mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-28 16:43:09 +00:00
5bfc7db451
Block objects [1] are a C-level syntactic and runtime feature. They are similar to standard C functions, but in addition to executable code they may also contain variable bindings to automatic (stack) or managed (heap) memory. A block can therefore maintain a set of state (data) that it can use to impact behavior when executed. This port is based on Apple's GCC 5646 with some bugfixes from Apple GCC 5666.3. It has some small differences with the support in clang, which remains the recommended compiler. Perhaps the most notable difference is that in GCC that __block is not actually a keyword, but a macro. There will be workaround for this issue in a near future. Other issues can be consulted in the clang documentation [2] For better compatiblity with Apple's GCC and llvm-gcc some related fixes and features from Apple have been included. Support for the non-standard nested functions in GCC is now off by default. No effort was made to update the ObjC support since FreeBSD doesn't carry ObjC in the base system, but some of the code crept in and was more difficult to remove than to adjust. Reference: [1] https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Blocks/Articles/00_Introduction.html [2] http://clang.llvm.org/compatibility.html#block-variable-initialization Obtained from: Apple GCC 4.2 MFC after: 3 weeks
2434 lines
66 KiB
C
2434 lines
66 KiB
C
/* Language-dependent node constructors for parse phase of GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
Hacked by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "cp-tree.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
#include "rtl.h"
|
||
#include "toplev.h"
|
||
#include "insn-config.h"
|
||
#include "integrate.h"
|
||
#include "tree-inline.h"
|
||
#include "debug.h"
|
||
#include "target.h"
|
||
#include "convert.h"
|
||
|
||
static tree bot_manip (tree *, int *, void *);
|
||
static tree bot_replace (tree *, int *, void *);
|
||
static tree build_cplus_array_type_1 (tree, tree);
|
||
static int list_hash_eq (const void *, const void *);
|
||
static hashval_t list_hash_pieces (tree, tree, tree);
|
||
static hashval_t list_hash (const void *);
|
||
static cp_lvalue_kind lvalue_p_1 (tree, int);
|
||
static tree build_target_expr (tree, tree);
|
||
static tree count_trees_r (tree *, int *, void *);
|
||
static tree verify_stmt_tree_r (tree *, int *, void *);
|
||
static tree build_local_temp (tree);
|
||
|
||
static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
|
||
|
||
/* If REF is an lvalue, returns the kind of lvalue that REF is.
|
||
Otherwise, returns clk_none. If TREAT_CLASS_RVALUES_AS_LVALUES is
|
||
nonzero, rvalues of class type are considered lvalues. */
|
||
|
||
static cp_lvalue_kind
|
||
lvalue_p_1 (tree ref,
|
||
int treat_class_rvalues_as_lvalues)
|
||
{
|
||
cp_lvalue_kind op1_lvalue_kind = clk_none;
|
||
cp_lvalue_kind op2_lvalue_kind = clk_none;
|
||
|
||
if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
|
||
return clk_ordinary;
|
||
|
||
if (ref == current_class_ptr)
|
||
return clk_none;
|
||
|
||
switch (TREE_CODE (ref))
|
||
{
|
||
/* preincrements and predecrements are valid lvals, provided
|
||
what they refer to are valid lvals. */
|
||
case PREINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case SAVE_EXPR:
|
||
case TRY_CATCH_EXPR:
|
||
case WITH_CLEANUP_EXPR:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
return lvalue_p_1 (TREE_OPERAND (ref, 0),
|
||
treat_class_rvalues_as_lvalues);
|
||
|
||
case COMPONENT_REF:
|
||
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
|
||
treat_class_rvalues_as_lvalues);
|
||
/* Look at the member designator. */
|
||
if (!op1_lvalue_kind
|
||
/* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
|
||
situations. */
|
||
|| TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
|
||
;
|
||
else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
|
||
{
|
||
/* Clear the ordinary bit. If this object was a class
|
||
rvalue we want to preserve that information. */
|
||
op1_lvalue_kind &= ~clk_ordinary;
|
||
/* The lvalue is for a bitfield. */
|
||
op1_lvalue_kind |= clk_bitfield;
|
||
}
|
||
else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
|
||
op1_lvalue_kind |= clk_packed;
|
||
|
||
return op1_lvalue_kind;
|
||
|
||
case STRING_CST:
|
||
return clk_ordinary;
|
||
|
||
case CONST_DECL:
|
||
case VAR_DECL:
|
||
if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
|
||
&& DECL_LANG_SPECIFIC (ref)
|
||
&& DECL_IN_AGGR_P (ref))
|
||
return clk_none;
|
||
case INDIRECT_REF:
|
||
case ARRAY_REF:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
|
||
return clk_ordinary;
|
||
break;
|
||
|
||
/* A currently unresolved scope ref. */
|
||
case SCOPE_REF:
|
||
gcc_unreachable ();
|
||
case MAX_EXPR:
|
||
case MIN_EXPR:
|
||
/* Disallow <? and >? as lvalues if either argument side-effects. */
|
||
if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
|
||
|| TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
|
||
return clk_none;
|
||
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
|
||
treat_class_rvalues_as_lvalues);
|
||
op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
|
||
treat_class_rvalues_as_lvalues);
|
||
break;
|
||
|
||
case COND_EXPR:
|
||
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
|
||
treat_class_rvalues_as_lvalues);
|
||
op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2),
|
||
treat_class_rvalues_as_lvalues);
|
||
break;
|
||
|
||
case MODIFY_EXPR:
|
||
return clk_ordinary;
|
||
|
||
case COMPOUND_EXPR:
|
||
return lvalue_p_1 (TREE_OPERAND (ref, 1),
|
||
treat_class_rvalues_as_lvalues);
|
||
|
||
case TARGET_EXPR:
|
||
return treat_class_rvalues_as_lvalues ? clk_class : clk_none;
|
||
|
||
case VA_ARG_EXPR:
|
||
return (treat_class_rvalues_as_lvalues
|
||
&& CLASS_TYPE_P (TREE_TYPE (ref))
|
||
? clk_class : clk_none);
|
||
|
||
case CALL_EXPR:
|
||
/* Any class-valued call would be wrapped in a TARGET_EXPR. */
|
||
return clk_none;
|
||
|
||
case FUNCTION_DECL:
|
||
/* All functions (except non-static-member functions) are
|
||
lvalues. */
|
||
return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
|
||
? clk_none : clk_ordinary);
|
||
|
||
case NON_DEPENDENT_EXPR:
|
||
/* We must consider NON_DEPENDENT_EXPRs to be lvalues so that
|
||
things like "&E" where "E" is an expression with a
|
||
non-dependent type work. It is safe to be lenient because an
|
||
error will be issued when the template is instantiated if "E"
|
||
is not an lvalue. */
|
||
return clk_ordinary;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If one operand is not an lvalue at all, then this expression is
|
||
not an lvalue. */
