vnode *vp)
{
ASSERT_VOP_LOCKED(vp, __func__);
ASSERT_VI_UNLOCKED(vp, __func__);
if (!refcount_release(&vp->v_usecount))
return;
vput_final(vp, VUNREF);
}
void
vhold(struct vnode *vp)
{
int old;
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
("%s: wrong hold count %d", __func__, old));
if (old == 0)
vfs_freevnodes_dec();
}
void
vholdnz(struct vnode *vp)
{
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
#ifdef INVARIANTS
int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
("%s: wrong hold count %d", __func__, old));
#else
atomic_add_int(&vp->v_holdcnt, 1);
#endif
}
/*
* Grab a hold count unless the vnode is freed.
*
* Only use this routine if vfs smr is the only protection you have against
* freeing the vnode.
*
* The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
* is not set. After the flag is set the vnode becomes immutable to anyone but
* the thread which managed to set the flag.
*
* It may be tempting to replace the loop with:
* count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
* if (count & VHOLD_NO_SMR) {
* backpedal and error out;
* }
*
* However, while this is more performant, it hinders debugging by eliminating
* the previously mentioned invariant.
*/
bool
vhold_smr(struct vnode *vp)
{
int count;
VFS_SMR_ASSERT_ENTERED();
count = atomic_load_int(&vp->v_holdcnt);
for (;;) {
if (count & VHOLD_NO_SMR) {
VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
("non-zero hold count with flags %d\n", count));
return (false);
}
VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
if (count == 0)
vfs_freevnodes_dec();
return (true);
}
}
}
/*
* Hold a free vnode for recycling.
*
* Note: vnode_init references this comment.
*
* Attempts to recycle only need the global vnode list lock and have no use for
* SMR.
*
* However, vnodes get inserted into the global list before they get fully
* initialized and stay there until UMA decides to free the memory. This in
* particular means the target can be found before it becomes usable and after
* it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
* VHOLD_NO_SMR.
*
* Note: the vnode may gain more references after we transition the count 0->1.
*/
static bool
vhold_recycle_free(struct vnode *vp)
{
int count;
mtx_assert(&vnode_list_mtx, MA_OWNED);
count = atomic_load_int(&vp->v_holdcnt);
for (;;) {
if (count & VHOLD_NO_SMR) {
VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
("non-zero hold count with flags %d\n", count));
return (false);
}
VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
if (count > 0) {
return (false);
}
if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
vfs_freevnodes_dec();
return (true);
}
}
}
static void __noinline
vdbatch_process(struct vdbatch *vd)
{
struct vnode *vp;
int i;
mtx_assert(&vd->lock, MA_OWNED);
MPASS(curthread->td_pinned > 0);
MPASS(vd->index == VDBATCH_SIZE);
/*
* Attempt to requeue the passed batch, but give up easily.
*
* Despite batching the mechanism is prone to transient *significant*
* lock contention, where vnode_list_mtx becomes the primary bottleneck
* if multiple CPUs get here (one real-world example is highly parallel
* do-nothing make , which will stat *tons* of vnodes). Since it is
* quasi-LRU (read: not that great even if fully honoured) just dodge
* the problem. Parties which don't like it are welcome to implement
* something better.
*/
critical_enter();
if (mtx_trylock(&vnode_list_mtx)) {
for (i = 0; i < VDBATCH_SIZE; i++) {
vp = vd->tab[i];
vd->tab[i] = NULL;
TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
MPASS(vp->v_dbatchcpu != NOCPU);
vp->v_dbatchcpu = NOCPU;
}
mtx_unlock(&vnode_list_mtx);
} else {
counter_u64_add(vnode_skipped_requeues, 1);
for (i = 0; i < VDBATCH_SIZE; i++) {
vp = vd->tab[i];
vd->tab[i] = NULL;
MPASS(vp->v_dbatchcpu != NOCPU);
vp->v_dbatchcpu = NOCPU;
}
}
vd->index = 0;
critical_exit();
}
static void
vdbatch_enqueue(struct vnode *vp)
{
struct vdbatch *vd;
ASSERT_VI_LOCKED(vp, __func__);
VNPASS(!VN_IS_DOOMED(vp), vp);
if (vp->v_dbatchcpu != NOCPU) {
VI_UNLOCK(vp);
return;
}
sched_pin();
vd = DPCPU_PTR(vd);
mtx_lock(&vd->lock);
MPASS(vd->index < VDBATCH_SIZE);
MPASS(vd->tab[vd->index] == NULL);
/*
* A hack: we depend on being pinned so that we know what to put in
* ->v_dbatchcpu.
*/
vp->v_dbatchcpu = curcpu;
vd->tab[vd->index] = vp;
vd->index++;
VI_UNLOCK(vp);
if (vd->index == VDBATCH_SIZE)
vdbatch_process(vd);
mtx_unlock(&vd->lock);
sched_unpin();
}
/*
* This routine must only be called for vnodes which are about to be
* deallocated. Supporting dequeue for arbitrary vndoes would require
* validating that the locked batch matches.
*/
static void
vdbatch_dequeue(struct vnode *vp)
{
struct vdbatch *vd;
int i;
short cpu;
VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
cpu = vp->v_dbatchcpu;
if (cpu == NOCPU)
return;
vd = DPCPU_ID_PTR(cpu, vd);
mtx_lock(&vd->lock);
for (i = 0; i < vd->index; i++) {
if (vd->tab[i] != vp)
continue;
vp->v_dbatchcpu = NOCPU;
vd->index--;
vd->tab[i] = vd->tab[vd->index];
vd->tab[vd->index] = NULL;
break;
}
mtx_unlock(&vd->lock);
/*
* Either we dequeued the vnode above or the target CPU beat us to it.
*/
MPASS(vp->v_dbatchcpu == NOCPU);
}
/*
* Drop the hold count of the vnode.
*
* It will only get freed if this is the last hold *and* it has been vgone'd.
*
* Because the vnode vm object keeps a hold reference on the vnode if
* there is at least one resident non-cached page, the vnode cannot
* leave the active list without the page cleanup done.
*/
static void __noinline
vdropl_final(struct vnode *vp)
{
ASSERT_VI_LOCKED(vp, __func__);
VNPASS(VN_IS_DOOMED(vp), vp);
/*
* Set the VHOLD_NO_SMR flag.
*
* We may be racing against vhold_smr. If they win we can just pretend
* we never got this far, they will vdrop later.
*/
if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
vfs_freevnodes_inc();
VI_UNLOCK(vp);
/*
* We lost the aforementioned race. Any subsequent access is
* invalid as they might have managed to vdropl on their own.
*/
return;
}
/*
* Don't bump freevnodes as this one is going away.
*/
freevnode(vp);
}
void
vdrop(struct vnode *vp)
{
ASSERT_VI_UNLOCKED(vp, __func__);
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
if (refcount_release_if_not_last(&vp->v_holdcnt))
return;
VI_LOCK(vp);
vdropl(vp);
}
static void __always_inline
vdropl_impl(struct vnode *vp, bool enqueue)
{
ASSERT_VI_LOCKED(vp, __func__);
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
if (!refcount_release(&vp->v_holdcnt)) {
VI_UNLOCK(vp);
return;
}
VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
if (VN_IS_DOOMED(vp)) {
vdropl_final(vp);
return;
}
vfs_freevnodes_inc();
if (vp->v_mflag & VMP_LAZYLIST) {
vunlazy(vp);
}
if (!enqueue) {
VI_UNLOCK(vp);
return;
}
/*
* Also unlocks the interlock. We can't assert on it as we
* released our hold and by now the vnode might have been
* freed.
*/
vdbatch_enqueue(vp);
}
void
vdropl(struct vnode *vp)
{
vdropl_impl(vp, true);
}
/*
* vdrop a vnode when recycling
*
* This is a special case routine only to be used when recycling, differs from
* regular vdrop by not requeieing the vnode on LRU.
*
* Consider a case where vtryrecycle continuously fails with all vnodes (due to
* e.g., frozen writes on the filesystem), filling the batch and causing it to
* be requeued. Then vnlru will end up revisiting the same vnodes. This is a
* loop which can last for as long as writes are frozen.
*/
static void
vdropl_recycle(struct vnode *vp)
{
vdropl_impl(vp, false);
}
static void
vdrop_recycle(struct vnode *vp)
{
VI_LOCK(vp);
vdropl_recycle(vp);
}
/*
* Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
* flags. DOINGINACT prevents us from recursing in calls to vinactive.
*/
static int
vinactivef(struct vnode *vp)
{
int error;
ASSERT_VOP_ELOCKED(vp, "vinactive");
ASSERT_VI_LOCKED(vp, "vinactive");
VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
vp->v_iflag |= VI_DOINGINACT;
vp->v_iflag &= ~VI_OWEINACT;
VI_UNLOCK(vp);
/*
* Before moving off the active list, we must be sure that any
* modified pages are converted into the vnode's dirty
* buffers, since these will no longer be checked once the
* vnode is on the inactive list.
*
* The write-out of the dirty pages is asynchronous. At the
* point that VOP_INACTIVE() is called, there could still be
* pending I/O and dirty pages in the object.
*/
if ((vp->v_vflag & VV_NOSYNC) == 0)
vnode_pager_clean_async(vp);
error = VOP_INACTIVE(vp);
VI_LOCK(vp);
VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
vp->v_iflag &= ~VI_DOINGINACT;
return (error);
}
int
vinactive(struct vnode *vp)
{
ASSERT_VOP_ELOCKED(vp, "vinactive");
ASSERT_VI_LOCKED(vp, "vinactive");
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
if ((vp->v_iflag & VI_OWEINACT) == 0)
return (0);
if (vp->v_iflag & VI_DOINGINACT)
return (0);
if (vp->v_usecount > 0) {
vp->v_iflag &= ~VI_OWEINACT;
return (0);
}
return (vinactivef(vp));
}
/*
* Remove any vnodes in the vnode table belonging to mount point mp.
*
* If FORCECLOSE is not specified, there should not be any active ones,
* return error if any are found (nb: this is a user error, not a
* system error). If FORCECLOSE is specified, detach any active vnodes
* that are found.
*
* If WRITECLOSE is set, only flush out regular file vnodes open for
* writing.
*
* SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
*
* `rootrefs' specifies the base reference count for the root vnode
* of this filesystem. The root vnode is considered busy if its
* v_usecount exceeds this value. On a successful return, vflush(, td)
* will call vrele() on the root vnode exactly rootrefs times.
* If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
* be zero.
