mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-19 15:33:56 +00:00
2914feeb7e
It's a bit more pedantic regarding .Bl list elements. This has an added benefit of unbreaking the ipfw(8) manpage, where groff was silently skipping one list element.
1314 lines
36 KiB
Groff
1314 lines
36 KiB
Groff
.\" Copyright (c) 1999 Jeroen Ruigrok van der Werven
|
|
.\" All rights reserved.
|
|
.\"
|
|
.\" Redistribution and use in source and binary forms, with or without
|
|
.\" modification, are permitted provided that the following conditions
|
|
.\" are met:
|
|
.\" 1. Redistributions of source code must retain the above copyright
|
|
.\" notice, this list of conditions and the following disclaimer.
|
|
.\" 2. Redistributions in binary form must reproduce the above copyright
|
|
.\" notice, this list of conditions and the following disclaimer in the
|
|
.\" documentation and/or other materials provided with the distribution.
|
|
.\"
|
|
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
.\" SUCH DAMAGE.
|
|
.\"
|
|
.\" $FreeBSD$
|
|
.\"
|
|
.Dd December 18, 2005
|
|
.Dt ELF 5
|
|
.Os
|
|
.Sh NAME
|
|
.Nm elf
|
|
.Nd format of ELF executable binary files
|
|
.Sh SYNOPSIS
|
|
.In elf.h
|
|
.Sh DESCRIPTION
|
|
The header file
|
|
.In elf.h
|
|
defines the format of ELF executable binary files.
|
|
Amongst these files are
|
|
normal executable files, relocatable object files, core files and shared
|
|
libraries.
|
|
.Pp
|
|
An executable file using the ELF file format consists of an ELF header,
|
|
followed by a program header table or a section header table, or both.
|
|
The ELF header is always at offset zero of the file.
|
|
The program header
|
|
table and the section header table's offset in the file are defined in the
|
|
ELF header.
|
|
The two tables describe the rest of the particularities of
|
|
the file.
|
|
.Pp
|
|
Applications which wish to process ELF binary files for their native
|
|
architecture only should include
|
|
.In elf.h
|
|
in their source code.
|
|
These applications should need to refer to
|
|
all the types and structures by their generic names
|
|
.Dq Elf_xxx
|
|
and to the macros by
|
|
.Dq ELF_xxx .
|
|
Applications written this way can be compiled on any architecture,
|
|
regardless whether the host is 32-bit or 64-bit.
|
|
.Pp
|
|
Should an application need to process ELF files of an unknown
|
|
architecture then the application needs to include both
|
|
.In sys/elf32.h
|
|
and
|
|
.In sys/elf64.h
|
|
instead of
|
|
.In elf.h .
|
|
Furthermore, all types and structures need to be identified by either
|
|
.Dq Elf32_xxx
|
|
or
|
|
.Dq Elf64_xxx .
|
|
The macros need to be identified by
|
|
.Dq ELF32_xxx
|
|
or
|
|
.Dq ELF64_xxx .
|
|
.Pp
|
|
Whatever the system's architecture is, it will always include
|
|
.In sys/elf_common.h
|
|
as well as
|
|
.In sys/elf_generic.h .
|
|
.Pp
|
|
These header files describe the above mentioned headers as C structures
|
|
and also include structures for dynamic sections, relocation sections and
|
|
symbol tables.
|
|
.Pp
|
|
The following types are being used for 32-bit architectures:
|
|
.Bd -literal -offset indent
|
|
Elf32_Addr Unsigned 32-bit program address
|
|
Elf32_Half Unsigned 16-bit field
|
|
Elf32_Lword Unsigned 64-bit field
|
|
Elf32_Off Unsigned 32-bit file offset
|
|
Elf32_Sword Signed 32-bit field or integer
|
|
Elf32_Word Unsigned 32-bit field or integer
|
|
.Ed
|
|
.Pp
|
|
For 64-bit architectures we have the following types:
|
|
.Bd -literal -offset indent
|
|
Elf64_Addr Unsigned 64-bit program address
|
|
Elf64_Half Unsigned 16-bit field
|
|
Elf64_Lword Unsigned 64-bit field
|
|
Elf64_Off Unsigned 64-bit file offset
|
|
Elf64_Sword Signed 32-bit field
|
|
Elf64_Sxword Signed 64-bit field or integer
|
|
Elf64_Word Unsigned 32-bit field
|
|
Elf64_Xword Unsigned 64-bit field or integer
|
|
.Ed
|
|
.Pp
|
|
All data structures that the file format defines follow the
|
|
.Dq natural
|
|
size and alignment guidelines for the relevant class.
|
|
If necessary,
|
|
data structures contain explicit padding to ensure 4-byte alignment
|
|
for 4-byte objects, to force structure sizes to a multiple of 4, etc.
|
|
.Pp
|
|
The ELF header is described by the type Elf32_Ehdr or Elf64_Ehdr:
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
unsigned char e_ident[EI_NIDENT];
|
|
Elf32_Half e_type;
|
|
Elf32_Half e_machine;
|
|
Elf32_Word e_version;
|
|
Elf32_Addr e_entry;
|
|
Elf32_Off e_phoff;
|
|
Elf32_Off e_shoff;
|
|
Elf32_Word e_flags;
|
|
Elf32_Half e_ehsize;
|
|
Elf32_Half e_phentsize;
|
|
Elf32_Half e_phnum;
|
|
Elf32_Half e_shentsize;
|
|
Elf32_Half e_shnum;
|
|
Elf32_Half e_shstrndx;
|
|
} Elf32_Ehdr;
|
|
.Ed
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
unsigned char e_ident[EI_NIDENT];
|
|
Elf64_Half e_type;
|
|
Elf64_Half e_machine;
|
|
Elf64_Word e_version;
|
|
Elf64_Addr e_entry;
|
|
Elf64_Off e_phoff;
|
|
Elf64_Off e_shoff;
|
|
Elf64_Word e_flags;
|
|
Elf64_Half e_ehsize;
|
|
Elf64_Half e_phentsize;
|
|
Elf64_Half e_phnum;
|
|
Elf64_Half e_shentsize;
|
|
Elf64_Half e_shnum;
|
|
Elf64_Half e_shstrndx;
|
|
} Elf64_Ehdr;
|
|
.Ed
|
|
.Pp
|
|
The fields have the following meanings:
|
|
.Pp
|
|
.Bl -tag -width "e_phentsize" -compact -offset indent
|
|
.It Dv e_ident
|
|
This array of bytes specifies to interpret the file,
|
|
independent of the processor or the file's remaining contents.
