1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-23 11:18:54 +00:00
freebsd/sys/net/rtsock.c
Gleb Smirnoff 7caf4ab7ac - Utilize counter(9) to accumulate statistics on interface addresses. Add
four counters to struct ifaddr. This kills '+=' on a variables shared
  between processors for every packet.
- Nuke struct if_data from struct ifaddr.
- In ip_input() do not put a reference on ifaddr, instead update statistics
  right now in place and do IN_IFADDR_RUNLOCK(). These removes atomic(9)
  for every packet. [1]
- To properly support NET_RT_IFLISTL sysctl used by getifaddrs(3), in
  rtsock.c fill if_data fields using counter_u64_fetch().
- Accidentially fix bug in COMPAT_32 version of NET_RT_IFLISTL, which
  took if_data not from the ifaddr, but from ifaddr's ifnet. [2]

Submitted by:	melifaro [1], pluknet[2]
Sponsored by:	Netflix
Sponsored by:	Nginx, Inc.
2013-10-15 11:37:57 +00:00

2035 lines
51 KiB
C

/*-
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
* $FreeBSD$
*/
#include "opt_compat.h"
#include "opt_sctp.h"
#include "opt_mpath.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/domain.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/rwlock.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llatbl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#include <net/raw_cb.h>
#include <net/route.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip_carp.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#endif
#if defined(INET) || defined(INET6)
#ifdef SCTP
extern void sctp_addr_change(struct ifaddr *ifa, int cmd);
#endif /* SCTP */
#endif
#ifdef COMPAT_FREEBSD32
#include <sys/mount.h>
#include <compat/freebsd32/freebsd32.h>
struct if_data32 {
uint8_t ifi_type;
uint8_t ifi_physical;
uint8_t ifi_addrlen;
uint8_t ifi_hdrlen;
uint8_t ifi_link_state;
uint8_t ifi_vhid;
uint8_t ifi_baudrate_pf;
uint8_t ifi_datalen;
uint32_t ifi_mtu;
uint32_t ifi_metric;
uint32_t ifi_baudrate;
uint32_t ifi_ipackets;
uint32_t ifi_ierrors;
uint32_t ifi_opackets;
uint32_t ifi_oerrors;
uint32_t ifi_collisions;
uint32_t ifi_ibytes;
uint32_t ifi_obytes;
uint32_t ifi_imcasts;
uint32_t ifi_omcasts;
uint32_t ifi_iqdrops;
uint32_t ifi_noproto;
uint32_t ifi_hwassist;
int32_t ifi_epoch;
struct timeval32 ifi_lastchange;
};
struct if_msghdr32 {
uint16_t ifm_msglen;
uint8_t ifm_version;
uint8_t ifm_type;
int32_t ifm_addrs;
int32_t ifm_flags;
uint16_t ifm_index;
struct if_data32 ifm_data;
};
struct if_msghdrl32 {
uint16_t ifm_msglen;
uint8_t ifm_version;
uint8_t ifm_type;
int32_t ifm_addrs;
int32_t ifm_flags;
uint16_t ifm_index;
uint16_t _ifm_spare1;
uint16_t ifm_len;
uint16_t ifm_data_off;
struct if_data32 ifm_data;
};
struct ifa_msghdrl32 {
uint16_t ifam_msglen;
uint8_t ifam_version;
uint8_t ifam_type;
int32_t ifam_addrs;
int32_t ifam_flags;
uint16_t ifam_index;
uint16_t _ifam_spare1;
uint16_t ifam_len;
uint16_t ifam_data_off;
int32_t ifam_metric;
struct if_data32 ifam_data;
};
#endif /* COMPAT_FREEBSD32 */
MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
/* NB: these are not modified */
static struct sockaddr route_src = { 2, PF_ROUTE, };
static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
/* These are external hooks for CARP. */
int (*carp_get_vhid_p)(struct ifaddr *);
/*
* Used by rtsock/raw_input callback code to decide whether to filter the update
* notification to a socket bound to a particular FIB.
*/
#define RTS_FILTER_FIB M_PROTO8
#define RTS_ALLFIBS -1
static struct {
int ip_count; /* attached w/ AF_INET */
int ip6_count; /* attached w/ AF_INET6 */
int ipx_count; /* attached w/ AF_IPX */
int any_count; /* total attached */
} route_cb;
struct mtx rtsock_mtx;
MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
#define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
#define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
#define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
struct walkarg {
int w_tmemsize;
int w_op, w_arg;
caddr_t w_tmem;
struct sysctl_req *w_req;
};
static void rts_input(struct mbuf *m);
static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
static int rt_msg2(int type, struct rt_addrinfo *rtinfo,
caddr_t cp, struct walkarg *w);
static int rt_xaddrs(caddr_t cp, caddr_t cplim,
struct rt_addrinfo *rtinfo);
static int sysctl_dumpentry(struct radix_node *rn, void *vw);
static int sysctl_iflist(int af, struct walkarg *w);
static int sysctl_ifmalist(int af, struct walkarg *w);
static int route_output(struct mbuf *m, struct socket *so);
static void rt_setmetrics(u_long which, const struct rt_metrics *in,
struct rt_metrics_lite *out);
static void rt_getmetrics(const struct rt_metrics_lite *in,
struct rt_metrics *out);
static void rt_dispatch(struct mbuf *, sa_family_t);
static struct netisr_handler rtsock_nh = {
.nh_name = "rtsock",
.nh_handler = rts_input,
.nh_proto = NETISR_ROUTE,
.nh_policy = NETISR_POLICY_SOURCE,
};
static int
sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
{
int error, qlimit;
netisr_getqlimit(&rtsock_nh, &qlimit);
error = sysctl_handle_int(oidp, &qlimit, 0, req);
if (error || !req->newptr)
return (error);
if (qlimit < 1)
return (EINVAL);
return (netisr_setqlimit(&rtsock_nh, qlimit));
}
SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
0, 0, sysctl_route_netisr_maxqlen, "I",
"maximum routing socket dispatch queue length");
static void
rts_init(void)
{
int tmp;
if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
rtsock_nh.nh_qlimit = tmp;
netisr_register(&rtsock_nh);
}
SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