*/
#ifdef DIAGNOSTIC
static int busyprt = 0; /* print out busy vnodes */
SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
#endif
int
vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
{
struct vnode *vp, *mvp, *rootvp = NULL;
struct vattr vattr;
int busy = 0, error;
CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
rootrefs, flags);
if (rootrefs > 0) {
KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
("vflush: bad args"));
/*
* Get the filesystem root vnode. We can vput() it
* immediately, since with rootrefs > 0, it won't go away.
*/
if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
__func__, error);
return (error);
}
vput(rootvp);
}
loop:
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
vholdl(vp);
error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
if (error) {
vdrop(vp);
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
goto loop;
}
/*
* Skip over a vnodes marked VV_SYSTEM.
*/
if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
VOP_UNLOCK(vp);
vdrop(vp);
continue;
}
/*
* If WRITECLOSE is set, flush out unlinked but still open
* files (even if open only for reading) and regular file
* vnodes open for writing.
*/
if (flags & WRITECLOSE) {
vnode_pager_clean_async(vp);
do {
error = VOP_FSYNC(vp, MNT_WAIT, td);
} while (error == ERELOOKUP);
if (error != 0) {
VOP_UNLOCK(vp);
vdrop(vp);
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
return (error);
}
error = VOP_GETATTR(vp, &vattr, td->td_ucred);
VI_LOCK(vp);
if ((vp->v_type == VNON ||
(error == 0 && vattr.va_nlink > 0)) &&
(vp->v_writecount <= 0 || vp->v_type != VREG)) {
VOP_UNLOCK(vp);
vdropl(vp);
continue;
}
} else
VI_LOCK(vp);
/*
* With v_usecount == 0, all we need to do is clear out the
* vnode data structures and we are done.
*
* If FORCECLOSE is set, forcibly close the vnode.
*/
if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
vgonel(vp);
} else {
busy++;
#ifdef DIAGNOSTIC
if (busyprt)
vn_printf(vp, "vflush: busy vnode ");
#endif
}
VOP_UNLOCK(vp);
vdropl(vp);
}
if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
/*
* If just the root vnode is busy, and if its refcount
* is equal to `rootrefs', then go ahead and kill it.
*/
VI_LOCK(rootvp);
KASSERT(busy > 0, ("vflush: not busy"));
VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
("vflush: usecount %d < rootrefs %d",
rootvp->v_usecount, rootrefs));
if (busy == 1 && rootvp->v_usecount == rootrefs) {
VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
vgone(rootvp);
VOP_UNLOCK(rootvp);
busy = 0;
} else
VI_UNLOCK(rootvp);
}
if (busy) {
CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
busy);
return (EBUSY);
}
for (; rootrefs > 0; rootrefs--)
vrele(rootvp);
return (0);
}
/*
* Recycle an unused vnode.
*/
int
vrecycle(struct vnode *vp)
{
int recycled;
VI_LOCK(vp);
recycled = vrecyclel(vp);
VI_UNLOCK(vp);
return (recycled);
}
/*
* vrecycle, with the vp interlock held.
*/
int
vrecyclel(struct vnode *vp)
{
int recycled;
ASSERT_VOP_ELOCKED(vp, __func__);
ASSERT_VI_LOCKED(vp, __func__);
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
recycled = 0;
if (vp->v_usecount == 0) {
recycled = 1;
vgonel(vp);
}
return (recycled);
}
/*
* Eliminate all activity associated with a vnode
* in preparation for reuse.
*/
void
vgone(struct vnode *vp)
{
VI_LOCK(vp);
vgonel(vp);
VI_UNLOCK(vp);
}
/*
* Notify upper mounts about reclaimed or unlinked vnode.
*/
void
vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
{
struct mount *mp;
struct mount_upper_node *ump;
mp = atomic_load_ptr(&vp->v_mount);
if (mp == NULL)
return;
if (TAILQ_EMPTY(&mp->mnt_notify))
return;
MNT_ILOCK(mp);
mp->mnt_upper_pending++;
KASSERT(mp->mnt_upper_pending > 0,
("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
MNT_IUNLOCK(mp);
switch (event) {
case VFS_NOTIFY_UPPER_RECLAIM:
VFS_RECLAIM_LOWERVP(ump->mp, vp);
break;
case VFS_NOTIFY_UPPER_UNLINK:
VFS_UNLINK_LOWERVP(ump->mp, vp);
break;
}
MNT_ILOCK(mp);
}
mp->mnt_upper_pending--;
if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
mp->mnt_upper_pending == 0) {
mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
wakeup(&mp->mnt_uppers);
}
MNT_IUNLOCK(mp);
}
/*
* vgone, with the vp interlock held.
*/
static void
vgonel(struct vnode *vp)
{
struct thread *td;
struct mount *mp;
vm_object_t object;
bool active, doinginact, oweinact;
ASSERT_VOP_ELOCKED(vp, "vgonel");
ASSERT_VI_LOCKED(vp, "vgonel");
VNASSERT(vp->v_holdcnt, vp,
("vgonel: vp %p has no reference.", vp));
CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
td = curthread;
/*
* Don't vgonel if we're already doomed.
*/
if (VN_IS_DOOMED(vp)) {
VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
vn_get_state(vp) == VSTATE_DEAD, vp);
return;
}
/*
* Paired with freevnode.
*/
vn_seqc_write_begin_locked(vp);
vunlazy_gone(vp);
vn_irflag_set_locked(vp, VIRF_DOOMED);
vn_set_state(vp, VSTATE_DESTROYING);
/*
* Check to see if the vnode is in use. If so, we have to
* call VOP_CLOSE() and VOP_INACTIVE().
*
* It could be that VOP_INACTIVE() requested reclamation, in
* which case we should avoid recursion, so check
* VI_DOINGINACT. This is not precise but good enough.
*/
active = vp->v_usecount > 0;
oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
/*
* If we need to do inactive VI_OWEINACT will be set.
*/
if (vp->v_iflag & VI_DEFINACT) {
VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
vp->v_iflag &= ~VI_DEFINACT;
vdropl(vp);
} else {
VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
VI_UNLOCK(vp);
}
cache_purge_vgone(vp);
vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
/*
* If purging an active vnode, it must be closed and
* deactivated before being reclaimed.
*/
if (active)
VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
if (!doinginact) {
do {
if (oweinact || active) {
VI_LOCK(vp);
vinactivef(vp);
oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
VI_UNLOCK(vp);
}
} while (oweinact);
}
if (vp->v_type == VSOCK)
vfs_unp_reclaim(vp);
/*
* Clean out any buffers associated with the vnode.
* If the flush fails, just toss the buffers.
*/
mp = NULL;
if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
(void) vn_start_secondary_write(vp, &mp, V_WAIT);
if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
while (vinvalbuf(vp, 0, 0, 0) != 0)
;
}
BO_LOCK(&vp->v_bufobj);
KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
vp->v_bufobj.bo_clean.bv_cnt == 0,
("vp %p bufobj not invalidated", vp));
/*
* For VMIO bufobj, BO_DEAD is set later, or in
* vm_object_terminate() after the object's page queue is
* flushed.
*/
object = vp->v_bufobj.bo_object;
if (object == NULL)
vp->v_bufobj.bo_flag |= BO_DEAD;
BO_UNLOCK(&vp->v_bufobj);
/*
* Handle the VM part. Tmpfs handles v_object on its own (the
* OBJT_VNODE check). Nullfs or other bypassing filesystems
* should not touch the object borrowed from the lower vnode
* (the handle check).
*/
if (object != NULL && object->type == OBJT_VNODE &&
object->handle == vp)
vnode_destroy_vobject(vp);
/*
* Reclaim the vnode.
*/
if (VOP_RECLAIM(vp))
panic("vgone: cannot reclaim");
if (mp != NULL)
vn_finished_secondary_write(mp);
VNASSERT(vp->v_object == NULL, vp,
("vop_reclaim left v_object vp=%p", vp));
/*
* Clear the advisory locks and wake up waiting threads.
*/
if (vp->v_lockf != NULL) {
(void)VOP_ADVLOCKPURGE(vp);
vp->v_lockf = NULL;
}
/*
* Delete from old mount point vnode list.
*/
if (vp->v_mount == NULL) {
VI_LOCK(vp);
} else {
delmntque(vp);
ASSERT_VI_LOCKED(vp, "vgonel 2");
}
/*
* Done with purge, reset to the standard lock and invalidate
* the vnode.
*/
vp->v_vnlock = &vp->v_lock;
vp->v_op = &dead_vnodeops;
vp->v_type = VBAD;
vn_set_state(vp, VSTATE_DEAD);
}
/*
* Print out a description of a vnode.
*/
static const char *const vtypename[] = {
[VNON] = "VNON",
[VREG] = "VREG",
[VDIR] = "VDIR",
[VBLK] = "VBLK",
[VCHR] = "VCHR",
[VLNK] = "VLNK",
[VSOCK] = "VSOCK",
[VFIFO] = "VFIFO",
[VBAD] = "VBAD",
[VMARKER] = "VMARKER",
};
_Static_assert(nitems(vtypename) == VLASTTYPE + 1,
"vnode type name not added to vtypename");
static const char *const vstatename[] = {
[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
[VSTATE_DEAD] = "VSTATE_DEAD",
};
_Static_assert(nitems(vstatename) == VLASTSTATE + 1,
"vnode state name not added to vstatename");
_Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
"new hold count flag not added to vn_printf");
void
vn_printf(struct vnode *vp, const char *fmt, ...)
