mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-10 14:02:43 +00:00
ea906c4152
will update usr.sbin/ntp to match this. MFC after: 2 weeks
1891 lines
52 KiB
C
1891 lines
52 KiB
C
/*
|
|
* Program to generate cryptographic keys for NTP clients and servers
|
|
*
|
|
* This program generates files "ntpkey_<type>_<hostname>.<filestamp>",
|
|
* where <type> is the file type, <hostname> is the generating host and
|
|
* <filestamp> is the NTP seconds in decimal format. The NTP programs
|
|
* expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
|
|
* association maintained by soft links.
|
|
*
|
|
* Files are prefixed with a header giving the name and date of creation
|
|
* followed by a type-specific descriptive label and PEM-encoded data
|
|
* string compatible with programs of the OpenSSL library.
|
|
*
|
|
* Note that private keys can be password encrypted as per OpenSSL
|
|
* conventions.
|
|
*
|
|
* The file types include
|
|
*
|
|
* ntpkey_MD5key_<hostname>.<filestamp>
|
|
* MD5 (128-bit) keys used to compute message digests in symmetric
|
|
* key cryptography
|
|
*
|
|
* ntpkey_RSAkey_<hostname>.<filestamp>
|
|
* ntpkey_host_<hostname> (RSA) link
|
|
* RSA private/public host key pair used for public key signatures
|
|
* and data encryption
|
|
*
|
|
* ntpkey_DSAkey_<hostname>.<filestamp>
|
|
* ntpkey_sign_<hostname> (RSA or DSA) link
|
|
* DSA private/public sign key pair used for public key signatures,
|
|
* but not data encryption
|
|
*
|
|
* ntpkey_IFFpar_<hostname>.<filestamp>
|
|
* ntpkey_iff_<hostname> (IFF server/client) link
|
|
* ntpkey_iffkey_<hostname> (IFF client) link
|
|
* Schnorr (IFF) server/client identity parameters
|
|
*
|
|
* ntpkey_IFFkey_<hostname>.<filestamp>
|
|
* Schnorr (IFF) client identity parameters
|
|
*
|
|
* ntpkey_GQpar_<hostname>.<filestamp>,
|
|
* ntpkey_gq_<hostname> (GQ) link
|
|
* Guillou-Quisquater (GQ) identity parameters
|
|
*
|
|
* ntpkey_MVpar_<hostname>.<filestamp>,
|
|
* Mu-Varadharajan (MV) server identity parameters
|
|
*
|
|
* ntpkey_MVkeyX_<hostname>.<filestamp>,
|
|
* ntpkey_mv_<hostname> (MV server) link
|
|
* ntpkey_mvkey_<hostname> (MV client) link
|
|
* Mu-Varadharajan (MV) client identity parameters
|
|
*
|
|
* ntpkey_XXXcert_<hostname>.<filestamp>
|
|
* ntpkey_cert_<hostname> (RSA or DSA) link
|
|
* X509v3 certificate using RSA or DSA public keys and signatures.
|
|
* XXX is a code identifying the message digest and signature
|
|
* encryption algorithm
|
|
*
|
|
* Available digest/signature schemes
|
|
*
|
|
* RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
|
|
* DSA: DSA-SHA, DSA-SHA1
|
|
*
|
|
* Note: Once in a while because of some statistical fluke this program
|
|
* fails to generate and verify some cryptographic data, as indicated by
|
|
* exit status -1. In this case simply run the program again. If the
|
|
* program does complete with return code 0, the data are correct as
|
|
* verified.
|
|
*
|
|
* These cryptographic routines are characterized by the prime modulus
|
|
* size in bits. The default value of 512 bits is a compromise between
|
|
* cryptographic strength and computing time and is ordinarily
|
|
* considered adequate for this application. The routines have been
|
|
* tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
|
|
* digest and signature encryption schemes work with sizes less than 512
|
|
* bits. The computing time for sizes greater than 2048 bits is
|
|
* prohibitive on all but the fastest processors. An UltraSPARC Blade
|
|
* 1000 took something over nine minutes to generate and verify the
|
|
* values with size 2048. An old SPARC IPC would take a week.
|
|
*
|
|
* The OpenSSL library used by this program expects a random seed file.
|
|
* As described in the OpenSSL documentation, the file name defaults to
|
|
* first the RANDFILE environment variable in the user's home directory
|
|
* and then .rnd in the user's home directory.
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/time.h>
|
|
#if HAVE_SYS_TYPES_H
|
|
# include <sys/types.h>
|
|
#endif
|
|
#include "ntp_types.h"
|
|
#include "ntp_random.h"
|
|
#include "l_stdlib.h"
|
|
|
|
#include "ntp-keygen-opts.h"
|
|
|
|
#ifdef SYS_WINNT
|
|
extern int ntp_getopt P((int, char **, const char *));
|
|
#define getopt ntp_getopt
|
|
#define optarg ntp_optarg
|
|
#endif
|
|
|
|
#ifdef OPENSSL
|
|
#include "openssl/bn.h"
|
|
#include "openssl/evp.h"
|
|
#include "openssl/err.h"
|
|
#include "openssl/rand.h"
|
|
#include "openssl/pem.h"
|
|
#include "openssl/x509v3.h"
|
|
#include <openssl/objects.h>
|
|
#endif /* OPENSSL */
|
|
|
|
/*
|
|
* Cryptodefines
|
|
*/
|
|
#define MD5KEYS 16 /* number of MD5 keys generated */
|
|
#define JAN_1970 ULONG_CONST(2208988800) /* NTP seconds */
|
|
#define YEAR ((long)60*60*24*365) /* one year in seconds */
|
|
#define MAXFILENAME 256 /* max file name length */
|
|
#define MAXHOSTNAME 256 /* max host name length */
|
|
#ifdef OPENSSL
|
|
#define PLEN 512 /* default prime modulus size (bits) */
|
|
|
|
/*
|
|
* Strings used in X509v3 extension fields
|
|
*/
|
|
#define KEY_USAGE "digitalSignature,keyCertSign"
|
|
#define BASIC_CONSTRAINTS "critical,CA:TRUE"
|
|
#define EXT_KEY_PRIVATE "private"
|
|
#define EXT_KEY_TRUST "trustRoot"
|
|
#endif /* OPENSSL */
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
FILE *fheader P((const char *, const char *));
|
|
void fslink P((const char *, const char *));
|
|
int gen_md5 P((char *));
|
|
#ifdef OPENSSL
|
|
EVP_PKEY *gen_rsa P((char *));
|
|
EVP_PKEY *gen_dsa P((char *));
|
|
EVP_PKEY *gen_iff P((char *));
|
|
EVP_PKEY *gen_gqpar P((char *));
|
|
EVP_PKEY *gen_gqkey P((char *, EVP_PKEY *));
|
|
EVP_PKEY *gen_mv P((char *));
|
|
int x509 P((EVP_PKEY *, const EVP_MD *, char *, char *));
|
|
void cb P((int, int, void *));
|
|
EVP_PKEY *genkey P((char *, char *));
|
|
u_long asn2ntp P((ASN1_TIME *));
|
|
#endif /* OPENSSL */
|
|
|
|
/*
|
|
* Program variables
|
|
*/
|
|
extern char *optarg; /* command line argument */
|
|
int debug = 0; /* debug, not de bug */
|
|
int rval; /* return status */
|
|
#ifdef OPENSSL
|
|
u_int modulus = PLEN; /* prime modulus size (bits) */
|
|
#endif
|
|
int nkeys = 0; /* MV keys */
|
|
time_t epoch; /* Unix epoch (seconds) since 1970 */
|
|
char *hostname; /* host name (subject name) */
|
|
char *trustname; /* trusted host name (issuer name) */
|
|
char filename[MAXFILENAME + 1]; /* file name */
|
|
char *passwd1 = NULL; /* input private key password */
|
|
char *passwd2 = NULL; /* output private key password */
|
|
#ifdef OPENSSL
|
|
long d0, d1, d2, d3; /* callback counters */
|
|
#endif /* OPENSSL */
|
|
|
|
#ifdef SYS_WINNT
|
|
BOOL init_randfile();
|
|
|
|
/*
|
|
* Don't try to follow symbolic links
|
|
*/
|
|
int
|
|
readlink(char * link, char * file, int len) {
|
|
return (-1);
|
|
}
|
|
/*
|
|
* Don't try to create a symbolic link for now.
|
|
* Just move the file to the name you need.
