1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-08 13:28:05 +00:00
freebsd/contrib/gcc/config/svr4.h
1999-10-16 06:09:09 +00:00

927 lines
33 KiB
C

/* Operating system specific defines to be used when targeting GCC for some
generic System V Release 4 system.
Copyright (C) 1991, 94-98, 1999 Free Software Foundation, Inc.
Contributed by Ron Guilmette (rfg@monkeys.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
To use this file, make up a file with a name like:
?????svr4.h
where ????? is replaced by the name of the basic hardware that you
are targeting for. Then, in the file ?????svr4.h, put something
like:
#include "?????.h"
#include "svr4.h"
followed by any really system-specific defines (or overrides of
defines) which you find that you need. For example, CPP_PREDEFINES
is defined here with only the defined -Dunix and -DSVR4. You should
probably override that in your target-specific ?????svr4.h file
with a set of defines that includes these, but also contains an
appropriate define for the type of hardware that you are targeting.
*/
/* Define a symbol indicating that we are using svr4.h. */
#define USING_SVR4_H
/* For the sake of libgcc2.c, indicate target supports atexit. */
#define HAVE_ATEXIT
/* Cpp, assembler, linker, library, and startfile spec's. */
/* This defines which switch letters take arguments. On svr4, most of
the normal cases (defined in gcc.c) apply, and we also have -h* and
-z* options (for the linker). Note however that there is no such
thing as a -T option for svr4. */
#define SWITCH_TAKES_ARG(CHAR) \
(DEFAULT_SWITCH_TAKES_ARG (CHAR) \
|| (CHAR) == 'h' \
|| (CHAR) == 'x' \
|| (CHAR) == 'z')
/* This defines which multi-letter switches take arguments. On svr4,
there are no such switches except those implemented by GCC itself. */
#define WORD_SWITCH_TAKES_ARG(STR) \
(DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
&& strcmp (STR, "Tdata") && strcmp (STR, "Ttext") \
&& strcmp (STR, "Tbss"))
/* You should redefine CPP_PREDEFINES in any file which includes this one.
The definition should be appropriate for the type of target system
involved, and it should include any -A (assertion) options which are
appropriate for the given target system. */
#undef CPP_PREDEFINES
/* Provide an ASM_SPEC appropriate for svr4. Here we try to support as
many of the specialized svr4 assembler options as seems reasonable,
given that there are certain options which we can't (or shouldn't)
support directly due to the fact that they conflict with other options
for other svr4 tools (e.g. ld) or with other options for GCC itself.
For example, we don't support the -o (output file) or -R (remove
input file) options because GCC already handles these things. We
also don't support the -m (run m4) option for the assembler because
that conflicts with the -m (produce load map) option of the svr4
linker. We do however allow passing arbitrary options to the svr4
assembler via the -Wa, option.
Note that gcc doesn't allow a space to follow -Y in a -Ym,* or -Yd,*
option.