{
va_list ap;
char buf[256], buf2[16];
u_long flags;
u_int holdcnt;
short irflag;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf("%p: ", (void *)vp);
printf("type %s state %s op %p\n", vtypename[vp->v_type],
vstatename[vp->v_state], vp->v_op);
holdcnt = atomic_load_int(&vp->v_holdcnt);
printf(" usecount %d, writecount %d, refcount %d seqc users %d",
vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
vp->v_seqc_users);
switch (vp->v_type) {
case VDIR:
printf(" mountedhere %p\n", vp->v_mountedhere);
break;
case VCHR:
printf(" rdev %p\n", vp->v_rdev);
break;
case VSOCK:
printf(" socket %p\n", vp->v_unpcb);
break;
case VFIFO:
printf(" fifoinfo %p\n", vp->v_fifoinfo);
break;
default:
printf("\n");
break;
}
buf[0] = '\0';
buf[1] = '\0';
if (holdcnt & VHOLD_NO_SMR)
strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
printf(" hold count flags (%s)\n", buf + 1);
buf[0] = '\0';
buf[1] = '\0';
irflag = vn_irflag_read(vp);
if (irflag & VIRF_DOOMED)
strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
if (irflag & VIRF_PGREAD)
strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
if (irflag & VIRF_MOUNTPOINT)
strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
if (irflag & VIRF_TEXT_REF)
strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
if (flags != 0) {
snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
strlcat(buf, buf2, sizeof(buf));
}
if (vp->v_vflag & VV_ROOT)
strlcat(buf, "|VV_ROOT", sizeof(buf));
if (vp->v_vflag & VV_ISTTY)
strlcat(buf, "|VV_ISTTY", sizeof(buf));
if (vp->v_vflag & VV_NOSYNC)
strlcat(buf, "|VV_NOSYNC", sizeof(buf));
if (vp->v_vflag & VV_ETERNALDEV)
strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
if (vp->v_vflag & VV_CACHEDLABEL)
strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
if (vp->v_vflag & VV_VMSIZEVNLOCK)
strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
if (vp->v_vflag & VV_COPYONWRITE)
strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
if (vp->v_vflag & VV_SYSTEM)
strlcat(buf, "|VV_SYSTEM", sizeof(buf));
if (vp->v_vflag & VV_PROCDEP)
strlcat(buf, "|VV_PROCDEP", sizeof(buf));
if (vp->v_vflag & VV_DELETED)
strlcat(buf, "|VV_DELETED", sizeof(buf));
if (vp->v_vflag & VV_MD)
strlcat(buf, "|VV_MD", sizeof(buf));
if (vp->v_vflag & VV_FORCEINSMQ)
strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
if (vp->v_vflag & VV_READLINK)
strlcat(buf, "|VV_READLINK", sizeof(buf));
flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
if (flags != 0) {
snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
strlcat(buf, buf2, sizeof(buf));
}
if (vp->v_iflag & VI_MOUNT)
strlcat(buf, "|VI_MOUNT", sizeof(buf));
if (vp->v_iflag & VI_DOINGINACT)
strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
if (vp->v_iflag & VI_OWEINACT)
strlcat(buf, "|VI_OWEINACT", sizeof(buf));
if (vp->v_iflag & VI_DEFINACT)
strlcat(buf, "|VI_DEFINACT", sizeof(buf));
if (vp->v_iflag & VI_FOPENING)
strlcat(buf, "|VI_FOPENING", sizeof(buf));
flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
if (flags != 0) {
snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
strlcat(buf, buf2, sizeof(buf));
}
if (vp->v_mflag & VMP_LAZYLIST)
strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
flags = vp->v_mflag & ~(VMP_LAZYLIST);
if (flags != 0) {
snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
strlcat(buf, buf2, sizeof(buf));
}
printf(" flags (%s)", buf + 1);
if (mtx_owned(VI_MTX(vp)))
printf(" VI_LOCKed");
printf("\n");
if (vp->v_object != NULL)
printf(" v_object %p ref %d pages %d "
"cleanbuf %d dirtybuf %d\n",
vp->v_object, vp->v_object->ref_count,
vp->v_object->resident_page_count,
vp->v_bufobj.bo_clean.bv_cnt,
vp->v_bufobj.bo_dirty.bv_cnt);
printf(" ");
lockmgr_printinfo(vp->v_vnlock);
if (vp->v_data != NULL)
VOP_PRINT(vp);
}
#ifdef DDB
/*
* List all of the locked vnodes in the system.
* Called when debugging the kernel.
*/
DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
{
struct mount *mp;
struct vnode *vp;
/*
* Note: because this is DDB, we can't obey the locking semantics
* for these structures, which means we could catch an inconsistent
* state and dereference a nasty pointer. Not much to be done
* about that.
*/
db_printf("Locked vnodes\n");
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
vn_printf(vp, "vnode ");
}
}
}
/*
* Show details about the given vnode.
*/
DB_SHOW_COMMAND(vnode, db_show_vnode)
{
struct vnode *vp;
if (!have_addr)
return;
vp = (struct vnode *)addr;
vn_printf(vp, "vnode ");
}
/*
* Show details about the given mount point.
*/
DB_SHOW_COMMAND(mount, db_show_mount)
{
struct mount *mp;
struct vfsopt *opt;
struct statfs *sp;
struct vnode *vp;
char buf[512];
uint64_t mflags;
u_int flags;
if (!have_addr) {
/* No address given, print short info about all mount points. */
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
db_printf("%p %s on %s (%s)\n", mp,
mp->mnt_stat.f_mntfromname,
mp->mnt_stat.f_mntonname,
mp->mnt_stat.f_fstypename);
if (db_pager_quit)
break;
}
db_printf("\nMore info: show mount <addr>\n");
return;
}
mp = (struct mount *)addr;
db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
buf[0] = '\0';
mflags = mp->mnt_flag;
#define MNT_FLAG(flag) do { \
if (mflags & (flag)) { \
if (buf[0] != '\0') \
strlcat(buf, ", ", sizeof(buf)); \
strlcat(buf, (#flag) + 4, sizeof(buf)); \
mflags &= ~(flag); \
} \
} while (0)
MNT_FLAG(MNT_RDONLY);
MNT_FLAG(MNT_SYNCHRONOUS);
MNT_FLAG(MNT_NOEXEC);
MNT_FLAG(MNT_NOSUID);
MNT_FLAG(MNT_NFS4ACLS);
MNT_FLAG(MNT_UNION);
MNT_FLAG(MNT_ASYNC);
MNT_FLAG(MNT_SUIDDIR);
MNT_FLAG(MNT_SOFTDEP);
MNT_FLAG(MNT_NOSYMFOLLOW);
MNT_FLAG(MNT_GJOURNAL);
MNT_FLAG(MNT_MULTILABEL);
MNT_FLAG(MNT_ACLS);
MNT_FLAG(MNT_NOATIME);
MNT_FLAG(MNT_NOCLUSTERR);
MNT_FLAG(MNT_NOCLUSTERW);
MNT_FLAG(MNT_SUJ);
MNT_FLAG(MNT_EXRDONLY);
MNT_FLAG(MNT_EXPORTED);
MNT_FLAG(MNT_DEFEXPORTED);
MNT_FLAG(MNT_EXPORTANON);
MNT_FLAG(MNT_EXKERB);
MNT_FLAG(MNT_EXPUBLIC);
MNT_FLAG(MNT_LOCAL);
MNT_FLAG(MNT_QUOTA);
MNT_FLAG(MNT_ROOTFS);
MNT_FLAG(MNT_USER);
MNT_FLAG(MNT_IGNORE);
MNT_FLAG(MNT_UPDATE);
MNT_FLAG(MNT_DELEXPORT);
MNT_FLAG(MNT_RELOAD);
MNT_FLAG(MNT_FORCE);
MNT_FLAG(MNT_SNAPSHOT);
MNT_FLAG(MNT_BYFSID);
#undef MNT_FLAG
if (mflags != 0) {
if (buf[0] != '\0')
strlcat(buf, ", ", sizeof(buf));
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
"0x%016jx", mflags);
}
db_printf(" mnt_flag = %s\n", buf);
buf[0] = '\0';
flags = mp->mnt_kern_flag;
#define MNT_KERN_FLAG(flag) do { \
if (flags & (flag)) { \
if (buf[0] != '\0') \
strlcat(buf, ", ", sizeof(buf)); \
strlcat(buf, (#flag) + 5, sizeof(buf)); \
flags &= ~(flag); \
} \
} while (0)
MNT_KERN_FLAG(MNTK_UNMOUNTF);
MNT_KERN_FLAG(MNTK_ASYNC);
MNT_KERN_FLAG(MNTK_SOFTDEP);
MNT_KERN_FLAG(MNTK_NOMSYNC);
MNT_KERN_FLAG(MNTK_DRAINING);
MNT_KERN_FLAG(MNTK_REFEXPIRE);
MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
MNT_KERN_FLAG(MNTK_SHARED_WRITES);
MNT_KERN_FLAG(MNTK_NO_IOPF);
MNT_KERN_FLAG(MNTK_RECURSE);
MNT_KERN_FLAG(MNTK_UPPER_WAITER);
MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
MNT_KERN_FLAG(MNTK_USES_BCACHE);
MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
MNT_KERN_FLAG(MNTK_FPLOOKUP);
MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
MNT_KERN_FLAG(MNTK_NOASYNC);
MNT_KERN_FLAG(MNTK_UNMOUNT);
MNT_KERN_FLAG(MNTK_MWAIT);
MNT_KERN_FLAG(MNTK_SUSPEND);
MNT_KERN_FLAG(MNTK_SUSPEND2);
MNT_KERN_FLAG(MNTK_SUSPENDED);
MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
#undef MNT_KERN_FLAG
if (flags != 0) {
if (buf[0] != '\0')
strlcat(buf, ", ", sizeof(buf));
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
"0x%08x", flags);
}
db_printf(" mnt_kern_flag = %s\n", buf);
db_printf(" mnt_opt = ");
opt = TAILQ_FIRST(mp->mnt_opt);
if (opt != NULL) {
db_printf("%s", opt->name);
opt = TAILQ_NEXT(opt, link);
while (opt != NULL) {
db_printf(", %s", opt->name);
opt = TAILQ_NEXT(opt, link);
}
}
db_printf("\n");
sp = &mp->mnt_stat;
db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
"bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
"ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
"asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
(u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
(uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
(uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
(intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
(intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
(uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
(uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
(u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
db_printf(" mnt_cred = { uid=%u ruid=%u",
(u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
if (jailed(mp->mnt_cred))
db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
db_printf(" }\n");
db_printf(" mnt_ref = %d (with %d in the struct)\n",
vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
db_printf(" mnt_gen = %d\n", mp->mnt_gen);
db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
db_printf(" mnt_lazyvnodelistsize = %d\n",
mp->mnt_lazyvnodelistsize);
db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
db_printf(" mnt_lockref = %d (with %d in the struct)\n",
vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
db_printf(" mnt_secondary_accwrites = %d\n",
mp->mnt_secondary_accwrites);
db_printf(" mnt_gjprovider = %s\n",
mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
db_printf("\n\nList of active vnodes\n");
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
vn_printf(vp, "vnode ");
if (db_pager_quit)
break;
}
}
db_printf("\n\nList of inactive vnodes\n");
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
vn_printf(vp, "vnode ");
if (db_pager_quit)
break;
}
}
}
#endif /* DDB */
/*
* Fill in a struct xvfsconf based on a struct vfsconf.
*/
static int
vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
{
struct xvfsconf xvfsp;
bzero(&xvfsp, sizeof(xvfsp));
strcpy(xvfsp.vfc_name, vfsp->vfc_name);
xvfsp.vfc_typenum = vfsp->vfc_typenum;
xvfsp.vfc_refcount = vfsp->vfc_refcount;
xvfsp.vfc_flags = vfsp->vfc_flags;
/*
* These are unused in userland, we keep them
* to not break binary compatibility.