|
||
if (!op1_lvalue_kind || !op2_lvalue_kind)
|
||
return clk_none;
|
||
|
||
/* Otherwise, it's an lvalue, and it has all the odd properties
|
||
contributed by either operand. */
|
||
op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
|
||
/* It's not an ordinary lvalue if it involves either a bit-field or
|
||
a class rvalue. */
|
||
if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
|
||
op1_lvalue_kind &= ~clk_ordinary;
|
||
return op1_lvalue_kind;
|
||
}
|
||
|
||
/* Returns the kind of lvalue that REF is, in the sense of
|
||
[basic.lval]. This function should really be named lvalue_p; it
|
||
computes the C++ definition of lvalue. */
|
||
|
||
cp_lvalue_kind
|
||
real_lvalue_p (tree ref)
|
||
{
|
||
return lvalue_p_1 (ref,
|
||
/*treat_class_rvalues_as_lvalues=*/0);
|
||
}
|
||
|
||
/* This differs from real_lvalue_p in that class rvalues are
|
||
considered lvalues. */
|
||
|
||
int
|
||
lvalue_p (tree ref)
|
||
{
|
||
return
|
||
(lvalue_p_1 (ref, /*class rvalue ok*/ 1) != clk_none);
|
||
}
|
||
|
||
/* Test whether DECL is a builtin that may appear in a
|
||
constant-expression. */
|
||
|
||
bool
|
||
builtin_valid_in_constant_expr_p (tree decl)
|
||
{
|
||
/* At present BUILT_IN_CONSTANT_P is the only builtin we're allowing
|
||
in constant-expressions. We may want to add other builtins later. */
|
||
return DECL_IS_BUILTIN_CONSTANT_P (decl);
|
||
}
|
||
|
||
/* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
|
||
|
||
static tree
|
||
build_target_expr (tree decl, tree value)
|
||
{
|
||
tree t;
|
||
|
||
t = build4 (TARGET_EXPR, TREE_TYPE (decl), decl, value,
|
||
cxx_maybe_build_cleanup (decl), NULL_TREE);
|
||
/* We always set TREE_SIDE_EFFECTS so that expand_expr does not
|
||
ignore the TARGET_EXPR. If there really turn out to be no
|
||
side-effects, then the optimizer should be able to get rid of
|
||
whatever code is generated anyhow. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return an undeclared local temporary of type TYPE for use in building a
|
||
TARGET_EXPR. */
|
||
|
||
static tree
|
||
build_local_temp (tree type)
|
||
{
|
||
tree slot = build_decl (VAR_DECL, NULL_TREE, type);
|
||
DECL_ARTIFICIAL (slot) = 1;
|
||
DECL_IGNORED_P (slot) = 1;
|
||
DECL_CONTEXT (slot) = current_function_decl;
|
||
layout_decl (slot, 0);
|
||
return slot;
|
||
}
|
||
|
||
/* INIT is a CALL_EXPR which needs info about its target.
|
||
TYPE is the type that this initialization should appear to have.
|
||
|
||
Build an encapsulation of the initialization to perform
|
||
and return it so that it can be processed by language-independent
|
||
and language-specific expression expanders. */
|
||
|
||
tree
|
||
build_cplus_new (tree type, tree init)
|
||
{
|
||
tree fn;
|
||
tree slot;
|
||
tree rval;
|
||
int is_ctor;
|
||
|
||
/* Make sure that we're not trying to create an instance of an
|
||
abstract class. */
|
||
abstract_virtuals_error (NULL_TREE, type);
|
||
|
||
if (TREE_CODE (init) != CALL_EXPR && TREE_CODE (init) != AGGR_INIT_EXPR)
|
||
return convert (type, init);
|
||
|
||
fn = TREE_OPERAND (init, 0);
|
||
is_ctor = (TREE_CODE (fn) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
||
&& DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
|
||
|
||
slot = build_local_temp (type);
|
||
|
||
/* We split the CALL_EXPR into its function and its arguments here.