*/
#undef ASM_SPEC
#define ASM_SPEC \
"%{v:-V} %{Qy:} %{!Qn:-Qy} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*}"
/* svr4 assemblers need the `-' (indicating input from stdin) to come after
the -o option (and its argument) for some reason. If we try to put it
before the -o option, the assembler will try to read the file named as
the output file in the -o option as an input file (after it has already
written some stuff to it) and the binary stuff contained therein will
cause totally confuse the assembler, resulting in many spurious error
messages. */
#undef ASM_FINAL_SPEC
#define ASM_FINAL_SPEC "%|"
/* Under svr4, the normal location of the `ld' and `as' programs is the
/usr/ccs/bin directory. */
#ifndef CROSS_COMPILE
#undef MD_EXEC_PREFIX
#define MD_EXEC_PREFIX "/usr/ccs/bin/"
#endif
/* Under svr4, the normal location of the various *crt*.o files is the
/usr/ccs/lib directory. */
#ifndef CROSS_COMPILE
#undef MD_STARTFILE_PREFIX
#define MD_STARTFILE_PREFIX "/usr/ccs/lib/"
#endif
/* Provide a LIB_SPEC appropriate for svr4. Here we tack on the default
standard C library (unless we are building a shared library). */
#undef LIB_SPEC
#define LIB_SPEC "%{!shared:%{!symbolic:-lc}}"
/* Provide an ENDFILE_SPEC appropriate for svr4. Here we tack on our own
magical crtend.o file (see crtstuff.c) which provides part of the
support for getting C++ file-scope static object constructed before
entering `main', followed by the normal svr3/svr4 "finalizer" file,
which is either `gcrtn.o' or `crtn.o'. */
#undef ENDFILE_SPEC
#define ENDFILE_SPEC "crtend.o%s %{pg:gcrtn.o%s}%{!pg:crtn.o%s}"
/* Provide a LINK_SPEC appropriate for svr4. Here we provide support
for the special GCC options -static, -shared, and -symbolic which
allow us to link things in one of these three modes by applying the
appropriate combinations of options at link-time. We also provide
support here for as many of the other svr4 linker options as seems
reasonable, given that some of them conflict with options for other
svr4 tools (e.g. the assembler). In particular, we do support the
-z*, -V, -b, -t, -Qy, -Qn, and -YP* options here, and the -e*,
-l*, -o*, -r, -s, -u*, and -L* options are directly supported
by gcc.c itself. We don't directly support the -m (generate load
map) option because that conflicts with the -m (run m4) option of
the svr4 assembler. We also don't directly support the svr4 linker's
-I* or -M* options because these conflict with existing GCC options.
We do however allow passing arbitrary options to the svr4 linker
via the -Wl, option. We don't support the svr4 linker's -a option
at all because it is totally useless and because it conflicts with
GCC's own -a option.
Note that gcc doesn't allow a space to follow -Y in a -YP,* option.
When the -G link option is used (-shared and -symbolic) a final link is
not being done. */
#undef LINK_SPEC
#ifdef CROSS_COMPILE
#define LINK_SPEC "%{h*} %{v:-V} \
%{b} %{Wl,*:%*} \
%{static:-dn -Bstatic} \
%{shared:-G -dy -z text} \
%{symbolic:-Bsymbolic -G -dy -z text} \
%{G:-G} \
%{YP,*} \
%{Qy:} %{!Qn:-Qy}"
#else
#define LINK_SPEC "%{h*} %{v:-V} \
%{b} %{Wl,*:%*} \
%{static:-dn -Bstatic} \
%{shared:-G -dy -z text} \
%{symbolic:-Bsymbolic -G -dy -z text} \
%{G:-G} \
%{YP,*} \
%{!YP,*:%{p:-Y P,/usr/ccs/lib/libp:/usr/lib/libp:/usr/ccs/lib:/usr/lib} \
%{!p:-Y P,/usr/ccs/lib:/usr/lib}} \
%{Qy:} %{!Qn:-Qy}"
#endif
/* Gcc automatically adds in one of the files /usr/ccs/lib/values-Xc.o,
/usr/ccs/lib/values-Xa.o, or /usr/ccs/lib/values-Xt.o for each final
link step (depending upon the other gcc options selected, such as
-traditional and -ansi). These files each contain one (initialized)
copy of a special variable called `_lib_version'. Each one of these
files has `_lib_version' initialized to a different (enum) value.
The SVR4 library routines query the value of `_lib_version' at run
to decide how they should behave. Specifically, they decide (based
upon the value of `_lib_version') if they will act in a strictly ANSI
conforming manner or not.