*/
xvfsp.vfc_vfsops = NULL;
xvfsp.vfc_next = NULL;
return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
}
#ifdef COMPAT_FREEBSD32
struct xvfsconf32 {
uint32_t vfc_vfsops;
char vfc_name[MFSNAMELEN];
int32_t vfc_typenum;
int32_t vfc_refcount;
int32_t vfc_flags;
uint32_t vfc_next;
};
static int
vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
{
struct xvfsconf32 xvfsp;
bzero(&xvfsp, sizeof(xvfsp));
strcpy(xvfsp.vfc_name, vfsp->vfc_name);
xvfsp.vfc_typenum = vfsp->vfc_typenum;
xvfsp.vfc_refcount = vfsp->vfc_refcount;
xvfsp.vfc_flags = vfsp->vfc_flags;
return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
}
#endif
/*
* Top level filesystem related information gathering.
*/
static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
{
struct vfsconf *vfsp;
int error;
error = 0;
vfsconf_slock();
TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
#ifdef COMPAT_FREEBSD32
if (req->flags & SCTL_MASK32)
error = vfsconf2x32(req, vfsp);
else
#endif
error = vfsconf2x(req, vfsp);
if (error)
break;
}
vfsconf_sunlock();
return (error);
}
SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
"S,xvfsconf", "List of all configured filesystems");
#ifndef BURN_BRIDGES
static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1 - 1; /* XXX */
u_int namelen = arg2 + 1; /* XXX */
struct vfsconf *vfsp;
log(LOG_WARNING, "userland calling deprecated sysctl, "
"please rebuild world\n");
#if 1 || defined(COMPAT_PRELITE2)
/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
if (namelen == 1)
return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
#endif
switch (name[1]) {
case VFS_MAXTYPENUM:
if (namelen != 2)
return (ENOTDIR);
return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
case VFS_CONF:
if (namelen != 3)
return (ENOTDIR); /* overloaded */
vfsconf_slock();
TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
if (vfsp->vfc_typenum == name[2])
break;
}
vfsconf_sunlock();
if (vfsp == NULL)
return (EOPNOTSUPP);
#ifdef COMPAT_FREEBSD32
if (req->flags & SCTL_MASK32)
return (vfsconf2x32(req, vfsp));
else
#endif
return (vfsconf2x(req, vfsp));
}
return (EOPNOTSUPP);
}
static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
CTLFLAG_MPSAFE, vfs_sysctl,
"Generic filesystem");
#if 1 || defined(COMPAT_PRELITE2)
static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
{
int error;
struct vfsconf *vfsp;
struct ovfsconf ovfs;
vfsconf_slock();
TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
bzero(&ovfs, sizeof(ovfs));
ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
strcpy(ovfs.vfc_name, vfsp->vfc_name);
ovfs.vfc_index = vfsp->vfc_typenum;
ovfs.vfc_refcount = vfsp->vfc_refcount;
ovfs.vfc_flags = vfsp->vfc_flags;
error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
if (error != 0) {
vfsconf_sunlock();
return (error);
}
}
vfsconf_sunlock();
return (0);
}
#endif /* 1 || COMPAT_PRELITE2 */
#endif /* !BURN_BRIDGES */
static void
unmount_or_warn(struct mount *mp)
{
int error;
error = dounmount(mp, MNT_FORCE, curthread);
if (error != 0) {
printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
if (error == EBUSY)
printf("BUSY)\n");
else
printf("%d)\n", error);
}
}
/*
* Unmount all filesystems. The list is traversed in reverse order
* of mounting to avoid dependencies.
*/
void
vfs_unmountall(void)
{
struct mount *mp, *tmp;
CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
/*
* Since this only runs when rebooting, it is not interlocked.
*/
TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
vfs_ref(mp);
/*
* Forcibly unmounting "/dev" before "/" would prevent clean
* unmount of the latter.
*/
if (mp == rootdevmp)
continue;
unmount_or_warn(mp);
}
if (rootdevmp != NULL)
unmount_or_warn(rootdevmp);
}
static void
vfs_deferred_inactive(struct vnode *vp, int lkflags)
{
ASSERT_VI_LOCKED(vp, __func__);
VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
if ((vp->v_iflag & VI_OWEINACT) == 0) {
vdropl(vp);
return;
}
if (vn_lock(vp, lkflags) == 0) {
VI_LOCK(vp);
vinactive(vp);
VOP_UNLOCK(vp);
vdropl(vp);
return;
}
vdefer_inactive_unlocked(vp);
}
static int
vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
{
return (vp->v_iflag & VI_DEFINACT);
}
static void __noinline
vfs_periodic_inactive(struct mount *mp, int flags)
{
struct vnode *vp, *mvp;
int lkflags;
lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
if (flags != MNT_WAIT)
lkflags |= LK_NOWAIT;
MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
if ((vp->v_iflag & VI_DEFINACT) == 0) {
VI_UNLOCK(vp);
continue;
}
vp->v_iflag &= ~VI_DEFINACT;
vfs_deferred_inactive(vp, lkflags);
}
}
static inline bool
vfs_want_msync(struct vnode *vp)
{
struct vm_object *obj;
/*
* This test may be performed without any locks held.
* We rely on vm_object's type stability.
*/
if (vp->v_vflag & VV_NOSYNC)
return (false);
obj = vp->v_object;
return (obj != NULL && vm_object_mightbedirty(obj));
}
static int
vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
{
if (vp->v_vflag & VV_NOSYNC)
return (false);
if (vp->v_iflag & VI_DEFINACT)
return (true);
return (vfs_want_msync(vp));
}
static void __noinline
vfs_periodic_msync_inactive(struct mount *mp, int flags)
{
struct vnode *vp, *mvp;
int lkflags;
bool seen_defer;
lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
if (flags != MNT_WAIT)
lkflags |= LK_NOWAIT;
MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
seen_defer = false;
if (vp->v_iflag & VI_DEFINACT) {
vp->v_iflag &= ~VI_DEFINACT;
seen_defer = true;
}
if (!vfs_want_msync(vp)) {
if (seen_defer)
vfs_deferred_inactive(vp, lkflags);
else
VI_UNLOCK(vp);
continue;
}
if (vget(vp, lkflags) == 0) {
if ((vp->v_vflag & VV_NOSYNC) == 0) {
if (flags == MNT_WAIT)
vnode_pager_clean_sync(vp);
else
vnode_pager_clean_async(vp);
}
vput(vp);
if (seen_defer)
vdrop(vp);
} else {
if (seen_defer)
vdefer_inactive_unlocked(vp);
}
}
}
void
vfs_periodic(struct mount *mp, int flags)
{
CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
vfs_periodic_inactive(mp, flags);
else
vfs_periodic_msync_inactive(mp, flags);
}
static void
destroy_vpollinfo_free(struct vpollinfo *vi)
{
knlist_destroy(&vi->vpi_selinfo.si_note);
mtx_destroy(&vi->vpi_lock);
free(vi, M_VNODEPOLL);
}
static void
destroy_vpollinfo(struct vpollinfo *vi)
{
knlist_clear(&vi->vpi_selinfo.si_note, 1);
seldrain(&vi->vpi_selinfo);
destroy_vpollinfo_free(vi);
}
/*
* Initialize per-vnode helper structure to hold poll-related state.
*/
void
v_addpollinfo(struct vnode *vp)
{
struct vpollinfo *vi;
if (vp->v_pollinfo != NULL)
return;
vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
vfs_knlunlock, vfs_knl_assert_lock);
VI_LOCK(vp);
if (vp->v_pollinfo != NULL) {
VI_UNLOCK(vp);
destroy_vpollinfo_free(vi);
return;
}
vp->v_pollinfo = vi;
VI_UNLOCK(vp);
}
/*
* Record a process's interest in events which might happen to
* a vnode. Because poll uses the historic select-style interface
* internally, this routine serves as both the ``check for any
* pending events'' and the ``record my interest in future events''
* functions. (These are done together, while the lock is held,
* to avoid race conditions.)
*/
int
vn_pollrecord(struct vnode *vp, struct thread *td, int events)
{
v_addpollinfo(vp);
mtx_lock(&vp->v_pollinfo->vpi_lock);
if (vp->v_pollinfo->vpi_revents & events) {
/*
* This leaves events we are not interested
* in available for the other process which
* which presumably had requested them
* (otherwise they would never have been
* recorded).
*/
events &= vp->v_pollinfo->vpi_revents;
vp->v_pollinfo->vpi_revents &= ~events;
mtx_unlock(&vp->v_pollinfo->vpi_lock);
return (events);
}
vp->v_pollinfo->vpi_events |= events;
selrecord(td, &vp->v_pollinfo->vpi_selinfo);
mtx_unlock(&vp->v_pollinfo->vpi_lock);
return (0);
}
/*
* Routine to create and manage a filesystem syncer vnode.
*/
#define sync_close ((int (*)(struct vop_close_args *))nullop)
static int sync_fsync(struct vop_fsync_args *);
static int sync_inactive(struct vop_inactive_args *);
static int sync_reclaim(struct vop_reclaim_args *);
static struct vop_vector sync_vnodeops = {
.vop_bypass = VOP_EOPNOTSUPP,
.vop_close = sync_close,
.vop_fsync = sync_fsync,
.vop_getwritemount = vop_stdgetwritemount,
.vop_inactive = sync_inactive,
.vop_need_inactive = vop_stdneed_inactive,
.vop_reclaim = sync_reclaim,
.vop_lock1 = vop_stdlock,
.vop_unlock = vop_stdunlock,
.vop_islocked = vop_stdislocked,
.vop_fplookup_vexec = VOP_EAGAIN,
.vop_fplookup_symlink = VOP_EAGAIN,
};
VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
/*
* Create a new filesystem syncer vnode for the specified mount point.
*/
void
vfs_allocate_syncvnode(struct mount *mp)
{
struct vnode *vp;
struct bufobj *bo;
static long start, incr, next;
int error;
/* Allocate a new vnode */
error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
if (error != 0)
panic("vfs_allocate_syncvnode: getnewvnode() failed");
vp->v_type = VNON;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
vp->v_vflag |= VV_FORCEINSMQ;
error = insmntque1(vp, mp);
if (error != 0)
panic("vfs_allocate_syncvnode: insmntque() failed");
vp->v_vflag &= ~VV_FORCEINSMQ;
vn_set_state(vp, VSTATE_CONSTRUCTED);
VOP_UNLOCK(vp);
/*
* Place the vnode onto the syncer worklist. We attempt to
* scatter them about on the list so that they will go off
* at evenly distributed times even if all the filesystems
* are mounted at once.