|
||
Then, in expand_expr, we put them back together. The reason for
|
||
this is that this expression might be a default argument
|
||
expression. In that case, we need a new temporary every time the
|
||
expression is used. That's what break_out_target_exprs does; it
|
||
replaces every AGGR_INIT_EXPR with a copy that uses a fresh
|
||
temporary slot. Then, expand_expr builds up a call-expression
|
||
using the new slot. */
|
||
|
||
/* If we don't need to use a constructor to create an object of this
|
||
type, don't mess with AGGR_INIT_EXPR. */
|
||
if (is_ctor || TREE_ADDRESSABLE (type))
|
||
{
|
||
rval = build3 (AGGR_INIT_EXPR, void_type_node, fn,
|
||
TREE_OPERAND (init, 1), slot);
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
|
||
}
|
||
else
|
||
rval = init;
|
||
|
||
rval = build_target_expr (slot, rval);
|
||
TARGET_EXPR_IMPLICIT_P (rval) = 1;
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* Build a TARGET_EXPR using INIT to initialize a new temporary of the
|
||
indicated TYPE. */
|
||
|
||
tree
|
||
build_target_expr_with_type (tree init, tree type)
|
||
{
|
||
gcc_assert (!VOID_TYPE_P (type));
|
||
|
||
if (TREE_CODE (init) == TARGET_EXPR)
|
||
return init;
|
||
else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type)
|
||
&& TREE_CODE (init) != COND_EXPR
|
||
&& TREE_CODE (init) != CONSTRUCTOR
|
||
&& TREE_CODE (init) != VA_ARG_EXPR)
|
||
/* We need to build up a copy constructor call. COND_EXPR is a special
|
||
case because we already have copies on the arms and we don't want
|
||
another one here. A CONSTRUCTOR is aggregate initialization, which
|
||
is handled separately. A VA_ARG_EXPR is magic creation of an
|
||
aggregate; there's no additional work to be done. */
|
||
return force_rvalue (init);
|
||
|
||
return force_target_expr (type, init);
|
||
}
|
||
|
||
/* Like the above function, but without the checking. This function should
|
||
only be used by code which is deliberately trying to subvert the type
|
||
system, such as call_builtin_trap. */
|
||
|
||
tree
|
||
force_target_expr (tree type, tree init)
|
||
{
|
||
tree slot;
|
||
|
||
gcc_assert (!VOID_TYPE_P (type));
|
||
|
||
slot = build_local_temp (type);
|
||
return build_target_expr (slot, init);
|
||
}
|
||
|
||
/* Like build_target_expr_with_type, but use the type of INIT. */
|
||
|
||
tree
|
||
get_target_expr (tree init)
|
||
{
|
||
return build_target_expr_with_type (init, TREE_TYPE (init));
|
||
}
|
||
|
||
/* If EXPR is a bitfield reference, convert it to the declared type of
|
||
the bitfield, and return the resulting expression. Otherwise,
|
||
return EXPR itself. */
|
||
|
||
tree
|
||
convert_bitfield_to_declared_type (tree expr)
|
||
{
|
||
tree bitfield_type;
|
||
|
||
bitfield_type = is_bitfield_expr_with_lowered_type (expr);
|
||
if (bitfield_type)
|
||
expr = convert_to_integer (TYPE_MAIN_VARIANT (bitfield_type),
|
||
expr);
|
||
return expr;
|
||
}
|
||
|
||
/* EXPR is being used in an rvalue context. Return a version of EXPR
|
||
that is marked as an rvalue. */
|
||
|
||
tree
|
||
rvalue (tree expr)
|
||
{
|
||
tree type;
|
||
|
||
if (error_operand_p (expr))
|
||
return expr;
|
||
|
||
/* [basic.lval]
|
||
|
||
Non-class rvalues always have cv-unqualified types. */
|
||
type = TREE_TYPE (expr);
|
||
if (!CLASS_TYPE_P (type) && cp_type_quals (type))
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
if (!processing_template_decl && real_lvalue_p (expr))
|
||
expr = build1 (NON_LVALUE_EXPR, type, expr);
|
||
else if (type != TREE_TYPE (expr))
|
||
expr = build_nop (type, expr);
|
||
|
||
return expr;
|
||
}
|
||
|
||
|
||
static tree
|
||
build_cplus_array_type_1 (tree elt_type, tree index_type)
|
||
{
|
||
tree t;
|
||
|
||
if (elt_type == error_mark_node || index_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (dependent_type_p (elt_type)
|
||
|| (index_type
|
||
&& value_dependent_expression_p (TYPE_MAX_VALUE (index_type))))
|
||
{
|
||
t = make_node (ARRAY_TYPE);
|
||
TREE_TYPE (t) = elt_type;
|
||
TYPE_DOMAIN (t) = index_type;
|
||
}
|
||
else
|
||
t = build_array_type (elt_type, index_type);
|
||
|
||
/* Push these needs up so that initialization takes place
|
||
more easily. */
|
||
TYPE_NEEDS_CONSTRUCTING (t)
|
||
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
|
||
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
||
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_cplus_array_type (tree elt_type, tree index_type)
|
||
{
|
||
tree t;
|
||
int type_quals = cp_type_quals (elt_type);
|
||
|
||
if (type_quals != TYPE_UNQUALIFIED)
|
||
elt_type = cp_build_qualified_type (elt_type, TYPE_UNQUALIFIED);
|
||
|
||
t = build_cplus_array_type_1 (elt_type, index_type);
|
||
|
||
if (type_quals != TYPE_UNQUALIFIED)
|
||
t = cp_build_qualified_type (t, type_quals);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
|
||
arrays correctly. In particular, if TYPE is an array of T's, and
|
||
TYPE_QUALS is non-empty, returns an array of qualified T's.