|
|
*/
|
|
int
|
|
symlink(char *filename, char *linkname) {
|
|
DeleteFile(linkname);
|
|
MoveFile(filename, linkname);
|
|
return 0;
|
|
}
|
|
void
|
|
InitWin32Sockets() {
|
|
WORD wVersionRequested;
|
|
WSADATA wsaData;
|
|
wVersionRequested = MAKEWORD(2,0);
|
|
if (WSAStartup(wVersionRequested, &wsaData))
|
|
{
|
|
fprintf(stderr, "No useable winsock.dll");
|
|
exit(1);
|
|
}
|
|
}
|
|
#endif /* SYS_WINNT */
|
|
|
|
/*
|
|
* Main program
|
|
*/
|
|
int
|
|
main(
|
|
int argc, /* command line options */
|
|
char **argv
|
|
)
|
|
{
|
|
struct timeval tv; /* initialization vector */
|
|
int md5key = 0; /* generate MD5 keys */
|
|
#ifdef OPENSSL
|
|
X509 *cert = NULL; /* X509 certificate */
|
|
EVP_PKEY *pkey_host = NULL; /* host key */
|
|
EVP_PKEY *pkey_sign = NULL; /* sign key */
|
|
EVP_PKEY *pkey_iff = NULL; /* IFF parameters */
|
|
EVP_PKEY *pkey_gq = NULL; /* GQ parameters */
|
|
EVP_PKEY *pkey_mv = NULL; /* MV parameters */
|
|
int hostkey = 0; /* generate RSA keys */
|
|
int iffkey = 0; /* generate IFF parameters */
|
|
int gqpar = 0; /* generate GQ parameters */
|
|
int gqkey = 0; /* update GQ keys */
|
|
int mvpar = 0; /* generate MV parameters */
|
|
int mvkey = 0; /* update MV keys */
|
|
char *sign = NULL; /* sign key */
|
|
EVP_PKEY *pkey = NULL; /* temp key */
|
|
const EVP_MD *ectx; /* EVP digest */
|
|
char pathbuf[MAXFILENAME + 1];
|
|
const char *scheme = NULL; /* digest/signature scheme */
|
|
char *exten = NULL; /* private extension */
|
|
char *grpkey = NULL; /* identity extension */
|
|
int nid; /* X509 digest/signature scheme */
|
|
FILE *fstr = NULL; /* file handle */
|
|
u_int temp;
|
|
#define iffsw HAVE_OPT(ID_KEY)
|
|
#endif /* OPENSSL */
|
|
char hostbuf[MAXHOSTNAME + 1];
|
|
|
|
#ifdef SYS_WINNT
|
|
/* Initialize before OpenSSL checks */
|
|
InitWin32Sockets();
|
|
if(!init_randfile())
|
|
fprintf(stderr, "Unable to initialize .rnd file\n");
|
|
#endif
|
|
|
|
#ifdef OPENSSL
|
|
/*
|
|
* OpenSSL version numbers: MNNFFPPS: major minor fix patch status
|
|
* We match major, minor, fix and status (not patch)
|
|
*/
|
|
if ((SSLeay() ^ OPENSSL_VERSION_NUMBER) & ~0xff0L) {
|
|
fprintf(stderr,
|
|
"OpenSSL version mismatch. Built against %lx, you have %lx\n",
|
|
OPENSSL_VERSION_NUMBER, SSLeay());
|
|
return (-1);
|
|
|
|
} else {
|
|
fprintf(stderr,
|
|
"Using OpenSSL version %lx\n", SSLeay());
|
|
}
|
|
#endif /* OPENSSL */
|
|
|
|
/*
|
|
* Process options, initialize host name and timestamp.
|
|
*/
|
|
gethostname(hostbuf, MAXHOSTNAME);
|
|
hostname = hostbuf;
|
|
#ifdef OPENSSL
|
|
trustname = hostbuf;
|
|
passwd1 = hostbuf;
|
|
#endif
|
|
#ifndef SYS_WINNT
|
|
gettimeofday(&tv, 0);
|
|
#else
|
|
gettimeofday(&tv);
|
|
#endif
|
|
epoch = tv.tv_sec;
|
|
rval = 0;
|
|
|
|
{
|
|
int optct = optionProcess(&ntp_keygenOptions, argc, argv);
|
|
argc -= optct;
|
|
argv += optct;
|
|
}
|
|
|
|
#ifdef OPENSSL
|
|
if (HAVE_OPT( CERTIFICATE ))
|
|
scheme = OPT_ARG( CERTIFICATE );
|
|
#endif
|
|
|
|
debug = DESC(DEBUG_LEVEL).optOccCt;
|
|
|
|
#ifdef OPENSSL
|
|
if (HAVE_OPT( GQ_PARAMS ))
|
|
gqpar++;
|
|
|
|
if (HAVE_OPT( GQ_KEYS ))
|
|
gqkey++;
|
|
|
|
if (HAVE_OPT( HOST_KEY ))
|
|
hostkey++;
|
|
|
|
if (HAVE_OPT( IFFKEY ))
|
|
iffkey++;
|
|
|
|
if (HAVE_OPT( ISSUER_NAME ))
|
|
trustname = OPT_ARG( ISSUER_NAME );
|
|
#endif
|
|
|
|
if (HAVE_OPT( MD5KEY ))
|
|
md5key++;
|
|
|
|
#ifdef OPENSSL
|
|
if (HAVE_OPT( MODULUS ))
|
|
modulus = OPT_VALUE_MODULUS;
|
|
|
|
if (HAVE_OPT( PVT_CERT ))
|
|
exten = EXT_KEY_PRIVATE;
|
|
|
|
if (HAVE_OPT( PVT_PASSWD ))
|
|
passwd2 = OPT_ARG( PVT_PASSWD );
|
|
|
|
if (HAVE_OPT( GET_PVT_PASSWD ))
|
|
passwd1 = OPT_ARG( GET_PVT_PASSWD );
|
|
|
|
if (HAVE_OPT( SIGN_KEY ))
|
|
sign = OPT_ARG( SIGN_KEY );
|
|
|
|
if (HAVE_OPT( SUBJECT_NAME ))
|
|
hostname = OPT_ARG( SUBJECT_NAME );
|
|
|
|
if (HAVE_OPT( TRUSTED_CERT ))
|
|
exten = EXT_KEY_TRUST;
|
|
|
|
if (HAVE_OPT( MV_PARAMS )) {
|
|
mvpar++;
|
|
nkeys = OPT_VALUE_MV_PARAMS;
|
|
}
|
|
|
|
if (HAVE_OPT( MV_KEYS )) {
|
|
mvkey++;
|
|
nkeys = OPT_VALUE_MV_KEYS;
|
|
}
|
|
#endif
|
|
|
|
if (passwd1 != NULL && passwd2 == NULL)
|
|
passwd2 = passwd1;
|
|
#ifdef OPENSSL
|
|
/*
|
|
* Seed random number generator and grow weeds.
|
|
*/
|
|
ERR_load_crypto_strings();
|
|
OpenSSL_add_all_algorithms();
|
|
if (RAND_file_name(pathbuf, MAXFILENAME) == NULL) {
|
|
fprintf(stderr, "RAND_file_name %s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (-1);
|
|
}
|
|
temp = RAND_load_file(pathbuf, -1);
|
|
if (temp == 0) {
|
|
fprintf(stderr,
|
|
"RAND_load_file %s not found or empty\n", pathbuf);
|
|
return (-1);
|
|
}
|
|
fprintf(stderr,
|
|
"Random seed file %s %u bytes\n", pathbuf, temp);
|
|
RAND_add(&epoch, sizeof(epoch), 4.0);
|
|
#endif
|
|
|
|
/*
|
|
* Generate new parameters and keys as requested. These replace
|
|
* any values already generated.
|
|
*/
|
|
if (md5key)
|
|
gen_md5("MD5");
|
|
#ifdef OPENSSL
|
|
if (hostkey)
|
|
pkey_host = genkey("RSA", "host");
|
|
if (sign != NULL)
|
|
pkey_sign = genkey(sign, "sign");
|
|
if (iffkey)
|
|
pkey_iff = gen_iff("iff");
|
|
if (gqpar)
|
|
pkey_gq = gen_gqpar("gq");
|
|
if (mvpar)
|
|
pkey_mv = gen_mv("mv");
|
|
|
|
/*
|
|
* If there is no new host key, look for an existing one. If not
|
|
* found, create it.
|
|
*/
|
|
while (pkey_host == NULL && rval == 0 && !HAVE_OPT(ID_KEY)) {
|
|
sprintf(filename, "ntpkey_host_%s", hostname);
|
|
if ((fstr = fopen(filename, "r")) != NULL) {
|
|
pkey_host = PEM_read_PrivateKey(fstr, NULL,
|
|
NULL, passwd1);
|
|
fclose(fstr);
|
|
readlink(filename, filename, sizeof(filename));
|
|
if (pkey_host == NULL) {
|
|
fprintf(stderr, "Host key\n%s\n",
|
|
ERR_error_string(ERR_get_error(),
|
|
NULL));
|
|
rval = -1;
|
|
} else {
|
|
fprintf(stderr,
|
|
"Using host key %s\n", filename);
|
|
}
|
|
break;
|
|
|
|
} else if ((pkey_host = genkey("RSA", "host")) ==
|
|
NULL) {
|
|
rval = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there is no new sign key, look for an existing one. If not
|
|
* found, use the host key instead.
|
|
*/
|
|
pkey = pkey_sign;
|
|
while (pkey_sign == NULL && rval == 0 && !HAVE_OPT(ID_KEY)) {
|
|
sprintf(filename, "ntpkey_sign_%s", hostname);
|
|
if ((fstr = fopen(filename, "r")) != NULL) {
|
|
pkey_sign = PEM_read_PrivateKey(fstr, NULL,
|
|
NULL, passwd1);
|
|
fclose(fstr);
|
|
readlink(filename, filename, sizeof(filename));
|
|
if (pkey_sign == NULL) {
|
|
fprintf(stderr, "Sign key\n%s\n",
|
|
ERR_error_string(ERR_get_error(),
|
|
NULL));
|
|
rval = -1;
|
|
} else {
|
|
fprintf(stderr, "Using sign key %s\n",
|
|
filename);
|
|
}
|
|
break;
|
|
} else {
|
|
pkey = pkey_host;
|
|
fprintf(stderr, "Using host key as sign key\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there is no new IFF file, look for an existing one.