*/
#undef STARTFILE_SPEC
#define STARTFILE_SPEC "%{!shared: \
%{!symbolic: \
%{pg:gcrt1.o%s}%{!pg:%{p:mcrt1.o%s}%{!p:crt1.o%s}}}}\
%{pg:gcrti.o%s}%{!pg:crti.o%s} \
%{ansi:values-Xc.o%s} \
%{!ansi: \
%{traditional:values-Xt.o%s} \
%{!traditional:values-Xa.o%s}} \
crtbegin.o%s"
/* Attach a special .ident directive to the end of the file to identify
the version of GCC which compiled this code. The format of the
.ident string is patterned after the ones produced by native svr4
C compilers. */
#define IDENT_ASM_OP ".ident"
#define ASM_FILE_END(FILE) \
do { \
if (!flag_no_ident) \
fprintf ((FILE), "\t%s\t\"GCC: (GNU) %s\"\n", \
IDENT_ASM_OP, version_string); \
} while (0)
/* Allow #sccs in preprocessor. */
#define SCCS_DIRECTIVE
/* Output #ident as a .ident. */
#define ASM_OUTPUT_IDENT(FILE, NAME) \
fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
/* Use periods rather than dollar signs in special g++ assembler names. */
#define NO_DOLLAR_IN_LABEL
/* Writing `int' for a bitfield forces int alignment for the structure. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Implicit library calls should use memcpy, not bcopy, etc. */
#define TARGET_MEM_FUNCTIONS
/* Handle #pragma weak and #pragma pack. */
#define HANDLE_SYSV_PRAGMA
/* System V Release 4 uses DWARF debugging info. */
#define DWARF_DEBUGGING_INFO
/* All ELF targets can support DWARF-2. */
#ifndef DWARF2_DEBUGGING_INFO
#define DWARF2_DEBUGGING_INFO
#endif
/* The numbers used to denote specific machine registers in the System V
Release 4 DWARF debugging information are quite likely to be totally
different from the numbers used in BSD stabs debugging information
for the same kind of target machine. Thus, we undefine the macro
DBX_REGISTER_NUMBER here as an extra inducement to get people to
provide proper machine-specific definitions of DBX_REGISTER_NUMBER
(which is also used to provide DWARF registers numbers in dwarfout.c)
in their tm.h files which include this file. */
#undef DBX_REGISTER_NUMBER
/* Use DWARF debugging info by default. */
#ifndef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DWARF_DEBUG
#endif
/* But allow STABS to be supoorted as well. */
#include "dbxelf.h"
/* Define the actual types of some ANSI-mandated types. (These
definitions should work for most SVR4 systems). */
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
#undef WCHAR_TYPE
#define WCHAR_TYPE "long int"
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE BITS_PER_WORD
/* This causes trouble, because it requires the host machine
to support ANSI C. */
/* #define MULTIBYTE_CHARS */
#undef ASM_BYTE_OP
#define ASM_BYTE_OP ".byte"
#undef SET_ASM_OP
#define SET_ASM_OP ".set"
/* This is how to begin an assembly language file. Most svr4 assemblers want
at least a .file directive to come first, and some want to see a .version
directive come right after that. Here we just establish a default
which generates only the .file directive. If you need a .version
directive for any specific target, you should override this definition
in the target-specific file which includes this one. */
#undef ASM_FILE_START
#define ASM_FILE_START(FILE) \
output_file_directive ((FILE), main_input_filename)
/* This is how to allocate empty space in some section. The .zero
pseudo-op is used for this on most svr4 assemblers. */
#define SKIP_ASM_OP ".zero"
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t%s\t%u\n", SKIP_ASM_OP, (SIZE))
/* The prefix to add to user-visible assembler symbols.
For System V Release 4 the convention is *not* to prepend a leading
underscore onto user-level symbol names. */
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
For most svr4 systems, the convention is that any symbol which begins
with a period is not put into the linker symbol table by the assembler. */
#undef ASM_OUTPUT_INTERNAL_LABEL
#define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
do { \
fprintf (FILE, ".%s%d:\n", PREFIX, NUM); \
} while (0)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'.
