mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-28 11:57:28 +00:00
b36cfff75d
Each list describes a logical memory object that is backed by one or more physical address ranges. To minimize locking, the sglist objects themselves are immutable once they are shared. These objects may be used in the future to facilitate I/O requests using physically-addressed buffers. For the immediate future I plan to use them to implement a new type of VM object and pager. Reviewed by: jeff, scottl MFC after: 1 month
657 lines
16 KiB
C
657 lines
16 KiB
C
/*-
|
|
* Copyright (c) 2008 Yahoo!, Inc.
|
|
* All rights reserved.
|
|
* Written by: John Baldwin <jhb@FreeBSD.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sglist.h>
|
|
#include <sys/uio.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <sys/ktr.h>
|
|
|
|
static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
|
|
|
|
/*
|
|
* Append a single (paddr, len) to a sglist. sg is the list and ss is
|
|
* the current segment in the list. If we run out of segments then
|
|
* EFBIG will be returned.
|
|
*/
|
|
static __inline int
|
|
_sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
|
|
vm_paddr_t paddr, size_t len)
|
|
{
|
|
struct sglist_seg *ss;
|
|
|
|
ss = *ssp;
|
|
if (ss->ss_paddr + ss->ss_len == paddr)
|
|
ss->ss_len += len;
|
|
else {
|
|
if (sg->sg_nseg == sg->sg_maxseg) {
|
|
sg->sg_nseg = 0;
|
|
return (EFBIG);
|
|
}
|
|
ss++;
|
|
ss->ss_paddr = paddr;
|
|
ss->ss_len = len;
|
|
sg->sg_nseg++;
|
|
*ssp = ss;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Worker routine to append a virtual address range (either kernel or
|
|
* user) to a scatter/gather list.
|
|
*/
|
|
static __inline int
|
|
_sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
|
|
size_t *donep)
|
|
{
|
|
struct sglist_seg *ss;
|
|
vm_offset_t vaddr, offset;
|
|
vm_paddr_t paddr;
|
|
size_t seglen;
|
|
int error;
|
|
|
|
if (donep)
|
|
*donep = 0;
|
|
if (len == 0)
|
|
return (0);
|
|
|
|
/* Do the first page. It may have an offset. */
|
|
vaddr = (vm_offset_t)buf;
|
|
offset = vaddr & PAGE_MASK;
|
|
if (pmap != NULL)
|
|
paddr = pmap_extract(pmap, vaddr);
|
|
else
|
|
paddr = pmap_kextract(vaddr);
|
|
seglen = MIN(len, PAGE_SIZE - offset);
|
|
if (sg->sg_nseg == 0) {
|
|
ss = sg->sg_segs;
|
|
ss->ss_paddr = paddr;
|
|
ss->ss_len = seglen;
|
|
sg->sg_nseg = 1;
|
|
error = 0;
|
|
} else {
|
|
ss = &sg->sg_segs[sg->sg_nseg - 1];
|
|
error = _sglist_append_range(sg, &ss, paddr, seglen);
|
|
}
|
|
|
|
while (error == 0 && len > seglen) {
|
|
vaddr += seglen;
|
|
len -= seglen;
|
|
if (donep)
|
|
*donep += seglen;
|
|
seglen = MIN(len, PAGE_SIZE);
|
|
if (pmap != NULL)
|
|
paddr = pmap_extract(pmap, vaddr);
|
|
else
|
|
paddr = pmap_kextract(vaddr);
|
|
error = _sglist_append_range(sg, &ss, paddr, seglen);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Determine the number of scatter/gather list elements needed to
|
|
* describe a kernel virtual address range.