|
|
*/
|
|
if (pkey_iff == NULL && rval == 0) {
|
|
sprintf(filename, "ntpkey_iff_%s", hostname);
|
|
if ((fstr = fopen(filename, "r")) != NULL) {
|
|
pkey_iff = PEM_read_PrivateKey(fstr, NULL,
|
|
NULL, passwd1);
|
|
fclose(fstr);
|
|
readlink(filename, filename, sizeof(filename));
|
|
if (pkey_iff == NULL) {
|
|
fprintf(stderr, "IFF parameters\n%s\n",
|
|
ERR_error_string(ERR_get_error(),
|
|
NULL));
|
|
rval = -1;
|
|
} else {
|
|
fprintf(stderr,
|
|
"Using IFF parameters %s\n",
|
|
filename);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there is no new GQ file, look for an existing one.
|
|
*/
|
|
if (pkey_gq == NULL && rval == 0 && !HAVE_OPT(ID_KEY)) {
|
|
sprintf(filename, "ntpkey_gq_%s", hostname);
|
|
if ((fstr = fopen(filename, "r")) != NULL) {
|
|
pkey_gq = PEM_read_PrivateKey(fstr, NULL, NULL,
|
|
passwd1);
|
|
fclose(fstr);
|
|
readlink(filename, filename, sizeof(filename));
|
|
if (pkey_gq == NULL) {
|
|
fprintf(stderr, "GQ parameters\n%s\n",
|
|
ERR_error_string(ERR_get_error(),
|
|
NULL));
|
|
rval = -1;
|
|
} else {
|
|
fprintf(stderr,
|
|
"Using GQ parameters %s\n",
|
|
filename);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there is a GQ parameter file, create GQ private/public
|
|
* keys and extract the public key for the certificate.
|
|
*/
|
|
if (pkey_gq != NULL && rval == 0) {
|
|
gen_gqkey("gq", pkey_gq);
|
|
grpkey = BN_bn2hex(pkey_gq->pkey.rsa->q);
|
|
}
|
|
|
|
/*
|
|
* Generate a X509v3 certificate.
|
|
*/
|
|
while (scheme == NULL && rval == 0 && !HAVE_OPT(ID_KEY)) {
|
|
sprintf(filename, "ntpkey_cert_%s", hostname);
|
|
if ((fstr = fopen(filename, "r")) != NULL) {
|
|
cert = PEM_read_X509(fstr, NULL, NULL, NULL);
|
|
fclose(fstr);
|
|
readlink(filename, filename, sizeof(filename));
|
|
if (cert == NULL) {
|
|
fprintf(stderr, "Cert \n%s\n",
|
|
ERR_error_string(ERR_get_error(),
|
|
NULL));
|
|
rval = -1;
|
|
} else {
|
|
nid = OBJ_obj2nid(
|
|
cert->cert_info->signature->algorithm);
|
|
scheme = OBJ_nid2sn(nid);
|
|
fprintf(stderr,
|
|
"Using scheme %s from %s\n", scheme,
|
|
filename);
|
|
break;
|
|
}
|
|
}
|
|
scheme = "RSA-MD5";
|
|
}
|
|
if (pkey != NULL && rval == 0 && !HAVE_OPT(ID_KEY)) {
|
|
ectx = EVP_get_digestbyname(scheme);
|
|
if (ectx == NULL) {
|
|
fprintf(stderr,
|
|
"Invalid digest/signature combination %s\n",
|
|
scheme);
|
|
rval = -1;
|
|
} else {
|
|
x509(pkey, ectx, grpkey, exten);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write the IFF client parameters and keys as a DSA private key
|
|
* encoded in PEM. Note the private key is obscured.
|
|
*/
|
|
if (pkey_iff != NULL && rval == 0 && HAVE_OPT(ID_KEY)) {
|
|
DSA *dsa;
|
|
char *sptr;
|
|
char *tld;
|
|
|
|
sptr = strrchr(filename, '.');
|
|
tld = malloc(strlen(sptr)); /* we have an extra byte ... */
|
|
strcpy(tld, 1+sptr); /* ... see? */
|
|
sprintf(filename, "ntpkey_IFFkey_%s.%s", trustname,
|
|
tld);
|
|
free(tld);
|
|
fprintf(stderr, "Writing new IFF key %s\n", filename);
|
|
fprintf(stdout, "# %s\n# %s", filename, ctime(&epoch));
|
|
dsa = pkey_iff->pkey.dsa;
|
|
BN_copy(dsa->priv_key, BN_value_one());
|
|
pkey = EVP_PKEY_new();
|
|
EVP_PKEY_assign_DSA(pkey, dsa);
|
|
PEM_write_PrivateKey(stdout, pkey, passwd2 ?
|
|
EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2);
|
|
fclose(stdout);
|
|
if (debug)
|
|
DSA_print_fp(stdout, dsa, 0);
|
|
}
|
|
|
|
/*
|
|
* Return the marbles.
|
|
*/
|
|
if (grpkey != NULL)
|
|
OPENSSL_free(grpkey);
|
|
if (pkey_host != NULL)
|
|
EVP_PKEY_free(pkey_host);
|
|
if (pkey_sign != NULL)
|
|
EVP_PKEY_free(pkey_sign);
|
|
if (pkey_iff != NULL)
|
|
EVP_PKEY_free(pkey_iff);
|
|
if (pkey_gq != NULL)
|
|
EVP_PKEY_free(pkey_gq);
|
|
if (pkey_mv != NULL)
|
|
EVP_PKEY_free(pkey_mv);
|
|
#endif /* OPENSSL */
|
|
return (rval);
|
|
}
|
|
|
|
|
|
#if 0
|
|
/*
|
|
* Generate random MD5 key with password.
|
|
*/
|
|
int
|
|
gen_md5(
|
|
char *id /* file name id */
|
|
)
|
|
{
|
|
BIGNUM *key;
|
|
BIGNUM *keyid;
|
|
FILE *str;
|
|
u_char bin[16];
|
|
|
|
fprintf(stderr, "Generating MD5 keys...\n");
|
|
str = fheader("MD5key", hostname);
|
|
keyid = BN_new(); key = BN_new();
|
|
BN_rand(keyid, 16, -1, 0);
|
|
BN_rand(key, 128, -1, 0);
|
|
BN_bn2bin(key, bin);
|
|
PEM_write_fp(str, MD5, NULL, bin);
|
|
fclose(str);
|
|
fslink(id, hostname);
|
|
return (1);
|
|
}
|
|
|
|
|
|
#else
|
|
/*
|
|
* Generate semi-random MD5 keys compatible with NTPv3 and NTPv4
|
|
*/
|
|
int
|
|
gen_md5(
|
|
char *id /* file name id */
|
|
)
|
|
{
|
|
u_char md5key[16]; /* MD5 key */
|
|
FILE *str;
|
|
u_int temp = 0; /* Initialize to prevent warnings during compile */
|
|
int i, j;
|
|
|
|
fprintf(stderr, "Generating MD5 keys...\n");
|
|
str = fheader("MD5key", hostname);
|
|
ntp_srandom(epoch);
|
|
for (i = 1; i <= MD5KEYS; i++) {
|
|
for (j = 0; j < 16; j++) {
|
|
while (1) {
|
|
temp = ntp_random() & 0xff;
|
|
if (temp == '#')
|
|
continue;
|
|
if (temp > 0x20 && temp < 0x7f)
|
|
break;
|
|
}
|
|
md5key[j] = (u_char)temp;
|
|
}
|
|
md5key[15] = '\0';
|
|
fprintf(str, "%2d MD5 %16s # MD5 key\n", i,
|
|
md5key);
|
|
}
|
|
fclose(str);
|
|
fslink(id, hostname);
|
|
return (1);
|
|
}
|
|
#endif /* OPENSSL */
|
|
|
|
|
|
#ifdef OPENSSL
|
|
/*
|
|
* Generate RSA public/private key pair
|
|
*/
|
|
EVP_PKEY * /* public/private key pair */
|
|
gen_rsa(
|
|
char *id /* file name id */
|
|
)
|
|
{
|
|
EVP_PKEY *pkey; /* private key */
|
|
RSA *rsa; /* RSA parameters and key pair */
|
|
FILE *str;
|
|
|
|
fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
|
|
rsa = RSA_generate_key(modulus, 3, cb, "RSA");
|
|
fprintf(stderr, "\n");
|
|
if (rsa == NULL) {
|
|
fprintf(stderr, "RSA generate keys fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* For signature encryption it is not necessary that the RSA
|
|
* parameters be strictly groomed and once in a while the
|
|
* modulus turns out to be non-prime. Just for grins, we check
|
|
* the primality.
|
|
*/
|
|
if (!RSA_check_key(rsa)) {
|
|
fprintf(stderr, "Invalid RSA key\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
RSA_free(rsa);
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Write the RSA parameters and keys as a RSA private key
|
|
* encoded in PEM.
|
|
*/
|
|
str = fheader("RSAkey", hostname);
|
|
pkey = EVP_PKEY_new();
|
|
EVP_PKEY_assign_RSA(pkey, rsa);
|
|
PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
|
|
NULL, 0, NULL, passwd2);
|
|
fclose(str);
|
|
if (debug)
|
|
RSA_print_fp(stdout, rsa, 0);
|
|
fslink(id, hostname);
|
|
return (pkey);
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate DSA public/private key pair
|
|
*/
|
|
EVP_PKEY * /* public/private key pair */
|
|
gen_dsa(
|
|
char *id /* file name id */
|
|
)
|
|
{
|
|
EVP_PKEY *pkey; /* private key */
|
|
DSA *dsa; /* DSA parameters */
|
|
u_char seed[20]; /* seed for parameters */
|
|
FILE *str;
|
|
|
|
/*
|
|
* Generate DSA parameters.
