mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-14 10:09:48 +00:00
950cc1f44f
Summary: Hide more netstack by making the BPF_TAP macros real functions in the netstack. "struct ifnet" is used in the header instead of "if_t" to keep header pollution down. Sponsored by: Juniper Networks, Inc. Differential Revision: https://reviews.freebsd.org/D38103
1501 lines
38 KiB
C
1501 lines
38 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_netgraph.h"
|
|
#include "opt_mbuf_profiling.h"
|
|
#include "opt_rss.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/devctl.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/msan.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/random.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/uuid.h>
|
|
|
|
#include <net/ieee_oui.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_private.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/netisr.h>
|
|
#include <net/route.h>
|
|
#include <net/if_llc.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_bridgevar.h>
|
|
#include <net/if_vlan_var.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <net/pfil.h>
|
|
#include <net/rss_config.h>
|
|
#include <net/vnet.h>
|
|
|
|
#include <netpfil/pf/pf_mtag.h>
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip_carp.h>
|
|
#include <netinet/ip_var.h>
|
|
#endif
|
|
#ifdef INET6
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <crypto/sha1.h>
|
|
|
|
#ifdef CTASSERT
|
|
CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
|
|
CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
|
|
#endif
|
|
|
|
VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */
|
|
|
|
/* netgraph node hooks for ng_ether(4) */
|
|
void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
|
|
void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
|
|
int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
|
|
void (*ng_ether_attach_p)(struct ifnet *ifp);
|
|
void (*ng_ether_detach_p)(struct ifnet *ifp);
|
|
|
|
void (*vlan_input_p)(struct ifnet *, struct mbuf *);
|
|
|
|
/* if_bridge(4) support */
|
|
void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
|
|
|
|
/* if_lagg(4) support */
|
|
struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
|
|
|
|
static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
|
|
static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
|
|
struct sockaddr *);
|
|
static int ether_requestencap(struct ifnet *, struct if_encap_req *);
|
|
|
|
#define senderr(e) do { error = (e); goto bad;} while (0)
|
|
|
|
static void
|
|
update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
|
|
{
|
|
int csum_flags = 0;
|
|
|
|
if (src->m_pkthdr.csum_flags & CSUM_IP)
|
|
csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
|
|
if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
|
|
csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
|
|
if (src->m_pkthdr.csum_flags & CSUM_SCTP)
|
|
csum_flags |= CSUM_SCTP_VALID;
|
|
dst->m_pkthdr.csum_flags |= csum_flags;
|
|
if (csum_flags & CSUM_DATA_VALID)
|
|
dst->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
|
|
/*
|
|
* Handle link-layer encapsulation requests.
|
|
*/
|
|
static int
|
|
ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
|
|
{
|
|
struct ether_header *eh;
|
|
struct arphdr *ah;
|
|
uint16_t etype;
|
|
const u_char *lladdr;
|
|
|
|
if (req->rtype != IFENCAP_LL)
|
|
return (EOPNOTSUPP);
|
|
|
|
if (req->bufsize < ETHER_HDR_LEN)
|
|
return (ENOMEM);
|
|
|
|
eh = (struct ether_header *)req->buf;
|
|
lladdr = req->lladdr;
|
|
req->lladdr_off = 0;
|
|
|
|
switch (req->family) {
|
|
case AF_INET:
|
|
etype = htons(ETHERTYPE_IP);
|
|
break;
|
|
case AF_INET6:
|
|
etype = htons(ETHERTYPE_IPV6);
|
|
break;
|
|
case AF_ARP:
|
|
ah = (struct arphdr *)req->hdata;
|
|
ah->ar_hrd = htons(ARPHRD_ETHER);
|
|
|
|
switch(ntohs(ah->ar_op)) {
|
|
case ARPOP_REVREQUEST:
|
|
case ARPOP_REVREPLY:
|
|
etype = htons(ETHERTYPE_REVARP);
|
|
break;
|
|
case ARPOP_REQUEST:
|
|
case ARPOP_REPLY:
|
|
default:
|
|
etype = htons(ETHERTYPE_ARP);
|
|
break;
|
|
}
|
|
|
|
if (req->flags & IFENCAP_FLAG_BROADCAST)
|
|
lladdr = ifp->if_broadcastaddr;
|
|
break;
|
|
default:
|
|
return (EAFNOSUPPORT);
|
|
}
|
|
|
|
memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
|
|
memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
|
|
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
|
|
req->bufsize = sizeof(struct ether_header);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
|
|
const struct sockaddr *dst, struct route *ro, u_char *phdr,
|
|
uint32_t *pflags, struct llentry **plle)
|
|
{
|
|
uint32_t lleflags = 0;
|
|
int error = 0;
|
|
#if defined(INET) || defined(INET6)
|
|
struct ether_header *eh = (struct ether_header *)phdr;
|
|
uint16_t etype;
|
|
#endif
|
|
|
|
if (plle)
|
|
*plle = NULL;
|
|
|
|
switch (dst->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
|
|
error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
|
|
plle);
|
|
else {
|
|
if (m->m_flags & M_BCAST)
|
|
memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
|
|
ETHER_ADDR_LEN);
|
|
else {
|
|
const struct in_addr *a;
|
|
a = &(((const struct sockaddr_in *)dst)->sin_addr);
|
|
ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
|
|
}
|
|
etype = htons(ETHERTYPE_IP);
|
|
memcpy(&eh->ether_type, &etype, sizeof(etype));
|
|
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if ((m->m_flags & M_MCAST) == 0) {
|
|
int af = RO_GET_FAMILY(ro, dst);
|
|
error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
|
|
&lleflags, plle);
|
|
} else {
|
|
const struct in6_addr *a6;
|
|
a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
|
|
ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
|
|
etype = htons(ETHERTYPE_IPV6);
|
|
memcpy(&eh->ether_type, &etype, sizeof(etype));
|
|
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
if_printf(ifp, "can't handle af%d\n", dst->sa_family);
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
return (EAFNOSUPPORT);
|
|
}
|
|
|
|
if (error == EHOSTDOWN) {
|
|
if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
|
|
error = EHOSTUNREACH;
|
|
}
|
|
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
*pflags = RT_MAY_LOOP;
|
|
if (lleflags & LLE_IFADDR)
|
|
*pflags |= RT_L2_ME;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Ethernet output routine.
