1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-22 11:17:19 +00:00
freebsd/sys/dev/pccard/pccard_cis.c
Warner Losh 3ef22bdd2f Allow zero length memroy space descriptor sections. It is apparently
legal in the spec.  Add newline to the verbose messages we print when
debugging when this happens.  The Hitachi HT-4840-11 is the only card
to hit these in years, and it works well enough if we're liberal about
what we accept.
2009-03-11 08:14:44 +00:00

1307 lines
35 KiB
C

/* $NetBSD: pcmcia_cis.c,v 1.17 2000/02/10 09:01:52 chopps Exp $ */
/* $FreeBSD$ */
/*-
* Copyright (c) 1997 Marc Horowitz. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Marc Horowitz.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/pccard/pccardreg.h>
#include <dev/pccard/pccardvar.h>
#include <dev/pccard/pccardvarp.h>
#include <dev/pccard/pccard_cis.h>
#include "card_if.h"
extern int pccard_cis_debug;
#define PCCARDCISDEBUG
#ifdef PCCARDCISDEBUG
#define DPRINTF(arg) do { if (pccard_cis_debug) printf arg; } while (0)
#define DEVPRINTF(arg) do { if (pccard_cis_debug) device_printf arg; } while (0)
#else
#define DPRINTF(arg)
#define DEVPRINTF(arg)
#endif
#define PCCARD_CIS_SIZE 4096
struct cis_state {
int count;
int gotmfc;
struct pccard_config_entry temp_cfe;
struct pccard_config_entry *default_cfe;
struct pccard_card *card;
struct pccard_function *pf;
};
static int pccard_parse_cis_tuple(const struct pccard_tuple *, void *);
static int decode_funce(const struct pccard_tuple *, struct pccard_function *);
void
pccard_read_cis(struct pccard_softc *sc)
{
struct cis_state state;
bzero(&state, sizeof state);
state.card = &sc->card;
state.card->error = 0;
state.card->cis1_major = -1;
state.card->cis1_minor = -1;
state.card->cis1_info[0] = NULL;
state.card->cis1_info[1] = NULL;
state.card->cis1_info[2] = NULL;
state.card->cis1_info[3] = NULL;
state.card->manufacturer = PCMCIA_VENDOR_INVALID;
state.card->product = PCMCIA_PRODUCT_INVALID;
STAILQ_INIT(&state.card->pf_head);
state.pf = NULL;
/*
* XXX The following shouldn't be needed, but some slow cards
* XXX seem to need it still. Need to investigate if there's
* XXX a way to tell if the card is 'ready' or not rather than
* XXX sleeping like this. We're called just after the power
* XXX up of the socket. The standard timing diagrams don't
* XXX seem to indicate that a delay is required. The old
* XXX delay was 1s. This delay is .1s.
*/
pause("pccard", hz / 10);
if (pccard_scan_cis(device_get_parent(sc->dev), sc->dev,
pccard_parse_cis_tuple, &state) == -1)
state.card->error++;
}
int
pccard_scan_cis(device_t bus, device_t dev, pccard_scan_t fct, void *arg)
{
struct resource *res;
int rid;
struct pccard_tuple tuple;
int longlink_present;
int longlink_common;
u_long longlink_addr; /* Type suspect */
int mfc_count;
int mfc_index;
#ifdef PCCARDCISDEBUG
int cis_none_cnt = 10; /* Only report 10 CIS_NONEs */
#endif
struct {
int common;
u_long addr;
} mfc[256 / 5];
int ret;
ret = 0;
/* allocate some memory */
/*
* Some reports from the field suggest that a 64k memory boundary
* helps card CIS being able to be read. Try it here and see what
* the results actually are. I'm not sure I understand why this
* would make cards work better, but it is easy enough to test.
*/
rid = 0;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0,
PCCARD_CIS_SIZE, RF_ACTIVE | rman_make_alignment_flags(64*1024));
if (res == NULL) {
device_printf(dev, "can't alloc memory to read attributes\n");
return -1;
}
CARD_SET_RES_FLAGS(bus, dev, SYS_RES_MEMORY, rid, PCCARD_A_MEM_ATTR);
tuple.memt = rman_get_bustag(res);
tuple.memh = rman_get_bushandle(res);
tuple.ptr = 0;
DPRINTF(("cis mem map %#x (resource: %#lx)\n",
(unsigned int) tuple.memh, rman_get_start(res)));
tuple.mult = 2;
longlink_present = 1;
longlink_common = 1;
longlink_addr = 0;
mfc_count = 0;
mfc_index = 0;
DEVPRINTF((dev, "CIS tuple chain:\n"));
while (1) {
while (1) {
/*
* Perform boundary check for insane cards.
* If CIS is too long, simulate CIS end.
* (This check may not be sufficient for
* malicious cards.)