*/
next += incr;
if (next == 0 || next > syncer_maxdelay) {
start /= 2;
incr /= 2;
if (start == 0) {
start = syncer_maxdelay / 2;
incr = syncer_maxdelay;
}
next = start;
}
bo = &vp->v_bufobj;
BO_LOCK(bo);
vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
mtx_lock(&sync_mtx);
sync_vnode_count++;
if (mp->mnt_syncer == NULL) {
mp->mnt_syncer = vp;
vp = NULL;
}
mtx_unlock(&sync_mtx);
BO_UNLOCK(bo);
if (vp != NULL) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
vgone(vp);
vput(vp);
}
}
void
vfs_deallocate_syncvnode(struct mount *mp)
{
struct vnode *vp;
mtx_lock(&sync_mtx);
vp = mp->mnt_syncer;
if (vp != NULL)
mp->mnt_syncer = NULL;
mtx_unlock(&sync_mtx);
if (vp != NULL)
vrele(vp);
}
/*
* Do a lazy sync of the filesystem.
*/
static int
sync_fsync(struct vop_fsync_args *ap)
{
struct vnode *syncvp = ap->a_vp;
struct mount *mp = syncvp->v_mount;
int error, save;
struct bufobj *bo;
/*
* We only need to do something if this is a lazy evaluation.
*/
if (ap->a_waitfor != MNT_LAZY)
return (0);
/*
* Move ourselves to the back of the sync list.
*/
bo = &syncvp->v_bufobj;
BO_LOCK(bo);
vn_syncer_add_to_worklist(bo, syncdelay);
BO_UNLOCK(bo);
/*
* Walk the list of vnodes pushing all that are dirty and
* not already on the sync list.
*/
if (vfs_busy(mp, MBF_NOWAIT) != 0)
return (0);
VOP_UNLOCK(syncvp);
save = curthread_pflags_set(TDP_SYNCIO);
/*
* The filesystem at hand may be idle with free vnodes stored in the
* batch. Return them instead of letting them stay there indefinitely.
*/
vfs_periodic(mp, MNT_NOWAIT);
error = VFS_SYNC(mp, MNT_LAZY);
curthread_pflags_restore(save);
vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
vfs_unbusy(mp);
return (error);
}
/*
* The syncer vnode is no referenced.
*/
static int
sync_inactive(struct vop_inactive_args *ap)
{
vgone(ap->a_vp);
return (0);
}
/*
* The syncer vnode is no longer needed and is being decommissioned.
*
* Modifications to the worklist must be protected by sync_mtx.
*/
static int
sync_reclaim(struct vop_reclaim_args *ap)
{
struct vnode *vp = ap->a_vp;
struct bufobj *bo;
bo = &vp->v_bufobj;
BO_LOCK(bo);
mtx_lock(&sync_mtx);
if (vp->v_mount->mnt_syncer == vp)
vp->v_mount->mnt_syncer = NULL;
if (bo->bo_flag & BO_ONWORKLST) {
LIST_REMOVE(bo, bo_synclist);
syncer_worklist_len--;
sync_vnode_count--;
bo->bo_flag &= ~BO_ONWORKLST;
}
mtx_unlock(&sync_mtx);
BO_UNLOCK(bo);
return (0);
}
int
vn_need_pageq_flush(struct vnode *vp)
{
struct vm_object *obj;
obj = vp->v_object;
return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
vm_object_mightbedirty(obj));
}
/*
* Check if vnode represents a disk device
*/
bool
vn_isdisk_error(struct vnode *vp, int *errp)
{
int error;
if (vp->v_type != VCHR) {
error = ENOTBLK;
goto out;
}
error = 0;
dev_lock();
if (vp->v_rdev == NULL)
error = ENXIO;
else if (vp->v_rdev->si_devsw == NULL)
error = ENXIO;
else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
error = ENOTBLK;
dev_unlock();
out:
*errp = error;
return (error == 0);
}
bool
vn_isdisk(struct vnode *vp)
{
int error;
return (vn_isdisk_error(vp, &error));
}
/*
* VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
* the comment above cache_fplookup for details.
*/
int
vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
{
int error;
VFS_SMR_ASSERT_ENTERED();
/* Check the owner. */
if (cred->cr_uid == file_uid) {
if (file_mode & S_IXUSR)
return (0);
goto out_error;
}
/* Otherwise, check the groups (first match) */
if (groupmember(file_gid, cred)) {
if (file_mode & S_IXGRP)
return (0);
goto out_error;
}
/* Otherwise, check everyone else. */
if (file_mode & S_IXOTH)
return (0);
out_error:
/*
* Permission check failed, but it is possible denial will get overwritten
* (e.g., when root is traversing through a 700 directory owned by someone
* else).
*
* vaccess() calls priv_check_cred which in turn can descent into MAC
* modules overriding this result. It's quite unclear what semantics
* are allowed for them to operate, thus for safety we don't call them
* from within the SMR section. This also means if any such modules
* are present, we have to let the regular lookup decide.
*/
error = priv_check_cred_vfs_lookup_nomac(cred);
switch (error) {
case 0:
return (0);
case EAGAIN:
/*
* MAC modules present.
*/
return (EAGAIN);
case EPERM:
return (EACCES);
default:
return (error);
}
}
/*
* Common filesystem object access control check routine. Accepts a
* vnode's type, "mode", uid and gid, requested access mode, and credentials.
* Returns 0 on success, or an errno on failure.
*/
int
vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
accmode_t accmode, struct ucred *cred)
{
accmode_t dac_granted;
accmode_t priv_granted;
KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
("invalid bit in accmode"));
KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
("VAPPEND without VWRITE"));
/*
* Look for a normal, non-privileged way to access the file/directory
* as requested. If it exists, go with that.
*/
dac_granted = 0;
/* Check the owner. */
if (cred->cr_uid == file_uid) {
dac_granted |= VADMIN;
if (file_mode & S_IXUSR)
dac_granted |= VEXEC;
if (file_mode & S_IRUSR)
dac_granted |= VREAD;
if (file_mode & S_IWUSR)
dac_granted |= (VWRITE | VAPPEND);
if ((accmode & dac_granted) == accmode)
return (0);
goto privcheck;
}
/* Otherwise, check the groups (first match) */
if (groupmember(file_gid, cred)) {
if (file_mode & S_IXGRP)
dac_granted |= VEXEC;
if (file_mode & S_IRGRP)
dac_granted |= VREAD;
if (file_mode & S_IWGRP)
dac_granted |= (VWRITE | VAPPEND);
if ((accmode & dac_granted) == accmode)
return (0);
goto privcheck;
}
/* Otherwise, check everyone else. */
if (file_mode & S_IXOTH)
dac_granted |= VEXEC;
if (file_mode & S_IROTH)
dac_granted |= VREAD;
if (file_mode & S_IWOTH)
dac_granted |= (VWRITE | VAPPEND);
if ((accmode & dac_granted) == accmode)
return (0);
privcheck:
/*
* Build a privilege mask to determine if the set of privileges
* satisfies the requirements when combined with the granted mask
* from above. For each privilege, if the privilege is required,
* bitwise or the request type onto the priv_granted mask.
*/
priv_granted = 0;
if (type == VDIR) {
/*
* For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
* requests, instead of PRIV_VFS_EXEC.
*/
if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
!priv_check_cred(cred, PRIV_VFS_LOOKUP))
priv_granted |= VEXEC;
} else {
/*
* Ensure that at least one execute bit is on. Otherwise,
* a privileged user will always succeed, and we don't want
* this to happen unless the file really is executable.
*/
if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
(file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
!priv_check_cred(cred, PRIV_VFS_EXEC))
priv_granted |= VEXEC;
}
if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
!priv_check_cred(cred, PRIV_VFS_READ))
priv_granted |= VREAD;
if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
!priv_check_cred(cred, PRIV_VFS_WRITE))
priv_granted |= (VWRITE | VAPPEND);
if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
!priv_check_cred(cred, PRIV_VFS_ADMIN))
priv_granted |= VADMIN;
if ((accmode & (priv_granted | dac_granted)) == accmode) {
return (0);
}
return ((accmode & VADMIN) ? EPERM : EACCES);
}
/*
* Credential check based on process requesting service, and per-attribute
* permissions.
*/
int
extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
struct thread *td, accmode_t accmode)
{
/*
* Kernel-invoked always succeeds.
*/
if (cred == NOCRED)
return (0);
/*
* Do not allow privileged processes in jail to directly manipulate
* system attributes.
*/
switch (attrnamespace) {
case EXTATTR_NAMESPACE_SYSTEM:
/* Potentially should be: return (EPERM); */
return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
case EXTATTR_NAMESPACE_USER:
return (VOP_ACCESS(vp, accmode, cred, td));
default:
return (EPERM);
}
}
#ifdef DEBUG_VFS_LOCKS
int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
"Drop into debugger on lock violation");
int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
0, "Check for interlock across VOPs");
int vfs_badlock_print = 1; /* Print lock violations. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
0, "Print lock violations");
int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
0, "Print vnode details on lock violations");
#ifdef KDB
int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
&vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
#endif
static void
vfs_badlock(const char *msg, const char *str, struct vnode *vp)
{
#ifdef KDB
if (vfs_badlock_backtrace)
kdb_backtrace();
#endif
if (vfs_badlock_vnode)
vn_printf(vp, "vnode ");
if (vfs_badlock_print)
printf("%s: %p %s\n", str, (void *)vp, msg);
if (vfs_badlock_ddb)
kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
}
void
assert_vi_locked(struct vnode *vp, const char *str)
{
if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
vfs_badlock("interlock is not locked but should be", str, vp);
}
void
assert_vi_unlocked(struct vnode *vp, const char *str)
{
if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
vfs_badlock("interlock is locked but should not be", str, vp);
}
void
assert_vop_locked(struct vnode *vp, const char *str)
{
if (KERNEL_PANICKED() || vp == NULL)
return;
#ifdef WITNESS
if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
witness_is_owned(&vp->v_vnlock->lock_object) == -1)
#else
int locked = VOP_ISLOCKED(vp);
if (locked == 0 || locked == LK_EXCLOTHER)
#endif
vfs_badlock("is not locked but should be", str, vp);
}
void
assert_vop_unlocked(struct vnode *vp, const char *str)
{
if (KERNEL_PANICKED() || vp == NULL)
return;
#ifdef WITNESS
if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
witness_is_owned(&vp->v_vnlock->lock_object) == 1)
#else
if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
#endif
vfs_badlock("is locked but should not be", str, vp);
}
void
assert_vop_elocked(struct vnode *vp, const char *str)
{
if (KERNEL_PANICKED() || vp == NULL)
return;
if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
vfs_badlock("is not exclusive locked but should be", str, vp);
}
#endif /* DEBUG_VFS_LOCKS */
void
vop_rename_fail(struct vop_rename_args *ap)
{
if (ap->a_tvp != NULL)
vput(ap->a_tvp);
if (ap->a_tdvp == ap->a_tvp)
vrele(ap->a_tdvp);
else
vput(ap->a_tdvp);
vrele(ap->a_fdvp);
vrele(ap->a_fvp);
}
void
vop_rename_pre(void *ap)
{
struct vop_rename_args *a = ap;
#ifdef DEBUG_VFS_LOCKS
if (a->a_tvp)
ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
/* Check the source (from). */
if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
(a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
/* Check the target. */
if (a->a_tvp)
ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
#endif
/*
* It may be tempting to add vn_seqc_write_begin/end calls here and
* in vop_rename_post but that's not going to work out since some
* filesystems relookup vnodes mid-rename. This is probably a bug.