static int
raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
struct rawcb *rp)
{
int fibnum;
KASSERT(m != NULL, ("%s: m is NULL", __func__));
KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
/* No filtering requested. */
if ((m->m_flags & RTS_FILTER_FIB) == 0)
return (0);
/* Check if it is a rts and the fib matches the one of the socket. */
fibnum = M_GETFIB(m);
if (proto->sp_family != PF_ROUTE ||
rp->rcb_socket == NULL ||
rp->rcb_socket->so_fibnum == fibnum)
return (0);
/* Filtering requested and no match, the socket shall be skipped. */
return (1);
}
static void
rts_input(struct mbuf *m)
{
struct sockproto route_proto;
unsigned short *family;
struct m_tag *tag;
route_proto.sp_family = PF_ROUTE;
tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
if (tag != NULL) {
family = (unsigned short *)(tag + 1);
route_proto.sp_protocol = *family;
m_tag_delete(m, tag);
} else
route_proto.sp_protocol = 0;
raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
}
/*
* It really doesn't make any sense at all for this code to share much
* with raw_usrreq.c, since its functionality is so restricted. XXX
*/
static void
rts_abort(struct socket *so)
{
raw_usrreqs.pru_abort(so);
}
static void
rts_close(struct socket *so)
{
raw_usrreqs.pru_close(so);
}
/* pru_accept is EOPNOTSUPP */
static int
rts_attach(struct socket *so, int proto, struct thread *td)
{
struct rawcb *rp;
int error;
KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
/* XXX */
rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
if (rp == NULL)
return ENOBUFS;
so->so_pcb = (caddr_t)rp;
so->so_fibnum = td->td_proc->p_fibnum;
error = raw_attach(so, proto);
rp = sotorawcb(so);
if (error) {
so->so_pcb = NULL;
free(rp, M_PCB);
return error;
}
RTSOCK_LOCK();
switch(rp->rcb_proto.sp_protocol) {
case AF_INET:
route_cb.ip_count++;
break;
case AF_INET6:
route_cb.ip6_count++;
break;
case AF_IPX:
route_cb.ipx_count++;
break;
}
route_cb.any_count++;
RTSOCK_UNLOCK();
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
return 0;
}
static int
rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
}
static int
rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
}
/* pru_connect2 is EOPNOTSUPP */
/* pru_control is EOPNOTSUPP */
static void
rts_detach(struct socket *so)
{
struct rawcb *rp = sotorawcb(so);
KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
RTSOCK_LOCK();
switch(rp->rcb_proto.sp_protocol) {
case AF_INET:
route_cb.ip_count--;
break;
case AF_INET6:
route_cb.ip6_count--;
break;
case AF_IPX:
route_cb.ipx_count--;
break;
}
route_cb.any_count--;
RTSOCK_UNLOCK();
raw_usrreqs.pru_detach(so);
}
static int
rts_disconnect(struct socket *so)
{
return (raw_usrreqs.pru_disconnect(so));
}
/* pru_listen is EOPNOTSUPP */
static int
rts_peeraddr(struct socket *so, struct sockaddr **nam)
{
return (raw_usrreqs.pru_peeraddr(so, nam));
}
/* pru_rcvd is EOPNOTSUPP */
/* pru_rcvoob is EOPNOTSUPP */
static int
rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct thread *td)
{
return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
}
/* pru_sense is null */
static int
rts_shutdown(struct socket *so)
{
return (raw_usrreqs.pru_shutdown(so));
}
static int
rts_sockaddr(struct socket *so, struct sockaddr **nam)
{
return (raw_usrreqs.pru_sockaddr(so, nam));
}
static struct pr_usrreqs route_usrreqs = {
.pru_abort = rts_abort,
.pru_attach = rts_attach,
.pru_bind = rts_bind,
.pru_connect = rts_connect,
.pru_detach = rts_detach,
.pru_disconnect = rts_disconnect,
.pru_peeraddr = rts_peeraddr,
.pru_send = rts_send,
.pru_shutdown = rts_shutdown,
.pru_sockaddr = rts_sockaddr,
.pru_close = rts_close,
};
#ifndef _SOCKADDR_UNION_DEFINED
#define _SOCKADDR_UNION_DEFINED
/*
* The union of all possible address formats we handle.
*/
union sockaddr_union {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
};
#endif /* _SOCKADDR_UNION_DEFINED */
static int
rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
{
/* First, see if the returned address is part of the jail. */
if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
return (0);
}
switch (info->rti_info[RTAX_DST]->sa_family) {
#ifdef INET
case AF_INET:
{
struct in_addr ia;
struct ifaddr *ifa;
int found;
found = 0;
/*
* Try to find an address on the given outgoing interface
* that belongs to the jail.
*/
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa;
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
ia = ((struct sockaddr_in *)sa)->sin_addr;
if (prison_check_ip4(cred, &ia) == 0) {
found = 1;
break;
}
}
IF_ADDR_RUNLOCK(ifp);
if (!found) {
/*
* As a last resort return the 'default' jail address.
*/
ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
sin_addr;
if (prison_get_ip4(cred, &ia) != 0)
return (ESRCH);
}
bzero(&saun->sin, sizeof(struct sockaddr_in));
saun->sin.sin_len = sizeof(struct sockaddr_in);
saun->sin.sin_family = AF_INET;
saun->sin.sin_addr.s_addr = ia.s_addr;
info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
break;
}
#endif
#ifdef INET6
case AF_INET6:
{
struct in6_addr ia6;
struct ifaddr *ifa;
int found;
found = 0;
/*
* Try to find an address on the given outgoing interface
* that belongs to the jail.
*/
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa;
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET6)
continue;
bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
&ia6, sizeof(struct in6_addr));
if (prison_check_ip6(cred, &ia6) == 0) {
found = 1;
break;
}
}
IF_ADDR_RUNLOCK(ifp);
if (!found) {
/*
* As a last resort return the 'default' jail address.