*/
if (tuple.mult * tuple.ptr >= PCCARD_CIS_SIZE - 1
- 32 /* ad hoc value */ ) {
printf("CIS is too long -- truncating\n");
tuple.code = CISTPL_END;
} else {
/* get the tuple code */
tuple.code = pccard_cis_read_1(&tuple, tuple.ptr);
}
/* two special-case tuples */
if (tuple.code == CISTPL_NULL) {
#ifdef PCCARDCISDEBUG
if (cis_none_cnt > 0)
DPRINTF(("CISTPL_NONE\n 00\n"));
else if (cis_none_cnt == 0)
DPRINTF(("TOO MANY CIS_NONE\n"));
cis_none_cnt--;
#endif
if ((*fct)(&tuple, arg)) {
ret = 1;
goto done;
}
tuple.ptr++;
continue;
} else if (tuple.code == CISTPL_END) {
DPRINTF(("CISTPL_END\n ff\n"));
/* Call the function for the END tuple, since
the CIS semantics depend on it */
if ((*fct)(&tuple, arg)) {
ret = 1;
goto done;
}
tuple.ptr++;
break;
}
/* now all the normal tuples */
tuple.length = pccard_cis_read_1(&tuple, tuple.ptr + 1);
switch (tuple.code) {
case CISTPL_LONGLINK_A:
case CISTPL_LONGLINK_C:
if ((*fct)(&tuple, arg)) {
ret = 1;
goto done;
}
if (tuple.length < 4) {
DPRINTF(("CISTPL_LONGLINK_%s too "
"short %d\n",
longlink_common ? "C" : "A",
tuple.length));
break;
}
longlink_present = 1;
longlink_common = (tuple.code ==
CISTPL_LONGLINK_C) ? 1 : 0;
longlink_addr = pccard_tuple_read_4(&tuple, 0);
DPRINTF(("CISTPL_LONGLINK_%s %#lx\n",
longlink_common ? "C" : "A",
longlink_addr));
break;
case CISTPL_NO_LINK:
if ((*fct)(&tuple, arg)) {
ret = 1;
goto done;
}
longlink_present = 0;
DPRINTF(("CISTPL_NO_LINK\n"));
break;
case CISTPL_CHECKSUM:
if ((*fct)(&tuple, arg)) {
ret = 1;
goto done;
}
if (tuple.length < 5) {
DPRINTF(("CISTPL_CHECKSUM too "
"short %d\n", tuple.length));
break;
} {
int16_t offset;
u_long addr, length;
u_int cksum, sum;
int i;
offset = (uint16_t)
pccard_tuple_read_2(&tuple, 0);
length = pccard_tuple_read_2(&tuple, 2);
cksum = pccard_tuple_read_1(&tuple, 4);
addr = tuple.ptr + offset;
DPRINTF(("CISTPL_CHECKSUM addr=%#lx "
"len=%#lx cksum=%#x",
addr, length, cksum));
/*
* XXX do more work to deal with
* distant regions
*/
if ((addr >= PCCARD_CIS_SIZE) ||
((addr + length) >=
PCCARD_CIS_SIZE)) {
DPRINTF((" skipped, "
"too distant\n"));
break;
}
sum = 0;
for (i = 0; i < length; i++)
sum +=
bus_space_read_1(tuple.memt,
tuple.memh,
addr + tuple.mult * i);
if (cksum != (sum & 0xff)) {
DPRINTF((" failed sum=%#x\n",
sum));
device_printf(dev,
"CIS checksum failed\n");
#if 0
/*
* XXX Some working cards have
* XXX bad checksums!!
*/
ret = -1;
#endif
} else {
DPRINTF((" ok\n"));
}
}
break;
case CISTPL_LONGLINK_MFC:
if (tuple.length < 1) {
DPRINTF(("CISTPL_LONGLINK_MFC too "
"short %d\n", tuple.length));
break;
}
if (((tuple.length - 1) % 5) != 0) {
DPRINTF(("CISTPL_LONGLINK_MFC bogus "
"length %d\n", tuple.length));
break;
}
/*
* this is kind of ad hoc, as I don't have
* any real documentation
*/
{
int i, tmp_count;
/*
* put count into tmp var so that
* if we have to bail (because it's
* a bogus count) it won't be
* remembered for later use.
*/
tmp_count =
pccard_tuple_read_1(&tuple, 0);
DPRINTF(("CISTPL_LONGLINK_MFC %d",
tmp_count));
/*
* make _sure_ it's the right size;
* if too short, it may be a weird
* (unknown/undefined) format
*/
if (tuple.length != (tmp_count*5 + 1)) {
DPRINTF((" bogus length %d\n",
tuple.length));
break;
}
/*
* sanity check for a programming
* error which is difficult to find
* when debugging.
*/
if (tmp_count >
howmany(sizeof mfc, sizeof mfc[0]))
panic("CISTPL_LONGLINK_MFC mfc "
"count would blow stack");
mfc_count = tmp_count;
for (i = 0; i < mfc_count; i++) {
mfc[i].common =
(pccard_tuple_read_1(&tuple,
1 + 5 * i) ==
PCCARD_MFC_MEM_COMMON) ?
1 : 0;
mfc[i].addr =
pccard_tuple_read_4(&tuple,
1 + 5 * i + 1);
DPRINTF((" %s:%#lx",
mfc[i].common ? "common" :
"attr", mfc[i].addr));
}
DPRINTF(("\n"));
}
/*
* for LONGLINK_MFC, fall through to the
* function. This tuple has structural and
* semantic content.