*
* For now filesystems are expected to do the relevant calls after they
* decide what vnodes to operate on.
*/
if (a->a_tdvp != a->a_fdvp)
vhold(a->a_fdvp);
if (a->a_tvp != a->a_fvp)
vhold(a->a_fvp);
vhold(a->a_tdvp);
if (a->a_tvp)
vhold(a->a_tvp);
}
#ifdef DEBUG_VFS_LOCKS
void
vop_fplookup_vexec_debugpre(void *ap __unused)
{
VFS_SMR_ASSERT_ENTERED();
}
void
vop_fplookup_vexec_debugpost(void *ap, int rc)
{
struct vop_fplookup_vexec_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
VFS_SMR_ASSERT_ENTERED();
if (rc == EOPNOTSUPP)
VNPASS(VN_IS_DOOMED(vp), vp);
}
void
vop_fplookup_symlink_debugpre(void *ap __unused)
{
VFS_SMR_ASSERT_ENTERED();
}
void
vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
{
VFS_SMR_ASSERT_ENTERED();
}
static void
vop_fsync_debugprepost(struct vnode *vp, const char *name)
{
if (vp->v_type == VCHR)
;
/*
* The shared vs. exclusive locking policy for fsync()
* is actually determined by vp's write mount as indicated
* by VOP_GETWRITEMOUNT(), which for stacked filesystems
* may not be the same as vp->v_mount. However, if the
* underlying filesystem which really handles the fsync()
* supports shared locking, the stacked filesystem must also
* be prepared for its VOP_FSYNC() operation to be called
* with only a shared lock. On the other hand, if the
* stacked filesystem claims support for shared write
* locking but the underlying filesystem does not, and the
* caller incorrectly uses a shared lock, this condition
* should still be caught when the stacked filesystem
* invokes VOP_FSYNC() on the underlying filesystem.
*/
else if (MNT_SHARED_WRITES(vp->v_mount))
ASSERT_VOP_LOCKED(vp, name);
else
ASSERT_VOP_ELOCKED(vp, name);
}
void
vop_fsync_debugpre(void *a)
{
struct vop_fsync_args *ap;
ap = a;
vop_fsync_debugprepost(ap->a_vp, "fsync");
}
void
vop_fsync_debugpost(void *a, int rc __unused)
{
struct vop_fsync_args *ap;
ap = a;
vop_fsync_debugprepost(ap->a_vp, "fsync");
}
void
vop_fdatasync_debugpre(void *a)
{
struct vop_fdatasync_args *ap;
ap = a;
vop_fsync_debugprepost(ap->a_vp, "fsync");
}
void
vop_fdatasync_debugpost(void *a, int rc __unused)
{
struct vop_fdatasync_args *ap;
ap = a;
vop_fsync_debugprepost(ap->a_vp, "fsync");
}
void
vop_strategy_debugpre(void *ap)
{
struct vop_strategy_args *a;
struct buf *bp;
a = ap;
bp = a->a_bp;
/*
* Cluster ops lock their component buffers but not the IO container.
*/
if ((bp->b_flags & B_CLUSTER) != 0)
return;
if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
if (vfs_badlock_print)
printf(
"VOP_STRATEGY: bp is not locked but should be\n");
if (vfs_badlock_ddb)
kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
}
}
void
vop_lock_debugpre(void *ap)
{
struct vop_lock1_args *a = ap;
if ((a->a_flags & LK_INTERLOCK) == 0)
ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
else
ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
}
void
vop_lock_debugpost(void *ap, int rc)
{
struct vop_lock1_args *a = ap;
ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
}
void
vop_unlock_debugpre(void *ap)
{
struct vop_unlock_args *a = ap;
struct vnode *vp = a->a_vp;
VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
}
void
vop_need_inactive_debugpre(void *ap)
{
struct vop_need_inactive_args *a = ap;
ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
}
void
vop_need_inactive_debugpost(void *ap, int rc)
{
struct vop_need_inactive_args *a = ap;
ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
}
#endif
void
vop_create_pre(void *ap)
{
struct vop_create_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_begin(dvp);
}
void
vop_create_post(void *ap, int rc)
{
struct vop_create_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_end(dvp);
if (!rc)
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
}
void
vop_whiteout_pre(void *ap)
{
struct vop_whiteout_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_begin(dvp);
}
void
vop_whiteout_post(void *ap, int rc)
{
struct vop_whiteout_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_end(dvp);
}
void
vop_deleteextattr_pre(void *ap)
{
struct vop_deleteextattr_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
vn_seqc_write_begin(vp);
}
void
vop_deleteextattr_post(void *ap, int rc)
{
struct vop_deleteextattr_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
vn_seqc_write_end(vp);
if (!rc)
VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
}
void
vop_link_pre(void *ap)
{
struct vop_link_args *a;
struct vnode *vp, *tdvp;
a = ap;
vp = a->a_vp;
tdvp = a->a_tdvp;
vn_seqc_write_begin(vp);
vn_seqc_write_begin(tdvp);
}
void
vop_link_post(void *ap, int rc)
{
struct vop_link_args *a;
struct vnode *vp, *tdvp;
a = ap;
vp = a->a_vp;
tdvp = a->a_tdvp;
vn_seqc_write_end(vp);
vn_seqc_write_end(tdvp);
if (!rc) {
VFS_KNOTE_LOCKED(vp, NOTE_LINK);
VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
}
}
void
vop_mkdir_pre(void *ap)
{
struct vop_mkdir_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_begin(dvp);
}
void
vop_mkdir_post(void *ap, int rc)
{
struct vop_mkdir_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_end(dvp);
if (!rc)
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
}
#ifdef DEBUG_VFS_LOCKS
void
vop_mkdir_debugpost(void *ap, int rc)
{
struct vop_mkdir_args *a;
a = ap;
if (!rc)
cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
}
#endif
void
vop_mknod_pre(void *ap)
{
struct vop_mknod_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_begin(dvp);
}
void
vop_mknod_post(void *ap, int rc)
{
struct vop_mknod_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_end(dvp);
if (!rc)
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
}
void
vop_reclaim_post(void *ap, int rc)
{
struct vop_reclaim_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
ASSERT_VOP_IN_SEQC(vp);
if (!rc)
VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
}
void
vop_remove_pre(void *ap)
{
struct vop_remove_args *a;
struct vnode *dvp, *vp;
a = ap;
dvp = a->a_dvp;
vp = a->a_vp;
vn_seqc_write_begin(dvp);
vn_seqc_write_begin(vp);
}
void
vop_remove_post(void *ap, int rc)
{
struct vop_remove_args *a;
struct vnode *dvp, *vp;
a = ap;
dvp = a->a_dvp;
vp = a->a_vp;
vn_seqc_write_end(dvp);
vn_seqc_write_end(vp);
if (!rc) {
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
}
}
void
vop_rename_post(void *ap, int rc)
{
struct vop_rename_args *a = ap;
long hint;
if (!rc) {
hint = NOTE_WRITE;
if (a->a_fdvp == a->a_tdvp) {
if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
hint |= NOTE_LINK;
VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
} else {
hint |= NOTE_EXTEND;
if (a->a_fvp->v_type == VDIR)
hint |= NOTE_LINK;
VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
a->a_tvp->v_type == VDIR)
hint &= ~NOTE_LINK;
VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
}
VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
if (a->a_tvp)
VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
}
if (a->a_tdvp != a->a_fdvp)
vdrop(a->a_fdvp);
if (a->a_tvp != a->a_fvp)
vdrop(a->a_fvp);
vdrop(a->a_tdvp);
if (a->a_tvp)
vdrop(a->a_tvp);
}
void
vop_rmdir_pre(void *ap)
{
struct vop_rmdir_args *a;
struct vnode *dvp, *vp;
a = ap;
dvp = a->a_dvp;
vp = a->a_vp;
vn_seqc_write_begin(dvp);
vn_seqc_write_begin(vp);
}
void
vop_rmdir_post(void *ap, int rc)
{
struct vop_rmdir_args *a;
struct vnode *dvp, *vp;
a = ap;
dvp = a->a_dvp;
vp = a->a_vp;
vn_seqc_write_end(dvp);
vn_seqc_write_end(vp);
if (!rc) {
vp->v_vflag |= VV_UNLINKED;
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
}
}
void
vop_setattr_pre(void *ap)
{
struct vop_setattr_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
vn_seqc_write_begin(vp);
}
void
vop_setattr_post(void *ap, int rc)
{
struct vop_setattr_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
vn_seqc_write_end(vp);
if (!rc)
VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
}
void
vop_setacl_pre(void *ap)
{
struct vop_setacl_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
vn_seqc_write_begin(vp);
}
void
vop_setacl_post(void *ap, int rc __unused)
{
struct vop_setacl_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
vn_seqc_write_end(vp);
}
void
vop_setextattr_pre(void *ap)
{
struct vop_setextattr_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
vn_seqc_write_begin(vp);
}
void
vop_setextattr_post(void *ap, int rc)
{
struct vop_setextattr_args *a;
struct vnode *vp;
a = ap;
vp = a->a_vp;
vn_seqc_write_end(vp);
if (!rc)
VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
}
void
vop_symlink_pre(void *ap)
{
struct vop_symlink_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_begin(dvp);
}
void
vop_symlink_post(void *ap, int rc)
{
struct vop_symlink_args *a;
struct vnode *dvp;
a = ap;
dvp = a->a_dvp;
vn_seqc_write_end(dvp);
if (!rc)
VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
}
void
vop_open_post(void *ap, int rc)
{
struct vop_open_args *a = ap;
if (!rc)
VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
}
void
vop_close_post(void *ap, int rc)
{
struct vop_close_args *a = ap;
if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
!VN_IS_DOOMED(a->a_vp))) {
VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
NOTE_CLOSE_WRITE : NOTE_CLOSE);
}
}
void
vop_read_post(void *ap, int rc)
{
struct vop_read_args *a = ap;
if (!rc)
VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
}
void
vop_read_pgcache_post(void *ap, int rc)
{
struct vop_read_pgcache_args *a = ap;
if (!rc)
VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
}
void
vop_readdir_post(void *ap, int rc)
{
struct vop_readdir_args *a = ap;
if (!rc)
VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
}
static struct knlist fs_knlist;
static void
vfs_event_init(void *arg)
{
knlist_init_mtx(&fs_knlist, NULL);
}
/* XXX - correct order? */
SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
void
vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
{
KNOTE_UNLOCKED(&fs_knlist, event);
}
static int filt_fsattach(struct knote *kn);
static void filt_fsdetach(struct knote *kn);
static int filt_fsevent(struct knote *kn, long hint);
struct filterops fs_filtops = {
.f_isfd = 0,
.f_attach = filt_fsattach,
.f_detach = filt_fsdetach,
.f_event = filt_fsevent
};
static int
filt_fsattach(struct knote *kn)
{
kn->kn_flags |= EV_CLEAR;
knlist_add(&fs_knlist, kn, 0);
return (0);
}
static void
filt_fsdetach(struct knote *kn)
{
knlist_remove(&fs_knlist, kn, 0);
}
static int
filt_fsevent(struct knote *kn, long hint)
{
kn->kn_fflags |= kn->kn_sfflags & hint;
return (kn->kn_fflags != 0);
}
static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
{
struct vfsidctl vc;
int error;
struct mount *mp;
error = SYSCTL_IN(req, &vc, sizeof(vc));
if (error)
return (error);
if (vc.vc_vers != VFS_CTL_VERS1)
return (EINVAL);
mp = vfs_getvfs(&vc.vc_fsid);
if (mp == NULL)
return (ENOENT);
/* ensure that a specific sysctl goes to the right filesystem. */
if (strcmp(vc.vc_fstypename, "*") != 0 &&
strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
vfs_rel(mp);
return (EINVAL);
}
VCTLTOREQ(&vc, req);
error = VFS_SYSCTL(mp, vc.vc_op, req);
vfs_rel(mp);
return (error);
}
SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
NULL, 0, sysctl_vfs_ctl, "",
"Sysctl by fsid");
/*
* Function to initialize a va_filerev field sensibly.