*/
ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
sin6_addr;
if (prison_get_ip6(cred, &ia6) != 0)
return (ESRCH);
}
bzero(&saun->sin6, sizeof(struct sockaddr_in6));
saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
saun->sin6.sin6_family = AF_INET6;
bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
if (sa6_recoverscope(&saun->sin6) != 0)
return (ESRCH);
info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
break;
}
#endif
default:
return (ESRCH);
}
return (0);
}
/*ARGSUSED*/
static int
route_output(struct mbuf *m, struct socket *so)
{
#define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
struct rt_msghdr *rtm = NULL;
struct rtentry *rt = NULL;
struct radix_node_head *rnh;
struct rt_addrinfo info;
#ifdef INET6
struct sockaddr_storage ss;
struct sockaddr_in6 *sin6;
int i, rti_need_deembed = 0;
#endif
int len, error = 0;
struct ifnet *ifp = NULL;
union sockaddr_union saun;
sa_family_t saf = AF_UNSPEC;
#define senderr(e) { error = e; goto flush;}
if (m == NULL || ((m->m_len < sizeof(long)) &&
(m = m_pullup(m, sizeof(long))) == NULL))
return (ENOBUFS);
if ((m->m_flags & M_PKTHDR) == 0)
panic("route_output");
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
info.rti_info[RTAX_DST] = NULL;
senderr(EINVAL);
}
R_Malloc(rtm, struct rt_msghdr *, len);
if (rtm == NULL) {
info.rti_info[RTAX_DST] = NULL;
senderr(ENOBUFS);
}
m_copydata(m, 0, len, (caddr_t)rtm);
if (rtm->rtm_version != RTM_VERSION) {
info.rti_info[RTAX_DST] = NULL;
senderr(EPROTONOSUPPORT);
}
rtm->rtm_pid = curproc->p_pid;
bzero(&info, sizeof(info));
info.rti_addrs = rtm->rtm_addrs;
/*
* rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
* link-local address because rtrequest requires addresses with
* embedded scope id.
*/
if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
info.rti_info[RTAX_DST] = NULL;
senderr(EINVAL);
}
info.rti_flags = rtm->rtm_flags;
if (info.rti_info[RTAX_DST] == NULL ||
info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
(info.rti_info[RTAX_GATEWAY] != NULL &&
info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
senderr(EINVAL);
saf = info.rti_info[RTAX_DST]->sa_family;
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
if (rtm->rtm_type != RTM_GET) {
error = priv_check(curthread, PRIV_NET_ROUTE);
if (error)
senderr(error);
}
/*
* The given gateway address may be an interface address.
* For example, issuing a "route change" command on a route
* entry that was created from a tunnel, and the gateway
* address given is the local end point. In this case the
* RTF_GATEWAY flag must be cleared or the destination will
* not be reachable even though there is no error message.
*/
if (info.rti_info[RTAX_GATEWAY] != NULL &&
info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
struct route gw_ro;
bzero(&gw_ro, sizeof(gw_ro));
gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY];
rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum);
/*
* A host route through the loopback interface is
* installed for each interface adddress. In pre 8.0
* releases the interface address of a PPP link type
* is not reachable locally. This behavior is fixed as
* part of the new L2/L3 redesign and rewrite work. The
* signature of this interface address route is the
* AF_LINK sa_family type of the rt_gateway, and the
* rt_ifp has the IFF_LOOPBACK flag set.
*/
if (gw_ro.ro_rt != NULL &&
gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK &&
gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) {
info.rti_flags &= ~RTF_GATEWAY;
info.rti_flags |= RTF_GWFLAG_COMPAT;
}
if (gw_ro.ro_rt != NULL)
RTFREE(gw_ro.ro_rt);
}
switch (rtm->rtm_type) {
struct rtentry *saved_nrt;
case RTM_ADD:
if (info.rti_info[RTAX_GATEWAY] == NULL)
senderr(EINVAL);
saved_nrt = NULL;
/* support for new ARP code */
if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
(rtm->rtm_flags & RTF_LLDATA) != 0) {
error = lla_rt_output(rtm, &info);
#ifdef INET6
if (error == 0)
rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
#endif
break;
}
error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
so->so_fibnum);
if (error == 0 && saved_nrt) {
#ifdef INET6
rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
#endif
RT_LOCK(saved_nrt);
rt_setmetrics(rtm->rtm_inits,
&rtm->rtm_rmx, &saved_nrt->rt_rmx);
rtm->rtm_index = saved_nrt->rt_ifp->if_index;
RT_REMREF(saved_nrt);
RT_UNLOCK(saved_nrt);
}
break;
case RTM_DELETE:
saved_nrt = NULL;
/* support for new ARP code */
if (info.rti_info[RTAX_GATEWAY] &&
(info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
(rtm->rtm_flags & RTF_LLDATA) != 0) {
error = lla_rt_output(rtm, &info);
#ifdef INET6
if (error == 0)
rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
#endif
break;
}
error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
so->so_fibnum);
if (error == 0) {
RT_LOCK(saved_nrt);
rt = saved_nrt;
goto report;
}
#ifdef INET6
/* rt_msg2() will not be used when RTM_DELETE fails. */
rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
#endif
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
rnh = rt_tables_get_rnh(so->so_fibnum,
info.rti_info[RTAX_DST]->sa_family);
if (rnh == NULL)
senderr(EAFNOSUPPORT);
RADIX_NODE_HEAD_RLOCK(rnh);
rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
info.rti_info[RTAX_NETMASK], rnh);
if (rt == NULL) { /* XXX looks bogus */
RADIX_NODE_HEAD_RUNLOCK(rnh);
senderr(ESRCH);
}
#ifdef RADIX_MPATH
/*
* for RTM_CHANGE/LOCK, if we got multipath routes,
* we require users to specify a matching RTAX_GATEWAY.
*
* for RTM_GET, gate is optional even with multipath.
* if gate == NULL the first match is returned.
* (no need to call rt_mpath_matchgate if gate == NULL)
*/
if (rn_mpath_capable(rnh) &&
(rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
if (!rt) {
RADIX_NODE_HEAD_RUNLOCK(rnh);
senderr(ESRCH);
}
}
#endif
/*
* If performing proxied L2 entry insertion, and
* the actual PPP host entry is found, perform
* another search to retrieve the prefix route of
* the local end point of the PPP link.