|
|
* Encapsulate a packet of type family for the local net.
|
|
* Use trailer local net encapsulation if enough data in first
|
|
* packet leaves a multiple of 512 bytes of data in remainder.
|
|
*/
|
|
int
|
|
ether_output(struct ifnet *ifp, struct mbuf *m,
|
|
const struct sockaddr *dst, struct route *ro)
|
|
{
|
|
int error = 0;
|
|
char linkhdr[ETHER_HDR_LEN], *phdr;
|
|
struct ether_header *eh;
|
|
struct pf_mtag *t;
|
|
bool loop_copy;
|
|
int hlen; /* link layer header length */
|
|
uint32_t pflags;
|
|
struct llentry *lle = NULL;
|
|
int addref = 0;
|
|
|
|
phdr = NULL;
|
|
pflags = 0;
|
|
if (ro != NULL) {
|
|
/* XXX BPF uses ro_prepend */
|
|
if (ro->ro_prepend != NULL) {
|
|
phdr = ro->ro_prepend;
|
|
hlen = ro->ro_plen;
|
|
} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
|
|
if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
|
|
lle = ro->ro_lle;
|
|
if (lle != NULL &&
|
|
(lle->la_flags & LLE_VALID) == 0) {
|
|
LLE_FREE(lle);
|
|
lle = NULL; /* redundant */
|
|
ro->ro_lle = NULL;
|
|
}
|
|
if (lle == NULL) {
|
|
/* if we lookup, keep cache */
|
|
addref = 1;
|
|
} else
|
|
/*
|
|
* Notify LLE code that
|
|
* the entry was used
|
|
* by datapath.
|
|
*/
|
|
llentry_provide_feedback(lle);
|
|
}
|
|
if (lle != NULL) {
|
|
phdr = lle->r_linkdata;
|
|
hlen = lle->r_hdrlen;
|
|
pflags = lle->r_flags;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MAC
|
|
error = mac_ifnet_check_transmit(ifp, m);
|
|
if (error)
|
|
senderr(error);
|
|
#endif
|
|
|
|
M_PROFILE(m);
|
|
if (ifp->if_flags & IFF_MONITOR)
|
|
senderr(ENETDOWN);
|
|
if (!((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING)))
|
|
senderr(ENETDOWN);
|
|
|
|
if (phdr == NULL) {
|
|
/* No prepend data supplied. Try to calculate ourselves. */
|
|
phdr = linkhdr;
|
|
hlen = ETHER_HDR_LEN;
|
|
error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
|
|
addref ? &lle : NULL);
|
|
if (addref && lle != NULL)
|
|
ro->ro_lle = lle;
|
|
if (error != 0)
|
|
return (error == EWOULDBLOCK ? 0 : error);
|
|
}
|
|
|
|
if ((pflags & RT_L2_ME) != 0) {
|
|
update_mbuf_csumflags(m, m);
|
|
return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
|
|
}
|
|
loop_copy = (pflags & RT_MAY_LOOP) != 0;
|
|
|
|
/*
|
|
* Add local net header. If no space in first mbuf,
|
|
* allocate another.
|
|
*
|
|
* Note that we do prepend regardless of RT_HAS_HEADER flag.
|
|
* This is done because BPF code shifts m_data pointer
|
|
* to the end of ethernet header prior to calling if_output().
|
|
*/
|
|
M_PREPEND(m, hlen, M_NOWAIT);
|
|
if (m == NULL)
|
|
senderr(ENOBUFS);
|
|
if ((pflags & RT_HAS_HEADER) == 0) {
|
|
eh = mtod(m, struct ether_header *);
|
|
memcpy(eh, phdr, hlen);
|
|
}
|
|
|
|
/*
|
|
* If a simplex interface, and the packet is being sent to our
|
|
* Ethernet address or a broadcast address, loopback a copy.
|
|
* XXX To make a simplex device behave exactly like a duplex
|
|
* device, we should copy in the case of sending to our own
|
|
* ethernet address (thus letting the original actually appear
|
|
* on the wire). However, we don't do that here for security
|
|
* reasons and compatibility with the original behavior.
|
|
*/
|
|
if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
|
|
((t = pf_find_mtag(m)) == NULL || !t->routed)) {
|
|
struct mbuf *n;
|
|
|
|
/*
|
|
* Because if_simloop() modifies the packet, we need a
|
|
* writable copy through m_dup() instead of a readonly
|
|
* one as m_copy[m] would give us. The alternative would
|
|
* be to modify if_simloop() to handle the readonly mbuf,
|
|
* but performancewise it is mostly equivalent (trading
|
|
* extra data copying vs. extra locking).