* XXX: Wouldn't a random number make a lot more sense ??
*/
u_quad_t
init_va_filerev(void)
{
struct bintime bt;
getbinuptime(&bt);
return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
}
static int filt_vfsread(struct knote *kn, long hint);
static int filt_vfswrite(struct knote *kn, long hint);
static int filt_vfsvnode(struct knote *kn, long hint);
static void filt_vfsdetach(struct knote *kn);
static struct filterops vfsread_filtops = {
.f_isfd = 1,
.f_detach = filt_vfsdetach,
.f_event = filt_vfsread
};
static struct filterops vfswrite_filtops = {
.f_isfd = 1,
.f_detach = filt_vfsdetach,
.f_event = filt_vfswrite
};
static struct filterops vfsvnode_filtops = {
.f_isfd = 1,
.f_detach = filt_vfsdetach,
.f_event = filt_vfsvnode
};
static void
vfs_knllock(void *arg)
{
struct vnode *vp = arg;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
}
static void
vfs_knlunlock(void *arg)
{
struct vnode *vp = arg;
VOP_UNLOCK(vp);
}
static void
vfs_knl_assert_lock(void *arg, int what)
{
#ifdef DEBUG_VFS_LOCKS
struct vnode *vp = arg;
if (what == LA_LOCKED)
ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
else
ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
#endif
}
int
vfs_kqfilter(struct vop_kqfilter_args *ap)
{
struct vnode *vp = ap->a_vp;
struct knote *kn = ap->a_kn;
struct knlist *knl;
KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
kn->kn_filter != EVFILT_WRITE),
("READ/WRITE filter on a FIFO leaked through"));
switch (kn->kn_filter) {
case EVFILT_READ:
kn->kn_fop = &vfsread_filtops;
break;
case EVFILT_WRITE:
kn->kn_fop = &vfswrite_filtops;
break;
case EVFILT_VNODE:
kn->kn_fop = &vfsvnode_filtops;
break;
default:
return (EINVAL);
}
kn->kn_hook = (caddr_t)vp;
v_addpollinfo(vp);
if (vp->v_pollinfo == NULL)
return (ENOMEM);
knl = &vp->v_pollinfo->vpi_selinfo.si_note;
vhold(vp);
knlist_add(knl, kn, 0);
return (0);
}
/*
* Detach knote from vnode
*/
static void
filt_vfsdetach(struct knote *kn)
{
struct vnode *vp = (struct vnode *)kn->kn_hook;
KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
vdrop(vp);
}
/*ARGSUSED*/
static int
filt_vfsread(struct knote *kn, long hint)
{
struct vnode *vp = (struct vnode *)kn->kn_hook;
off_t size;
int res;
/*
* filesystem is gone, so set the EOF flag and schedule
* the knote for deletion.
*/
if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
VI_LOCK(vp);
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
VI_UNLOCK(vp);
return (1);
}
if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
return (0);
VI_LOCK(vp);
kn->kn_data = size - kn->kn_fp->f_offset;
res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
VI_UNLOCK(vp);
return (res);
}
/*ARGSUSED*/
static int
filt_vfswrite(struct knote *kn, long hint)
{
struct vnode *vp = (struct vnode *)kn->kn_hook;
VI_LOCK(vp);
/*
* filesystem is gone, so set the EOF flag and schedule
* the knote for deletion.
*/
if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
kn->kn_data = 0;
VI_UNLOCK(vp);
return (1);
}
static int
filt_vfsvnode(struct knote *kn, long hint)
{
struct vnode *vp = (struct vnode *)kn->kn_hook;
int res;
VI_LOCK(vp);
if (kn->kn_sfflags & hint)
kn->kn_fflags |= hint;
if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
kn->kn_flags |= EV_EOF;
VI_UNLOCK(vp);
return (1);
}
res = (kn->kn_fflags != 0);
VI_UNLOCK(vp);
return (res);
}
int
vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
{
int error;
if (dp->d_reclen > ap->a_uio->uio_resid)
return (ENAMETOOLONG);
error = uiomove(dp, dp->d_reclen, ap->a_uio);
if (error) {
if (ap->a_ncookies != NULL) {
if (ap->a_cookies != NULL)
free(ap->a_cookies, M_TEMP);
ap->a_cookies = NULL;
*ap->a_ncookies = 0;
}
return (error);
}
if (ap->a_ncookies == NULL)
return (0);
KASSERT(ap->a_cookies,
("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
*ap->a_cookies = realloc(*ap->a_cookies,
(*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
(*ap->a_cookies)[*ap->a_ncookies] = off;
*ap->a_ncookies += 1;
return (0);
}
/*
* The purpose of this routine is to remove granularity from accmode_t,
* reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
* VADMIN and VAPPEND.
*
* If it returns 0, the caller is supposed to continue with the usual
* access checks using 'accmode' as modified by this routine. If it
* returns nonzero value, the caller is supposed to return that value
* as errno.
*
* Note that after this routine runs, accmode may be zero.
*/
int
vfs_unixify_accmode(accmode_t *accmode)
{
/*
* There is no way to specify explicit "deny" rule using
* file mode or POSIX.1e ACLs.
*/
if (*accmode & VEXPLICIT_DENY) {
*accmode = 0;
return (0);
}
/*
* None of these can be translated into usual access bits.
* Also, the common case for NFSv4 ACLs is to not contain
* either of these bits. Caller should check for VWRITE
* on the containing directory instead.
*/
if (*accmode & (VDELETE_CHILD | VDELETE))
return (EPERM);
if (*accmode & VADMIN_PERMS) {
*accmode &= ~VADMIN_PERMS;
*accmode |= VADMIN;
}
/*
* There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
* or VSYNCHRONIZE using file mode or POSIX.1e ACL.
*/
*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
return (0);
}
/*
* Clear out a doomed vnode (if any) and replace it with a new one as long
* as the fs is not being unmounted. Return the root vnode to the caller.
*/
static int __noinline
vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
{
struct vnode *vp;
int error;
restart:
if (mp->mnt_rootvnode != NULL) {
MNT_ILOCK(mp);
vp = mp->mnt_rootvnode;
if (vp != NULL) {
if (!VN_IS_DOOMED(vp)) {
vrefact(vp);
MNT_IUNLOCK(mp);
error = vn_lock(vp, flags);
if (error == 0) {
*vpp = vp;
return (0);
}
vrele(vp);
goto restart;
}
/*
* Clear the old one.
*/
mp->mnt_rootvnode = NULL;
}
MNT_IUNLOCK(mp);
if (vp != NULL) {
vfs_op_barrier_wait(mp);
vrele(vp);
}
}
error = VFS_CACHEDROOT(mp, flags, vpp);
if (error != 0)
return (error);
if (mp->mnt_vfs_ops == 0) {
MNT_ILOCK(mp);
if (mp->mnt_vfs_ops != 0) {
MNT_IUNLOCK(mp);
return (0);
}
if (mp->mnt_rootvnode == NULL) {
vrefact(*vpp);
mp->mnt_rootvnode = *vpp;
} else {
if (mp->mnt_rootvnode != *vpp) {
if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
panic("%s: mismatch between vnode returned "
" by VFS_CACHEDROOT and the one cached "
" (%p != %p)",
__func__, *vpp, mp->mnt_rootvnode);
}
}
}
MNT_IUNLOCK(mp);
}
return (0);
}
int
vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
{
struct mount_pcpu *mpcpu;
struct vnode *vp;
int error;
if (!vfs_op_thread_enter(mp, mpcpu))
return (vfs_cache_root_fallback(mp, flags, vpp));
vp = atomic_load_ptr(&mp->mnt_rootvnode);
if (vp == NULL || VN_IS_DOOMED(vp)) {
vfs_op_thread_exit(mp, mpcpu);
return (vfs_cache_root_fallback(mp, flags, vpp));
}
vrefact(vp);
vfs_op_thread_exit(mp, mpcpu);
error = vn_lock(vp, flags);
if (error != 0) {
vrele(vp);
return (vfs_cache_root_fallback(mp, flags, vpp));
}
*vpp = vp;
return (0);
}
struct vnode *
vfs_cache_root_clear(struct mount *mp)
{
struct vnode *vp;
/*
* ops > 0 guarantees there is nobody who can see this vnode
*/
MPASS(mp->mnt_vfs_ops > 0);
vp = mp->mnt_rootvnode;
if (vp != NULL)
vn_seqc_write_begin(vp);
mp->mnt_rootvnode = NULL;
return (vp);
}
void
vfs_cache_root_set(struct mount *mp, struct vnode *vp)
{
MPASS(mp->mnt_vfs_ops > 0);
vrefact(vp);
mp->mnt_rootvnode = vp;
}
/*
* These are helper functions for filesystems to traverse all
* their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
*
* This interface replaces MNT_VNODE_FOREACH.