For most svr4 systems, the convention is that any symbol which begins
with a period is not put into the linker symbol table by the assembler. */
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
do { \
sprintf (LABEL, "*.%s%d", PREFIX, (unsigned) (NUM)); \
} while (0)
/* Output the label which precedes a jumptable. Note that for all svr4
systems where we actually generate jumptables (which is to say every
svr4 target except i386, where we use casesi instead) we put the jump-
tables into the .rodata section and since other stuff could have been
put into the .rodata section prior to any given jumptable, we have to
make sure that the location counter for the .rodata section gets pro-
perly re-aligned prior to the actual beginning of the jump table. */
#define ALIGN_ASM_OP ".align"
#ifndef ASM_OUTPUT_BEFORE_CASE_LABEL
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
ASM_OUTPUT_ALIGN ((FILE), 2);
#endif
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,JUMPTABLE) \
do { \
ASM_OUTPUT_BEFORE_CASE_LABEL (FILE, PREFIX, NUM, JUMPTABLE) \
ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
} while (0)
/* The standard SVR4 assembler seems to require that certain builtin
library routines (e.g. .udiv) be explicitly declared as .globl
in each assembly file where they are referenced. */
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
ASM_GLOBALIZE_LABEL (FILE, XSTR (FUN, 0))
/* This says how to output assembler code to declare an
uninitialized external linkage data object. Under SVR4,
the linker seems to want the alignment of data objects
to depend on their types. We do exactly that here. */
#define COMMON_ASM_OP ".comm"
#undef ASM_OUTPUT_ALIGNED_COMMON
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
do { \
fprintf ((FILE), "\t%s\t", COMMON_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN) / BITS_PER_UNIT); \
} while (0)
/* This says how to output assembler code to declare an
uninitialized internal linkage data object. Under SVR4,
the linker seems to want the alignment of data objects
to depend on their types. We do exactly that here. */
#define LOCAL_ASM_OP ".local"
#undef ASM_OUTPUT_ALIGNED_LOCAL
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
do { \
fprintf ((FILE), "\t%s\t", LOCAL_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), "\n"); \
ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN); \
} while (0)
/* Biggest alignment supported by the object file format of this
machine. Use this macro to limit the alignment which can be
specified using the `__attribute__ ((aligned (N)))' construct. If
not defined, the default value is `BIGGEST_ALIGNMENT'. */
#define MAX_OFILE_ALIGNMENT (32768*8)
/* This is the pseudo-op used to generate a 32-bit word of data with a
specific value in some section. This is the same for all known svr4
assemblers. */
#define INT_ASM_OP ".long"
/* This is the pseudo-op used to generate a contiguous sequence of byte
values from a double-quoted string WITHOUT HAVING A TERMINATING NUL
AUTOMATICALLY APPENDED. This is the same for most svr4 assemblers. */
#undef ASCII_DATA_ASM_OP
#define ASCII_DATA_ASM_OP ".ascii"
/* Support const sections and the ctors and dtors sections for g++.
Note that there appears to be two different ways to support const
sections at the moment. You can either #define the symbol
READONLY_DATA_SECTION (giving it some code which switches to the
readonly data section) or else you can #define the symbols
EXTRA_SECTIONS, EXTRA_SECTION_FUNCTIONS, SELECT_SECTION, and
SELECT_RTX_SECTION. We do both here just to be on the safe side. */
#define USE_CONST_SECTION 1
#define CONST_SECTION_ASM_OP ".section\t.rodata"
/* Define the pseudo-ops used to switch to the .ctors and .dtors sections.