*/
if (rtm->rtm_flags & RTF_ANNOUNCE) {
struct sockaddr laddr;
if (rt->rt_ifp != NULL &&
rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
struct ifaddr *ifa;
ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1);
if (ifa != NULL)
rt_maskedcopy(ifa->ifa_addr,
&laddr,
ifa->ifa_netmask);
} else
rt_maskedcopy(rt->rt_ifa->ifa_addr,
&laddr,
rt->rt_ifa->ifa_netmask);
/*
* refactor rt and no lock operation necessary
*/
rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh);
if (rt == NULL) {
RADIX_NODE_HEAD_RUNLOCK(rnh);
senderr(ESRCH);
}
}
RT_LOCK(rt);
RT_ADDREF(rt);
RADIX_NODE_HEAD_RUNLOCK(rnh);
/*
* Fix for PR: 82974
*
* RTM_CHANGE/LOCK need a perfect match, rn_lookup()
* returns a perfect match in case a netmask is
* specified. For host routes only a longest prefix
* match is returned so it is necessary to compare the
* existence of the netmask. If both have a netmask
* rnh_lookup() did a perfect match and if none of them
* have a netmask both are host routes which is also a
* perfect match.
*/
if (rtm->rtm_type != RTM_GET &&
(!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
RT_UNLOCK(rt);
senderr(ESRCH);
}
switch(rtm->rtm_type) {
case RTM_GET:
report:
RT_LOCK_ASSERT(rt);
if ((rt->rt_flags & RTF_HOST) == 0
? jailed_without_vnet(curthread->td_ucred)
: prison_if(curthread->td_ucred,
rt_key(rt)) != 0) {
RT_UNLOCK(rt);
senderr(ESRCH);
}
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = 0;
if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
ifp = rt->rt_ifp;
if (ifp) {
info.rti_info[RTAX_IFP] =
ifp->if_addr->ifa_addr;
error = rtm_get_jailed(&info, ifp, rt,
&saun, curthread->td_ucred);
if (error != 0) {
RT_UNLOCK(rt);
senderr(error);
}
if (ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] =
rt->rt_ifa->ifa_dstaddr;
rtm->rtm_index = ifp->if_index;
} else {
info.rti_info[RTAX_IFP] = NULL;
info.rti_info[RTAX_IFA] = NULL;
}
} else if ((ifp = rt->rt_ifp) != NULL) {
rtm->rtm_index = ifp->if_index;
}
len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
if (len > rtm->rtm_msglen) {
struct rt_msghdr *new_rtm;
R_Malloc(new_rtm, struct rt_msghdr *, len);
if (new_rtm == NULL) {
RT_UNLOCK(rt);
senderr(ENOBUFS);
}
bcopy(rtm, new_rtm, rtm->rtm_msglen);
Free(rtm); rtm = new_rtm;
}
(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
if (rt->rt_flags & RTF_GWFLAG_COMPAT)
rtm->rtm_flags = RTF_GATEWAY |
(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
else
rtm->rtm_flags = rt->rt_flags;
rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
rtm->rtm_addrs = info.rti_addrs;
break;
case RTM_CHANGE:
/*
* New gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
if (((rt->rt_flags & RTF_GATEWAY) &&
info.rti_info[RTAX_GATEWAY] != NULL) ||
info.rti_info[RTAX_IFP] != NULL ||
(info.rti_info[RTAX_IFA] != NULL &&
!sa_equal(info.rti_info[RTAX_IFA],
rt->rt_ifa->ifa_addr))) {
RT_UNLOCK(rt);
RADIX_NODE_HEAD_LOCK(rnh);
error = rt_getifa_fib(&info, rt->rt_fibnum);
/*
* XXXRW: Really we should release this
* reference later, but this maintains
* historical behavior.
*/
if (info.rti_ifa != NULL)
ifa_free(info.rti_ifa);
RADIX_NODE_HEAD_UNLOCK(rnh);
if (error != 0)
senderr(error);
RT_LOCK(rt);
}
if (info.rti_ifa != NULL &&
info.rti_ifa != rt->rt_ifa &&
rt->rt_ifa != NULL &&
rt->rt_ifa->ifa_rtrequest != NULL) {
rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
&info);
ifa_free(rt->rt_ifa);
}
if (info.rti_info[RTAX_GATEWAY] != NULL) {
RT_UNLOCK(rt);
RADIX_NODE_HEAD_LOCK(rnh);
RT_LOCK(rt);
error = rt_setgate(rt, rt_key(rt),
info.rti_info[RTAX_GATEWAY]);
RADIX_NODE_HEAD_UNLOCK(rnh);
if (error != 0) {
RT_UNLOCK(rt);
senderr(error);
}
rt->rt_flags &= ~RTF_GATEWAY;
rt->rt_flags |= (RTF_GATEWAY & info.rti_flags);
}
if (info.rti_ifa != NULL &&
info.rti_ifa != rt->rt_ifa) {
ifa_ref(info.rti_ifa);
rt->rt_ifa = info.rti_ifa;
rt->rt_ifp = info.rti_ifp;
}
/* Allow some flags to be toggled on change. */
rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) |
(rtm->rtm_flags & RTF_FMASK);
rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
&rt->rt_rmx);
rtm->rtm_index = rt->rt_ifp->if_index;
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
/* FALLTHROUGH */
case RTM_LOCK:
/* We don't support locks anymore */
break;
}
RT_UNLOCK(rt);
break;
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm) {
if (error)
rtm->rtm_errno = error;
else
rtm->rtm_flags |= RTF_DONE;
}
if (rt) /* XXX can this be true? */
RTFREE(rt);
{
struct rawcb *rp = NULL;
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (route_cb.any_count <= 1) {
if (rtm)
Free(rtm);
m_freem(m);
return (error);
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm) {
#ifdef INET6
if (rti_need_deembed) {
/* sin6_scope_id is recovered before sending rtm. */
sin6 = (struct sockaddr_in6 *)&ss;
for (i = 0; i < RTAX_MAX; i++) {
if (info.rti_info[i] == NULL)
continue;
if (info.rti_info[i]->sa_family != AF_INET6)
continue;
bcopy(info.rti_info[i], sin6, sizeof(*sin6));
if (sa6_recoverscope(sin6) == 0)
bcopy(sin6, info.rti_info[i],
sizeof(*sin6));
}
}
#endif
m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
}
if (m) {
M_SETFIB(m, so->so_fibnum);
m->m_flags |= RTS_FILTER_FIB;
if (rp) {
/*
* XXX insure we don't get a copy by
* invalidating our protocol
*/
unsigned short family = rp->rcb_proto.sp_family;
rp->rcb_proto.sp_family = 0;
rt_dispatch(m, saf);
rp->rcb_proto.sp_family = family;
} else
rt_dispatch(m, saf);
}
/* info.rti_info[RTAX_DST] (used above) can point inside of rtm */
if (rtm)
Free(rtm);
}
return (error);
#undef sa_equal
}
static void
rt_setmetrics(u_long which, const struct rt_metrics *in,
struct rt_metrics_lite *out)
{
#define metric(f, e) if (which & (f)) out->e = in->e;
/*
* Only these are stored in the routing entry since introduction
* of tcp hostcache. The rest is ignored.