|
|
*/
|
|
int
|
|
sglist_count(void *buf, size_t len)
|
|
{
|
|
vm_offset_t vaddr, vendaddr;
|
|
vm_paddr_t lastaddr, paddr;
|
|
int nsegs;
|
|
|
|
if (len == 0)
|
|
return (0);
|
|
|
|
vaddr = trunc_page((vm_offset_t)buf);
|
|
vendaddr = (vm_offset_t)buf + len;
|
|
nsegs = 1;
|
|
lastaddr = pmap_kextract(vaddr);
|
|
vaddr += PAGE_SIZE;
|
|
while (vaddr < vendaddr) {
|
|
paddr = pmap_kextract(vaddr);
|
|
if (lastaddr + PAGE_SIZE != paddr)
|
|
nsegs++;
|
|
lastaddr = paddr;
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
return (nsegs);
|
|
}
|
|
|
|
/*
|
|
* Allocate a scatter/gather list along with 'nsegs' segments. The
|
|
* 'mflags' parameters are the same as passed to malloc(9). The caller
|
|
* should use sglist_free() to free this list.
|
|
*/
|
|
struct sglist *
|
|
sglist_alloc(int nsegs, int mflags)
|
|
{
|
|
struct sglist *sg;
|
|
|
|
sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
|
|
M_SGLIST, mflags);
|
|
if (sg == NULL)
|
|
return (NULL);
|
|
sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
|
|
return (sg);
|
|
}
|
|
|
|
/*
|
|
* Free a scatter/gather list allocated via sglist_allc().
|
|
*/
|
|
void
|
|
sglist_free(struct sglist *sg)
|
|
{
|
|
|
|
if (refcount_release(&sg->sg_refs))
|
|
free(sg, M_SGLIST);
|
|
}
|
|
|
|
/*
|
|
* Append the segments to describe a single kernel virtual address
|
|
* range to a scatter/gather list. If there are insufficient
|
|
* segments, then this fails with EFBIG.
|
|
*/
|
|
int
|
|
sglist_append(struct sglist *sg, void *buf, size_t len)
|
|
{
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
return (_sglist_append_buf(sg, buf, len, NULL, NULL));
|
|
}
|
|
|
|
/*
|
|
* Append a single physical address range to a scatter/gather list.
|
|
* If there are insufficient segments, then this fails with EFBIG.
|
|
*/
|
|
int
|
|
sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
|
|
{
|
|
struct sglist_seg *ss;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
if (len == 0)
|
|
return (0);
|
|
|
|
if (sg->sg_nseg == 0) {
|
|
sg->sg_segs[0].ss_paddr = paddr;
|
|
sg->sg_segs[0].ss_len = len;
|
|
sg->sg_nseg = 1;
|
|
return (0);
|
|
}
|
|
ss = &sg->sg_segs[sg->sg_nseg - 1];
|
|
return (_sglist_append_range(sg, &ss, paddr, len));
|
|
}
|
|
|
|
/*
|
|
* Append the segments that describe a single mbuf chain to a
|
|
* scatter/gather list. If there are insufficient segments, then this
|
|
* fails with EFBIG.
|
|
*/
|
|
int
|
|
sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
|
|
error = 0;
|
|
for (m = m0; m != NULL; m = m->m_next) {
|
|
if (m->m_len > 0) {
|
|
error = sglist_append(sg, m->m_data, m->m_len);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Append the segments that describe a single user address range to a
|
|
* scatter/gather list. If there are insufficient segments, then this
|
|
* fails with EFBIG.
|
|
*/
|
|
int
|
|
sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
|
|
{
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
return (_sglist_append_buf(sg, buf, len,
|
|
vmspace_pmap(td->td_proc->p_vmspace), NULL));
|
|
}
|
|
|
|
/*
|
|
* Append the segments that describe a single uio to a scatter/gather
|
|
* list. If there are insufficient segments, then this fails with
|
|
* EFBIG.
|
|
*/
|
|
int
|
|
sglist_append_uio(struct sglist *sg, struct uio *uio)
|
|
{
|
|
struct iovec *iov;
|
|
size_t resid, minlen;
|
|
pmap_t pmap;
|
|
int error, i;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
|
|
resid = uio->uio_resid;
|
|
iov = uio->uio_iov;
|
|
|
|
if (uio->uio_segflg == UIO_USERSPACE) {
|
|
KASSERT(uio->uio_td != NULL,
|
|
("sglist_append_uio: USERSPACE but no thread"));
|
|
pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
|
|
} else
|
|
pmap = NULL;
|
|
|
|
error = 0;
|
|
for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
|
|
/*
|
|
* Now at the first iovec to load. Load each iovec
|
|
* until we have exhausted the residual count.