Note that we want to give these sections the SHF_WRITE attribute
because these sections will actually contain data (i.e. tables of
addresses of functions in the current root executable or shared library
file) and, in the case of a shared library, the relocatable addresses
will have to be properly resolved/relocated (and then written into) by
the dynamic linker when it actually attaches the given shared library
to the executing process. (Note that on SVR4, you may wish to use the
`-z text' option to the ELF linker, when building a shared library, as
an additional check that you are doing everything right. But if you do
use the `-z text' option when building a shared library, you will get
errors unless the .ctors and .dtors sections are marked as writable
via the SHF_WRITE attribute.) */
#define CTORS_SECTION_ASM_OP ".section\t.ctors,\"aw\""
#define DTORS_SECTION_ASM_OP ".section\t.dtors,\"aw\""
/* On svr4, we *do* have support for the .init and .fini sections, and we
can put stuff in there to be executed before and after `main'. We let
crtstuff.c and other files know this by defining the following symbols.
The definitions say how to change sections to the .init and .fini
sections. This is the same for all known svr4 assemblers. */
#define INIT_SECTION_ASM_OP ".section\t.init"
#define FINI_SECTION_ASM_OP ".section\t.fini"
/* A default list of other sections which we might be "in" at any given
time. For targets that use additional sections (e.g. .tdesc) you
should override this definition in the target-specific file which
includes this file. */
#undef EXTRA_SECTIONS
#define EXTRA_SECTIONS in_const, in_ctors, in_dtors
/* A default list of extra section function definitions. For targets
that use additional sections (e.g. .tdesc) you should override this
definition in the target-specific file which includes this file. */
#undef EXTRA_SECTION_FUNCTIONS
#define EXTRA_SECTION_FUNCTIONS \
CONST_SECTION_FUNCTION \
CTORS_SECTION_FUNCTION \
DTORS_SECTION_FUNCTION
#define READONLY_DATA_SECTION() const_section ()
extern void text_section ();
#define CONST_SECTION_FUNCTION \
void \
const_section () \
{ \
if (!USE_CONST_SECTION) \
text_section(); \
else if (in_section != in_const) \
{ \
fprintf (asm_out_file, "%s\n", CONST_SECTION_ASM_OP); \
in_section = in_const; \
} \
}
#define CTORS_SECTION_FUNCTION \
void \
ctors_section () \
{ \
if (in_section != in_ctors) \
{ \
fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
in_section = in_ctors; \
} \
}
#define DTORS_SECTION_FUNCTION \
void \
dtors_section () \
{ \
if (in_section != in_dtors) \
{ \
fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
in_section = in_dtors; \
} \
}
/* Switch into a generic section.
We make the section read-only and executable for a function decl,
read-only for a const data decl, and writable for a non-const data decl.
If the section has already been defined, we must not
emit the attributes here. The SVR4 assembler does not
recognize section redefinitions.
If DECL is NULL, no attributes are emitted. */
#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \
do { \
static struct section_info \
{ \
struct section_info *next; \
char *name; \
enum sect_enum {SECT_RW, SECT_RO, SECT_EXEC} type; \
} *sections; \
struct section_info *s; \
char *mode; \
enum sect_enum type; \
\
for (s = sections; s; s = s->next) \
if (!strcmp (NAME, s->name)) \
break; \
\
if (DECL && TREE_CODE (DECL) == FUNCTION_DECL) \
type = SECT_EXEC, mode = "ax"; \
else if (DECL && DECL_READONLY_SECTION (DECL, RELOC)) \
type = SECT_RO, mode = "a"; \
else \
type = SECT_RW, mode = "aw"; \
\
if (s == 0) \
{ \
s = (struct section_info *) xmalloc (sizeof (struct section_info)); \
s->name = xmalloc ((strlen (NAME) + 1) * sizeof (*NAME)); \