|
|
Within this array everything is named by macros, which start with
|
|
the prefix
|
|
.Sy EI_
|
|
and may contain values which start with the prefix
|
|
.Sy ELF .
|
|
The following macros are defined:
|
|
.Pp
|
|
.Bl -tag -width "EI_ABIVERSION" -compact
|
|
.It Dv EI_MAG0
|
|
The first byte of the magic number.
|
|
It must be filled with
|
|
.Sy ELFMAG0 .
|
|
.It Dv EI_MAG1
|
|
The second byte of the magic number.
|
|
It must be filled with
|
|
.Sy ELFMAG1 .
|
|
.It Dv EI_MAG2
|
|
The third byte of the magic number.
|
|
It must be filled with
|
|
.Sy ELFMAG2 .
|
|
.It Dv EI_MAG3
|
|
The fourth byte of the magic number.
|
|
It must be filled with
|
|
.Sy ELFMAG3 .
|
|
.It Dv EI_CLASS
|
|
The fifth byte identifies the architecture for this binary:
|
|
.Pp
|
|
.Bl -tag -width "ELFCLASSNONE" -compact
|
|
.It Dv ELFCLASSNONE
|
|
This class is invalid.
|
|
.It Dv ELFCLASS32
|
|
This defines the 32-bit architecture.
|
|
It supports machines with files
|
|
and virtual address spaces up to 4 Gigabytes.
|
|
.It Dv ELFCLASS64
|
|
This defines the 64-bit architecture.
|
|
.El
|
|
.It Dv EI_DATA
|
|
The sixth byte specifies the data encoding of the processor-specific
|
|
data in the file.
|
|
Currently these encodings are supported:
|
|
.Pp
|
|
.Bl -tag -width "ELFDATA2LSB" -compact
|
|
.It Dv ELFDATANONE
|
|
Unknown data format.
|
|
.It Dv ELFDATA2LSB
|
|
Two's complement, little-endian.
|
|
.It Dv ELFDATA2MSB
|
|
Two's complement, big-endian.
|
|
.El
|
|
.It Dv EI_VERSION
|
|
The version number of the ELF specification:
|
|
.Pp
|
|
.Bl -tag -width "EV_CURRENT" -compact
|
|
.It Dv EV_NONE
|
|
Invalid version.
|
|
.It Dv EV_CURRENT
|
|
Current version.
|
|
.El
|
|
.It Dv EI_OSABI
|
|
This byte identifies the operating system
|
|
and ABI to which the object is targeted.
|
|
Some fields in other ELF structures have flags
|
|
and values that have platform specific meanings;
|
|
the interpretation of those fields is determined by the value of this byte.
|
|
The following values are currently defined:
|
|
.Pp
|
|
.Bl -tag -width "ELFOSABI_STANDALONE" -compact
|
|
.It Dv ELFOSABI_SYSV
|
|
UNIX System V ABI.
|
|
.It Dv ELFOSABI_HPUX
|
|
HP-UX operating system ABI.
|
|
.It Dv ELFOSABI_NETBSD
|
|
.Nx
|
|
operating system ABI.
|
|
.It Dv ELFOSABI_LINUX
|
|
GNU/Linux operating system ABI.
|
|
.It Dv ELFOSABI_HURD
|
|
GNU/Hurd operating system ABI.
|
|
.It Dv ELFOSABI_86OPEN
|
|
86Open Common IA32 ABI.
|
|
.It Dv ELFOSABI_SOLARIS
|
|
Solaris operating system ABI.
|
|
.It Dv ELFOSABI_MONTEREY
|
|
Monterey project ABI.
|
|
.It Dv ELFOSABI_IRIX
|
|
IRIX operating system ABI.
|
|
.It Dv ELFOSABI_FREEBSD
|
|
.Fx
|
|
operating system ABI.
|
|
.It Dv ELFOSABI_TRU64
|
|
TRU64 UNIX operating system ABI.
|
|
.It Dv ELFOSABI_ARM
|
|
ARM architecture ABI.
|
|
.It Dv ELFOSABI_STANDALONE
|
|
Standalone (embedded) ABI.
|
|
.El
|
|
.It Dv EI_ABIVERSION
|
|
This byte identifies the version of the ABI
|
|
to which the object is targeted.
|
|
This field is used to distinguish among incompatible versions of an ABI.
|
|
The interpretation of this version number
|
|
is dependent on the ABI identified by the EI_OSABI field.
|
|
Applications conforming to this specification use the value 0.
|
|
.It Dv EI_PAD
|
|
Start of padding.
|
|
These bytes are reserved and set to zero.
|
|
Programs
|
|
which read them should ignore them.
|
|
The value for EI_PAD will change in
|
|
the future if currently unused bytes are given meanings.
|
|
.It Dv EI_BRAND
|
|
Start of architecture identification.
|
|
.It Dv EI_NIDENT
|
|
The size of the e_ident array.
|
|
.El
|
|
.Pp
|
|
.It Dv e_type
|
|
This member of the structure identifies the object file type:
|
|
.Pp
|
|
.Bl -tag -width "ET_NONE" -compact
|
|
.It Dv ET_NONE
|
|
An unknown type.
|
|
.It Dv ET_REL
|
|
A relocatable file.
|
|
.It Dv ET_EXEC
|
|
An executable file.
|
|
.It Dv ET_DYN
|
|
A shared object.
|
|
.It Dv ET_CORE
|
|
A core file.
|
|
.El
|
|
.Pp
|
|
.It Dv e_machine
|
|
This member specifies the required architecture for an individual file:
|
|
.Pp
|
|
.Bl -tag -width "EM_MIPS_RS4_BE" -compact
|
|
.It Dv EM_NONE
|
|
An unknown machine.