*/
metric(RTV_MTU, rmx_mtu);
metric(RTV_WEIGHT, rmx_weight);
/* Userland -> kernel timebase conversion. */
if (which & RTV_EXPIRE)
out->rmx_expire = in->rmx_expire ?
in->rmx_expire - time_second + time_uptime : 0;
#undef metric
}
static void
rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
{
#define metric(e) out->e = in->e;
bzero(out, sizeof(*out));
metric(rmx_mtu);
metric(rmx_weight);
/* Kernel -> userland timebase conversion. */
out->rmx_expire = in->rmx_expire ?
in->rmx_expire - time_uptime + time_second : 0;
#undef metric
}
/*
* Extract the addresses of the passed sockaddrs.
* Do a little sanity checking so as to avoid bad memory references.
* This data is derived straight from userland.
*/
static int
rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
{
struct sockaddr *sa;
int i;
for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
sa = (struct sockaddr *)cp;
/*
* It won't fit.
*/
if (cp + sa->sa_len > cplim)
return (EINVAL);
/*
* there are no more.. quit now
* If there are more bits, they are in error.
* I've seen this. route(1) can evidently generate these.
* This causes kernel to core dump.
* for compatibility, If we see this, point to a safe address.
*/
if (sa->sa_len == 0) {
rtinfo->rti_info[i] = &sa_zero;
return (0); /* should be EINVAL but for compat */
}
/* accept it */
#ifdef INET6
if (sa->sa_family == AF_INET6)
sa6_embedscope((struct sockaddr_in6 *)sa,
V_ip6_use_defzone);
#endif
rtinfo->rti_info[i] = sa;
cp += SA_SIZE(sa);
}
return (0);
}
/*
* Used by the routing socket.
*/
static struct mbuf *
rt_msg1(int type, struct rt_addrinfo *rtinfo)
{
struct rt_msghdr *rtm;
struct mbuf *m;
int i;
struct sockaddr *sa;
#ifdef INET6
struct sockaddr_storage ss;
struct sockaddr_in6 *sin6;
#endif
int len, dlen;
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
case RTM_DELMADDR:
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_IFANNOUNCE:
case RTM_IEEE80211:
len = sizeof(struct if_announcemsghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
/* XXXGL: can we use MJUMPAGESIZE cluster here? */
KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
if (len > MHLEN)
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
else
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL)
return (m);
m->m_pkthdr.len = m->m_len = len;
rtm = mtod(m, struct rt_msghdr *);
bzero((caddr_t)rtm, len);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = SA_SIZE(sa);
#ifdef INET6
if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)&ss;
bcopy(sa, sin6, sizeof(*sin6));
if (sa6_recoverscope(sin6) == 0)
sa = (struct sockaddr *)sin6;
}
#endif
m_copyback(m, len, dlen, (caddr_t)sa);
len += dlen;
}
if (m->m_pkthdr.len != len) {
m_freem(m);
return (NULL);
}
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return (m);
}
/*
* Used by the sysctl code and routing socket.
*/
static int
rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
{
int i;
int len, dlen, second_time = 0;
caddr_t cp0;
#ifdef INET6
struct sockaddr_storage ss;
struct sockaddr_in6 *sin6;
#endif
rtinfo->rti_addrs = 0;
again:
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
if (w != NULL && w->w_op == NET_RT_IFLISTL) {
#ifdef COMPAT_FREEBSD32
if (w->w_req->flags & SCTL_MASK32)
len = sizeof(struct ifa_msghdrl32);
else
#endif
len = sizeof(struct ifa_msghdrl);
} else
len = sizeof(struct ifa_msghdr);
break;
case RTM_IFINFO:
#ifdef COMPAT_FREEBSD32
if (w != NULL && w->w_req->flags & SCTL_MASK32) {
if (w->w_op == NET_RT_IFLISTL)
len = sizeof(struct if_msghdrl32);
else
len = sizeof(struct if_msghdr32);
break;
}
#endif
if (w != NULL && w->w_op == NET_RT_IFLISTL)
len = sizeof(struct if_msghdrl);
else
len = sizeof(struct if_msghdr);
break;
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
cp0 = cp;
if (cp0)
cp += len;
for (i = 0; i < RTAX_MAX; i++) {
struct sockaddr *sa;
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = SA_SIZE(sa);
if (cp) {
#ifdef INET6
if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)&ss;
bcopy(sa, sin6, sizeof(*sin6));
if (sa6_recoverscope(sin6) == 0)
sa = (struct sockaddr *)sin6;
}
#endif
bcopy((caddr_t)sa, cp, (unsigned)dlen);
cp += dlen;
}
len += dlen;
}
len = ALIGN(len);
if (cp == NULL && w != NULL && !second_time) {
struct walkarg *rw = w;
if (rw->w_req) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem)
free(rw->w_tmem, M_RTABLE);
rw->w_tmem = (caddr_t)
malloc(len, M_RTABLE, M_NOWAIT);
if (rw->w_tmem)
rw->w_tmemsize = len;
}
if (rw->w_tmem) {
cp = rw->w_tmem;
second_time = 1;
goto again;
}
}
}
if (cp) {
struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
}
return (len);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occured, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
int fibnum)
{
struct rt_msghdr *rtm;
struct mbuf *m;
struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
if (route_cb.any_count == 0)
return;
m = rt_msg1(type, rtinfo);
if (m == NULL)
return;
if (fibnum != RTS_ALLFIBS) {
KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
"of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
M_SETFIB(m, fibnum);
m->m_flags |= RTS_FILTER_FIB;
}
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_flags = RTF_DONE | flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = rtinfo->rti_addrs;
rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
}
void
rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
{
rt_missmsg_fib(type, rtinfo, flags, error, RTS_ALLFIBS);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
rt_ifmsg(struct ifnet *ifp)
{
struct if_msghdr *ifm;
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
m = rt_msg1(RTM_IFINFO, &info);
if (m == NULL)
return;
ifm = mtod(m, struct if_msghdr *);
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = 0;
rt_dispatch(m, AF_UNSPEC);
}
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*/
void
rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt,
int fibnum)
{
struct rt_addrinfo info;
struct sockaddr *sa = NULL;
int pass;
struct mbuf *m = NULL;
struct ifnet *ifp = ifa->ifa_ifp;
KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
("unexpected cmd %u", cmd));
#if defined(INET) || defined(INET6)
#ifdef SCTP
/*
* notify the SCTP stack
* this will only get called when an address is added/deleted
* XXX pass the ifaddr struct instead if ifa->ifa_addr...