|
|
*/
|
|
fprintf(stderr,
|
|
"Generating DSA parameters (%d bits)...\n", modulus);
|
|
RAND_bytes(seed, sizeof(seed));
|
|
dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL,
|
|
NULL, cb, "DSA");
|
|
fprintf(stderr, "\n");
|
|
if (dsa == NULL) {
|
|
fprintf(stderr, "DSA generate parameters fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Generate DSA keys.
|
|
*/
|
|
fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
|
|
if (!DSA_generate_key(dsa)) {
|
|
fprintf(stderr, "DSA generate keys fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
DSA_free(dsa);
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Write the DSA parameters and keys as a DSA private key
|
|
* encoded in PEM.
|
|
*/
|
|
str = fheader("DSAkey", hostname);
|
|
pkey = EVP_PKEY_new();
|
|
EVP_PKEY_assign_DSA(pkey, dsa);
|
|
PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
|
|
NULL, 0, NULL, passwd2);
|
|
fclose(str);
|
|
if (debug)
|
|
DSA_print_fp(stdout, dsa, 0);
|
|
fslink(id, hostname);
|
|
return (pkey);
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate Schnorr (IFF) parameters and keys
|
|
*
|
|
* The Schnorr (IFF)identity scheme is intended for use when
|
|
* certificates are generated by some other trusted certificate
|
|
* authority and the parameters cannot be conveyed in the certificate
|
|
* itself. For this purpose, new generations of IFF values must be
|
|
* securely transmitted to all members of the group before use. There
|
|
* are two kinds of files: server/client files that include private and
|
|
* public parameters and client files that include only public
|
|
* parameters. The scheme is self contained and independent of new
|
|
* generations of host keys, sign keys and certificates.
|
|
*
|
|
* The IFF values hide in a DSA cuckoo structure which uses the same
|
|
* parameters. The values are used by an identity scheme based on DSA
|
|
* cryptography and described in Stimson p. 285. The p is a 512-bit
|
|
* prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
|
|
* and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
|
|
* private random group key b (0 < b < q), then computes public
|
|
* v = g^(q - a). All values except the group key are known to all group
|
|
* members; the group key is known to the group servers, but not the
|
|
* group clients. Alice challenges Bob to confirm identity using the
|
|
* protocol described below.
|
|
*/
|
|
EVP_PKEY * /* DSA cuckoo nest */
|
|
gen_iff(
|
|
char *id /* file name id */
|
|
)
|
|
{
|
|
EVP_PKEY *pkey; /* private key */
|
|
DSA *dsa; /* DSA parameters */
|
|
u_char seed[20]; /* seed for parameters */
|
|
BN_CTX *ctx; /* BN working space */
|
|
BIGNUM *b, *r, *k, *u, *v, *w; /* BN temp */
|
|
FILE *str;
|
|
u_int temp;
|
|
|
|
/*
|
|
* Generate DSA parameters for use as IFF parameters.
|
|
*/
|
|
fprintf(stderr, "Generating IFF parameters (%d bits)...\n",
|
|
modulus);
|
|
RAND_bytes(seed, sizeof(seed));
|
|
dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL,
|
|
NULL, cb, "IFF");
|
|
fprintf(stderr, "\n");
|
|
if (dsa == NULL) {
|
|
fprintf(stderr, "DSA generate parameters fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
rval = -1;
|
|
return (NULL);;
|
|
}
|
|
|
|
/*
|
|
* Generate the private and public keys. The DSA parameters and
|
|
* these keys are distributed to all members of the group.
|
|
*/
|
|
fprintf(stderr, "Generating IFF keys (%d bits)...\n", modulus);
|
|
b = BN_new(); r = BN_new(); k = BN_new();
|
|
u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
|
|
BN_rand(b, BN_num_bits(dsa->q), -1, 0); /* a */
|
|
BN_mod(b, b, dsa->q, ctx);
|
|
BN_sub(v, dsa->q, b);
|
|
BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^(q - b) mod p */
|
|
BN_mod_exp(u, dsa->g, b, dsa->p, ctx); /* g^b mod p */
|
|
BN_mod_mul(u, u, v, dsa->p, ctx);
|
|
temp = BN_is_one(u);
|
|
fprintf(stderr,
|
|
"Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
|
|
"yes" : "no");
|
|
if (!temp) {
|
|
BN_free(b); BN_free(r); BN_free(k);
|
|
BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
dsa->priv_key = BN_dup(b); /* private key */
|
|
dsa->pub_key = BN_dup(v); /* public key */
|
|
|
|
/*
|
|
* Here is a trial round of the protocol. First, Alice rolls
|
|
* random r (0 < r < q) and sends it to Bob. She needs only
|
|
* modulus q.
|
|
*/
|
|
BN_rand(r, BN_num_bits(dsa->q), -1, 0); /* r */
|
|
BN_mod(r, r, dsa->q, ctx);
|
|
|
|
/*
|
|
* Bob rolls random k (0 < k < q), computes y = k + b r mod q
|
|
* and x = g^k mod p, then sends (y, x) to Alice. He needs
|
|
* moduli p, q and the group key b.
|
|
*/
|
|
BN_rand(k, BN_num_bits(dsa->q), -1, 0); /* k, 0 < k < q */
|
|
BN_mod(k, k, dsa->q, ctx);
|
|
BN_mod_mul(v, dsa->priv_key, r, dsa->q, ctx); /* b r mod q */
|
|
BN_add(v, v, k);
|
|
BN_mod(v, v, dsa->q, ctx); /* y = k + b r mod q */
|
|
BN_mod_exp(u, dsa->g, k, dsa->p, ctx); /* x = g^k mod p */
|
|
|
|
/*
|
|
* Alice computes g^y v^r and verifies the result is equal to x.
|
|
* She needs modulus p, generator g, and the public key v, as
|
|
* well as her original r.
|
|
*/
|
|
BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^y mod p */
|
|
BN_mod_exp(w, dsa->pub_key, r, dsa->p, ctx); /* v^r */
|
|
BN_mod_mul(v, w, v, dsa->p, ctx); /* product mod p */
|
|
temp = BN_cmp(u, v);
|
|
fprintf(stderr,
|
|
"Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
|
|
0 ? "yes" : "no");
|
|
BN_free(b); BN_free(r); BN_free(k);
|
|
BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
|
|
if (temp != 0) {
|
|
DSA_free(dsa);
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Write the IFF server parameters and keys as a DSA private key
|
|
* encoded in PEM.
|
|
*
|
|
* p modulus p
|
|
* q modulus q
|
|
* g generator g
|
|
* priv_key b
|
|
* public_key v
|
|
*/
|
|
str = fheader("IFFpar", trustname);
|
|
pkey = EVP_PKEY_new();
|
|
EVP_PKEY_assign_DSA(pkey, dsa);
|
|
PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
|
|
NULL, 0, NULL, passwd2);
|
|
fclose(str);
|
|
if (debug)
|
|
DSA_print_fp(stdout, dsa, 0);
|
|
fslink(id, trustname);
|
|
return (pkey);
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate Guillou-Quisquater (GQ) parameters and keys
|
|
*
|
|
* The Guillou-Quisquater (GQ) identity scheme is intended for use when
|
|
* the parameters, keys and certificates are generated by this program.
|
|
* The scheme uses a certificate extension field do convey the public
|
|
* key of a particular group identified by a group key known only to
|
|
* members of the group. The scheme is self contained and independent of
|
|
* new generations of host keys and sign keys.
|
|
*
|
|
* The GQ parameters hide in a RSA cuckoo structure which uses the same
|
|
* parameters. The values are used by an identity scheme based on RSA
|
|
* cryptography and described in Stimson p. 300 (with errors). The 512-
|
|
* bit public modulus is n = p q, where p and q are secret large primes.
|
|
* The TA rolls private random group key b as RSA exponent. These values
|
|
* are known to all group members.
|
|
*
|
|
* When rolling new certificates, a member recomputes the private and
|
|
* public keys. The private key u is a random roll, while the public key
|
|
* is the inverse obscured by the group key v = (u^-1)^b. These values
|
|
* replace the private and public keys normally generated by the RSA
|
|
* scheme. Alice challenges Bob to confirm identity using the protocol
|
|
* described below.
|
|
*/
|
|
EVP_PKEY * /* RSA cuckoo nest */
|
|
gen_gqpar(
|
|
char *id /* file name id */
|
|
)
|
|
{
|
|
EVP_PKEY *pkey; /* private key */
|
|
RSA *rsa; /* GQ parameters */
|
|
BN_CTX *ctx; /* BN working space */
|
|
FILE *str;
|
|
|
|
/*
|
|
* Generate RSA parameters for use as GQ parameters.
|
|
*/
|
|
fprintf(stderr,
|
|
"Generating GQ parameters (%d bits)...\n", modulus);
|
|
rsa = RSA_generate_key(modulus, 3, cb, "GQ");
|
|
fprintf(stderr, "\n");
|
|
if (rsa == NULL) {
|
|
fprintf(stderr, "RSA generate keys fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Generate the group key b, which is saved in the e member of
|
|
* the RSA structure. These values are distributed to all
|
|
* members of the group, but shielded from all other groups. We
|
|
* don't use all the parameters, but set the unused ones to a
|
|
* small number to minimize the file size.