|
|
.It Dv EM_M32
|
|
AT&T WE 32100.
|
|
.It Dv EM_SPARC
|
|
Sun Microsystems SPARC.
|
|
.It Dv EM_386
|
|
Intel 80386.
|
|
.It Dv EM_68K
|
|
Motorola 68000.
|
|
.It Dv EM_88K
|
|
Motorola 88000.
|
|
.It Dv EM_486
|
|
Intel 80486.
|
|
.It Dv EM_860
|
|
Intel 80860.
|
|
.It Dv EM_MIPS
|
|
MIPS RS3000 (big-endian only).
|
|
.It Dv EM_MIPS_RS4_BE
|
|
MIPS RS4000 (big-endian only).
|
|
.It Dv EM_SPARC64
|
|
SPARC v9 64-bit unofficial.
|
|
.It Dv EM_PARISC
|
|
HPPA.
|
|
.It Dv EM_PPC
|
|
PowerPC.
|
|
.It Dv EM_ALPHA
|
|
Compaq [DEC] Alpha.
|
|
.El
|
|
.Pp
|
|
.It Dv e_version
|
|
This member identifies the file version:
|
|
.Pp
|
|
.Bl -tag -width "EV_CURRENT" -compact
|
|
.It Dv EV_NONE
|
|
Invalid version
|
|
.It Dv EV_CURRENT
|
|
Current version
|
|
.El
|
|
.It Dv e_entry
|
|
This member gives the virtual address to which the system first transfers
|
|
control, thus starting the process.
|
|
If the file has no associated entry
|
|
point, this member holds zero.
|
|
.It Dv e_phoff
|
|
This member holds the program header table's file offset in bytes.
|
|
If
|
|
the file has no program header table, this member holds zero.
|
|
.It Dv e_shoff
|
|
This member holds the section header table's file offset in bytes.
|
|
If the
|
|
file has no section header table this member holds zero.
|
|
.It Dv e_flags
|
|
This member holds processor-specific flags associated with the file.
|
|
Flag
|
|
names take the form EF_`machine_flag'.
|
|
Currently no flags have been defined.
|
|
.It Dv e_ehsize
|
|
This member holds the ELF header's size in bytes.
|
|
.It Dv e_phentsize
|
|
This member holds the size in bytes of one entry in the file's program header
|
|
table; all entries are the same size.
|
|
.It Dv e_phnum
|
|
This member holds the number of entries in the program header
|
|
table.
|
|
If the file is using extended program header numbering, then the
|
|
.Sy e_phnum
|
|
member will contain the value
|
|
.Dv PN_XNUM
|
|
and the actual number of program header table entries will be stored
|
|
in the
|
|
.Sy sh_info
|
|
member of the section header at index
|
|
.Dv SHN_UNDEF .
|
|
The product of
|
|
.Sy e_phentsize
|
|
and the number of program header table entries gives the program
|
|
header table's size in bytes.
|
|
If a file has no program header,
|
|
.Sy e_phnum
|
|
holds the value zero.
|
|
.It Dv e_shentsize
|
|
This member holds a sections header's size in bytes.
|
|
A section header is one
|
|
entry in the section header table; all entries are the same size.
|
|
.It Dv e_shnum
|
|
This member holds the number of entries in the section header table.
|
|
If the file is using extended section numbering, then the
|
|
.Sy e_shnum
|
|
member will be zero and the actual section number will be stored in the
|
|
.Sy sh_size
|
|
member of the section header at index
|
|
.Dv SHN_UNDEF .
|
|
If a file has no section header table, both the
|
|
.Sy e_shnum
|
|
and the
|
|
.Sy e_shoff
|
|
fields of the ELF header will be zero.
|
|
The product of
|
|
.Sy e_shentsize
|
|
and the number of sections in the file gives the section header
|
|
table's size in bytes.
|
|
.It Dv e_shstrndx
|
|
This member holds the section header table index of the entry associated
|
|
with the section name string table.
|
|
If extended section numbering is being used, this field will hold the
|
|
value
|
|
.Sy SHN_XINDEX ,
|
|
and the actual section header table index will be present in the
|
|
.Sy sh_link
|
|
field of the section header entry at index
|
|
.Dv SHN_UNDEF .
|
|
If the file has no section name string
|
|
table, this member holds the value
|
|
.Sy SHN_UNDEF .
|
|
.El
|
|
.Pp
|
|
An executable or shared object file's program header table is an array of
|
|
structures, each describing a segment or other information the system needs
|
|
to prepare the program for execution.
|
|
An object file
|
|
.Em segment
|
|
contains one or more
|
|
.Em sections .
|
|
Program headers are meaningful only for executable and shared object files.
|
|
A file specifies its own program header size with the ELF header's
|
|
.Sy e_phentsize
|
|
and
|
|
.Sy e_phnum
|
|
members.
|
|
As with the Elf executable header, the program header
|
|
also has different versions depending on the architecture:
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf32_Word p_type;
|
|
Elf32_Off p_offset;
|
|
Elf32_Addr p_vaddr;
|
|
Elf32_Addr p_paddr;
|
|
Elf32_Word p_filesz;
|
|
Elf32_Word p_memsz;
|
|
Elf32_Word p_flags;
|
|
Elf32_Word p_align;
|
|
} Elf32_Phdr;
|
|
.Ed
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf64_Word p_type;
|
|
Elf64_Word p_flags;
|
|
Elf64_Off p_offset;
|
|
Elf64_Addr p_vaddr;
|
|
Elf64_Addr p_paddr;
|
|
Elf64_Xword p_filesz;
|
|
Elf64_Xword p_memsz;
|
|
Elf64_Xword p_align;
|
|
} Elf64_Phdr;
|
|
.Ed
|
|
.Pp
|
|
The main difference between the 32-bit and the 64-bit program header lies
|
|
only in the location of a
|
|
.Sy p_flags
|
|
member in the total struct.
|
|
.Pp
|
|
.Bl -tag -width "p_offset" -compact -offset indent
|
|
.It Dv p_type
|
|
This member of the Phdr struct tells what kind of segment this array
|
|
element describes or how to interpret the array element's information.