*/
default:
{
if ((*fct)(&tuple, arg)) {
ret = 1;
goto done;
}
}
break;
} /* switch */
#ifdef PCCARDCISDEBUG
/* print the tuple */
{
int i;
DPRINTF((" %#02x %#02x", tuple.code,
tuple.length));
for (i = 0; i < tuple.length; i++) {
DPRINTF((" %#02x",
pccard_tuple_read_1(&tuple, i)));
if ((i % 16) == 13)
DPRINTF(("\n"));
}
if ((i % 16) != 14)
DPRINTF(("\n"));
}
#endif
/* skip to the next tuple */
tuple.ptr += 2 + tuple.length;
}
/*
* the chain is done. Clean up and move onto the next one,
* if any. The loop is here in the case that there is an MFC
* card with no longlink (which defaults to existing, == 0).
* In general, this means that if one pointer fails, it will
* try the next one, instead of just bailing.
*/
while (1) {
if (longlink_present) {
CARD_SET_RES_FLAGS(bus, dev, SYS_RES_MEMORY,
rid, longlink_common ?
PCCARD_A_MEM_COM : PCCARD_A_MEM_ATTR);
DPRINTF(("cis mem map %#x\n",
(unsigned int) tuple.memh));
tuple.mult = longlink_common ? 1 : 2;
tuple.ptr = longlink_addr;
longlink_present = 0;
longlink_common = 1;
longlink_addr = 0;
} else if (mfc_count && (mfc_index < mfc_count)) {
CARD_SET_RES_FLAGS(bus, dev, SYS_RES_MEMORY,
rid, mfc[mfc_index].common ?
PCCARD_A_MEM_COM : PCCARD_A_MEM_ATTR);
DPRINTF(("cis mem map %#x\n",
(unsigned int) tuple.memh));
/* set parse state, and point at the next one */
tuple.mult = mfc[mfc_index].common ? 1 : 2;
tuple.ptr = mfc[mfc_index].addr;
mfc_index++;
} else {
goto done;
}
/* make sure that the link is valid */
tuple.code = pccard_cis_read_1(&tuple, tuple.ptr);
if (tuple.code != CISTPL_LINKTARGET) {
DPRINTF(("CISTPL_LINKTARGET expected, "
"code %#02x observed\n", tuple.code));
continue;
}
tuple.length = pccard_cis_read_1(&tuple, tuple.ptr + 1);
if (tuple.length < 3) {
DPRINTF(("CISTPL_LINKTARGET too short %d\n",
tuple.length));
continue;
}
if ((pccard_tuple_read_1(&tuple, 0) != 'C') ||
(pccard_tuple_read_1(&tuple, 1) != 'I') ||
(pccard_tuple_read_1(&tuple, 2) != 'S')) {
DPRINTF(("CISTPL_LINKTARGET magic "
"%02x%02x%02x incorrect\n",
pccard_tuple_read_1(&tuple, 0),
pccard_tuple_read_1(&tuple, 1),
pccard_tuple_read_1(&tuple, 2)));
continue;
}
tuple.ptr += 2 + tuple.length;
break;
}
}
done:
bus_release_resource(dev, SYS_RES_MEMORY, rid, res);
return (ret);
}
/* XXX this is incredibly verbose. Not sure what trt is */
void
pccard_print_cis(device_t dev)
{
struct pccard_softc *sc = PCCARD_SOFTC(dev);
struct pccard_card *card = &sc->card;
struct pccard_function *pf;
struct pccard_config_entry *cfe;
int i;
device_printf(dev, "CIS version ");
if (card->cis1_major == 4) {
if (card->cis1_minor == 0)
printf("PCCARD 1.0\n");
else if (card->cis1_minor == 1)
printf("PCCARD 2.0 or 2.1\n");
} else if (card->cis1_major >= 5)
printf("PC Card Standard %d.%d\n", card->cis1_major, card->cis1_minor);
else
printf("unknown (major=%d, minor=%d)\n",
card->cis1_major, card->cis1_minor);
device_printf(dev, "CIS info: ");
for (i = 0; i < 4; i++) {
if (card->cis1_info[i] == NULL)
break;
if (i)
printf(", ");
printf("%s", card->cis1_info[i]);
}
printf("\n");
device_printf(dev, "Manufacturer code %#x, product %#x\n",
card->manufacturer, card->product);
STAILQ_FOREACH(pf, &card->pf_head, pf_list) {
device_printf(dev, "function %d: ", pf->number);
switch (pf->function) {
case PCCARD_FUNCTION_UNSPEC:
printf("unspecified");
break;
case PCCARD_FUNCTION_MULTIFUNCTION:
printf("multi-function");
break;
case PCCARD_FUNCTION_MEMORY:
printf("memory");
break;
case PCCARD_FUNCTION_SERIAL:
printf("serial port");
break;
case PCCARD_FUNCTION_PARALLEL:
printf("parallel port");
break;
case PCCARD_FUNCTION_DISK:
printf("fixed disk");
break;
case PCCARD_FUNCTION_VIDEO:
printf("video adapter");
break;
case PCCARD_FUNCTION_NETWORK:
printf("network adapter");
break;
case PCCARD_FUNCTION_AIMS:
printf("auto incrementing mass storage");
break;
case PCCARD_FUNCTION_SCSI:
printf("SCSI bridge");
break;
case PCCARD_FUNCTION_SECURITY:
printf("Security services");
break;
case PCCARD_FUNCTION_INSTRUMENT:
printf("Instrument");
break;
default:
printf("unknown (%d)", pf->function);
break;
}
printf(", ccr addr %#x mask %#x\n", pf->ccr_base, pf->ccr_mask);
STAILQ_FOREACH(cfe, &pf->cfe_head, cfe_list) {
device_printf(dev, "function %d, config table entry "
"%d: ", pf->number, cfe->number);
switch (cfe->iftype) {
case PCCARD_IFTYPE_MEMORY:
printf("memory card");
break;
case PCCARD_IFTYPE_IO:
printf("I/O card");
break;
default:
printf("card type unknown");
break;
}
printf("; irq mask %#x", cfe->irqmask);
if (cfe->num_iospace) {
printf("; iomask %#lx, iospace", cfe->iomask);
for (i = 0; i < cfe->num_iospace; i++) {
printf(" %#lx", cfe->iospace[i].start);
if (cfe->iospace[i].length)
printf("-%#lx",
cfe->iospace[i].start +
cfe->iospace[i].length - 1);
}
}
if (cfe->num_memspace) {
printf("; memspace");
for (i = 0; i < cfe->num_memspace; i++) {
printf(" %#lx",
cfe->memspace[i].cardaddr);
if (cfe->memspace[i].length)
printf("-%#lx",
cfe->memspace[i].cardaddr +
cfe->memspace[i].length - 1);
if (cfe->memspace[i].hostaddr)
printf("@%#lx",
cfe->memspace[i].hostaddr);
}
}
if (cfe->maxtwins)
printf("; maxtwins %d", cfe->maxtwins);
printf(";");
if (cfe->flags & PCCARD_CFE_MWAIT_REQUIRED)
printf(" mwait_required");
if (cfe->flags & PCCARD_CFE_RDYBSY_ACTIVE)
printf(" rdybsy_active");
if (cfe->flags & PCCARD_CFE_WP_ACTIVE)
printf(" wp_active");
if (cfe->flags & PCCARD_CFE_BVD_ACTIVE)
printf(" bvd_active");
if (cfe->flags & PCCARD_CFE_IO8)
printf(" io8");
if (cfe->flags & PCCARD_CFE_IO16)
printf(" io16");
if (cfe->flags & PCCARD_CFE_IRQSHARE)
printf(" irqshare");
if (cfe->flags & PCCARD_CFE_IRQPULSE)
printf(" irqpulse");
if (cfe->flags & PCCARD_CFE_IRQLEVEL)
printf(" irqlevel");
if (cfe->flags & PCCARD_CFE_POWERDOWN)
printf(" powerdown");
if (cfe->flags & PCCARD_CFE_READONLY)
printf(" readonly");
if (cfe->flags & PCCARD_CFE_AUDIO)
printf(" audio");
printf("\n");
}
}
if (card->error)
device_printf(dev, "%d errors found while parsing CIS\n",
card->error);
}
static int
pccard_parse_cis_tuple(const struct pccard_tuple *tuple, void *arg)
{
/* most of these are educated guesses */
static struct pccard_config_entry init_cfe = {
-1, PCCARD_CFE_RDYBSY_ACTIVE | PCCARD_CFE_WP_ACTIVE |
PCCARD_CFE_BVD_ACTIVE, PCCARD_IFTYPE_MEMORY,
};
struct cis_state *state = arg;
switch (tuple->code) {
case CISTPL_END:
/* if we've seen a LONGLINK_MFC, and this is the first
* END after it, reset the function list.
*
* XXX This might also be the right place to start a
* new function, but that assumes that a function
* definition never crosses any longlink, and I'm not
* sure about that. This is probably safe for MFC
* cards, but what we have now isn't broken, so I'd
* rather not change it.
*/
if (state->gotmfc == 1) {
struct pccard_function *pf, *pfnext;
for (pf = STAILQ_FIRST(&state->card->pf_head);
pf != NULL; pf = pfnext) {
pfnext = STAILQ_NEXT(pf, pf_list);
free(pf, M_DEVBUF);
}
STAILQ_INIT(&state->card->pf_head);
state->count = 0;
state->gotmfc = 2;
state->pf = NULL;
}
break;
case CISTPL_LONGLINK_MFC:
/*
* this tuple's structure was dealt with in scan_cis. here,
* record the fact that the MFC tuple was seen, so that
* functions declared before the MFC link can be cleaned
* up.