|
|
*/
|
|
ctx = BN_CTX_new();
|
|
BN_rand(rsa->e, BN_num_bits(rsa->n), -1, 0); /* b */
|
|
BN_mod(rsa->e, rsa->e, rsa->n, ctx);
|
|
BN_copy(rsa->d, BN_value_one());
|
|
BN_copy(rsa->p, BN_value_one());
|
|
BN_copy(rsa->q, BN_value_one());
|
|
BN_copy(rsa->dmp1, BN_value_one());
|
|
BN_copy(rsa->dmq1, BN_value_one());
|
|
BN_copy(rsa->iqmp, BN_value_one());
|
|
|
|
/*
|
|
* Write the GQ parameters as a RSA private key encoded in PEM.
|
|
* The public and private keys are filled in later.
|
|
*
|
|
* n modulus n
|
|
* e group key b
|
|
* (remaining values are not used)
|
|
*/
|
|
str = fheader("GQpar", trustname);
|
|
pkey = EVP_PKEY_new();
|
|
EVP_PKEY_assign_RSA(pkey, rsa);
|
|
PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
|
|
NULL, 0, NULL, passwd2);
|
|
fclose(str);
|
|
if (debug)
|
|
RSA_print_fp(stdout, rsa, 0);
|
|
fslink(id, trustname);
|
|
return (pkey);
|
|
}
|
|
|
|
|
|
/*
|
|
* Update Guillou-Quisquater (GQ) parameters
|
|
*/
|
|
EVP_PKEY * /* RSA cuckoo nest */
|
|
gen_gqkey(
|
|
char *id, /* file name id */
|
|
EVP_PKEY *gqpar /* GQ parameters */
|
|
)
|
|
{
|
|
EVP_PKEY *pkey; /* private key */
|
|
RSA *rsa; /* RSA parameters */
|
|
BN_CTX *ctx; /* BN working space */
|
|
BIGNUM *u, *v, *g, *k, *r, *y; /* BN temps */
|
|
FILE *str;
|
|
u_int temp;
|
|
|
|
/*
|
|
* Generate GQ keys. Note that the group key b is the e member
|
|
* of
|
|
* the GQ parameters.
|
|
*/
|
|
fprintf(stderr, "Updating GQ keys (%d bits)...\n", modulus);
|
|
ctx = BN_CTX_new(); u = BN_new(); v = BN_new();
|
|
g = BN_new(); k = BN_new(); r = BN_new(); y = BN_new();
|
|
|
|
/*
|
|
* When generating his certificate, Bob rolls random private key
|
|
* u.
|
|
*/
|
|
rsa = gqpar->pkey.rsa;
|
|
BN_rand(u, BN_num_bits(rsa->n), -1, 0); /* u */
|
|
BN_mod(u, u, rsa->n, ctx);
|
|
BN_mod_inverse(v, u, rsa->n, ctx); /* u^-1 mod n */
|
|
BN_mod_mul(k, v, u, rsa->n, ctx);
|
|
|
|
/*
|
|
* Bob computes public key v = (u^-1)^b, which is saved in an
|
|
* extension field on his certificate. We check that u^b v =
|
|
* 1 mod n.
|
|
*/
|
|
BN_mod_exp(v, v, rsa->e, rsa->n, ctx);
|
|
BN_mod_exp(g, u, rsa->e, rsa->n, ctx); /* u^b */
|
|
BN_mod_mul(g, g, v, rsa->n, ctx); /* u^b (u^-1)^b */
|
|
temp = BN_is_one(g);
|
|
fprintf(stderr,
|
|
"Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
|
|
"no");
|
|
if (!temp) {
|
|
BN_free(u); BN_free(v);
|
|
BN_free(g); BN_free(k); BN_free(r); BN_free(y);
|
|
BN_CTX_free(ctx);
|
|
RSA_free(rsa);
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
BN_copy(rsa->p, u); /* private key */
|
|
BN_copy(rsa->q, v); /* public key */
|
|
|
|
/*
|
|
* Here is a trial run of the protocol. First, Alice rolls
|
|
* random r (0 < r < n) and sends it to Bob. She needs only
|
|
* modulus n from the parameters.
|
|
*/
|
|
BN_rand(r, BN_num_bits(rsa->n), -1, 0); /* r */
|
|
BN_mod(r, r, rsa->n, ctx);
|
|
|
|
/*
|
|
* Bob rolls random k (0 < k < n), computes y = k u^r mod n and
|
|
* g = k^b mod n, then sends (y, g) to Alice. He needs modulus n
|
|
* from the parameters and his private key u.
|
|
*/
|
|
BN_rand(k, BN_num_bits(rsa->n), -1, 0); /* k */
|
|
BN_mod(k, k, rsa->n, ctx);
|
|
BN_mod_exp(y, rsa->p, r, rsa->n, ctx); /* u^r mod n */
|
|
BN_mod_mul(y, k, y, rsa->n, ctx); /* y = k u^r mod n */
|
|
BN_mod_exp(g, k, rsa->e, rsa->n, ctx); /* g = k^b mod n */
|
|
|
|
/*
|
|
* Alice computes v^r y^b mod n and verifies the result is equal
|
|
* to g. She needs modulus n, generator g and group key b from
|
|
* the parameters and Bob's public key v = (u^-1)^b from his
|
|
* certificate.
|
|
*/
|
|
BN_mod_exp(v, rsa->q, r, rsa->n, ctx); /* v^r mod n */
|
|
BN_mod_exp(y, y, rsa->e, rsa->n, ctx); /* y^b mod n */
|
|
BN_mod_mul(y, v, y, rsa->n, ctx); /* v^r y^b mod n */
|
|
temp = BN_cmp(y, g);
|
|
fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
|
|
"yes" : "no");
|
|
BN_CTX_free(ctx); BN_free(u); BN_free(v);
|
|
BN_free(g); BN_free(k); BN_free(r); BN_free(y);
|
|
if (temp != 0) {
|
|
RSA_free(rsa);
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Write the GQ parameters and keys as a RSA private key encoded
|
|
* in PEM.
|
|
*
|
|
* n modulus n
|
|
* e group key b
|
|
* p private key u
|
|
* q public key (u^-1)^b
|
|
* (remaining values are not used)
|
|
*/
|
|
str = fheader("GQpar", trustname);
|
|
pkey = EVP_PKEY_new();
|
|
EVP_PKEY_assign_RSA(pkey, rsa);
|
|
PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
|
|
NULL, 0, NULL, passwd2);
|
|
fclose(str);
|
|
if (debug)
|
|
RSA_print_fp(stdout, rsa, 0);
|
|
fslink(id, trustname);
|
|
return (pkey);
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate Mu-Varadharajan (MV) parameters and keys
|
|
*
|
|
* The Mu-Varadharajan (MV) cryptosystem is useful when servers
|
|
* broadcast messages to clients, but clients never send messages to
|
|
* servers. There is one encryption key for the server and a separate
|
|
* decryption key for each client. It operates something like a
|
|
* pay-per-view satellite broadcasting system where the session key is
|
|
* encrypted by the broadcaster and the decryption keys are held in a
|
|
* tamperproof set-top box. We don't use it this way, but read on.
|
|
*
|
|
* The MV parameters and private encryption key hide in a DSA cuckoo
|
|
* structure which uses the same parameters, but generated in a
|
|
* different way. The values are used in an encryption scheme similar to
|
|
* El Gamal cryptography and a polynomial formed from the expansion of
|
|
* product terms (x - x[j]), as described in Mu, Y., and V.
|
|
* Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
|
|
* 223-231. The paper has significant errors and serious omissions.
|
|
*
|
|
* Let q be the product of n distinct primes s'[j] (j = 1...n), where
|
|
* each s'[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
|
|
* that q and each s'[j] divide p - 1 and p has M = n * m + 1
|
|
* significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
|
|
* = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
|
|
* project into Zp* as exponents of g. Sometimes we have to compute an
|
|
* inverse b^-1 of random b in Zq, but for that purpose we require
|
|
* gcd(b, q) = 1. We expect M to be in the 500-bit range and n
|
|
* relatively small, like 30. Associated with each s'[j] is an element
|
|
* s[j] such that s[j] s'[j] = s'[j] mod q. We find s[j] as the quotient
|
|
* (q + s'[j]) / s'[j]. These are the parameters of the scheme and they
|
|
* are expensive to compute.
|
|
*
|
|
* We set up an instance of the scheme as follows. A set of random
|
|
* values x[j] mod q (j = 1...n), are generated as the zeros of a
|
|
* polynomial of order n. The product terms (x - x[j]) are expanded to
|
|
* form coefficients a[i] mod q (i = 0...n) in powers of x. These are
|
|
* used as exponents of the generator g mod p to generate the private
|
|
* encryption key A. The pair (gbar, ghat) of public server keys and the
|
|
* pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
|
|
* to construct the decryption keys. The devil is in the details.
|
|
*
|
|
* This routine generates a private encryption file including the
|
|
* private encryption key E and public key (gbar, ghat). It then
|
|
* generates decryption files including the private key (xbar[j],
|
|
* xhat[j]) for each client. E is a permutation that encrypts a block
|
|
* y = E x. The jth client computes the inverse permutation E^-1 =
|
|
* gbar^xhat[j] ghat^xbar[j] and decrypts the block x = E^-1 y.