|
|
.Pp
|
|
.Bl -tag -width "PT_DYNAMIC" -compact
|
|
.It Dv PT_NULL
|
|
The array element is unused and the other members' values are undefined.
|
|
This lets the program header have ignored entries.
|
|
.It Dv PT_LOAD
|
|
The array element specifies a loadable segment, described by
|
|
.Sy p_filesz
|
|
and
|
|
.Sy p_memsz .
|
|
The bytes from the file are mapped to the beginning of the memory
|
|
segment.
|
|
If the segment's memory size
|
|
.Pq Sy p_memsz
|
|
is larger than the file size
|
|
.Pq Sy p_filesz ,
|
|
the
|
|
.Dq extra
|
|
bytes are defined to hold the value 0 and to follow the segment's
|
|
initialized area.
|
|
The file size may not be larger than the memory size.
|
|
Loadable segment entries in the program header table appear in ascending
|
|
order, sorted on the
|
|
.Sy p_vaddr
|
|
member.
|
|
.It Dv PT_DYNAMIC
|
|
The array element specifies dynamic linking information.
|
|
.It Dv PT_INTERP
|
|
The array element specifies the location and size of a null-terminated
|
|
path name to invoke as an interpreter.
|
|
This segment type is meaningful
|
|
only for executable files (though it may occur for shared objects).
|
|
However
|
|
it may not occur more than once in a file.
|
|
If it is present it must precede
|
|
any loadable segment entry.
|
|
.It Dv PT_NOTE
|
|
The array element specifies the location and size for auxiliary information.
|
|
.It Dv PT_SHLIB
|
|
This segment type is reserved but has unspecified semantics.
|
|
Programs that
|
|
contain an array element of this type do not conform to the ABI.
|
|
.It Dv PT_PHDR
|
|
The array element, if present, specifies the location and size of the program
|
|
header table itself, both in the file and in the memory image of the program.
|
|
This segment type may not occur more than once in a file.
|
|
Moreover, it may
|
|
only occur if the program header table is part of the memory image of the
|
|
program.
|
|
If it is present it must precede any loadable segment entry.
|
|
.It Dv PT_LOPROC
|
|
This value up to and including
|
|
.Sy PT_HIPROC
|
|
are reserved for processor-specific semantics.
|
|
.It Dv PT_HIPROC
|
|
This value down to and including
|
|
.Sy PT_LOPROC
|
|
are reserved for processor-specific semantics.
|
|
.El
|
|
.Pp
|
|
.It Dv p_offset
|
|
This member holds the offset from the beginning of the file at which
|
|
the first byte of the segment resides.
|
|
.It Dv p_vaddr
|
|
This member holds the virtual address at which the first byte of the
|
|
segment resides in memory.
|
|
.It Dv p_paddr
|
|
On systems for which physical addressing is relevant, this member is
|
|
reserved for the segment's physical address.
|
|
Under
|
|
.Bx
|
|
this member is
|
|
not used and must be zero.
|
|
.It Dv p_filesz
|
|
This member holds the number of bytes in the file image of the segment.
|
|
It may be zero.
|
|
.It Dv p_memsz
|
|
This member holds the number of bytes in the memory image of the segment.
|
|
It may be zero.
|
|
.It Dv p_flags
|
|
This member holds flags relevant to the segment:
|
|
.Pp
|
|
.Bl -tag -width "PF_X" -compact
|
|
.It Dv PF_X
|
|
An executable segment.
|
|
.It Dv PF_W
|
|
A writable segment.
|
|
.It Dv PF_R
|
|
A readable segment.
|
|
.El
|
|
.Pp
|
|
A text segment commonly has the flags
|
|
.Sy PF_X
|
|
and
|
|
.Sy PF_R .
|
|
A data segment commonly has
|
|
.Sy PF_X ,
|
|
.Sy PF_W
|
|
and
|
|
.Sy PF_R .
|
|
.It Dv p_align
|
|
This member holds the value to which the segments are aligned in memory
|
|
and in the file.
|
|
Loadable process segments must have congruent values for
|
|
.Sy p_vaddr
|
|
and
|
|
.Sy p_offset ,
|
|
modulo the page size.
|
|
Values of zero and one mean no alignment is required.
|
|
Otherwise,
|
|
.Sy p_align
|
|
should be a positive, integral power of two, and
|
|
.Sy p_vaddr
|
|
should equal
|
|
.Sy p_offset ,
|
|
modulo
|
|
.Sy p_align .
|
|
.El
|
|
.Pp
|
|
An file's section header table lets one locate all the file's sections.
|
|
The
|
|
section header table is an array of Elf32_Shdr or Elf64_Shdr structures.
|
|
The
|
|
ELF header's
|
|
.Sy e_shoff
|
|
member gives the byte offset from the beginning of the file to the section
|
|
header table.
|
|
.Sy e_shnum
|
|
holds the number of entries the section header table contains.
|
|
.Sy e_shentsize
|
|
holds the size in bytes of each entry.
|
|
.Pp
|
|
A section header table index is a subscript into this array.
|
|
Some section
|
|
header table indices are reserved.
|
|
An object file does not have sections for
|
|
these special indices:
|
|
.Pp
|
|
.Bl -tag -width "SHN_LORESERVE" -compact
|
|
.It Dv SHN_UNDEF
|
|
This value marks an undefined, missing, irrelevant, or otherwise meaningless
|
|
section reference.
|
|
For example, a symbol
|
|
.Dq defined
|
|
relative to section number
|
|
.Sy SHN_UNDEF
|
|
is an undefined symbol.
|
|
.It Dv SHN_LORESERVE
|
|
This value specifies the lower bound of the range of reserved indices.
|
|
.It Dv SHN_LOPROC
|
|
This value up to and including
|
|
.Sy SHN_HIPROC
|
|
are reserved for processor-specific semantics.
|
|
.It Dv SHN_HIPROC
|
|
This value down to and including
|
|
.Sy SHN_LOPROC
|
|
are reserved for processor-specific semantics.