strcpy (s->name, NAME); \
s->type = type; \
s->next = sections; \
sections = s; \
fprintf (FILE, ".section\t%s,\"%s\",@progbits\n", NAME, mode); \
} \
else \
{ \
if (DECL && s->type != type) \
error_with_decl (DECL, "%s causes a section type conflict"); \
\
fprintf (FILE, ".section\t%s\n", NAME); \
} \
} while (0)
#define MAKE_DECL_ONE_ONLY(DECL) (DECL_WEAK (DECL) = 1)
#define UNIQUE_SECTION_P(DECL) (DECL_ONE_ONLY (DECL))
#define UNIQUE_SECTION(DECL,RELOC) \
do { \
int len; \
char *name, *string, *prefix; \
\
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (DECL)); \
\
if (! DECL_ONE_ONLY (DECL)) \
{ \
prefix = "."; \
if (TREE_CODE (DECL) == FUNCTION_DECL) \
prefix = ".text."; \
else if (DECL_READONLY_SECTION (DECL, RELOC)) \
prefix = ".rodata."; \
else \
prefix = ".data."; \
} \
else if (TREE_CODE (DECL) == FUNCTION_DECL) \
prefix = ".gnu.linkonce.t."; \
else if (DECL_READONLY_SECTION (DECL, RELOC)) \
prefix = ".gnu.linkonce.r."; \
else \
prefix = ".gnu.linkonce.d."; \
\
len = strlen (name) + strlen (prefix); \
string = alloca (len + 1); \
sprintf (string, "%s%s", prefix, name); \
\
DECL_SECTION_NAME (DECL) = build_string (len, string); \
} while (0)
/* A C statement (sans semicolon) to output an element in the table of
global constructors. */
#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
do { \
ctors_section (); \
fprintf (FILE, "\t%s\t ", INT_ASM_OP); \
assemble_name (FILE, NAME); \
fprintf (FILE, "\n"); \
} while (0)
/* A C statement (sans semicolon) to output an element in the table of
global destructors. */
#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
do { \
dtors_section (); \
fprintf (FILE, "\t%s\t ", INT_ASM_OP); \
assemble_name (FILE, NAME); \
fprintf (FILE, "\n"); \
} while (0)
/* A C statement or statements to switch to the appropriate
section for output of DECL. DECL is either a `VAR_DECL' node
or a constant of some sort. RELOC indicates whether forming
the initial value of DECL requires link-time relocations. */
#define SELECT_SECTION(DECL,RELOC) \
{ \
if (flag_pic && RELOC) \
data_section (); \
else if (TREE_CODE (DECL) == STRING_CST) \
{ \
if (! flag_writable_strings) \
const_section (); \
else \
data_section (); \
} \
else if (TREE_CODE (DECL) == VAR_DECL) \
{ \
if (! DECL_READONLY_SECTION (DECL, RELOC)) \
data_section (); \
else \
const_section (); \
} \
else \
const_section (); \
}
/* A C statement or statements to switch to the appropriate
section for output of RTX in mode MODE. RTX is some kind
of constant in RTL. The argument MODE is redundant except
in the case of a `const_int' rtx. Currently, these always
go into the const section. */
#undef SELECT_RTX_SECTION
#define SELECT_RTX_SECTION(MODE,RTX) const_section()
/* Define the strings used for the special svr4 .type and .size directives.
These strings generally do not vary from one system running svr4 to
another, but if a given system (e.g. m88k running svr) needs to use
different pseudo-op names for these, they may be overridden in the
file which includes this one. */
#define TYPE_ASM_OP ".type"
#define SIZE_ASM_OP ".size"
/* This is how we tell the assembler that a symbol is weak. */
#define ASM_WEAKEN_LABEL(FILE,NAME) \
do { fputs ("\t.weak\t", FILE); assemble_name (FILE, NAME); \
fputc ('\n', FILE); } while (0)
/* The following macro defines the format used to output the second
operand of the .type assembler directive. Different svr4 assemblers
expect various different forms for this operand. The one given here
is just a default. You may need to override it in your machine-
specific tm.h file (depending upon the particulars of your assembler). */
#define TYPE_OPERAND_FMT "@%s"
/* Write the extra assembler code needed to declare a function's result.