|
|
*
|
|
* The distinguishing characteristic of this scheme is the capability to
|
|
* revoke keys. Included in the calculation of E, gbar and ghat is the
|
|
* product s = prod(s'[j]) (j = 1...n) above. If the factor s'[j] is
|
|
* subsequently removed from the product and E, gbar and ghat
|
|
* recomputed, the jth client will no longer be able to compute E^-1 and
|
|
* thus unable to decrypt the block.
|
|
*/
|
|
EVP_PKEY * /* DSA cuckoo nest */
|
|
gen_mv(
|
|
char *id /* file name id */
|
|
)
|
|
{
|
|
EVP_PKEY *pkey, *pkey1; /* private key */
|
|
DSA *dsa; /* DSA parameters */
|
|
DSA *sdsa; /* DSA parameters */
|
|
BN_CTX *ctx; /* BN working space */
|
|
BIGNUM **x; /* polynomial zeros vector */
|
|
BIGNUM **a; /* polynomial coefficient vector */
|
|
BIGNUM **g; /* public key vector */
|
|
BIGNUM **s, **s1; /* private enabling keys */
|
|
BIGNUM **xbar, **xhat; /* private keys vector */
|
|
BIGNUM *b; /* group key */
|
|
BIGNUM *b1; /* inverse group key */
|
|
BIGNUM *ss; /* enabling key */
|
|
BIGNUM *biga; /* master encryption key */
|
|
BIGNUM *bige; /* session encryption key */
|
|
BIGNUM *gbar, *ghat; /* public key */
|
|
BIGNUM *u, *v, *w; /* BN scratch */
|
|
int i, j, n;
|
|
FILE *str;
|
|
u_int temp;
|
|
char ident[20];
|
|
|
|
/*
|
|
* Generate MV parameters.
|
|
*
|
|
* The object is to generate a multiplicative group Zp* modulo a
|
|
* prime p and a subset Zq mod q, where q is the product of n
|
|
* distinct primes s'[j] (j = 1...n) and q divides p - 1. We
|
|
* first generate n distinct primes, which may have to be
|
|
* regenerated later. As a practical matter, it is tough to find
|
|
* more than 31 distinct primes for modulus 512 or 61 primes for
|
|
* modulus 1024. The latter can take several hundred iterations
|
|
* and several minutes on a Sun Blade 1000.
|
|
*/
|
|
n = nkeys;
|
|
fprintf(stderr,
|
|
"Generating MV parameters for %d keys (%d bits)...\n", n,
|
|
modulus / n);
|
|
ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
|
|
b = BN_new(); b1 = BN_new();
|
|
dsa = DSA_new();
|
|
dsa->p = BN_new();
|
|
dsa->q = BN_new();
|
|
dsa->g = BN_new();
|
|
s = malloc((n + 1) * sizeof(BIGNUM));
|
|
s1 = malloc((n + 1) * sizeof(BIGNUM));
|
|
for (j = 1; j <= n; j++)
|
|
s1[j] = BN_new();
|
|
temp = 0;
|
|
for (j = 1; j <= n; j++) {
|
|
while (1) {
|
|
fprintf(stderr, "Birthdays %d\r", temp);
|
|
BN_generate_prime(s1[j], modulus / n, 0, NULL,
|
|
NULL, NULL, NULL);
|
|
for (i = 1; i < j; i++) {
|
|
if (BN_cmp(s1[i], s1[j]) == 0)
|
|
break;
|
|
}
|
|
if (i == j)
|
|
break;
|
|
temp++;
|
|
}
|
|
}
|
|
fprintf(stderr, "Birthday keys rejected %d\n", temp);
|
|
|
|
/*
|
|
* Compute the modulus q as the product of the primes. Compute
|
|
* the modulus p as 2 * q + 1 and test p for primality. If p
|
|
* is composite, replace one of the primes with a new distinct
|
|
* one and try again. Note that q will hardly be a secret since
|
|
* we have to reveal p to servers and clients. However,
|
|
* factoring q to find the primes should be adequately hard, as
|
|
* this is the same problem considered hard in RSA. Question: is
|
|
* it as hard to find n small prime factors totalling n bits as
|
|
* it is to find two large prime factors totalling n bits?
|
|
* Remember, the bad guy doesn't know n.
|
|
*/
|
|
temp = 0;
|
|
while (1) {
|
|
fprintf(stderr, "Duplicate keys rejected %d\r", ++temp);
|
|
BN_one(dsa->q);
|
|
for (j = 1; j <= n; j++)
|
|
BN_mul(dsa->q, dsa->q, s1[j], ctx);
|
|
BN_copy(dsa->p, dsa->q);
|
|
BN_add(dsa->p, dsa->p, dsa->p);
|
|
BN_add_word(dsa->p, 1);
|
|
if (BN_is_prime(dsa->p, BN_prime_checks, NULL, ctx,
|
|
NULL))
|
|
break;
|
|
|
|
j = temp % n + 1;
|
|
while (1) {
|
|
BN_generate_prime(u, modulus / n, 0, 0, NULL,
|
|
NULL, NULL);
|
|
for (i = 1; i <= n; i++) {
|
|
if (BN_cmp(u, s1[i]) == 0)
|
|
break;
|
|
}
|
|
if (i > n)
|
|
break;
|
|
}
|
|
BN_copy(s1[j], u);
|
|
}
|
|
fprintf(stderr, "Duplicate keys rejected %d\n", temp);
|
|
|
|
/*
|
|
* Compute the generator g using a random roll such that
|
|
* gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
|
|
* q.
|
|
*/
|
|
BN_copy(v, dsa->p);
|
|
BN_sub_word(v, 1);
|
|
while (1) {
|
|
BN_rand(dsa->g, BN_num_bits(dsa->p) - 1, 0, 0);
|
|
BN_mod(dsa->g, dsa->g, dsa->p, ctx);
|
|
BN_gcd(u, dsa->g, v, ctx);
|
|
if (!BN_is_one(u))
|
|
continue;
|
|
|
|
BN_mod_exp(u, dsa->g, dsa->q, dsa->p, ctx);
|
|
if (BN_is_one(u))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Compute s[j] such that s[j] * s'[j] = s'[j] for all j. The
|
|
* easy way to do this is to compute q + s'[j] and divide the
|
|
* result by s'[j]. Exercise for the student: prove the
|
|
* remainder is always zero.
|
|
*/
|
|
for (j = 1; j <= n; j++) {
|
|
s[j] = BN_new();
|
|
BN_add(s[j], dsa->q, s1[j]);
|
|
BN_div(s[j], u, s[j], s1[j], ctx);
|
|
}
|
|
|
|
/*
|
|
* Setup is now complete. Roll random polynomial roots x[j]
|
|
* (0 < x[j] < q) for all j. While it may not be strictly
|
|
* necessary, Make sure each root has no factors in common with
|
|
* q.
|
|
*/
|
|
fprintf(stderr,
|
|
"Generating polynomial coefficients for %d roots (%d bits)\n",
|
|
n, BN_num_bits(dsa->q));
|
|
x = malloc((n + 1) * sizeof(BIGNUM));
|
|
for (j = 1; j <= n; j++) {
|
|
x[j] = BN_new();
|
|
while (1) {
|
|
BN_rand(x[j], BN_num_bits(dsa->q), 0, 0);
|
|
BN_mod(x[j], x[j], dsa->q, ctx);
|
|
BN_gcd(u, x[j], dsa->q, ctx);
|
|
if (BN_is_one(u))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate polynomial coefficients a[i] (i = 0...n) from the
|
|
* expansion of root products (x - x[j]) mod q for all j. The
|
|
* method is a present from Charlie Boncelet.
|
|
*/
|
|
a = malloc((n + 1) * sizeof(BIGNUM));
|
|
for (i = 0; i <= n; i++) {
|
|
a[i] = BN_new();
|
|
BN_one(a[i]);
|
|
}
|
|
for (j = 1; j <= n; j++) {
|
|
BN_zero(w);
|
|
for (i = 0; i < j; i++) {
|
|
BN_copy(u, dsa->q);
|
|
BN_mod_mul(v, a[i], x[j], dsa->q, ctx);
|
|
BN_sub(u, u, v);
|
|
BN_add(u, u, w);
|
|
BN_copy(w, a[i]);
|
|
BN_mod(a[i], u, dsa->q, ctx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate g[i] = g^a[i] mod p for all i and the generator g.
|
|
*/
|
|
fprintf(stderr, "Generating g[i] parameters\n");
|
|
g = malloc((n + 1) * sizeof(BIGNUM));
|
|
for (i = 0; i <= n; i++) {
|
|
g[i] = BN_new();
|
|
BN_mod_exp(g[i], dsa->g, a[i], dsa->p, ctx);
|
|
}
|
|
|
|
/*
|
|
* Verify prod(g[i]^(a[i] x[j]^i)) = 1 for all i, j; otherwise,
|
|
* exit. Note the a[i] x[j]^i exponent is computed mod q, but
|
|
* the g[i] is computed mod p. also note the expression given in
|
|
* the paper is incorrect.