|
|
*
|
|
* XXX This is a local workaround. A number of less
|
|
* often used kernel parts suffer from the same bug.
|
|
* See PR kern/105943 for a proposed general solution.
|
|
*/
|
|
if ((n = m_dup(m, M_NOWAIT)) != NULL) {
|
|
update_mbuf_csumflags(m, n);
|
|
(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
|
|
} else
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
}
|
|
|
|
/*
|
|
* Bridges require special output handling.
|
|
*/
|
|
if (ifp->if_bridge) {
|
|
BRIDGE_OUTPUT(ifp, m, error);
|
|
return (error);
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
if (ifp->if_carp &&
|
|
(error = (*carp_output_p)(ifp, m, dst)))
|
|
goto bad;
|
|
#endif
|
|
|
|
/* Handle ng_ether(4) processing, if any */
|
|
if (ifp->if_l2com != NULL) {
|
|
KASSERT(ng_ether_output_p != NULL,
|
|
("ng_ether_output_p is NULL"));
|
|
if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
|
|
bad: if (m != NULL)
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
if (m == NULL)
|
|
return (0);
|
|
}
|
|
|
|
/* Continue with link-layer output */
|
|
return ether_output_frame(ifp, m);
|
|
}
|
|
|
|
static bool
|
|
ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
|
|
{
|
|
struct ether_8021q_tag qtag;
|
|
struct ether_header *eh;
|
|
|
|
eh = mtod(*mp, struct ether_header *);
|
|
if (ntohs(eh->ether_type) == ETHERTYPE_VLAN ||
|
|
ntohs(eh->ether_type) == ETHERTYPE_QINQ)
|
|
return (true);
|
|
|
|
qtag.vid = 0;
|
|
qtag.pcp = pcp;
|
|
qtag.proto = ETHERTYPE_VLAN;
|
|
if (ether_8021q_frame(mp, ifp, ifp, &qtag))
|
|
return (true);
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
* Ethernet link layer output routine to send a raw frame to the device.
|
|
*
|
|
* This assumes that the 14 byte Ethernet header is present and contiguous
|
|
* in the first mbuf (if BRIDGE'ing).
|
|
*/
|
|
int
|
|
ether_output_frame(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
uint8_t pcp;
|
|
|
|
pcp = ifp->if_pcp;
|
|
if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN &&
|
|
!ether_set_pcp(&m, ifp, pcp))
|
|
return (0);
|
|
|
|
if (PFIL_HOOKED_OUT(V_link_pfil_head))
|
|
switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT,
|
|
NULL)) {
|
|
case PFIL_DROPPED:
|
|
return (EACCES);
|
|
case PFIL_CONSUMED:
|
|
return (0);
|
|
}
|
|
|
|
#ifdef EXPERIMENTAL
|
|
#if defined(INET6) && defined(INET)
|
|
/* draft-ietf-6man-ipv6only-flag */
|
|
/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
|
|
struct ether_header *eh;
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
switch (ntohs(eh->ether_type)) {
|
|
case ETHERTYPE_IP:
|
|
case ETHERTYPE_ARP:
|
|
case ETHERTYPE_REVARP:
|
|
m_freem(m);
|
|
return (EAFNOSUPPORT);
|
|
/* NOTREACHED */
|
|
break;
|
|
};
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Queue message on interface, update output statistics if successful,
|
|
* and start output if interface not yet active.
|
|
*
|
|
* If KMSAN is enabled, use it to verify that the data does not contain
|
|
* any uninitialized bytes.
|
|
*/
|
|
kmsan_check_mbuf(m, "ether_output");
|
|
return ((ifp->if_transmit)(ifp, m));
|
|
}
|
|
|
|
/*
|
|
* Process a received Ethernet packet; the packet is in the
|
|
* mbuf chain m with the ethernet header at the front.
|
|
*/
|
|
static void
|
|
ether_input_internal(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ether_header *eh;
|
|
u_short etype;
|
|
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#endif
|
|
if (m->m_len < ETHER_HDR_LEN) {
|
|
/* XXX maybe should pullup? */
|
|
if_printf(ifp, "discard frame w/o leading ethernet "
|
|
"header (len %u pkt len %u)\n",
|
|
m->m_len, m->m_pkthdr.len);
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
etype = ntohs(eh->ether_type);
|
|
random_harvest_queue_ether(m, sizeof(*m));
|
|
|
|
#ifdef EXPERIMENTAL
|
|
#if defined(INET6) && defined(INET)
|
|
/* draft-ietf-6man-ipv6only-flag */
|
|
/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
|
|
switch (etype) {
|
|
case ETHERTYPE_IP:
|
|
case ETHERTYPE_ARP:
|
|
case ETHERTYPE_REVARP:
|
|
m_freem(m);
|
|
return;
|
|
/* NOTREACHED */
|
|
break;
|
|
};
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
CURVNET_SET_QUIET(ifp->if_vnet);
|
|
|
|
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
|
|
if (ETHER_IS_BROADCAST(eh->ether_dhost))
|
|
m->m_flags |= M_BCAST;
|
|
else
|
|
m->m_flags |= M_MCAST;
|
|
if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
|
|
}
|
|
|
|
#ifdef MAC
|
|
/*
|
|
* Tag the mbuf with an appropriate MAC label before any other
|
|
* consumers can get to it.
|
|
*/
|
|
mac_ifnet_create_mbuf(ifp, m);
|
|
#endif
|
|
|
|
/*
|
|
* Give bpf a chance at the packet.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m);
|
|
|
|
/*
|
|
* If the CRC is still on the packet, trim it off. We do this once
|
|
* and once only in case we are re-entered. Nothing else on the
|
|
* Ethernet receive path expects to see the FCS.