*/
sctp_addr_change(ifa, cmd);
#endif /* SCTP */
#endif
if (route_cb.any_count == 0)
return;
for (pass = 1; pass < 3; pass++) {
bzero((caddr_t)&info, sizeof(info));
if ((cmd == RTM_ADD && pass == 1) ||
(cmd == RTM_DELETE && pass == 2)) {
struct ifa_msghdr *ifam;
int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
if ((m = rt_msg1(ncmd, &info)) == NULL)
continue;
ifam = mtod(m, struct ifa_msghdr *);
ifam->ifam_index = ifp->if_index;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_addrs = info.rti_addrs;
}
if ((cmd == RTM_ADD && pass == 2) ||
(cmd == RTM_DELETE && pass == 1)) {
struct rt_msghdr *rtm;
if (rt == NULL)
continue;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_DST] = sa = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
if ((m = rt_msg1(cmd, &info)) == NULL)
continue;
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_index = ifp->if_index;
rtm->rtm_flags |= rt->rt_flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = info.rti_addrs;
}
if (fibnum != RTS_ALLFIBS) {
KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: "
"fibnum out of range 0 <= %d < %d", __func__,
fibnum, rt_numfibs));
M_SETFIB(m, fibnum);
m->m_flags |= RTS_FILTER_FIB;
}
rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
}
}
void
rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
{
rt_newaddrmsg_fib(cmd, ifa, error, rt, RTS_ALLFIBS);
}
/*
* This is the analogue to the rt_newaddrmsg which performs the same
* function but for multicast group memberhips. This is easier since
* there is no route state to worry about.
*/
void
rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
{
struct rt_addrinfo info;
struct mbuf *m = NULL;
struct ifnet *ifp = ifma->ifma_ifp;
struct ifma_msghdr *ifmam;
if (route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
/*
* If a link-layer address is present, present it as a ``gateway''
* (similarly to how ARP entries, e.g., are presented).
*/
info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
m = rt_msg1(cmd, &info);
if (m == NULL)
return;
ifmam = mtod(m, struct ifma_msghdr *);
KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
__func__));
ifmam->ifmam_index = ifp->if_index;
ifmam->ifmam_addrs = info.rti_addrs;
rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
}
static struct mbuf *
rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
struct rt_addrinfo *info)
{
struct if_announcemsghdr *ifan;
struct mbuf *m;
if (route_cb.any_count == 0)
return NULL;
bzero((caddr_t)info, sizeof(*info));
m = rt_msg1(type, info);
if (m != NULL) {
ifan = mtod(m, struct if_announcemsghdr *);
ifan->ifan_index = ifp->if_index;
strlcpy(ifan->ifan_name, ifp->if_xname,
sizeof(ifan->ifan_name));
ifan->ifan_what = what;
}
return m;
}
/*
* This is called to generate routing socket messages indicating
* IEEE80211 wireless events.
* XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
*/
void
rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
{
struct mbuf *m;
struct rt_addrinfo info;
m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
if (m != NULL) {
/*
* Append the ieee80211 data. Try to stick it in the
* mbuf containing the ifannounce msg; otherwise allocate
* a new mbuf and append.
*
* NB: we assume m is a single mbuf.
*/
if (data_len > M_TRAILINGSPACE(m)) {
struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
if (n == NULL) {
m_freem(m);
return;
}
bcopy(data, mtod(n, void *), data_len);
n->m_len = data_len;
m->m_next = n;
} else if (data_len > 0) {
bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
m->m_len += data_len;
}
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len += data_len;
mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
rt_dispatch(m, AF_UNSPEC);
}
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
rt_ifannouncemsg(struct ifnet *ifp, int what)
{
struct mbuf *m;
struct rt_addrinfo info;
m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
if (m != NULL)
rt_dispatch(m, AF_UNSPEC);
}
static void
rt_dispatch(struct mbuf *m, sa_family_t saf)
{
struct m_tag *tag;
/*
* Preserve the family from the sockaddr, if any, in an m_tag for
* use when injecting the mbuf into the routing socket buffer from
* the netisr.