|
|
*/
|
|
temp = 1;
|
|
for (j = 1; j <= n; j++) {
|
|
BN_one(u);
|
|
for (i = 0; i <= n; i++) {
|
|
BN_set_word(v, i);
|
|
BN_mod_exp(v, x[j], v, dsa->q, ctx);
|
|
BN_mod_mul(v, v, a[i], dsa->q, ctx);
|
|
BN_mod_exp(v, dsa->g, v, dsa->p, ctx);
|
|
BN_mod_mul(u, u, v, dsa->p, ctx);
|
|
}
|
|
if (!BN_is_one(u))
|
|
temp = 0;
|
|
}
|
|
fprintf(stderr,
|
|
"Confirm prod(g[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
|
|
"yes" : "no");
|
|
if (!temp) {
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Make private encryption key A. Keep it around for awhile,
|
|
* since it is expensive to compute.
|
|
*/
|
|
biga = BN_new();
|
|
BN_one(biga);
|
|
for (j = 1; j <= n; j++) {
|
|
for (i = 0; i < n; i++) {
|
|
BN_set_word(v, i);
|
|
BN_mod_exp(v, x[j], v, dsa->q, ctx);
|
|
BN_mod_exp(v, g[i], v, dsa->p, ctx);
|
|
BN_mod_mul(biga, biga, v, dsa->p, ctx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Roll private random group key b mod q (0 < b < q), where
|
|
* gcd(b, q) = 1 to guarantee b^1 exists, then compute b^-1
|
|
* mod q. If b is changed, the client keys must be recomputed.
|
|
*/
|
|
while (1) {
|
|
BN_rand(b, BN_num_bits(dsa->q), 0, 0);
|
|
BN_mod(b, b, dsa->q, ctx);
|
|
BN_gcd(u, b, dsa->q, ctx);
|
|
if (BN_is_one(u))
|
|
break;
|
|
}
|
|
BN_mod_inverse(b1, b, dsa->q, ctx);
|
|
|
|
/*
|
|
* Make private client keys (xbar[j], xhat[j]) for all j. Note
|
|
* that the keys for the jth client involve s[j], but not s'[j]
|
|
* or the product s = prod(s'[j]) mod q, which is the enabling
|
|
* key.
|
|
*/
|
|
xbar = malloc((n + 1) * sizeof(BIGNUM));
|
|
xhat = malloc((n + 1) * sizeof(BIGNUM));
|
|
for (j = 1; j <= n; j++) {
|
|
xbar[j] = BN_new(); xhat[j] = BN_new();
|
|
BN_zero(xbar[j]);
|
|
BN_set_word(v, n);
|
|
for (i = 1; i <= n; i++) {
|
|
if (i == j)
|
|
continue;
|
|
BN_mod_exp(u, x[i], v, dsa->q, ctx);
|
|
BN_add(xbar[j], xbar[j], u);
|
|
}
|
|
BN_mod_mul(xbar[j], xbar[j], b1, dsa->q, ctx);
|
|
BN_mod_exp(xhat[j], x[j], v, dsa->q, ctx);
|
|
BN_mod_mul(xhat[j], xhat[j], s[j], dsa->q, ctx);
|
|
}
|
|
|
|
/*
|
|
* The enabling key is initially q by construction. We can
|
|
* revoke client j by dividing q by s'[j]. The quotient becomes
|
|
* the enabling key s. Note we always have to revoke one key;
|
|
* otherwise, the plaintext and cryptotext would be identical.
|
|
*/
|
|
ss = BN_new();
|
|
BN_copy(ss, dsa->q);
|
|
BN_div(ss, u, dsa->q, s1[n], ctx);
|
|
|
|
/*
|
|
* Make private server encryption key E = A^s and public server
|
|
* keys gbar = g^s mod p and ghat = g^(s b) mod p. The (gbar,
|
|
* ghat) is the public key provided to the server, which uses it
|
|
* to compute the session encryption key and public key included
|
|
* in its messages. These values must be regenerated if the
|
|
* enabling key is changed.
|
|
*/
|
|
bige = BN_new(); gbar = BN_new(); ghat = BN_new();
|
|
BN_mod_exp(bige, biga, ss, dsa->p, ctx);
|
|
BN_mod_exp(gbar, dsa->g, ss, dsa->p, ctx);
|
|
BN_mod_mul(v, ss, b, dsa->q, ctx);
|
|
BN_mod_exp(ghat, dsa->g, v, dsa->p, ctx);
|
|
|
|
/*
|
|
* We produce the key media in three steps. The first step is to
|
|
* generate the private values that do not depend on the
|
|
* enabling key. These include the server values p, q, g, b, A
|
|
* and the client values s'[j], xbar[j] and xhat[j] for each j.
|
|
* The p, xbar[j] and xhat[j] values are encoded in private
|
|
* files which are distributed to respective clients. The p, q,
|
|
* g, A and s'[j] values (will be) written to a secret file to
|
|
* be read back later.
|
|
*
|
|
* The secret file (will be) read back at some later time to
|
|
* enable/disable individual keys and generate/regenerate the
|
|
* enabling key s. The p, q, E, gbar and ghat values are written
|
|
* to a secret file to be read back later by the server.
|
|
*
|
|
* The server reads the secret file and rolls the session key
|
|
* k, which is used only once, then computes E^k, gbar^k and
|
|
* ghat^k. The E^k is the session encryption key. The encrypted
|
|
* data, gbar^k and ghat^k are transmtted to clients in an
|
|
* extension field. The client receives the message and computes
|
|
* x = (gbar^k)^xbar[j] (ghat^k)^xhat[j], finds the session
|
|
* encryption key E^k as the inverse x^-1 and decrypts the data.
|
|
*/
|
|
BN_copy(dsa->g, bige);
|
|
dsa->priv_key = BN_dup(gbar);
|
|
dsa->pub_key = BN_dup(ghat);
|
|
|
|
/*
|
|
* Write the MV server parameters and keys as a DSA private key
|
|
* encoded in PEM.
|
|
*
|
|
* p modulus p
|
|
* q modulus q (used only to generate k)
|
|
* g E mod p
|
|
* priv_key gbar mod p
|
|
* pub_key ghat mod p
|
|
*/
|
|
str = fheader("MVpar", trustname);
|
|
pkey = EVP_PKEY_new();
|
|
EVP_PKEY_assign_DSA(pkey, dsa);
|
|
PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
|
|
NULL, 0, NULL, passwd2);
|
|
fclose(str);
|
|
if (debug)
|
|
DSA_print_fp(stdout, dsa, 0);
|
|
fslink(id, trustname);
|
|
|
|
/*
|
|
* Write the parameters and private key (xbar[j], xhat[j]) for
|
|
* all j as a DSA private key encoded in PEM. It is used only by
|
|
* the designated recipient(s) who pay a suitably outrageous fee
|
|
* for its use.
|
|
*/
|
|
sdsa = DSA_new();
|
|
sdsa->p = BN_dup(dsa->p);
|
|
sdsa->q = BN_dup(BN_value_one());
|
|
sdsa->g = BN_dup(BN_value_one());
|
|
sdsa->priv_key = BN_new();
|
|
sdsa->pub_key = BN_new();
|
|
for (j = 1; j <= n; j++) {
|
|
BN_copy(sdsa->priv_key, xbar[j]);
|
|
BN_copy(sdsa->pub_key, xhat[j]);
|
|
BN_mod_exp(v, dsa->priv_key, sdsa->pub_key, dsa->p,
|
|
ctx);
|
|
BN_mod_exp(u, dsa->pub_key, sdsa->priv_key, dsa->p,
|
|
ctx);
|
|
BN_mod_mul(u, u, v, dsa->p, ctx);
|
|
BN_mod_mul(u, u, dsa->g, dsa->p, ctx);
|
|
BN_free(xbar[j]); BN_free(xhat[j]);
|
|
BN_free(x[j]); BN_free(s[j]); BN_free(s1[j]);
|
|
if (!BN_is_one(u)) {
|
|
fprintf(stderr, "Revoke key %d\n", j);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Write the client parameters as a DSA private key
|
|
* encoded in PEM. We don't make links for these.
|
|
*
|
|
* p modulus p
|
|
* priv_key xbar[j] mod q
|
|
* pub_key xhat[j] mod q
|
|
* (remaining values are not used)
|
|
*/
|
|
sprintf(ident, "MVkey%d", j);
|
|
str = fheader(ident, trustname);
|
|
pkey1 = EVP_PKEY_new();
|
|
EVP_PKEY_set1_DSA(pkey1, sdsa);
|
|
PEM_write_PrivateKey(str, pkey1, passwd2 ?
|
|
EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2);
|
|
fclose(str);
|
|
fprintf(stderr, "ntpkey_%s_%s.%lu\n", ident, trustname,
|
|
epoch + JAN_1970);
|
|
if (debug)
|
|
DSA_print_fp(stdout, sdsa, 0);
|
|
EVP_PKEY_free(pkey1);
|
|
}
|
|
|
|
/*
|
|
* Free the countries.
|
|
*/
|
|
for (i = 0; i <= n; i++) {
|
|
BN_free(a[i]);
|
|
BN_free(g[i]);
|
|
}
|
|
BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
|
|
BN_free(b); BN_free(b1); BN_free(biga); BN_free(bige);
|
|
BN_free(ss); BN_free(gbar); BN_free(ghat);
|
|
DSA_free(sdsa);
|
|
|
|
/*
|
|
* Free the world.
|
|
*/
|
|
free(x); free(a); free(g); free(s); free(s1);
|
|
free(xbar); free(xhat);
|
|
return (pkey);
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate X509v3 scertificate.
|
|
*
|
|
* The certificate consists of the version number, serial number,
|
|
* validity interval, issuer name, subject name and public key. For a
|
|
* self-signed certificate, the issuer name is the same as the subject
|
|
* name and these items are signed using the subject private key. The
|
|
* validity interval extends from the current time to the same time one
|
|
* year hence. For NTP purposes, it is convenient to use the NTP seconds
|
|
* of the current time as the serial number.