|
|
*/
|
|
if (m->m_flags & M_HASFCS) {
|
|
m_adj(m, -ETHER_CRC_LEN);
|
|
m->m_flags &= ~M_HASFCS;
|
|
}
|
|
|
|
if (!(ifp->if_capenable & IFCAP_HWSTATS))
|
|
if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
|
|
|
|
/* Allow monitor mode to claim this frame, after stats are updated. */
|
|
if (ifp->if_flags & IFF_MONITOR) {
|
|
m_freem(m);
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
|
|
/* Handle input from a lagg(4) port */
|
|
if (ifp->if_type == IFT_IEEE8023ADLAG) {
|
|
KASSERT(lagg_input_ethernet_p != NULL,
|
|
("%s: if_lagg not loaded!", __func__));
|
|
m = (*lagg_input_ethernet_p)(ifp, m);
|
|
if (m != NULL)
|
|
ifp = m->m_pkthdr.rcvif;
|
|
else {
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the hardware did not process an 802.1Q tag, do this now,
|
|
* to allow 802.1P priority frames to be passed to the main input
|
|
* path correctly.
|
|
*/
|
|
if ((m->m_flags & M_VLANTAG) == 0 &&
|
|
((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
|
|
struct ether_vlan_header *evl;
|
|
|
|
if (m->m_len < sizeof(*evl) &&
|
|
(m = m_pullup(m, sizeof(*evl))) == NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
if_printf(ifp, "cannot pullup VLAN header\n");
|
|
#endif
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
|
|
m->m_flags |= M_VLANTAG;
|
|
|
|
bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
|
|
ETHER_HDR_LEN - ETHER_TYPE_LEN);
|
|
m_adj(m, ETHER_VLAN_ENCAP_LEN);
|
|
eh = mtod(m, struct ether_header *);
|
|
}
|
|
|
|
M_SETFIB(m, ifp->if_fib);
|
|
|
|
/* Allow ng_ether(4) to claim this frame. */
|
|
if (ifp->if_l2com != NULL) {
|
|
KASSERT(ng_ether_input_p != NULL,
|
|
("%s: ng_ether_input_p is NULL", __func__));
|
|
m->m_flags &= ~M_PROMISC;
|
|
(*ng_ether_input_p)(ifp, &m);
|
|
if (m == NULL) {
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
}
|
|
|
|
/*
|
|
* Allow if_bridge(4) to claim this frame.
|
|
* The BRIDGE_INPUT() macro will update ifp if the bridge changed it
|
|
* and the frame should be delivered locally.
|
|
*/
|
|
if (ifp->if_bridge != NULL) {
|
|
m->m_flags &= ~M_PROMISC;
|
|
BRIDGE_INPUT(ifp, m);
|
|
if (m == NULL) {
|
|
CURVNET_RESTORE();
|
|
return;
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
}
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
/*
|
|
* Clear M_PROMISC on frame so that carp(4) will see it when the
|
|
* mbuf flows up to Layer 3.
|
|
* FreeBSD's implementation of carp(4) uses the inprotosw
|
|
* to dispatch IPPROTO_CARP. carp(4) also allocates its own
|
|
* Ethernet addresses of the form 00:00:5e:00:01:xx, which
|
|
* is outside the scope of the M_PROMISC test below.
|
|
* TODO: Maintain a hash table of ethernet addresses other than
|
|
* ether_dhost which may be active on this ifp.
|
|
*/
|
|
if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
|
|
m->m_flags &= ~M_PROMISC;
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* If the frame received was not for our MAC address, set the
|
|
* M_PROMISC flag on the mbuf chain. The frame may need to
|
|
* be seen by the rest of the Ethernet input path in case of
|
|
* re-entry (e.g. bridge, vlan, netgraph) but should not be
|
|
* seen by upper protocol layers.
|
|
*/
|
|
if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
|
|
bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
|
|
m->m_flags |= M_PROMISC;
|
|
}
|
|
|
|
ether_demux(ifp, m);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Ethernet input dispatch; by default, direct dispatch here regardless of
|
|
* global configuration. However, if RSS is enabled, hook up RSS affinity
|
|
* so that when deferred or hybrid dispatch is enabled, we can redistribute
|
|
* load based on RSS.
|
|
*
|
|
* XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
|
|
* not it had already done work distribution via multi-queue. Then we could
|
|
* direct dispatch in the event load balancing was already complete and
|
|
* handle the case of interfaces with different capabilities better.
|
|
*
|
|
* XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
|
|
* at multiple layers?
|
|
*
|
|
* XXXRW: For now, enable all this only if RSS is compiled in, although it
|
|
* works fine without RSS. Need to characterise the performance overhead
|
|
* of the detour through the netisr code in the event the result is always
|
|
* direct dispatch.