*/
if (saf != AF_UNSPEC) {
tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
M_NOWAIT);
if (tag == NULL) {
m_freem(m);
return;
}
*(unsigned short *)(tag + 1) = saf;
m_tag_prepend(m, tag);
}
#ifdef VIMAGE
if (V_loif)
m->m_pkthdr.rcvif = V_loif;
else {
m_freem(m);
return;
}
#endif
netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(struct radix_node *rn, void *vw)
{
struct walkarg *w = vw;
struct rtentry *rt = (struct rtentry *)rn;
int error = 0, size;
struct rt_addrinfo info;
if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
return 0;
if ((rt->rt_flags & RTF_HOST) == 0
? jailed_without_vnet(w->w_req->td->td_ucred)
: prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
return (0);
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = 0;
if (rt->rt_ifp) {
info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
}
size = rt_msg2(RTM_GET, &info, NULL, w);
if (w->w_req && w->w_tmem) {
struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
if (rt->rt_flags & RTF_GWFLAG_COMPAT)
rtm->rtm_flags = RTF_GATEWAY |
(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
else
rtm->rtm_flags = rt->rt_flags;
/*
* let's be honest about this being a retarded hack
*/
rtm->rtm_fmask = rt->rt_rmx.rmx_pksent;
rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
return (error);
}
return (error);
}
#ifdef COMPAT_FREEBSD32
static void
copy_ifdata32(struct if_data *src, struct if_data32 *dst)
{
bzero(dst, sizeof(*dst));
CP(*src, *dst, ifi_type);
CP(*src, *dst, ifi_physical);
CP(*src, *dst, ifi_addrlen);
CP(*src, *dst, ifi_hdrlen);
CP(*src, *dst, ifi_link_state);
CP(*src, *dst, ifi_vhid);
CP(*src, *dst, ifi_baudrate_pf);
dst->ifi_datalen = sizeof(struct if_data32);
CP(*src, *dst, ifi_mtu);
CP(*src, *dst, ifi_metric);
CP(*src, *dst, ifi_baudrate);
CP(*src, *dst, ifi_ipackets);
CP(*src, *dst, ifi_ierrors);
CP(*src, *dst, ifi_opackets);
CP(*src, *dst, ifi_oerrors);
CP(*src, *dst, ifi_collisions);
CP(*src, *dst, ifi_ibytes);
CP(*src, *dst, ifi_obytes);
CP(*src, *dst, ifi_imcasts);
CP(*src, *dst, ifi_omcasts);
CP(*src, *dst, ifi_iqdrops);
CP(*src, *dst, ifi_noproto);
CP(*src, *dst, ifi_hwassist);
CP(*src, *dst, ifi_epoch);
TV_CP(*src, *dst, ifi_lastchange);
}
#endif
static int
sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info,
struct walkarg *w, int len)
{
struct if_msghdrl *ifm;
#ifdef COMPAT_FREEBSD32
if (w->w_req->flags & SCTL_MASK32) {
struct if_msghdrl32 *ifm32;
ifm32 = (struct if_msghdrl32 *)w->w_tmem;
ifm32->ifm_addrs = info->rti_addrs;
ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm32->ifm_index = ifp->if_index;
ifm32->_ifm_spare1 = 0;
ifm32->ifm_len = sizeof(*ifm32);
ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
copy_ifdata32(&ifp->if_data, &ifm32->ifm_data);
/* Fixup if_data carp(4) vhid. */
if (carp_get_vhid_p != NULL)
ifm32->ifm_data.ifi_vhid =
(*carp_get_vhid_p)(ifp->if_addr);
return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len));
}
#endif
ifm = (struct if_msghdrl *)w->w_tmem;
ifm->ifm_addrs = info->rti_addrs;
ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm->ifm_index = ifp->if_index;
ifm->_ifm_spare1 = 0;
ifm->ifm_len = sizeof(*ifm);
ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
ifm->ifm_data = ifp->if_data;
/* Fixup if_data carp(4) vhid. */
if (carp_get_vhid_p != NULL)
ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr);
return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
}
static int
sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info,
struct walkarg *w, int len)
{
struct if_msghdr *ifm;
#ifdef COMPAT_FREEBSD32
if (w->w_req->flags & SCTL_MASK32) {
struct if_msghdr32 *ifm32;
ifm32 = (struct if_msghdr32 *)w->w_tmem;
ifm32->ifm_addrs = info->rti_addrs;
ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm32->ifm_index = ifp->if_index;
copy_ifdata32(&ifp->if_data, &ifm32->ifm_data);
/* Fixup if_data carp(4) vhid. */
if (carp_get_vhid_p != NULL)
ifm32->ifm_data.ifi_vhid =
(*carp_get_vhid_p)(ifp->if_addr);
return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len));
}
#endif
ifm = (struct if_msghdr *)w->w_tmem;
ifm->ifm_addrs = info->rti_addrs;
ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm->ifm_index = ifp->if_index;
ifm->ifm_data = ifp->if_data;
/* Fixup if_data carp(4) vhid. */
if (carp_get_vhid_p != NULL)
ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr);
return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
}
static int
sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
struct walkarg *w, int len)
{
struct ifa_msghdrl *ifam;
#ifdef COMPAT_FREEBSD32
if (w->w_req->flags & SCTL_MASK32) {
struct ifa_msghdrl32 *ifam32;
ifam32 = (struct ifa_msghdrl32 *)w->w_tmem;
ifam32->ifam_addrs = info->rti_addrs;
ifam32->ifam_flags = ifa->ifa_flags;
ifam32->ifam_index = ifa->ifa_ifp->if_index;
ifam32->_ifam_spare1 = 0;
ifam32->ifam_len = sizeof(*ifam32);
ifam32->ifam_data_off =
offsetof(struct ifa_msghdrl32, ifam_data);
ifam32->ifam_metric = ifa->ifa_metric;
bzero(&ifam32->ifam_data, sizeof(ifam32->ifam_data));
ifam32->ifam_data.ifi_datalen = sizeof(struct if_data32);
ifam32->ifam_data.ifi_ipackets =
counter_u64_fetch(ifa->ifa_ipackets);
ifam32->ifam_data.ifi_opackets =
counter_u64_fetch(ifa->ifa_opackets);
ifam32->ifam_data.ifi_ibytes =
counter_u64_fetch(ifa->ifa_ibytes);
ifam32->ifam_data.ifi_obytes =
counter_u64_fetch(ifa->ifa_obytes);
/* Fixup if_data carp(4) vhid. */
if (carp_get_vhid_p != NULL)
ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa);
return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len));
}
#endif
ifam = (struct ifa_msghdrl *)w->w_tmem;