|
|
.It Dv SHN_ABS
|
|
This value specifies absolute values for the corresponding reference.
|
|
For
|
|
example, symbols defined relative to section number
|
|
.Sy SHN_ABS
|
|
have absolute values and are not affected by relocation.
|
|
.It Dv SHN_COMMON
|
|
Symbols defined relative to this section are common symbols, such as FORTRAN
|
|
COMMON or unallocated C external variables.
|
|
.It Dv SHN_HIRESERVE
|
|
This value specifies the upper bound of the range of reserved indices.
|
|
The
|
|
system reserves indices between
|
|
.Sy SHN_LORESERVE
|
|
and
|
|
.Sy SHN_HIRESERVE ,
|
|
inclusive.
|
|
The section header table does not contain entries for the
|
|
reserved indices.
|
|
.El
|
|
.Pp
|
|
The section header has the following structure:
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf32_Word sh_name;
|
|
Elf32_Word sh_type;
|
|
Elf32_Word sh_flags;
|
|
Elf32_Addr sh_addr;
|
|
Elf32_Off sh_offset;
|
|
Elf32_Word sh_size;
|
|
Elf32_Word sh_link;
|
|
Elf32_Word sh_info;
|
|
Elf32_Word sh_addralign;
|
|
Elf32_Word sh_entsize;
|
|
} Elf32_Shdr;
|
|
.Ed
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf64_Word sh_name;
|
|
Elf64_Word sh_type;
|
|
Elf64_Xword sh_flags;
|
|
Elf64_Addr sh_addr;
|
|
Elf64_Off sh_offset;
|
|
Elf64_Xword sh_size;
|
|
Elf64_Word sh_link;
|
|
Elf64_Word sh_info;
|
|
Elf64_Xword sh_addralign;
|
|
Elf64_Xword sh_entsize;
|
|
} Elf64_Shdr;
|
|
.Ed
|
|
.Pp
|
|
.Bl -tag -width "sh_addralign" -compact
|
|
.It Dv sh_name
|
|
This member specifies the name of the section.
|
|
Its value is an index
|
|
into the section header string table section, giving the location of
|
|
a null-terminated string.
|
|
.It Dv sh_type
|
|
This member categorizes the section's contents and semantics.
|
|
.Pp
|
|
.Bl -tag -width "SHT_PROGBITS" -compact
|
|
.It Dv SHT_NULL
|
|
This value marks the section header as inactive.
|
|
It does not
|
|
have an associated section.
|
|
Other members of the section header
|
|
have undefined values.
|
|
.It Dv SHT_PROGBITS
|
|
The section holds information defined by the program, whose
|
|
format and meaning are determined solely by the program.
|
|
.It Dv SHT_SYMTAB
|
|
This section holds a symbol table.
|
|
Typically,
|
|
.Sy SHT_SYMTAB
|
|
provides symbols for link editing, though it may also be used
|
|
for dynamic linking.
|
|
As a complete symbol table, it may contain
|
|
many symbols unnecessary for dynamic linking.
|
|
An object file can
|
|
also contain a
|
|
.Sy SHN_DYNSYM
|
|
section.
|
|
.It Dv SHT_STRTAB
|
|
This section holds a string table.
|
|
An object file may have multiple
|
|
string table sections.
|
|
.It Dv SHT_RELA
|
|
This section holds relocation entries with explicit addends, such
|
|
as type
|
|
.Sy Elf32_Rela
|
|
for the 32-bit class of object files.
|
|
An object may have multiple
|
|
relocation sections.
|
|
.It Dv SHT_HASH
|
|
This section holds a symbol hash table.
|
|
All object participating in
|
|
dynamic linking must contain a symbol hash table.
|
|
An object file may
|
|
have only one hash table.
|
|
.It Dv SHT_DYNAMIC
|
|
This section holds information for dynamic linking.
|
|
An object file may
|
|
have only one dynamic section.
|
|
.It Dv SHT_NOTE
|
|
This section holds information that marks the file in some way.
|
|
.It Dv SHT_NOBITS
|
|
A section of this type occupies no space in the file but otherwise
|
|
resembles
|
|
.Sy SHN_PROGBITS .
|
|
Although this section contains no bytes, the
|
|
.Sy sh_offset
|
|
member contains the conceptual file offset.
|
|
.It Dv SHT_REL
|
|
This section holds relocation offsets without explicit addends, such
|
|
as type
|
|
.Sy Elf32_Rel
|
|
for the 32-bit class of object files.
|
|
An object file may have multiple
|
|
relocation sections.
|
|
.It Dv SHT_SHLIB
|
|
This section is reserved but has unspecified semantics.
|
|
.It Dv SHT_DYNSYM
|
|
This section holds a minimal set of dynamic linking symbols.
|
|
An
|
|
object file can also contain a
|
|
.Sy SHN_SYMTAB
|
|
section.
|
|
.It Dv SHT_LOPROC
|
|
This value up to and including
|
|
.Sy SHT_HIPROC
|
|
are reserved for processor-specific semantics.
|
|
.It Dv SHT_HIPROC
|
|
This value down to and including
|
|
.Sy SHT_LOPROC
|
|
are reserved for processor-specific semantics.
|
|
.It Dv SHT_LOUSER
|
|
This value specifies the lower bound of the range of indices reserved for
|
|
application programs.
|
|
.It Dv SHT_HIUSER
|
|
This value specifies the upper bound of the range of indices reserved for
|
|
application programs.
|
|
Section types between
|
|
.Sy SHT_LOUSER
|
|
and
|
|
.Sy SHT_HIUSER
|
|
may be used by the application, without conflicting with current or future
|
|
system-defined section types.
|
|
.El
|
|
.Pp
|
|
.It Dv sh_flags
|
|
Sections support one-bit flags that describe miscellaneous attributes.
|
|
If a flag bit is set in
|
|
.Sy sh_flags ,
|
|
the attribute is
|
|
.Dq on
|
|
for the section.
|
|
Otherwise, the attribute is
|
|
.Dq off
|
|
or does not apply.
|
|
Undefined attributes are set to zero.