*/
state->gotmfc = 1;
break;
#ifdef PCCARDCISDEBUG
case CISTPL_DEVICE:
case CISTPL_DEVICE_A:
{
u_int reg, dtype, dspeed;
reg = pccard_tuple_read_1(tuple, 0);
dtype = reg & PCCARD_DTYPE_MASK;
dspeed = reg & PCCARD_DSPEED_MASK;
DPRINTF(("CISTPL_DEVICE%s type=",
(tuple->code == CISTPL_DEVICE) ? "" : "_A"));
switch (dtype) {
case PCCARD_DTYPE_NULL:
DPRINTF(("null"));
break;
case PCCARD_DTYPE_ROM:
DPRINTF(("rom"));
break;
case PCCARD_DTYPE_OTPROM:
DPRINTF(("otprom"));
break;
case PCCARD_DTYPE_EPROM:
DPRINTF(("eprom"));
break;
case PCCARD_DTYPE_EEPROM:
DPRINTF(("eeprom"));
break;
case PCCARD_DTYPE_FLASH:
DPRINTF(("flash"));
break;
case PCCARD_DTYPE_SRAM:
DPRINTF(("sram"));
break;
case PCCARD_DTYPE_DRAM:
DPRINTF(("dram"));
break;
case PCCARD_DTYPE_FUNCSPEC:
DPRINTF(("funcspec"));
break;
case PCCARD_DTYPE_EXTEND:
DPRINTF(("extend"));
break;
default:
DPRINTF(("reserved"));
break;
}
DPRINTF((" speed="));
switch (dspeed) {
case PCCARD_DSPEED_NULL:
DPRINTF(("null"));
break;
case PCCARD_DSPEED_250NS:
DPRINTF(("250ns"));
break;
case PCCARD_DSPEED_200NS:
DPRINTF(("200ns"));
break;
case PCCARD_DSPEED_150NS:
DPRINTF(("150ns"));
break;
case PCCARD_DSPEED_100NS:
DPRINTF(("100ns"));
break;
case PCCARD_DSPEED_EXT:
DPRINTF(("ext"));
break;
default:
DPRINTF(("reserved"));
break;
}
}
DPRINTF(("\n"));
break;
#endif
case CISTPL_VERS_1:
if (tuple->length < 6) {
DPRINTF(("CISTPL_VERS_1 too short %d\n",
tuple->length));
break;
} {
int start, i, ch, count;
state->card->cis1_major = pccard_tuple_read_1(tuple, 0);
state->card->cis1_minor = pccard_tuple_read_1(tuple, 1);
for (count = 0, start = 0, i = 0;
(count < 4) && ((i + 4) < 256); i++) {
ch = pccard_tuple_read_1(tuple, 2 + i);
if (ch == 0xff)
break;
state->card->cis1_info_buf[i] = ch;
if (ch == 0) {
state->card->cis1_info[count] =
state->card->cis1_info_buf + start;
start = i + 1;
count++;
}
}
DPRINTF(("CISTPL_VERS_1\n"));
}
break;
case CISTPL_MANFID:
if (tuple->length < 4) {
DPRINTF(("CISTPL_MANFID too short %d\n",
tuple->length));
break;
}
state->card->manufacturer = pccard_tuple_read_2(tuple, 0);
state->card->product = pccard_tuple_read_2(tuple, 2);
/*
* This is for xe driver. But not limited to that driver.
* In PC Card Standard,
* Manufacturer ID: 2byte.
* Product ID: typically 2bytes, but there's no limit on its
* size. prodext is a two byte field, so maybe we should
* also handle the '6' case. So far no cards have surfaced
* with a length of '6'.
*/
if (tuple->length == 5 )
state->card->prodext = pccard_tuple_read_1(tuple, 4);
DPRINTF(("CISTPL_MANFID\n"));
break;
case CISTPL_FUNCID:
if (tuple->length < 1) {
DPRINTF(("CISTPL_FUNCID too short %d\n",
tuple->length));
break;
}
if ((state->pf == NULL) || (state->gotmfc == 2)) {
state->pf = malloc(sizeof(*state->pf), M_DEVBUF,
M_NOWAIT | M_ZERO);
state->pf->number = state->count++;
state->pf->last_config_index = -1;
STAILQ_INIT(&state->pf->cfe_head);
STAILQ_INSERT_TAIL(&state->card->pf_head, state->pf,
pf_list);
}
state->pf->function = pccard_tuple_read_1(tuple, 0);
DPRINTF(("CISTPL_FUNCID\n"));
break;
case CISTPL_FUNCE:
if (state->pf == NULL || state->pf->function <= 0) {
DPRINTF(("CISTPL_FUNCE is not followed by "
"valid CISTPL_FUNCID\n"));
break;
}
if (tuple->length >= 2)
decode_funce(tuple, state->pf);
DPRINTF(("CISTPL_FUNCE\n"));
break;
case CISTPL_CONFIG:
if (tuple->length < 3) {
DPRINTF(("CISTPL_CONFIG too short %d\n",
tuple->length));
break;
} {
u_int reg, rasz, rmsz, rfsz;
int i;
reg = pccard_tuple_read_1(tuple, 0);
rasz = 1 + ((reg & PCCARD_TPCC_RASZ_MASK) >>