|
|
*/
|
|
static void
|
|
ether_nh_input(struct mbuf *m)
|
|
{
|
|
|
|
M_ASSERTPKTHDR(m);
|
|
KASSERT(m->m_pkthdr.rcvif != NULL,
|
|
("%s: NULL interface pointer", __func__));
|
|
ether_input_internal(m->m_pkthdr.rcvif, m);
|
|
}
|
|
|
|
static struct netisr_handler ether_nh = {
|
|
.nh_name = "ether",
|
|
.nh_handler = ether_nh_input,
|
|
.nh_proto = NETISR_ETHER,
|
|
#ifdef RSS
|
|
.nh_policy = NETISR_POLICY_CPU,
|
|
.nh_dispatch = NETISR_DISPATCH_DIRECT,
|
|
.nh_m2cpuid = rss_m2cpuid,
|
|
#else
|
|
.nh_policy = NETISR_POLICY_SOURCE,
|
|
.nh_dispatch = NETISR_DISPATCH_DIRECT,
|
|
#endif
|
|
};
|
|
|
|
static void
|
|
ether_init(__unused void *arg)
|
|
{
|
|
|
|
netisr_register(ðer_nh);
|
|
}
|
|
SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
|
|
|
|
static void
|
|
vnet_ether_init(__unused void *arg)
|
|
{
|
|
struct pfil_head_args args;
|
|
|
|
args.pa_version = PFIL_VERSION;
|
|
args.pa_flags = PFIL_IN | PFIL_OUT;
|
|
args.pa_type = PFIL_TYPE_ETHERNET;
|
|
args.pa_headname = PFIL_ETHER_NAME;
|
|
V_link_pfil_head = pfil_head_register(&args);
|
|
|
|
#ifdef VIMAGE
|
|
netisr_register_vnet(ðer_nh);
|
|
#endif
|
|
}
|
|
VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
|
|
vnet_ether_init, NULL);
|
|
|
|
#ifdef VIMAGE
|
|
static void
|
|
vnet_ether_pfil_destroy(__unused void *arg)
|
|
{
|
|
|
|
pfil_head_unregister(V_link_pfil_head);
|
|
}
|
|
VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
|
|
vnet_ether_pfil_destroy, NULL);
|
|
|
|
static void
|
|
vnet_ether_destroy(__unused void *arg)
|
|
{
|
|
|
|
netisr_unregister_vnet(ðer_nh);
|
|
}
|
|
VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
|
|
vnet_ether_destroy, NULL);
|
|
#endif
|
|
|
|
static void
|
|
ether_input(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct mbuf *mn;
|
|
bool needs_epoch;
|
|
|
|
needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH);
|
|
|
|
/*
|
|
* The drivers are allowed to pass in a chain of packets linked with
|
|
* m_nextpkt. We split them up into separate packets here and pass
|
|
* them up. This allows the drivers to amortize the receive lock.
|
|
*/
|
|
CURVNET_SET_QUIET(ifp->if_vnet);
|
|
if (__predict_false(needs_epoch))
|
|
NET_EPOCH_ENTER(et);
|
|
while (m) {
|
|
mn = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
|
|
/*
|
|
* We will rely on rcvif being set properly in the deferred
|
|
* context, so assert it is correct here.
|
|
*/
|
|
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
|
|
KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
|
|
"rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
|
|
netisr_dispatch(NETISR_ETHER, m);
|
|
m = mn;
|
|
}
|
|
if (__predict_false(needs_epoch))
|
|
NET_EPOCH_EXIT(et);
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Upper layer processing for a received Ethernet packet.
|
|
*/
|
|
void
|
|
ether_demux(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ether_header *eh;
|
|
int i, isr;
|
|
u_short ether_type;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
|
|
|
|
/* Do not grab PROMISC frames in case we are re-entered. */
|
|
if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
|
|
i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL);
|
|
if (i != 0 || m == NULL)
|
|
return;
|
|
}
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
ether_type = ntohs(eh->ether_type);
|
|
|
|
/*
|
|
* If this frame has a VLAN tag other than 0, call vlan_input()
|
|
* if its module is loaded. Otherwise, drop.
|
|
*/
|
|
if ((m->m_flags & M_VLANTAG) &&
|
|
EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
|
|
if (ifp->if_vlantrunk == NULL) {
|
|
if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
|
|
__func__));
|
|
/* Clear before possibly re-entering ether_input(). */
|
|
m->m_flags &= ~M_PROMISC;
|
|
(*vlan_input_p)(ifp, m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Pass promiscuously received frames to the upper layer if the user
|
|
* requested this by setting IFF_PPROMISC. Otherwise, drop them.
|
|
*/
|
|
if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Reset layer specific mbuf flags to avoid confusing upper layers.
|
|
*/
|
|
m->m_flags &= ~M_VLANTAG;
|
|
m_clrprotoflags(m);
|
|
|
|
/*
|
|
* Dispatch frame to upper layer.
|
|
*/
|
|
switch (ether_type) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
isr = NETISR_IP;
|
|
break;
|
|
|
|
case ETHERTYPE_ARP:
|
|
if (ifp->if_flags & IFF_NOARP) {
|
|
/* Discard packet if ARP is disabled on interface */
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
isr = NETISR_ARP;
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
isr = NETISR_IPV6;
|
|
break;
|
|
#endif
|
|
default:
|
|
goto discard;
|
|
}
|
|
|
|
/* Strip off Ethernet header. */
|
|
m_adj(m, ETHER_HDR_LEN);
|
|
|
|
netisr_dispatch(isr, m);
|
|
return;
|
|
|
|
discard:
|
|
/*
|
|
* Packet is to be discarded. If netgraph is present,
|
|
* hand the packet to it for last chance processing;
|
|
* otherwise dispose of it.
|
|
*/
|
|
if (ifp->if_l2com != NULL) {
|
|
KASSERT(ng_ether_input_orphan_p != NULL,
|
|
("ng_ether_input_orphan_p is NULL"));
|
|
(*ng_ether_input_orphan_p)(ifp, m);
|
|
return;
|
|
}
|
|
m_freem(m);
|
|
}
|
|
|
|
/*
|
|
* Convert Ethernet address to printable (loggable) representation.