|
|
.Pp
|
|
.Bl -tag -width "SHF_EXECINSTR" -compact
|
|
.It Dv SHF_WRITE
|
|
This section contains data that should be writable during process
|
|
execution.
|
|
.It Dv SHF_ALLOC
|
|
The section occupies memory during process execution.
|
|
Some control
|
|
sections do not reside in the memory image of an object file.
|
|
This
|
|
attribute is off for those sections.
|
|
.It Dv SHF_EXECINSTR
|
|
The section contains executable machine instructions.
|
|
.It Dv SHF_MASKPROC
|
|
All bits included in this mask are reserved for processor-specific
|
|
semantics.
|
|
.El
|
|
.Pp
|
|
.It Dv sh_addr
|
|
If the section will appear in the memory image of a process, this member
|
|
holds the address at which the section's first byte should reside.
|
|
Otherwise, the member contains zero.
|
|
.It Dv sh_offset
|
|
This member's value holds the byte offset from the beginning of the file
|
|
to the first byte in the section.
|
|
One section type,
|
|
.Sy SHT_NOBITS ,
|
|
occupies no space in the file, and its
|
|
.Sy sh_offset
|
|
member locates the conceptual placement in the file.
|
|
.It Dv sh_size
|
|
This member holds the section's size in bytes.
|
|
Unless the section type
|
|
is
|
|
.Sy SHT_NOBITS ,
|
|
the section occupies
|
|
.Sy sh_size
|
|
bytes in the file.
|
|
A section of type
|
|
.Sy SHT_NOBITS
|
|
may have a non-zero size, but it occupies no space in the file.
|
|
.It Dv sh_link
|
|
This member holds a section header table index link, whose interpretation
|
|
depends on the section type.
|
|
.It Dv sh_info
|
|
This member holds extra information, whose interpretation depends on the
|
|
section type.
|
|
.It Dv sh_addralign
|
|
Some sections have address alignment constraints.
|
|
If a section holds a
|
|
doubleword, the system must ensure doubleword alignment for the entire
|
|
section.
|
|
That is, the value of
|
|
.Sy sh_addr
|
|
must be congruent to zero, modulo the value of
|
|
.Sy sh_addralign .
|
|
Only zero and positive integral powers of two are allowed.
|
|
Values of zero
|
|
or one mean the section has no alignment constraints.
|
|
.It Dv sh_entsize
|
|
Some sections hold a table of fixed-sized entries, such as a symbol table.
|
|
For such a section, this member gives the size in bytes for each entry.
|
|
This member contains zero if the section does not hold a table of
|
|
fixed-size entries.
|
|
.El
|
|
.Pp
|
|
Various sections hold program and control information:
|
|
.Bl -tag -width ".shstrtab" -compact
|
|
.It .bss
|
|
(Block Started by Symbol)
|
|
This section holds uninitialized data that contributes to the program's
|
|
memory image.
|
|
By definition, the system initializes the data with zeros
|
|
when the program begins to run.
|
|
This section is of type
|
|
.Sy SHT_NOBITS .
|
|
The attributes types are
|
|
.Sy SHF_ALLOC
|
|
and
|
|
.Sy SHF_WRITE .
|
|
.It .comment
|
|
This section holds version control information.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
No attribute types are used.
|
|
.It .data
|
|
This section holds initialized data that contribute to the program's
|
|
memory image.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attribute types are
|
|
.Sy SHF_ALLOC
|
|
and
|
|
.Sy SHF_WRITE .
|
|
.It .data1
|
|
This section holds initialized data that contribute to the program's
|
|
memory image.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attribute types are
|
|
.Sy SHF_ALLOC
|
|
and
|
|
.Sy SHF_WRITE .
|
|
.It .debug
|
|
This section holds information for symbolic debugging.
|
|
The contents
|
|
are unspecified.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
No attribute types are used.
|
|
.It .dynamic
|
|
This section holds dynamic linking information.
|
|
The section's attributes
|
|
will include the
|
|
.Sy SHF_ALLOC
|
|
bit.
|
|
Whether the
|
|
.Sy SHF_WRITE
|
|
bit is set is processor-specific.
|
|
This section is of type
|
|
.Sy SHT_DYNAMIC .
|
|
See the attributes above.
|
|
.It .dynstr
|
|
This section holds strings needed for dynamic linking, most commonly
|
|
the strings that represent the names associated with symbol table entries.
|
|
This section is of type
|
|
.Sy SHT_STRTAB .
|
|
The attribute type used is
|
|
.Sy SHF_ALLOC .
|
|
.It .dynsym
|
|
This section holds the dynamic linking symbol table.
|
|
This section is of type
|
|
.Sy SHT_DYNSYM .
|
|
The attribute used is
|
|
.Sy SHF_ALLOC .
|
|
.It .fini
|
|
This section holds executable instructions that contribute to the process
|
|
termination code.
|
|
When a program exits normally the system arranges to
|
|
execute the code in this section.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attributes used are
|
|
.Sy SHF_ALLOC
|
|
and
|
|
.Sy SHF_EXECINSTR .
|
|
.It .got
|
|
This section holds the global offset table.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attributes are processor-specific.
|
|
.It .hash
|
|
This section holds a symbol hash table.
|
|
This section is of type
|
|
.Sy SHT_HASH .
|
|
The attribute used is
|
|
.Sy SHF_ALLOC .
|
|
.It .init
|
|
This section holds executable instructions that contribute to the process
|
|
initialization code.
|
|
When a program starts to run the system arranges to
|
|
execute the code in this section before calling the main program entry point.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attributes used are
|
|
.Sy SHF_ALLOC
|
|
and
|
|
.Sy SHF_EXECINSTR .
|
|
.It .interp
|
|
This section holds the pathname of a program interpreter.
|
|
If the file has
|
|
a loadable segment that includes the section, the section's attributes will
|
|
include the
|
|
.Sy SHF_ALLOC
|
|
bit.
|
|
Otherwise, that bit will be off.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
.It .line
|
|
This section holds line number information for symbolic debugging, which
|
|
describes the correspondence between the program source and the machine code.
|
|
The contents are unspecified.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
No attribute types are used.