PCCARD_TPCC_RASZ_SHIFT);
rmsz = 1 + ((reg & PCCARD_TPCC_RMSZ_MASK) >>
PCCARD_TPCC_RMSZ_SHIFT);
rfsz = ((reg & PCCARD_TPCC_RFSZ_MASK) >>
PCCARD_TPCC_RFSZ_SHIFT);
if (tuple->length < (rasz + rmsz + rfsz)) {
DPRINTF(("CISTPL_CONFIG (%d,%d,%d) too "
"short %d\n", rasz, rmsz, rfsz,
tuple->length));
break;
}
if (state->pf == NULL) {
state->pf = malloc(sizeof(*state->pf),
M_DEVBUF, M_NOWAIT | M_ZERO);
state->pf->number = state->count++;
state->pf->last_config_index = -1;
STAILQ_INIT(&state->pf->cfe_head);
STAILQ_INSERT_TAIL(&state->card->pf_head,
state->pf, pf_list);
state->pf->function = PCCARD_FUNCTION_UNSPEC;
}
state->pf->last_config_index =
pccard_tuple_read_1(tuple, 1);
state->pf->ccr_base = 0;
for (i = 0; i < rasz; i++)
state->pf->ccr_base |=
((pccard_tuple_read_1(tuple, 2 + i)) <<
(i * 8));
state->pf->ccr_mask = 0;
for (i = 0; i < rmsz; i++)
state->pf->ccr_mask |=
((pccard_tuple_read_1(tuple,
2 + rasz + i)) << (i * 8));
/* skip the reserved area and subtuples */
/* reset the default cfe for each cfe list */
state->temp_cfe = init_cfe;
state->default_cfe = &state->temp_cfe;
}
DPRINTF(("CISTPL_CONFIG\n"));
break;
case CISTPL_CFTABLE_ENTRY:
{
int idx, i;
u_int reg, reg2;
u_int intface, def, num;
u_int power, timing, iospace, irq, memspace, misc;
struct pccard_config_entry *cfe;
idx = 0;
reg = pccard_tuple_read_1(tuple, idx++);
intface = reg & PCCARD_TPCE_INDX_INTFACE;
def = reg & PCCARD_TPCE_INDX_DEFAULT;
num = reg & PCCARD_TPCE_INDX_NUM_MASK;
/*
* this is a little messy. Some cards have only a
* cfentry with the default bit set. So, as we go
* through the list, we add new indexes to the queue,
* and keep a pointer to the last one with the
* default bit set. if we see a record with the same
* index, as the default, we stash the default and
* replace the queue entry. otherwise, we just add
* new entries to the queue, pointing the default ptr
* at them if the default bit is set. if we get to
* the end with the default pointer pointing at a
* record which hasn't had a matching index, that's
* ok; it just becomes a cfentry like any other.
*/
/*
* if the index in the cis differs from the default
* cis, create new entry in the queue and start it
* with the current default
*/
if (num != state->default_cfe->number) {
cfe = (struct pccard_config_entry *)
malloc(sizeof(*cfe), M_DEVBUF, M_NOWAIT);
if (cfe == NULL) {
DPRINTF(("no memory for config entry\n"));
goto abort_cfe;
}
*cfe = *state->default_cfe;
STAILQ_INSERT_TAIL(&state->pf->cfe_head,
cfe, cfe_list);
cfe->number = num;
/*
* if the default bit is set in the cis, then
* point the new default at whatever is being
* filled in
*/
if (def)
state->default_cfe = cfe;
} else {
/*
* the cis index matches the default index,
* fill in the default cfentry. It is
* assumed that the cfdefault index is in the
* queue. For it to be otherwise, the cis
* index would have to be -1 (initial
* condition) which is not possible, or there
* would have to be a preceding cis entry
* which had the same cis index and had the
* default bit unset. Neither condition
* should happen. If it does, this cfentry
* is lost (written into temp space), which
* is an acceptable failure mode.
*/
cfe = state->default_cfe;
/*
* if the cis entry does not have the default
* bit set, copy the default out of the way
* first.
*/
if (!def) {
state->temp_cfe = *state->default_cfe;
state->default_cfe = &state->temp_cfe;
}
}
if (intface) {
reg = pccard_tuple_read_1(tuple, idx++);
cfe->flags &= ~(PCCARD_CFE_MWAIT_REQUIRED
| PCCARD_CFE_RDYBSY_ACTIVE
| PCCARD_CFE_WP_ACTIVE