|
|
* This routine is for compatibility; it's better to just use
|
|
*
|
|
* printf("%6D", <pointer to address>, ":");
|
|
*
|
|
* since there's no static buffer involved.
|
|
*/
|
|
char *
|
|
ether_sprintf(const u_char *ap)
|
|
{
|
|
static char etherbuf[18];
|
|
snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
|
|
return (etherbuf);
|
|
}
|
|
|
|
/*
|
|
* Perform common duties while attaching to interface list
|
|
*/
|
|
void
|
|
ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
|
|
{
|
|
int i;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_dl *sdl;
|
|
|
|
ifp->if_addrlen = ETHER_ADDR_LEN;
|
|
ifp->if_hdrlen = ETHER_HDR_LEN;
|
|
ifp->if_mtu = ETHERMTU;
|
|
if_attach(ifp);
|
|
ifp->if_output = ether_output;
|
|
ifp->if_input = ether_input;
|
|
ifp->if_resolvemulti = ether_resolvemulti;
|
|
ifp->if_requestencap = ether_requestencap;
|
|
#ifdef VIMAGE
|
|
ifp->if_reassign = ether_reassign;
|
|
#endif
|
|
if (ifp->if_baudrate == 0)
|
|
ifp->if_baudrate = IF_Mbps(10); /* just a default */
|
|
ifp->if_broadcastaddr = etherbroadcastaddr;
|
|
|
|
ifa = ifp->if_addr;
|
|
KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ifp->if_addrlen;
|
|
bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
|
|
|
|
if (ifp->if_hw_addr != NULL)
|
|
bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
|
|
|
|
bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
|
|
if (ng_ether_attach_p != NULL)
|
|
(*ng_ether_attach_p)(ifp);
|
|
|
|
/* Announce Ethernet MAC address if non-zero. */
|
|
for (i = 0; i < ifp->if_addrlen; i++)
|
|
if (lla[i] != 0)
|
|
break;
|
|
if (i != ifp->if_addrlen)
|
|
if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
|
|
|
|
uuid_ether_add(LLADDR(sdl));
|
|
|
|
/* Add necessary bits are setup; announce it now. */
|
|
EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
|
|
if (IS_DEFAULT_VNET(curvnet))
|
|
devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
|
|
}
|
|
|
|
/*
|
|
* Perform common duties while detaching an Ethernet interface
|
|
*/
|
|
void
|
|
ether_ifdetach(struct ifnet *ifp)
|
|
{
|
|
struct sockaddr_dl *sdl;
|
|
|
|
sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
|
|
uuid_ether_del(LLADDR(sdl));
|
|
|
|
if (ifp->if_l2com != NULL) {
|
|
KASSERT(ng_ether_detach_p != NULL,
|
|
("ng_ether_detach_p is NULL"));
|
|
(*ng_ether_detach_p)(ifp);
|
|
}
|
|
|
|
bpfdetach(ifp);
|
|
if_detach(ifp);
|
|
}
|
|
|
|
#ifdef VIMAGE
|
|
void
|
|
ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
|
|
{
|
|
|
|
if (ifp->if_l2com != NULL) {
|
|
KASSERT(ng_ether_detach_p != NULL,
|
|
("ng_ether_detach_p is NULL"));
|
|
(*ng_ether_detach_p)(ifp);
|
|
}
|
|
|
|
if (ng_ether_attach_p != NULL) {
|
|
CURVNET_SET_QUIET(new_vnet);
|
|
(*ng_ether_attach_p)(ifp);
|
|
CURVNET_RESTORE();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
SYSCTL_DECL(_net_link);
|
|
SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Ethernet");
|
|
|
|
#if 0
|
|
/*
|
|
* This is for reference. We have a table-driven version
|
|
* of the little-endian crc32 generator, which is faster
|
|
* than the double-loop.
|
|
*/
|
|
uint32_t
|
|
ether_crc32_le(const uint8_t *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
uint32_t crc;
|
|
int bit;
|
|
uint8_t data;
|
|
|
|
crc = 0xffffffff; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
|
|
carry = (crc ^ data) & 1;
|
|
crc >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ ETHER_CRC_POLY_LE);
|
|
}
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
#else
|
|
uint32_t
|
|
ether_crc32_le(const uint8_t *buf, size_t len)
|
|
{
|
|
static const uint32_t crctab[] = {
|
|
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
|
|
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
|
|
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
|
|
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
|
|
};
|
|
size_t i;
|
|
uint32_t crc;
|
|
|
|
crc = 0xffffffff; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
crc ^= buf[i];
|
|
crc = (crc >> 4) ^ crctab[crc & 0xf];
|
|
crc = (crc >> 4) ^ crctab[crc & 0xf];
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
#endif
|
|
|
|
uint32_t
|
|
ether_crc32_be(const uint8_t *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
uint32_t crc, carry;
|
|
int bit;
|
|
uint8_t data;
|
|
|
|
crc = 0xffffffff; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
|
|
crc <<= 1;
|
|
if (carry)
|
|
crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
|
|
}
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
|
|
int
|
|
ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct ifaddr *ifa = (struct ifaddr *) data;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
ifp->if_init(ifp->if_softc); /* before arpwhohas */
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif
|
|
default:
|
|
ifp->if_init(ifp->if_softc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR:
|
|
bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
|
|
ETHER_ADDR_LEN);
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
/*
|
|
* Set the interface MTU.