|
|
*/
|
|
minlen = MIN(resid, iov[i].iov_len);
|
|
if (minlen > 0) {
|
|
error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
|
|
pmap, NULL);
|
|
if (error)
|
|
return (error);
|
|
resid -= minlen;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Append the segments that describe at most 'resid' bytes from a
|
|
* single uio to a scatter/gather list. If there are insufficient
|
|
* segments, then only the amount that fits is appended.
|
|
*/
|
|
int
|
|
sglist_consume_uio(struct sglist *sg, struct uio *uio, int resid)
|
|
{
|
|
struct iovec *iov;
|
|
size_t done;
|
|
pmap_t pmap;
|
|
int error, len;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
|
|
if (uio->uio_segflg == UIO_USERSPACE) {
|
|
KASSERT(uio->uio_td != NULL,
|
|
("sglist_consume_uio: USERSPACE but no thread"));
|
|
pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
|
|
} else
|
|
pmap = NULL;
|
|
|
|
error = 0;
|
|
while (resid > 0 && uio->uio_resid) {
|
|
iov = uio->uio_iov;
|
|
len = iov->iov_len;
|
|
if (len == 0) {
|
|
uio->uio_iov++;
|
|
uio->uio_iovcnt--;
|
|
continue;
|
|
}
|
|
if (len > resid)
|
|
len = resid;
|
|
|
|
/*
|
|
* Try to append this iovec. If we run out of room,
|
|
* then break out of the loop.
|
|
*/
|
|
error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
|
|
iov->iov_base = (char *)iov->iov_base + done;
|
|
iov->iov_len -= done;
|
|
uio->uio_resid -= done;
|
|
uio->uio_offset += done;
|
|
resid -= done;
|
|
if (error)
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate and populate a scatter/gather list to describe a single
|
|
* kernel virtual address range.
|
|
*/
|
|
struct sglist *
|
|
sglist_build(void *buf, size_t len, int mflags)
|
|
{
|
|
struct sglist *sg;
|
|
int nsegs;
|
|
|
|
if (len == 0)
|
|
return (NULL);
|
|
|
|
nsegs = sglist_count(buf, len);
|
|
sg = sglist_alloc(nsegs, mflags);
|
|
if (sg == NULL)
|
|
return (NULL);
|
|
if (sglist_append(sg, buf, len) != 0) {
|
|
sglist_free(sg);
|
|
return (NULL);
|
|
}
|
|
return (sg);
|
|
}
|
|
|
|
/*
|
|
* Clone a new copy of a scatter/gather list.
|
|
*/
|
|
struct sglist *
|
|
sglist_clone(struct sglist *sg, int mflags)
|
|
{
|
|
struct sglist *new;
|
|
|
|
if (sg == NULL)
|
|
return (NULL);
|
|
new = sglist_alloc(sg->sg_maxseg, mflags);
|
|
if (new == NULL)
|
|
return (NULL);
|
|
bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
|
|
sg->sg_nseg);
|
|
return (new);
|
|
}
|
|
|
|
/*
|
|
* Calculate the total length of the segments described in a
|
|
* scatter/gather list.
|
|
*/
|
|
size_t
|
|
sglist_length(struct sglist *sg)
|
|
{
|
|
size_t space;
|
|
int i;
|
|
|
|
space = 0;
|
|
for (i = 0; i < sg->sg_nseg; i++)
|
|
space += sg->sg_segs[i].ss_len;
|
|
return (space);
|
|
}
|
|
|
|
/*
|
|
* Split a scatter/gather list into two lists. The scatter/gather
|
|
* entries for the first 'length' bytes of the 'original' list are
|
|
* stored in the '*head' list and are removed from 'original'.