| PCCARD_CFE_BVD_ACTIVE);
if (reg & PCCARD_TPCE_IF_MWAIT)
cfe->flags |= PCCARD_CFE_MWAIT_REQUIRED;
if (reg & PCCARD_TPCE_IF_RDYBSY)
cfe->flags |= PCCARD_CFE_RDYBSY_ACTIVE;
if (reg & PCCARD_TPCE_IF_WP)
cfe->flags |= PCCARD_CFE_WP_ACTIVE;
if (reg & PCCARD_TPCE_IF_BVD)
cfe->flags |= PCCARD_CFE_BVD_ACTIVE;
cfe->iftype = reg & PCCARD_TPCE_IF_IFTYPE;
}
reg = pccard_tuple_read_1(tuple, idx++);
power = reg & PCCARD_TPCE_FS_POWER_MASK;
timing = reg & PCCARD_TPCE_FS_TIMING;
iospace = reg & PCCARD_TPCE_FS_IOSPACE;
irq = reg & PCCARD_TPCE_FS_IRQ;
memspace = reg & PCCARD_TPCE_FS_MEMSPACE_MASK;
misc = reg & PCCARD_TPCE_FS_MISC;
if (power) {
/* skip over power, don't save */
/* for each parameter selection byte */
for (i = 0; i < power; i++) {
reg = pccard_tuple_read_1(tuple, idx++);
for (; reg; reg >>= 1)
{
/* set bit -> read */
if ((reg & 1) == 0)
continue;
/* skip over bytes */
do {
reg2 = pccard_tuple_read_1(tuple, idx++);
/*
* until non-extension
* byte
*/
} while (reg2 & 0x80);
}
}
}
if (timing) {
/* skip over timing, don't save */
reg = pccard_tuple_read_1(tuple, idx++);
if ((reg & PCCARD_TPCE_TD_RESERVED_MASK) !=
PCCARD_TPCE_TD_RESERVED_MASK)
idx++;
if ((reg & PCCARD_TPCE_TD_RDYBSY_MASK) !=
PCCARD_TPCE_TD_RDYBSY_MASK)
idx++;
if ((reg & PCCARD_TPCE_TD_WAIT_MASK) !=
PCCARD_TPCE_TD_WAIT_MASK)
idx++;
}
if (iospace) {
if (tuple->length <= idx) {
DPRINTF(("ran out of space before TCPE_IO\n"));
goto abort_cfe;
}
reg = pccard_tuple_read_1(tuple, idx++);
cfe->flags &=
~(PCCARD_CFE_IO8 | PCCARD_CFE_IO16);
if (reg & PCCARD_TPCE_IO_BUSWIDTH_8BIT)
cfe->flags |= PCCARD_CFE_IO8;
if (reg & PCCARD_TPCE_IO_BUSWIDTH_16BIT)
cfe->flags |= PCCARD_CFE_IO16;
cfe->iomask =
reg & PCCARD_TPCE_IO_IOADDRLINES_MASK;
if (reg & PCCARD_TPCE_IO_HASRANGE) {
reg = pccard_tuple_read_1(tuple, idx++);
cfe->num_iospace = 1 + (reg &
PCCARD_TPCE_IO_RANGE_COUNT);
if (cfe->num_iospace >
(sizeof(cfe->iospace) /
sizeof(cfe->iospace[0]))) {
DPRINTF(("too many io "
"spaces %d",
cfe->num_iospace));
state->card->error++;
break;
}
for (i = 0; i < cfe->num_iospace; i++) {
switch (reg & PCCARD_TPCE_IO_RANGE_ADDRSIZE_MASK) {
case PCCARD_TPCE_IO_RANGE_ADDRSIZE_ONE:
cfe->iospace[i].start =
pccard_tuple_read_1(tuple, idx++);
break;
case PCCARD_TPCE_IO_RANGE_ADDRSIZE_TWO:
cfe->iospace[i].start =
pccard_tuple_read_2(tuple, idx);
idx += 2;
break;
case PCCARD_TPCE_IO_RANGE_ADDRSIZE_FOUR:
cfe->iospace[i].start =
pccard_tuple_read_4(tuple, idx);
idx += 4;
break;
}
switch (reg &
PCCARD_TPCE_IO_RANGE_LENGTHSIZE_MASK) {
case PCCARD_TPCE_IO_RANGE_LENGTHSIZE_ONE:
cfe->iospace[i].length =
pccard_tuple_read_1(tuple, idx++);
break;
case PCCARD_TPCE_IO_RANGE_LENGTHSIZE_TWO:
cfe->iospace[i].length =
pccard_tuple_read_2(tuple, idx);
idx += 2;
break;
case PCCARD_TPCE_IO_RANGE_LENGTHSIZE_FOUR:
cfe->iospace[i].length =
pccard_tuple_read_4(tuple, idx);
idx += 4;
break;
}
cfe->iospace[i].length++;
}
} else {
cfe->num_iospace = 1;
cfe->iospace[0].start = 0;
cfe->iospace[0].length =
(1 << cfe->iomask);
}
}
if (irq) {
if (tuple->length <= idx) {
DPRINTF(("ran out of space before TCPE_IR\n"));
goto abort_cfe;
}
reg = pccard_tuple_read_1(tuple, idx++);
cfe->flags &= ~(PCCARD_CFE_IRQSHARE
| PCCARD_CFE_IRQPULSE
| PCCARD_CFE_IRQLEVEL);
if (reg & PCCARD_TPCE_IR_SHARE)
cfe->flags |= PCCARD_CFE_IRQSHARE;
if (reg & PCCARD_TPCE_IR_PULSE)
cfe->flags |= PCCARD_CFE_IRQPULSE;
if (reg & PCCARD_TPCE_IR_LEVEL)
cfe->flags |= PCCARD_CFE_IRQLEVEL;
if (reg & PCCARD_TPCE_IR_HASMASK) {
/*
* it's legal to ignore the
* special-interrupt bits, so I will
*/
cfe->irqmask =