Most svr4 assemblers don't require any special declaration of the
result value, but there are exceptions. */
#ifndef ASM_DECLARE_RESULT
#define ASM_DECLARE_RESULT(FILE, RESULT)
#endif
/* These macros generate the special .type and .size directives which
are used to set the corresponding fields of the linker symbol table
entries in an ELF object file under SVR4. These macros also output
the starting labels for the relevant functions/objects. */
/* Write the extra assembler code needed to declare a function properly.
Some svr4 assemblers need to also have something extra said about the
function's return value. We allow for that here. */
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
do { \
fprintf (FILE, "\t%s\t ", TYPE_ASM_OP); \
assemble_name (FILE, NAME); \
putc (',', FILE); \
fprintf (FILE, TYPE_OPERAND_FMT, "function"); \
putc ('\n', FILE); \
ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
ASM_OUTPUT_LABEL(FILE, NAME); \
} while (0)
/* Write the extra assembler code needed to declare an object properly. */
#define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL) \
do { \
fprintf (FILE, "\t%s\t ", TYPE_ASM_OP); \
assemble_name (FILE, NAME); \
putc (',', FILE); \
fprintf (FILE, TYPE_OPERAND_FMT, "object"); \
putc ('\n', FILE); \
size_directive_output = 0; \
if (!flag_inhibit_size_directive && DECL_SIZE (DECL)) \
{ \
size_directive_output = 1; \
fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
assemble_name (FILE, NAME); \
putc (',', FILE); \
fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, \
int_size_in_bytes (TREE_TYPE (DECL))); \
fputc ('\n', FILE); \
} \
ASM_OUTPUT_LABEL(FILE, NAME); \
} while (0)
/* Output the size directive for a decl in rest_of_decl_compilation
in the case where we did not do so before the initializer.
Once we find the error_mark_node, we know that the value of
size_directive_output was set
by ASM_DECLARE_OBJECT_NAME when it was run for the same decl. */
#define ASM_FINISH_DECLARE_OBJECT(FILE, DECL, TOP_LEVEL, AT_END) \
do { \
char *name = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
if (!flag_inhibit_size_directive && DECL_SIZE (DECL) \
&& ! AT_END && TOP_LEVEL \
&& DECL_INITIAL (DECL) == error_mark_node \
&& !size_directive_output) \
{ \
size_directive_output = 1; \
fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
assemble_name (FILE, name); \
putc (',', FILE); \
fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, \
int_size_in_bytes (TREE_TYPE (DECL))); \
fputc ('\n', FILE); \
} \
} while (0)
/* This is how to declare the size of a function. */
#define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
do { \
if (!flag_inhibit_size_directive) \
{ \
char label[256]; \
static int labelno; \
labelno++; \
ASM_GENERATE_INTERNAL_LABEL (label, "Lfe", labelno); \
ASM_OUTPUT_INTERNAL_LABEL (FILE, "Lfe", labelno); \
fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
assemble_name (FILE, (FNAME)); \
fprintf (FILE, ","); \
assemble_name (FILE, label); \
fprintf (FILE, "-"); \
assemble_name (FILE, (FNAME)); \
putc ('\n', FILE); \
} \
} while (0)
/* A table of bytes codes used by the ASM_OUTPUT_ASCII and
ASM_OUTPUT_LIMITED_STRING macros. Each byte in the table
corresponds to a particular byte value [0..255]. For any
given byte value, if the value in the corresponding table
position is zero, the given character can be output directly.
If the table value is 1, the byte must be output as a \ooo
octal escape. If the tables value is anything else, then the
byte value should be output as a \ followed by the value
in the table. Note that we can use standard UN*X escape
sequences for many control characters, but we don't use
\a to represent BEL because some svr4 assemblers (e.g. on
the i386) don't know about that. Also, we don't use \v
since some versions of gas, such as 2.2 did not accept it. */
#define ESCAPES \
"\1\1\1\1\1\1\1\1btn\1fr\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\0\0\"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\\\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1"
/* Some svr4 assemblers have a limit on the number of characters which
can appear in the operand of a .string directive. If your assembler
has such a limitation, you should define STRING_LIMIT to reflect that
limit. Note that at least some svr4 assemblers have a limit on the
actual number of bytes in the double-quoted string, and that they
count each character in an escape sequence as one byte. Thus, an
escape sequence like \377 would count as four bytes.