|
|
*/
|
|
if (ifr->ifr_mtu > ETHERMTU) {
|
|
error = EINVAL;
|
|
} else {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
}
|
|
break;
|
|
|
|
case SIOCSLANPCP:
|
|
error = priv_check(curthread, PRIV_NET_SETLANPCP);
|
|
if (error != 0)
|
|
break;
|
|
if (ifr->ifr_lan_pcp > 7 &&
|
|
ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
|
|
error = EINVAL;
|
|
} else {
|
|
ifp->if_pcp = ifr->ifr_lan_pcp;
|
|
/* broadcast event about PCP change */
|
|
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
|
|
}
|
|
break;
|
|
|
|
case SIOCGLANPCP:
|
|
ifr->ifr_lan_pcp = ifp->if_pcp;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL; /* XXX netbsd has ENOTTY??? */
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
|
|
struct sockaddr *sa)
|
|
{
|
|
struct sockaddr_dl *sdl;
|
|
#ifdef INET
|
|
struct sockaddr_in *sin;
|
|
#endif
|
|
#ifdef INET6
|
|
struct sockaddr_in6 *sin6;
|
|
#endif
|
|
u_char *e_addr;
|
|
|
|
switch(sa->sa_family) {
|
|
case AF_LINK:
|
|
/*
|
|
* No mapping needed. Just check that it's a valid MC address.
|
|
*/
|
|
sdl = (struct sockaddr_dl *)sa;
|
|
e_addr = LLADDR(sdl);
|
|
if (!ETHER_IS_MULTICAST(e_addr))
|
|
return EADDRNOTAVAIL;
|
|
*llsa = NULL;
|
|
return 0;
|
|
|
|
#ifdef INET
|
|
case AF_INET:
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
|
|
return EADDRNOTAVAIL;
|
|
sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
|
|
sdl->sdl_alen = ETHER_ADDR_LEN;
|
|
e_addr = LLADDR(sdl);
|
|
ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
|
|
*llsa = (struct sockaddr *)sdl;
|
|
return 0;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
sin6 = (struct sockaddr_in6 *)sa;
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
|
|
/*
|
|
* An IP6 address of 0 means listen to all
|
|
* of the Ethernet multicast address used for IP6.
|
|
* (This is used for multicast routers.)
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
*llsa = NULL;
|
|
return 0;
|
|
}
|
|
if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
|
|
return EADDRNOTAVAIL;
|
|
sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
|
|
sdl->sdl_alen = ETHER_ADDR_LEN;
|
|
e_addr = LLADDR(sdl);
|
|
ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
|
|
*llsa = (struct sockaddr *)sdl;
|
|
return 0;
|
|
#endif
|
|
|
|
default:
|
|
/*
|
|
* Well, the text isn't quite right, but it's the name
|
|
* that counts...
|
|
*/
|
|
return EAFNOSUPPORT;
|
|
}
|
|
}
|
|
|
|
static moduledata_t ether_mod = {
|
|
.name = "ether",
|
|
};
|
|
|
|
void
|
|
ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
|
|
{
|
|
struct ether_vlan_header vlan;
|
|
struct mbuf mv, mb;
|
|
|
|
KASSERT((m->m_flags & M_VLANTAG) != 0,
|
|
("%s: vlan information not present", __func__));
|
|
KASSERT(m->m_len >= sizeof(struct ether_header),
|
|
("%s: mbuf not large enough for header", __func__));
|
|
bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
|
|
vlan.evl_proto = vlan.evl_encap_proto;
|
|
vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
|
|
vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
|
|
m->m_len -= sizeof(struct ether_header);
|
|
m->m_data += sizeof(struct ether_header);
|
|
/*
|
|
* If a data link has been supplied by the caller, then we will need to
|
|
* re-create a stack allocated mbuf chain with the following structure:
|
|
*
|
|
* (1) mbuf #1 will contain the supplied data link
|
|
* (2) mbuf #2 will contain the vlan header
|
|
* (3) mbuf #3 will contain the original mbuf's packet data
|
|
*
|
|
* Otherwise, submit the packet and vlan header via bpf_mtap2().
|
|
*/
|
|
if (data != NULL) {
|
|
mv.m_next = m;
|
|
mv.m_data = (caddr_t)&vlan;
|
|
mv.m_len = sizeof(vlan);
|
|
mb.m_next = &mv;
|
|
mb.m_data = data;
|
|
mb.m_len = dlen;
|
|
bpf_mtap(bp, &mb);
|
|
} else
|
|
bpf_mtap2(bp, &vlan, sizeof(vlan), m);
|
|
m->m_len += sizeof(struct ether_header);
|
|
m->m_data -= sizeof(struct ether_header);
|
|
}
|
|
|
|
struct mbuf *
|
|
ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
|
|
{
|
|
struct ether_vlan_header *evl;
|
|
|
|
M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
|
|
|
|
if (m->m_len < sizeof(*evl)) {
|
|
m = m_pullup(m, sizeof(*evl));
|
|
if (m == NULL)
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Transform the Ethernet header into an Ethernet header
|
|
* with 802.1Q encapsulation.