ifam->ifam_addrs = info->rti_addrs;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->_ifam_spare1 = 0;
ifam->ifam_len = sizeof(*ifam);
ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
ifam->ifam_metric = ifa->ifa_metric;
bzero(&ifam->ifam_data, sizeof(ifam->ifam_data));
ifam->ifam_data.ifi_datalen = sizeof(struct if_data);
ifam->ifam_data.ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
ifam->ifam_data.ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
ifam->ifam_data.ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
ifam->ifam_data.ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
/* Fixup if_data carp(4) vhid. */
if (carp_get_vhid_p != NULL)
ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa);
return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
}
static int
sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
struct walkarg *w, int len)
{
struct ifa_msghdr *ifam;
ifam = (struct ifa_msghdr *)w->w_tmem;
ifam->ifam_addrs = info->rti_addrs;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_metric = ifa->ifa_metric;
return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
}
static int
sysctl_iflist(int af, struct walkarg *w)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int len, error = 0;
bzero((caddr_t)&info, sizeof(info));
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
IF_ADDR_RLOCK(ifp);
ifa = ifp->if_addr;
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
len = rt_msg2(RTM_IFINFO, &info, NULL, w);
info.rti_info[RTAX_IFP] = NULL;
if (w->w_req && w->w_tmem) {
if (w->w_op == NET_RT_IFLISTL)
error = sysctl_iflist_ifml(ifp, &info, w, len);
else
error = sysctl_iflist_ifm(ifp, &info, w, len);
if (error)
goto done;
}
while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
if (af && af != ifa->ifa_addr->sa_family)
continue;
if (prison_if(w->w_req->td->td_ucred,
ifa->ifa_addr) != 0)
continue;
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
if (w->w_req && w->w_tmem) {
if (w->w_op == NET_RT_IFLISTL)
error = sysctl_iflist_ifaml(ifa, &info,
w, len);
else
error = sysctl_iflist_ifam(ifa, &info,
w, len);
if (error)
goto done;
}
}
IF_ADDR_RUNLOCK(ifp);
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
info.rti_info[RTAX_BRD] = NULL;
}
done:
if (ifp != NULL)
IF_ADDR_RUNLOCK(ifp);
IFNET_RUNLOCK_NOSLEEP();
return (error);
}
static int
sysctl_ifmalist(int af, struct walkarg *w)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
struct rt_addrinfo info;
int len, error = 0;
struct ifaddr *ifa;
bzero((caddr_t)&info, sizeof(info));
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
ifa = ifp->if_addr;
info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (af && af != ifma->ifma_addr->sa_family)
continue;
if (prison_if(w->w_req->td->td_ucred,
ifma->ifma_addr) != 0)
continue;
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
info.rti_info[RTAX_GATEWAY] =
(ifma->ifma_addr->sa_family != AF_LINK) ?
ifma->ifma_lladdr : NULL;
len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
if (w->w_req && w->w_tmem) {
struct ifma_msghdr *ifmam;
ifmam = (struct ifma_msghdr *)w->w_tmem;
ifmam->ifmam_index = ifma->ifma_ifp->if_index;
ifmam->ifmam_flags = 0;
ifmam->ifmam_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
if (error) {
IF_ADDR_RUNLOCK(ifp);
goto done;
}
}
}
IF_ADDR_RUNLOCK(ifp);
}
done:
IFNET_RUNLOCK_NOSLEEP();
return (error);
}
static int
sysctl_rtsock(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct radix_node_head *rnh = NULL; /* silence compiler. */
int i, lim, error = EINVAL;
int fib = 0;
u_char af;
struct walkarg w;
name ++;
namelen--;
if (req->newptr)
return (EPERM);
if (name[1] == NET_RT_DUMP) {
if (namelen == 3)
fib = req->td->td_proc->p_fibnum;
else if (namelen == 4)
fib = (name[3] == -1) ?
req->td->td_proc->p_fibnum : name[3];
else
return ((namelen < 3) ? EISDIR : ENOTDIR);
if (fib < 0 || fib >= rt_numfibs)
return (EINVAL);
} else if (namelen != 3)
return ((namelen < 3) ? EISDIR : ENOTDIR);
af = name[0];
if (af > AF_MAX)
return (EINVAL);
bzero(&w, sizeof(w));
w.w_op = name[1];
w.w_arg = name[2];
w.w_req = req;
error = sysctl_wire_old_buffer(req, 0);
if (error)
return (error);
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
if (af == 0) { /* dump all tables */
i = 1;
lim = AF_MAX;
} else /* dump only one table */
i = lim = af;
/*
* take care of llinfo entries, the caller must
* specify an AF
*/
if (w.w_op == NET_RT_FLAGS &&
(w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
if (af != 0)
error = lltable_sysctl_dumparp(af, w.w_req);
else
error = EINVAL;
break;
}
/*
* take care of routing entries
*/
for (error = 0; error == 0 && i <= lim; i++) {
rnh = rt_tables_get_rnh(fib, i);
if (rnh != NULL) {
RADIX_NODE_HEAD_RLOCK(rnh);
error = rnh->rnh_walktree(rnh,
sysctl_dumpentry, &w);
RADIX_NODE_HEAD_RUNLOCK(rnh);
} else if (af != 0)
error = EAFNOSUPPORT;
}
break;
case NET_RT_IFLIST:
case NET_RT_IFLISTL:
error = sysctl_iflist(af, &w);
break;
case NET_RT_IFMALIST:
error = sysctl_ifmalist(af, &w);
break;
}
if (w.w_tmem)
free(w.w_tmem, M_RTABLE);
return (error);
}
static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
/*
* Definitions of protocols supported in the ROUTE domain.
*/
static struct domain routedomain; /* or at least forward */
static struct protosw routesw[] = {
{
.pr_type = SOCK_RAW,
.pr_domain = &routedomain,
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_output = route_output,
.pr_ctlinput = raw_ctlinput,
.pr_init = raw_init,
.pr_usrreqs = &route_usrreqs
}
};
static struct domain routedomain = {
.dom_family = PF_ROUTE,
.dom_name = "route",
.dom_protosw = routesw,
.dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])]
};
VNET_DOMAIN_SET(route);