|
|
.It .note
|
|
This section holds information in the
|
|
.Dq Note Section
|
|
format described below.
|
|
This section is of type
|
|
.Sy SHT_NOTE .
|
|
No attribute types are used.
|
|
.It .plt
|
|
This section holds the procedure linkage table.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attributes are processor-specific.
|
|
.It .relNAME
|
|
This section holds relocation information as described below.
|
|
If the file
|
|
has a loadable segment that includes relocation, the section's attributes
|
|
will include the
|
|
.Sy SHF_ALLOC
|
|
bit.
|
|
Otherwise the bit will be off.
|
|
By convention,
|
|
.Dq NAME
|
|
is supplied by the section to which the relocations apply.
|
|
Thus a relocation
|
|
section for
|
|
.Sy .text
|
|
normally would have the name
|
|
.Sy .rel.text .
|
|
This section is of type
|
|
.Sy SHT_REL .
|
|
.It .relaNAME
|
|
This section holds relocation information as described below.
|
|
If the file
|
|
has a loadable segment that includes relocation, the section's attributes
|
|
will include the
|
|
.Sy SHF_ALLOC
|
|
bit.
|
|
Otherwise the bit will be off.
|
|
By convention,
|
|
.Dq NAME
|
|
is supplied by the section to which the relocations apply.
|
|
Thus a relocation
|
|
section for
|
|
.Sy .text
|
|
normally would have the name
|
|
.Sy .rela.text .
|
|
This section is of type
|
|
.Sy SHT_RELA .
|
|
.It .rodata
|
|
This section holds read-only data that typically contributes to a
|
|
non-writable segment in the process image.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attribute used is
|
|
.Sy SHF_ALLOC .
|
|
.It .rodata1
|
|
This section hold read-only data that typically contributes to a
|
|
non-writable segment in the process image.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attribute used is
|
|
.Sy SHF_ALLOC .
|
|
.It .shstrtab
|
|
This section holds section names.
|
|
This section is of type
|
|
.Sy SHT_STRTAB .
|
|
No attribute types are used.
|
|
.It .strtab
|
|
This section holds strings, most commonly the strings that represent the
|
|
names associated with symbol table entries.
|
|
If the file has a loadable
|
|
segment that includes the symbol string table, the section's attributes
|
|
will include the
|
|
.Sy SHF_ALLOC
|
|
bit.
|
|
Otherwise the bit will be off.
|
|
This section is of type
|
|
.Sy SHT_STRTAB .
|
|
.It .symtab
|
|
This section holds a symbol table.
|
|
If the file has a loadable segment
|
|
that includes the symbol table, the section's attributes will include
|
|
the
|
|
.Sy SHF_ALLOC
|
|
bit.
|
|
Otherwise the bit will be off.
|
|
This section is of type
|
|
.Sy SHT_SYMTAB .
|
|
.It .text
|
|
This section holds the
|
|
.Dq text ,
|
|
or executable instructions, of a program.
|
|
This section is of type
|
|
.Sy SHT_PROGBITS .
|
|
The attributes used are
|
|
.Sy SHF_ALLOC
|
|
and
|
|
.Sy SHF_EXECINSTR .
|
|
.It .jcr
|
|
This section holds information about Java classes that must
|
|
be registered.
|
|
.It .eh_frame
|
|
This section holds information used for C++ exception-handling.
|
|
.El
|
|
.Pp
|
|
String table sections hold null-terminated character sequences, commonly
|
|
called strings.
|
|
The object file uses these strings to represent symbol
|
|
and section names.
|
|
One references a string as an index into the string
|
|
table section.
|
|
The first byte, which is index zero, is defined to hold
|
|
a null character.
|
|
Similarly, a string table's last byte is defined to
|
|
hold a null character, ensuring null termination for all strings.
|
|
.Pp
|
|
An object file's symbol table holds information needed to locate and
|
|
relocate a program's symbolic definitions and references.
|
|
A symbol table
|
|
index is a subscript into this array.
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf32_Word st_name;
|
|
Elf32_Addr st_value;
|
|
Elf32_Word st_size;
|
|
unsigned char st_info;
|
|
unsigned char st_other;
|
|
Elf32_Half st_shndx;
|
|
} Elf32_Sym;
|
|
.Ed
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf64_Word st_name;
|
|
unsigned char st_info;
|
|
unsigned char st_other;
|
|
Elf64_Half st_shndx;
|
|
Elf64_Addr st_value;
|
|
Elf64_Xword st_size;
|
|
} Elf64_Sym;
|
|
.Ed
|
|
.Pp
|
|
.Bl -tag -width "st_value" -compact
|
|
.It Dv st_name
|
|
This member holds an index into the object file's symbol string table,
|
|
which holds character representations of the symbol names.
|
|
If the value
|
|
is non-zero, it represents a string table index that gives the symbol
|
|
name.
|
|
Otherwise, the symbol table has no name.
|
|
.It Dv st_value
|
|
This member gives the value of the associated symbol.
|
|
.It Dv st_size
|
|
Many symbols have associated sizes.
|
|
This member holds zero if the symbol
|
|
has no size or an unknown size.
|
|
.It Dv st_info
|
|
This member specifies the symbol's type and binding attributes:
|
|
.Pp
|
|
.Bl -tag -width "STT_SECTION" -compact
|
|
.It Dv STT_NOTYPE
|
|
The symbol's type is not defined.
|
|
.It Dv STT_OBJECT
|
|
The symbol is associated with a data object.
|
|
.It Dv STT_FUNC
|
|
The symbol is associated with a function or other executable code.
|
|
.It Dv STT_SECTION
|
|
The symbol is associated with a section.
|
|
Symbol table entries of
|
|
this type exist primarily for relocation and normally have
|
|
.Sy STB_LOCAL
|
|
bindings.
|
|
.It Dv STT_FILE
|
|
By convention the symbol's name gives the name of the source file
|
|
associated with the object file.
|
|
A file symbol has
|
|
.Sy STB_LOCAL
|
|
bindings, its section index is
|
|
.Sy SHN_ABS ,
|
|
and it precedes the other
|
|
.Sy STB_LOCAL
|
|
symbols of the file, if it is present.