*/
struct vnode *
__mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
{
struct vnode *vp;
maybe_yield();
MNT_ILOCK(mp);
KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
continue;
VI_LOCK(vp);
if (VN_IS_DOOMED(vp)) {
VI_UNLOCK(vp);
continue;
}
break;
}
if (vp == NULL) {
__mnt_vnode_markerfree_all(mvp, mp);
/* MNT_IUNLOCK(mp); -- done in above function */
mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
return (NULL);
}
TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
MNT_IUNLOCK(mp);
return (vp);
}
struct vnode *
__mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
{
struct vnode *vp;
*mvp = vn_alloc_marker(mp);
MNT_ILOCK(mp);
MNT_REF(mp);
TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
continue;
VI_LOCK(vp);
if (VN_IS_DOOMED(vp)) {
VI_UNLOCK(vp);
continue;
}
break;
}
if (vp == NULL) {
MNT_REL(mp);
MNT_IUNLOCK(mp);
vn_free_marker(*mvp);
*mvp = NULL;
return (NULL);
}
TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
MNT_IUNLOCK(mp);
return (vp);
}
void
__mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
{
if (*mvp == NULL) {
MNT_IUNLOCK(mp);
return;
}
mtx_assert(MNT_MTX(mp), MA_OWNED);
KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
MNT_REL(mp);
MNT_IUNLOCK(mp);
vn_free_marker(*mvp);
*mvp = NULL;
}
/*
* These are helper functions for filesystems to traverse their
* lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
*/
static void
mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
{
KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
MNT_ILOCK(mp);
MNT_REL(mp);
MNT_IUNLOCK(mp);
vn_free_marker(*mvp);
*mvp = NULL;
}
/*
* Relock the mp mount vnode list lock with the vp vnode interlock in the
* conventional lock order during mnt_vnode_next_lazy iteration.
*
* On entry, the mount vnode list lock is held and the vnode interlock is not.
* The list lock is dropped and reacquired. On success, both locks are held.
* On failure, the mount vnode list lock is held but the vnode interlock is
* not, and the procedure may have yielded.
*/
static bool
mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
struct vnode *vp)
{
VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
("%s: bad marker", __func__));
VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
("%s: inappropriate vnode", __func__));
ASSERT_VI_UNLOCKED(vp, __func__);
mtx_assert(&mp->mnt_listmtx, MA_OWNED);
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
/*
* Note we may be racing against vdrop which transitioned the hold
* count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
* if we are the only user after we get the interlock we will just
* vdrop.
*/
vhold(vp);
mtx_unlock(&mp->mnt_listmtx);
VI_LOCK(vp);
if (VN_IS_DOOMED(vp)) {
VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
goto out_lost;
}
VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
/*
* There is nothing to do if we are the last user.
*/
if (!refcount_release_if_not_last(&vp->v_holdcnt))
goto out_lost;
mtx_lock(&mp->mnt_listmtx);
return (true);
out_lost:
vdropl(vp);
maybe_yield();
mtx_lock(&mp->mnt_listmtx);
return (false);
}
static struct vnode *
mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
void *cbarg)
{
struct vnode *vp;
mtx_assert(&mp->mnt_listmtx, MA_OWNED);
KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
restart:
vp = TAILQ_NEXT(*mvp, v_lazylist);
while (vp != NULL) {
if (vp->v_type == VMARKER) {
vp = TAILQ_NEXT(vp, v_lazylist);
continue;
}
/*
* See if we want to process the vnode. Note we may encounter a
* long string of vnodes we don't care about and hog the list
* as a result. Check for it and requeue the marker.
*/
VNPASS(!VN_IS_DOOMED(vp), vp);
if (!cb(vp, cbarg)) {
if (!should_yield()) {
vp = TAILQ_NEXT(vp, v_lazylist);
continue;
}
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
v_lazylist);
TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
v_lazylist);
mtx_unlock(&mp->mnt_listmtx);
kern_yield(PRI_USER);
mtx_lock(&mp->mnt_listmtx);
goto restart;
}
/*
* Try-lock because this is the wrong lock order.
*/
if (!VI_TRYLOCK(vp) &&
!mnt_vnode_next_lazy_relock(*mvp, mp, vp))
goto restart;
KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
("alien vnode on the lazy list %p %p", vp, mp));
VNPASS(vp->v_mount == mp, vp);
VNPASS(!VN_IS_DOOMED(vp), vp);
break;
}
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
/* Check if we are done */
if (vp == NULL) {
mtx_unlock(&mp->mnt_listmtx);
mnt_vnode_markerfree_lazy(mvp, mp);
return (NULL);
}
TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
mtx_unlock(&mp->mnt_listmtx);
ASSERT_VI_LOCKED(vp, "lazy iter");
return (vp);
}
struct vnode *
__mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
void *cbarg)
{
maybe_yield();
mtx_lock(&mp->mnt_listmtx);
return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
}
struct vnode *
__mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
void *cbarg)
{
struct vnode *vp;
if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
return (NULL);
*mvp = vn_alloc_marker(mp);
MNT_ILOCK(mp);
MNT_REF(mp);
MNT_IUNLOCK(mp);
mtx_lock(&mp->mnt_listmtx);
vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
if (vp == NULL) {
mtx_unlock(&mp->mnt_listmtx);
mnt_vnode_markerfree_lazy(mvp, mp);
return (NULL);
}
TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
}
void
__mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
{
if (*mvp == NULL)
return;
mtx_lock(&mp->mnt_listmtx);
TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
mtx_unlock(&mp->mnt_listmtx);
mnt_vnode_markerfree_lazy(mvp, mp);
}
int
vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
{
if ((cnp->cn_flags & NOEXECCHECK) != 0) {
cnp->cn_flags &= ~NOEXECCHECK;
return (0);
}
return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
}
/*
* Do not use this variant unless you have means other than the hold count
* to prevent the vnode from getting freed.
*/
void
vn_seqc_write_begin_locked(struct vnode *vp)
{
ASSERT_VI_LOCKED(vp, __func__);
VNPASS(vp->v_holdcnt > 0, vp);
VNPASS(vp->v_seqc_users >= 0, vp);
vp->v_seqc_users++;
if (vp->v_seqc_users == 1)
seqc_sleepable_write_begin(&vp->v_seqc);
}
void
vn_seqc_write_begin(struct vnode *vp)
{
VI_LOCK(vp);
vn_seqc_write_begin_locked(vp);
VI_UNLOCK(vp);
}
void
vn_seqc_write_end_locked(struct vnode *vp)
{
ASSERT_VI_LOCKED(vp, __func__);
VNPASS(vp->v_seqc_users > 0, vp);
vp->v_seqc_users--;
if (vp->v_seqc_users == 0)
seqc_sleepable_write_end(&vp->v_seqc);
}
void
vn_seqc_write_end(struct vnode *vp)
{
VI_LOCK(vp);
vn_seqc_write_end_locked(vp);
VI_UNLOCK(vp);
}
/*
* Special case handling for allocating and freeing vnodes.
*
* The counter remains unchanged on free so that a doomed vnode will
* keep testing as in modify as long as it is accessible with SMR.
*/
static void
vn_seqc_init(struct vnode *vp)
{
vp->v_seqc = 0;
vp->v_seqc_users = 0;
}
static void
vn_seqc_write_end_free(struct vnode *vp)
{
VNPASS(seqc_in_modify(vp->v_seqc), vp);
VNPASS(vp->v_seqc_users == 1, vp);
}
void
vn_irflag_set_locked(struct vnode *vp, short toset)
{
short flags;
ASSERT_VI_LOCKED(vp, __func__);
flags = vn_irflag_read(vp);
VNASSERT((flags & toset) == 0, vp,
("%s: some of the passed flags already set (have %d, passed %d)\n",
__func__, flags, toset));
atomic_store_short(&vp->v_irflag, flags | toset);
}
void
vn_irflag_set(struct vnode *vp, short toset)
{
VI_LOCK(vp);
vn_irflag_set_locked(vp, toset);
VI_UNLOCK(vp);
}
void
vn_irflag_set_cond_locked(struct vnode *vp, short toset)
{
short flags;
ASSERT_VI_LOCKED(vp, __func__);
flags = vn_irflag_read(vp);
atomic_store_short(&vp->v_irflag, flags | toset);
}
void
vn_irflag_set_cond(struct vnode *vp, short toset)
{
VI_LOCK(vp);
vn_irflag_set_cond_locked(vp, toset);
VI_UNLOCK(vp);
}
void
vn_irflag_unset_locked(struct vnode *vp, short tounset)
{
short flags;
ASSERT_VI_LOCKED(vp, __func__);
flags = vn_irflag_read(vp);
VNASSERT((flags & tounset) == tounset, vp,
("%s: some of the passed flags not set (have %d, passed %d)\n",
__func__, flags, tounset));
atomic_store_short(&vp->v_irflag, flags & ~tounset);
}
void
vn_irflag_unset(struct vnode *vp, short tounset)
{
VI_LOCK(vp);
vn_irflag_unset_locked(vp, tounset);
VI_UNLOCK(vp);
}
int
vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
{
struct vattr vattr;
int error;
ASSERT_VOP_LOCKED(vp, __func__);
error = VOP_GETATTR(vp, &vattr, cred);
if (__predict_true(error == 0)) {
if (vattr.va_size <= OFF_MAX)
*size = vattr.va_size;
else
error = EFBIG;
}
return (error);
}
int
vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
{
int error;
VOP_LOCK(vp, LK_SHARED);
error = vn_getsize_locked(vp, size, cred);
VOP_UNLOCK(vp);
return (error);
}
#ifdef INVARIANTS
void
vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
{
switch (vp->v_state) {
case VSTATE_UNINITIALIZED:
switch (state) {
case VSTATE_CONSTRUCTED:
case VSTATE_DESTROYING:
return;
default:
break;
}
break;
case VSTATE_CONSTRUCTED:
ASSERT_VOP_ELOCKED(vp, __func__);
switch (state) {
case VSTATE_DESTROYING:
return;
default:
break;
}
break;
case VSTATE_DESTROYING:
ASSERT_VOP_ELOCKED(vp, __func__);
switch (state) {
case VSTATE_DEAD:
return;
default:
break;
}
break;
case VSTATE_DEAD:
switch (state) {
case VSTATE_UNINITIALIZED:
return;
default:
break;
}
break;
}
vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
panic("invalid state transition %d -> %d\n", vp->v_state, state);
}
#endif