pccard_tuple_read_2(tuple, idx);
idx += 2;
} else {
cfe->irqmask =
(1 << (reg & PCCARD_TPCE_IR_IRQ));
}
} else {
cfe->irqmask = 0xffff;
}
if (memspace) {
if (tuple->length <= idx) {
DPRINTF(("ran out of space before TCPE_MS\n"));
goto abort_cfe;
}
if (memspace == PCCARD_TPCE_FS_MEMSPACE_LENGTH) {
cfe->num_memspace = 1;
cfe->memspace[0].length = 256 *
pccard_tuple_read_2(tuple, idx);
idx += 2;
cfe->memspace[0].cardaddr = 0;
cfe->memspace[0].hostaddr = 0;
} else if (memspace ==
PCCARD_TPCE_FS_MEMSPACE_LENGTHADDR) {
cfe->num_memspace = 1;
cfe->memspace[0].length = 256 *
pccard_tuple_read_2(tuple, idx);
idx += 2;
cfe->memspace[0].cardaddr = 256 *
pccard_tuple_read_2(tuple, idx);
idx += 2;
cfe->memspace[0].hostaddr = cfe->memspace[0].cardaddr;
} else {
int lengthsize;
int cardaddrsize;
int hostaddrsize;
reg = pccard_tuple_read_1(tuple, idx++);
cfe->num_memspace = (reg &
PCCARD_TPCE_MS_COUNT) + 1;
if (cfe->num_memspace >
(sizeof(cfe->memspace) /
sizeof(cfe->memspace[0]))) {
DPRINTF(("too many mem "
"spaces %d",
cfe->num_memspace));
state->card->error++;
break;
}
lengthsize =
((reg & PCCARD_TPCE_MS_LENGTH_SIZE_MASK) >>
PCCARD_TPCE_MS_LENGTH_SIZE_SHIFT);
cardaddrsize =
((reg & PCCARD_TPCE_MS_CARDADDR_SIZE_MASK) >>
PCCARD_TPCE_MS_CARDADDR_SIZE_SHIFT);
hostaddrsize =
(reg & PCCARD_TPCE_MS_HOSTADDR) ? cardaddrsize : 0;
if (lengthsize == 0) {
DPRINTF(("cfe memspace "
"lengthsize == 0\n"));
}
for (i = 0; i < cfe->num_memspace; i++) {
if (lengthsize) {
cfe->memspace[i].length =
256 * pccard_tuple_read_n(tuple, lengthsize,
idx);
idx += lengthsize;
} else {
cfe->memspace[i].length = 0;
}
if (cfe->memspace[i].length == 0) {
DPRINTF(("cfe->memspace[%d].length == 0\n",
i));
}
if (cardaddrsize) {
cfe->memspace[i].cardaddr =
256 * pccard_tuple_read_n(tuple, cardaddrsize,
idx);
idx += cardaddrsize;
} else {
cfe->memspace[i].cardaddr = 0;
}
if (hostaddrsize) {
cfe->memspace[i].hostaddr =
256 * pccard_tuple_read_n(tuple, hostaddrsize,
idx);
idx += hostaddrsize;
} else {
cfe->memspace[i].hostaddr = 0;
}
}
}
} else
cfe->num_memspace = 0;
if (misc) {
if (tuple->length <= idx) {
DPRINTF(("ran out of space before TCPE_MI\n"));
goto abort_cfe;
}
reg = pccard_tuple_read_1(tuple, idx++);
cfe->flags &= ~(PCCARD_CFE_POWERDOWN
| PCCARD_CFE_READONLY
| PCCARD_CFE_AUDIO);
if (reg & PCCARD_TPCE_MI_PWRDOWN)
cfe->flags |= PCCARD_CFE_POWERDOWN;
if (reg & PCCARD_TPCE_MI_READONLY)
cfe->flags |= PCCARD_CFE_READONLY;
if (reg & PCCARD_TPCE_MI_AUDIO)
cfe->flags |= PCCARD_CFE_AUDIO;
cfe->maxtwins = reg & PCCARD_TPCE_MI_MAXTWINS;
while (reg & PCCARD_TPCE_MI_EXT) {
reg = pccard_tuple_read_1(tuple, idx++);
}
}
/* skip all the subtuples */
}
abort_cfe:
DPRINTF(("CISTPL_CFTABLE_ENTRY\n"));
break;
default:
DPRINTF(("unhandled CISTPL %#x\n", tuple->code));
break;
}
return (0);
}
static int
decode_funce(const struct pccard_tuple *tuple, struct pccard_function *pf)
{
int i;
int len;
int type = pccard_tuple_read_1(tuple, 0);
switch (pf->function) {
case PCCARD_FUNCTION_DISK:
if (type == PCCARD_TPLFE_TYPE_DISK_DEVICE_INTERFACE) {
pf->pf_funce_disk_interface
= pccard_tuple_read_1(tuple, 1);
pf->pf_funce_disk_power
= pccard_tuple_read_1(tuple, 2);
}
break;
case PCCARD_FUNCTION_NETWORK:
if (type == PCCARD_TPLFE_TYPE_LAN_NID) {
len = pccard_tuple_read_1(tuple, 1);
if (tuple->length < 2 + len || len > 8) {
/* tuple length not enough or nid too long */
break;
}
for (i = 0; i < len; i++) {
pf->pf_funce_lan_nid[i]
= pccard_tuple_read_1(tuple, i + 2);
}
pf->pf_funce_lan_nidlen = len;
}
break;
default:
break;
}
return 0;
}