|
|
.It Dv STT_LOPROC
|
|
This value up to and including
|
|
.Sy STT_HIPROC
|
|
are reserved for processor-specific semantics.
|
|
.It Dv STT_HIPROC
|
|
This value down to and including
|
|
.Sy STT_LOPROC
|
|
are reserved for processor-specific semantics.
|
|
.El
|
|
.Pp
|
|
.Bl -tag -width "STB_GLOBAL" -compact
|
|
.It Dv STB_LOCAL
|
|
Local symbols are not visible outside the object file containing their
|
|
definition.
|
|
Local symbols of the same name may exist in multiple file
|
|
without interfering with each other.
|
|
.It Dv STB_GLOBAL
|
|
Global symbols are visible to all object files being combined.
|
|
One file's
|
|
definition of a global symbol will satisfy another file's undefined
|
|
reference to the same symbol.
|
|
.It Dv STB_WEAK
|
|
Weak symbols resemble global symbols, but their definitions have lower
|
|
precedence.
|
|
.It Dv STB_LOPROC
|
|
This value up to and including
|
|
.Sy STB_HIPROC
|
|
are reserved for processor-specific semantics.
|
|
.It Dv STB_HIPROC
|
|
This value down to and including
|
|
.Sy STB_LOPROC
|
|
are reserved for processor-specific semantics.
|
|
.Pp
|
|
There are macros for packing and unpacking the binding and type fields:
|
|
.Pp
|
|
.Bl -tag -width "ELF32_ST_INFO(bind, type)" -compact
|
|
.It Xo
|
|
.Fn ELF32_ST_BIND info
|
|
.Xc
|
|
or
|
|
.Fn ELF64_ST_BIND info
|
|
extract a binding from an st_info value.
|
|
.It Xo
|
|
.Fn ELF64_ST_TYPE info
|
|
.Xc
|
|
or
|
|
.Fn ELF32_ST_TYPE info
|
|
extract a type from an st_info value.
|
|
.It Xo
|
|
.Fn ELF32_ST_INFO bind type
|
|
.Xc
|
|
or
|
|
.Fn ELF64_ST_INFO bind type
|
|
convert a binding and a type into an st_info value.
|
|
.El
|
|
.El
|
|
.Pp
|
|
.It Dv st_other
|
|
This member currently holds zero and has no defined meaning.
|
|
.It Dv st_shndx
|
|
Every symbol table entry is
|
|
.Dq defined
|
|
in relation to some section.
|
|
This member holds the relevant section
|
|
header table index.
|
|
.El
|
|
.Pp
|
|
Relocation is the process of connecting symbolic references with
|
|
symbolic definitions.
|
|
Relocatable files must have information that
|
|
describes how to modify their section contents, thus allowing executable
|
|
and shared object files to hold the right information for a process'
|
|
program image.
|
|
Relocation entries are these data.
|
|
.Pp
|
|
Relocation structures that do not need an addend:
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf32_Addr r_offset;
|
|
Elf32_Word r_info;
|
|
} Elf32_Rel;
|
|
.Ed
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf64_Addr r_offset;
|
|
Elf64_Xword r_info;
|
|
} Elf64_Rel;
|
|
.Ed
|
|
.Pp
|
|
Relocation structures that need an addend:
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf32_Addr r_offset;
|
|
Elf32_Word r_info;
|
|
Elf32_Sword r_addend;
|
|
} Elf32_Rela;
|
|
.Ed
|
|
.Bd -literal -offset indent
|
|
typedef struct {
|
|
Elf64_Addr r_offset;
|
|
Elf64_Xword r_info;
|
|
Elf64_Sxword r_addend;
|
|
} Elf64_Rela;
|
|
.Ed
|
|
.Pp
|
|
.Bl -tag -width "r_offset" -compact
|
|
.It Dv r_offset
|
|
This member gives the location at which to apply the relocation action.
|
|
For a relocatable file, the value is the byte offset from the beginning
|
|
of the section to the storage unit affected by the relocation.
|
|
For an
|
|
executable file or shared object, the value is the virtual address of
|
|
the storage unit affected by the relocation.
|
|
.It Dv r_info
|
|
This member gives both the symbol table index with respect to which the
|
|
relocation must be made and the type of relocation to apply.
|
|
Relocation
|
|
types are processor-specific.
|
|
When the text refers to a relocation
|
|
entry's relocation type or symbol table index, it means the result of
|
|
applying
|
|
.Sy ELF_[32|64]_R_TYPE
|
|
or
|
|
.Sy ELF[32|64]_R_SYM ,
|
|
respectively to the entry's
|
|
.Sy r_info
|
|
member.
|
|
.It Dv r_addend
|
|
This member specifies a constant addend used to compute the value to be
|
|
stored into the relocatable field.
|
|
.El
|
|
.Sh SEE ALSO
|
|
.Xr as 1 ,
|
|
.Xr gdb 1 ,
|
|
.Xr ld 1 ,
|
|
.Xr objdump 1 ,
|
|
.Xr execve 2 ,
|
|
.Xr ar 5 ,
|
|
.Xr core 5
|
|
.Rs
|
|
.%A Hewlett Packard
|
|
.%B Elf-64 Object File Format
|
|
.Re
|
|
.Rs
|
|
.%A Santa Cruz Operation
|
|
.%B System V Application Binary Interface
|
|
.Re
|
|
.Rs
|
|
.%A Unix System Laboratories
|
|
.%T Object Files
|
|
.%B "Executable and Linking Format (ELF)"
|
|
.Re
|
|
.Sh HISTORY
|
|
The ELF header files made their appearance in
|
|
.Fx 2.2.6 .
|
|
ELF in itself first appeared in
|
|
.At V .
|
|
The ELF format is an adopted standard.
|
|
.Sh AUTHORS
|
|
This manual page was written by
|
|
.An Jeroen Ruigrok van der Werven
|
|
.Aq asmodai@FreeBSD.org
|
|
with inspiration from BSDi's
|
|
.Bsx
|
|
.Xr elf 5
|
|
manpage.
|