If your target assembler doesn't support the .string directive, you
should define this to zero.
*/
#define STRING_LIMIT ((unsigned) 256)
#define STRING_ASM_OP ".string"
/* The routine used to output NUL terminated strings. We use a special
version of this for most svr4 targets because doing so makes the
generated assembly code more compact (and thus faster to assemble)
as well as more readable, especially for targets like the i386
(where the only alternative is to output character sequences as
comma separated lists of numbers). */
#define ASM_OUTPUT_LIMITED_STRING(FILE, STR) \
do \
{ \
register unsigned char *_limited_str = (unsigned char *) (STR); \
register unsigned ch; \
fprintf ((FILE), "\t%s\t\"", STRING_ASM_OP); \
for (; (ch = *_limited_str); _limited_str++) \
{ \
register int escape; \
switch (escape = ESCAPES[ch]) \
{ \
case 0: \
putc (ch, (FILE)); \
break; \
case 1: \
fprintf ((FILE), "\\%03o", ch); \
break; \
default: \
putc ('\\', (FILE)); \
putc (escape, (FILE)); \
break; \
} \
} \
fprintf ((FILE), "\"\n"); \
} \
while (0)
/* The routine used to output sequences of byte values. We use a special
version of this for most svr4 targets because doing so makes the
generated assembly code more compact (and thus faster to assemble)
as well as more readable. Note that if we find subparts of the
character sequence which end with NUL (and which are shorter than
STRING_LIMIT) we output those using ASM_OUTPUT_LIMITED_STRING. */
#undef ASM_OUTPUT_ASCII
#define ASM_OUTPUT_ASCII(FILE, STR, LENGTH) \
do \
{ \
register unsigned char *_ascii_bytes = (unsigned char *) (STR); \
register unsigned char *limit = _ascii_bytes + (LENGTH); \
register unsigned bytes_in_chunk = 0; \
for (; _ascii_bytes < limit; _ascii_bytes++) \
{ \
register unsigned char *p; \
if (bytes_in_chunk >= 60) \
{ \
fprintf ((FILE), "\"\n"); \
bytes_in_chunk = 0; \
} \
for (p = _ascii_bytes; p < limit && *p != '\0'; p++) \
continue; \
if (p < limit && (p - _ascii_bytes) <= (long)STRING_LIMIT) \
{ \
if (bytes_in_chunk > 0) \
{ \
fprintf ((FILE), "\"\n"); \
bytes_in_chunk = 0; \
} \
ASM_OUTPUT_LIMITED_STRING ((FILE), _ascii_bytes); \
_ascii_bytes = p; \
} \
else \
{ \
register int escape; \
register unsigned ch; \
if (bytes_in_chunk == 0) \
fprintf ((FILE), "\t%s\t\"", ASCII_DATA_ASM_OP); \
switch (escape = ESCAPES[ch = *_ascii_bytes]) \
{ \
case 0: \
putc (ch, (FILE)); \
bytes_in_chunk++; \
break; \
case 1: \
fprintf ((FILE), "\\%03o", ch); \
bytes_in_chunk += 4; \
break; \
default: \
putc ('\\', (FILE)); \
putc (escape, (FILE)); \
bytes_in_chunk += 2; \
break; \
} \
} \
} \
if (bytes_in_chunk > 0) \
fprintf ((FILE), "\"\n"); \
} \
while (0)
/* All SVR4 targets use the ELF object file format. */
#define OBJECT_FORMAT_ELF