|
|
*
|
|
* If '*head' is NULL, then a new list will be allocated using
|
|
* 'mflags'. If M_NOWAIT is specified and the allocation fails,
|
|
* ENOMEM will be returned.
|
|
*
|
|
* If '*head' is not NULL, it should point to an empty sglist. If it
|
|
* does not have enough room for the remaining space, then EFBIG will
|
|
* be returned. If '*head' is not empty, then EINVAL will be
|
|
* returned.
|
|
*
|
|
* If 'original' is shared (refcount > 1), then EDOOFUS will be
|
|
* returned.
|
|
*/
|
|
int
|
|
sglist_split(struct sglist *original, struct sglist **head, size_t length,
|
|
int mflags)
|
|
{
|
|
struct sglist *sg;
|
|
size_t space, split;
|
|
int count, i;
|
|
|
|
if (original->sg_refs > 1)
|
|
return (EDOOFUS);
|
|
|
|
/* Figure out how big of a sglist '*head' has to hold. */
|
|
count = 0;
|
|
space = 0;
|
|
split = 0;
|
|
for (i = 0; i < original->sg_nseg; i++) {
|
|
space += original->sg_segs[i].ss_len;
|
|
count++;
|
|
if (space >= length) {
|
|
/*
|
|
* If 'length' falls in the middle of a
|
|
* scatter/gather list entry, then 'split'
|
|
* holds how much of that entry will remain in
|
|
* 'original'.
|
|
*/
|
|
split = space - length;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Nothing to do, so leave head empty. */
|
|
if (count == 0)
|
|
return (0);
|
|
|
|
if (*head == NULL) {
|
|
sg = sglist_alloc(count, mflags);
|
|
if (sg == NULL)
|
|
return (ENOMEM);
|
|
*head = sg;
|
|
} else {
|
|
sg = *head;
|
|
if (sg->sg_maxseg < count)
|
|
return (EFBIG);
|
|
if (sg->sg_nseg != 0)
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Copy 'count' entries to 'sg' from 'original'. */
|
|
bcopy(original->sg_segs, sg->sg_segs, count *
|
|
sizeof(struct sglist_seg));
|
|
sg->sg_nseg = count;
|
|
|
|
/*
|
|
* If we had to split a list entry, fixup the last entry in
|
|
* 'sg' and the new first entry in 'original'. We also
|
|
* decrement 'count' by 1 since we will only be removing
|
|
* 'count - 1' segments from 'original' now.
|
|
*/
|
|
if (split != 0) {
|
|
count--;
|
|
sg->sg_segs[count].ss_len -= split;
|
|
original->sg_segs[count].ss_paddr =
|
|
sg->sg_segs[count].ss_paddr + split;
|
|
original->sg_segs[count].ss_len = split;
|
|
}
|
|
|
|
/* Trim 'count' entries from the front of 'original'. */
|
|
original->sg_nseg -= count;
|
|
bcopy(original->sg_segs + count, original->sg_segs, count *
|
|
sizeof(struct sglist_seg));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Append the scatter/gather list elements in 'second' to the
|
|
* scatter/gather list 'first'. If there is not enough space in
|
|
* 'first', EFBIG is returned.
|
|
*/
|
|
int
|
|
sglist_join(struct sglist *first, struct sglist *second)
|
|
{
|
|
struct sglist_seg *flast, *sfirst;
|
|
int append;
|
|
|
|
/* If 'second' is empty, there is nothing to do. */
|
|
if (second->sg_nseg == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* If the first entry in 'second' can be appended to the last entry
|
|
* in 'first' then set append to '1'.