|
|
*/
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
|
|
(char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
|
|
evl->evl_encap_proto = htons(proto);
|
|
evl->evl_tag = htons(tag);
|
|
return (m);
|
|
}
|
|
|
|
void
|
|
ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
if (bpf_peers_present(ifp->if_bpf)) {
|
|
M_ASSERTVALID(m);
|
|
if ((m->m_flags & M_VLANTAG) != 0)
|
|
ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
|
|
else
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
}
|
|
}
|
|
|
|
static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"IEEE 802.1Q VLAN");
|
|
static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"for consistency");
|
|
|
|
VNET_DEFINE_STATIC(int, soft_pad);
|
|
#define V_soft_pad VNET(soft_pad)
|
|
SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
|
|
&VNET_NAME(soft_pad), 0,
|
|
"pad short frames before tagging");
|
|
|
|
/*
|
|
* For now, make preserving PCP via an mbuf tag optional, as it increases
|
|
* per-packet memory allocations and frees. In the future, it would be
|
|
* preferable to reuse ether_vtag for this, or similar.
|
|
*/
|
|
VNET_DEFINE(int, vlan_mtag_pcp) = 0;
|
|
#define V_vlan_mtag_pcp VNET(vlan_mtag_pcp)
|
|
SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
|
|
&VNET_NAME(vlan_mtag_pcp), 0,
|
|
"Retain VLAN PCP information as packets are passed up the stack");
|
|
|
|
bool
|
|
ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
|
|
struct ether_8021q_tag *qtag)
|
|
{
|
|
struct m_tag *mtag;
|
|
int n;
|
|
uint16_t tag;
|
|
static const char pad[8]; /* just zeros */
|
|
|
|
/*
|
|
* Pad the frame to the minimum size allowed if told to.
|
|
* This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
|
|
* paragraph C.4.4.3.b. It can help to work around buggy
|
|
* bridges that violate paragraph C.4.4.3.a from the same
|
|
* document, i.e., fail to pad short frames after untagging.
|
|
* E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
|
|
* untagging it will produce a 62-byte frame, which is a runt
|
|
* and requires padding. There are VLAN-enabled network
|
|
* devices that just discard such runts instead or mishandle
|
|
* them somehow.
|
|
*/
|
|
if (V_soft_pad && p->if_type == IFT_ETHER) {
|
|
for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
|
|
n > 0; n -= sizeof(pad)) {
|
|
if (!m_append(*mp, min(n, sizeof(pad)), pad))
|
|
break;
|
|
}
|
|
if (n > 0) {
|
|
m_freem(*mp);
|
|
*mp = NULL;
|
|
if_printf(ife, "cannot pad short frame");
|
|
return (false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If PCP is set in mbuf, use it
|
|
*/
|
|
if ((*mp)->m_flags & M_VLANTAG) {
|
|
qtag->pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
|
|
}
|
|
|
|
/*
|
|
* If underlying interface can do VLAN tag insertion itself,
|
|
* just pass the packet along. However, we need some way to
|
|
* tell the interface where the packet came from so that it
|
|
* knows how to find the VLAN tag to use, so we attach a
|
|
* packet tag that holds it.
|
|
*/
|
|
if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
|
|
MTAG_8021Q_PCP_OUT, NULL)) != NULL)
|
|
tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
|
|
else
|
|
tag = EVL_MAKETAG(qtag->vid, qtag->pcp, 0);
|
|
if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
|
|
(qtag->proto == ETHERTYPE_VLAN)) {
|
|
(*mp)->m_pkthdr.ether_vtag = tag;
|
|
(*mp)->m_flags |= M_VLANTAG;
|
|
} else {
|
|
*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
|
|
if (*mp == NULL) {
|
|
if_printf(ife, "unable to prepend 802.1Q header");
|
|
return (false);
|
|
}
|
|
}
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* Allocate an address from the FreeBSD Foundation OUI. This uses a
|
|
* cryptographic hash function on the containing jail's name, UUID and the
|
|
* interface name to attempt to provide a unique but stable address.
|
|
* Pseudo-interfaces which require a MAC address should use this function to
|
|
* allocate non-locally-administered addresses.
|
|
*/
|
|
void
|
|
ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
|
|
{
|
|
SHA1_CTX ctx;
|
|
char *buf;
|
|
char uuid[HOSTUUIDLEN + 1];
|
|
uint64_t addr;
|
|
int i, sz;
|
|
char digest[SHA1_RESULTLEN];
|
|
char jailname[MAXHOSTNAMELEN];
|
|
|
|
getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
|
|
if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
|
|
/* Fall back to a random mac address. */
|
|
goto rando;
|
|
}
|
|
|
|
/* If each (vnet) jail would also have a unique hostuuid this would not
|
|
* be necessary. */
|
|
getjailname(curthread->td_ucred, jailname, sizeof(jailname));
|
|
sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp),
|
|
jailname);
|
|
if (sz < 0) {
|
|
/* Fall back to a random mac address. */
|
|
goto rando;
|
|
}
|
|
|
|
SHA1Init(&ctx);
|
|
SHA1Update(&ctx, buf, sz);
|
|
SHA1Final(digest, &ctx);
|
|
free(buf, M_TEMP);
|
|
|
|
addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
|
|
OUI_FREEBSD_GENERATED_MASK;
|
|
addr = OUI_FREEBSD(addr);
|
|
for (i = 0; i < ETHER_ADDR_LEN; ++i) {
|
|
hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
|
|
0xFF;
|
|
}
|
|
|
|
return;
|
|
rando:
|
|
arc4rand(hwaddr, sizeof(*hwaddr), 0);
|
|
/* Unicast */
|
|
hwaddr->octet[0] &= 0xFE;
|
|
/* Locally administered. */
|
|
hwaddr->octet[0] |= 0x02;
|
|
}
|
|
|
|
DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
|
|
MODULE_VERSION(ether, 1);
|