|
|
*/
|
|
int
|
|
x509 (
|
|
EVP_PKEY *pkey, /* generic signature algorithm */
|
|
const EVP_MD *md, /* generic digest algorithm */
|
|
char *gqpub, /* identity extension (hex string) */
|
|
char *exten /* private cert extension */
|
|
)
|
|
{
|
|
X509 *cert; /* X509 certificate */
|
|
X509_NAME *subj; /* distinguished (common) name */
|
|
X509_EXTENSION *ex; /* X509v3 extension */
|
|
FILE *str; /* file handle */
|
|
ASN1_INTEGER *serial; /* serial number */
|
|
const char *id; /* digest/signature scheme name */
|
|
char pathbuf[MAXFILENAME + 1];
|
|
|
|
/*
|
|
* Generate X509 self-signed certificate.
|
|
*
|
|
* Set the certificate serial to the NTP seconds for grins. Set
|
|
* the version to 3. Set the subject name and issuer name to the
|
|
* subject name in the request. Set the initial validity to the
|
|
* current time and the final validity one year hence.
|
|
*/
|
|
id = OBJ_nid2sn(md->pkey_type);
|
|
fprintf(stderr, "Generating certificate %s\n", id);
|
|
cert = X509_new();
|
|
X509_set_version(cert, 2L);
|
|
serial = ASN1_INTEGER_new();
|
|
ASN1_INTEGER_set(serial, epoch + JAN_1970);
|
|
X509_set_serialNumber(cert, serial);
|
|
ASN1_INTEGER_free(serial);
|
|
X509_time_adj(X509_get_notBefore(cert), 0L, &epoch);
|
|
X509_time_adj(X509_get_notAfter(cert), YEAR, &epoch);
|
|
subj = X509_get_subject_name(cert);
|
|
X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
|
|
(unsigned char *) hostname, strlen(hostname), -1, 0);
|
|
subj = X509_get_issuer_name(cert);
|
|
X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
|
|
(unsigned char *) trustname, strlen(trustname), -1, 0);
|
|
if (!X509_set_pubkey(cert, pkey)) {
|
|
fprintf(stderr, "Assign key fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
X509_free(cert);
|
|
rval = -1;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add X509v3 extensions if present. These represent the minimum
|
|
* set defined in RFC3280 less the certificate_policy extension,
|
|
* which is seriously obfuscated in OpenSSL.
|
|
*/
|
|
/*
|
|
* The basic_constraints extension CA:TRUE allows servers to
|
|
* sign client certficitates.
|
|
*/
|
|
fprintf(stderr, "%s: %s\n", LN_basic_constraints,
|
|
BASIC_CONSTRAINTS);
|
|
ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
|
|
BASIC_CONSTRAINTS);
|
|
if (!X509_add_ext(cert, ex, -1)) {
|
|
fprintf(stderr, "Add extension field fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
rval = -1;
|
|
return (0);
|
|
}
|
|
X509_EXTENSION_free(ex);
|
|
|
|
/*
|
|
* The key_usage extension designates the purposes the key can
|
|
* be used for.
|
|
*/
|
|
fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
|
|
ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, KEY_USAGE);
|
|
if (!X509_add_ext(cert, ex, -1)) {
|
|
fprintf(stderr, "Add extension field fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
rval = -1;
|
|
return (0);
|
|
}
|
|
X509_EXTENSION_free(ex);
|
|
/*
|
|
* The subject_key_identifier is used for the GQ public key.
|
|
* This should not be controversial.
|
|
*/
|
|
if (gqpub != NULL) {
|
|
fprintf(stderr, "%s\n", LN_subject_key_identifier);
|
|
ex = X509V3_EXT_conf_nid(NULL, NULL,
|
|
NID_subject_key_identifier, gqpub);
|
|
if (!X509_add_ext(cert, ex, -1)) {
|
|
fprintf(stderr,
|
|
"Add extension field fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
rval = -1;
|
|
return (0);
|
|
}
|
|
X509_EXTENSION_free(ex);
|
|
}
|
|
|
|
/*
|
|
* The extended key usage extension is used for special purpose
|
|
* here. The semantics probably do not conform to the designer's
|
|
* intent and will likely change in future.
|
|
*
|
|
* "trustRoot" designates a root authority
|
|
* "private" designates a private certificate
|
|
*/
|
|
if (exten != NULL) {
|
|
fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
|
|
ex = X509V3_EXT_conf_nid(NULL, NULL,
|
|
NID_ext_key_usage, exten);
|
|
if (!X509_add_ext(cert, ex, -1)) {
|
|
fprintf(stderr,
|
|
"Add extension field fails\n%s\n",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
rval = -1;
|
|
return (0);
|
|
}
|
|
X509_EXTENSION_free(ex);
|
|
}
|
|
|
|
/*
|
|
* Sign and verify.
|
|
*/
|
|
X509_sign(cert, pkey, md);
|
|
if (!X509_verify(cert, pkey)) {
|
|
fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
X509_free(cert);
|
|
rval = -1;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write the certificate encoded in PEM.
|
|
*/
|
|
sprintf(pathbuf, "%scert", id);
|
|
str = fheader(pathbuf, hostname);
|
|
PEM_write_X509(str, cert);
|
|
fclose(str);
|
|
if (debug)
|
|
X509_print_fp(stdout, cert);
|
|
X509_free(cert);
|
|
fslink("cert", hostname);
|
|
return (1);
|
|
}
|
|
|
|
#if 0 /* asn2ntp is not used */
|
|
/*
|
|
* asn2ntp - convert ASN1_TIME time structure to NTP time
|
|
*/
|
|
u_long
|
|
asn2ntp (
|
|
ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */
|
|
)
|
|
{
|
|
char *v; /* pointer to ASN1_TIME string */
|
|
struct tm tm; /* time decode structure time */
|
|
|
|
/*
|
|
* Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
|
|
* Note that the YY, MM, DD fields start with one, the HH, MM,
|
|
* SS fiels start with zero and the Z character should be 'Z'
|
|
* for UTC. Also note that years less than 50 map to years
|
|
* greater than 100. Dontcha love ASN.1?
|
|
*/
|
|
if (asn1time->length > 13)
|
|
return (-1);
|
|
v = (char *)asn1time->data;
|
|
tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
|
|
if (tm.tm_year < 50)
|
|
tm.tm_year += 100;
|
|
tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
|
|
tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
|
|
tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
|
|
tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
|
|
tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
|
|
tm.tm_wday = 0;
|
|
tm.tm_yday = 0;
|
|
tm.tm_isdst = 0;
|
|
return (mktime(&tm) + JAN_1970);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Callback routine
|
|
*/
|
|
void
|
|
cb (
|
|
int n1, /* arg 1 */
|
|
int n2, /* arg 2 */
|
|
void *chr /* arg 3 */
|
|
)
|
|
{
|
|
switch (n1) {
|
|
case 0:
|
|
d0++;
|
|
fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
|
|
d0);
|
|
break;
|
|
case 1:
|
|
d1++;
|
|
fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
|
|
n2, d1);
|
|
break;
|
|
case 2:
|
|
d2++;
|
|
fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
|
|
n1, n2, d2);
|
|
break;
|
|
case 3:
|
|
d3++;
|
|
fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
|
|
(char *)chr, n1, n2, d3);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate key
|
|
*/
|
|
EVP_PKEY * /* public/private key pair */
|
|
genkey(
|
|
char *type, /* key type (RSA or DSA) */
|
|
char *id /* file name id */
|
|
)
|
|
{
|
|
if (type == NULL)
|
|
return (NULL);
|
|
if (strcmp(type, "RSA") == 0)
|
|
return (gen_rsa(id));
|
|
|
|
else if (strcmp(type, "DSA") == 0)
|
|
return (gen_dsa(id));
|
|
|
|
fprintf(stderr, "Invalid %s key type %s\n", id, type);
|
|
rval = -1;
|
|
return (NULL);
|
|
}
|
|
#endif /* OPENSSL */
|
|
|
|
|
|
/*
|
|
* Generate file header
|
|
*/
|
|
FILE *
|
|
fheader (
|
|
const char *id, /* file name id */
|
|
const char *name /* owner name */
|
|
)
|
|
{
|
|
FILE *str; /* file handle */
|
|
|
|
sprintf(filename, "ntpkey_%s_%s.%lu", id, name, epoch +
|
|
JAN_1970);
|
|
if ((str = fopen(filename, "w")) == NULL) {
|
|
perror("Write");
|
|
exit (-1);
|
|
}
|
|
fprintf(str, "# %s\n# %s", filename, ctime(&epoch));
|
|
return (str);
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate symbolic links
|
|
*/
|
|
void
|
|
fslink(
|
|
const char *id, /* file name id */
|
|
const char *name /* owner name */
|
|
)
|
|
{
|
|
char linkname[MAXFILENAME]; /* link name */
|
|
int temp;
|
|
|
|
sprintf(linkname, "ntpkey_%s_%s", id, name);
|
|
remove(linkname);
|
|
temp = symlink(filename, linkname);
|
|
if (temp < 0)
|
|
perror(id);
|
|
fprintf(stderr, "Generating new %s file and link\n", id);
|
|
fprintf(stderr, "%s->%s\n", linkname, filename);
|
|
}
|