|
|
*/
|
|
append = 0;
|
|
flast = &first->sg_segs[first->sg_nseg - 1];
|
|
sfirst = &second->sg_segs[0];
|
|
if (first->sg_nseg != 0 &&
|
|
flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
|
|
append = 1;
|
|
|
|
/* Make sure 'first' has enough room. */
|
|
if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
|
|
return (EFBIG);
|
|
|
|
/* Merge last in 'first' and first in 'second' if needed. */
|
|
if (append)
|
|
flast->ss_len += sfirst->ss_len;
|
|
|
|
/* Append new segments from 'second' to 'first'. */
|
|
bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
|
|
(second->sg_nseg - append) * sizeof(struct sglist_seg));
|
|
first->sg_nseg += second->sg_nseg - append;
|
|
sglist_reset(second);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Generate a new scatter/gather list from a range of an existing
|
|
* scatter/gather list. The 'offset' and 'length' parameters specify
|
|
* the logical range of the 'original' list to extract. If that range
|
|
* is not a subset of the length of 'original', then EINVAL is
|
|
* returned. The new scatter/gather list is stored in '*slice'.
|
|
*
|
|
* If '*slice' is NULL, then a new list will be allocated using
|
|
* 'mflags'. If M_NOWAIT is specified and the allocation fails,
|
|
* ENOMEM will be returned.
|
|
*
|
|
* If '*slice' is not NULL, it should point to an empty sglist. If it
|
|
* does not have enough room for the remaining space, then EFBIG will
|
|
* be returned. If '*slice' is not empty, then EINVAL will be
|
|
* returned.
|
|
*/
|
|
int
|
|
sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
|
|
size_t length, int mflags)
|
|
{
|
|
struct sglist *sg;
|
|
size_t space, end, foffs, loffs;
|
|
int count, i, fseg;
|
|
|
|
/* Nothing to do. */
|
|
if (length == 0)
|
|
return (0);
|
|
|
|
/* Figure out how many segments '*slice' needs to have. */
|
|
end = offset + length;
|
|
space = 0;
|
|
count = 0;
|
|
fseg = 0;
|
|
foffs = loffs = 0;
|
|
for (i = 0; i < original->sg_nseg; i++) {
|
|
space += original->sg_segs[i].ss_len;
|
|
if (space > offset) {
|
|
/*
|
|
* When we hit the first segment, store its index
|
|
* in 'fseg' and the offset into the first segment
|
|
* of 'offset' in 'foffs'.
|
|
*/
|
|
if (count == 0) {
|
|
fseg = i;
|
|
foffs = offset - (space -
|
|
original->sg_segs[i].ss_len);
|
|
CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
|
|
foffs);
|
|
}
|
|
count++;
|
|
|
|
/*
|
|
* When we hit the last segment, break out of
|
|
* the loop. Store the amount of extra space
|
|
* at the end of this segment in 'loffs'.
|
|
*/
|
|
if (space >= end) {
|
|
loffs = space - end;
|
|
CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
|
|
loffs);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we never hit 'end', then 'length' ran off the end, so fail. */
|
|
if (space < end)
|
|
return (EINVAL);
|
|
|
|
if (*slice == NULL) {
|
|
sg = sglist_alloc(count, mflags);
|
|
if (sg == NULL)
|
|
return (ENOMEM);
|
|
*slice = sg;
|
|
} else {
|
|
sg = *slice;
|
|
if (sg->sg_maxseg < count)
|
|
return (EFBIG);
|
|
if (sg->sg_nseg != 0)
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Copy over 'count' segments from 'original' starting at
|
|
* 'fseg' to 'sg'.
|
|
*/
|
|
bcopy(original->sg_segs + fseg, sg->sg_segs,
|
|
count * sizeof(struct sglist_seg));
|
|
sg->sg_nseg = count;
|
|
|
|
/* Fixup first and last segments if needed. */
|
|
if (foffs != 0) {
|
|
sg->sg_segs[0].ss_paddr += foffs;
|
|
sg->sg_segs[0].ss_len -= foffs;
|
|
CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
|
|
(long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
|
|
}
|
|
if (loffs != 0) {
|
|
sg->sg_segs[count - 1].ss_len -= loffs;
|
|
CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
|
|
sg->sg_segs[count - 1].ss_len);
|
|
}
|
|
return (0);
|
|
}
|