|
||
|
||
FLAGS determines how to deal with illformed qualifications. If
|
||
tf_ignore_bad_quals is set, then bad qualifications are dropped
|
||
(this is permitted if TYPE was introduced via a typedef or template
|
||
type parameter). If bad qualifications are dropped and tf_warning
|
||
is set, then a warning is issued for non-const qualifications. If
|
||
tf_ignore_bad_quals is not set and tf_error is not set, we
|
||
return error_mark_node. Otherwise, we issue an error, and ignore
|
||
the qualifications.
|
||
|
||
Qualification of a reference type is valid when the reference came
|
||
via a typedef or template type argument. [dcl.ref] No such
|
||
dispensation is provided for qualifying a function type. [dcl.fct]
|
||
DR 295 queries this and the proposed resolution brings it into line
|
||
with qualifying a reference. We implement the DR. We also behave
|
||
in a similar manner for restricting non-pointer types. */
|
||
|
||
tree
|
||
cp_build_qualified_type_real (tree type,
|
||
int type_quals,
|
||
tsubst_flags_t complain)
|
||
{
|
||
tree result;
|
||
int bad_quals = TYPE_UNQUALIFIED;
|
||
|
||
if (type == error_mark_node)
|
||
return type;
|
||
|
||
if (type_quals == cp_type_quals (type))
|
||
return type;
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* In C++, the qualification really applies to the array element
|
||
type. Obtain the appropriately qualified element type. */
|
||
tree t;
|
||
tree element_type
|
||
= cp_build_qualified_type_real (TREE_TYPE (type),
|
||
type_quals,
|
||
complain);
|
||
|
||
if (element_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* See if we already have an identically qualified type. */
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
if (cp_type_quals (t) == type_quals
|
||
&& TYPE_NAME (t) == TYPE_NAME (type)
|
||
&& TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
|
||
break;
|
||
|
||
if (!t)
|
||
{
|
||
/* Make a new array type, just like the old one, but with the
|
||
appropriately qualified element type. */
|
||
t = build_variant_type_copy (type);
|
||
TREE_TYPE (t) = element_type;
|
||
}
|
||
|
||
/* Even if we already had this variant, we update
|
||
TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
|
||
they changed since the variant was originally created.
|
||
|
||
This seems hokey; if there is some way to use a previous
|
||
variant *without* coming through here,
|
||
TYPE_NEEDS_CONSTRUCTING will never be updated. */
|
||
TYPE_NEEDS_CONSTRUCTING (t)
|
||
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
|
||
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
||
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
|
||
return t;
|
||
}
|
||
else if (TYPE_PTRMEMFUNC_P (type))
|
||
{
|
||
/* For a pointer-to-member type, we can't just return a
|
||
cv-qualified version of the RECORD_TYPE. If we do, we
|
||
haven't changed the field that contains the actual pointer to
|
||
a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
|
||
tree t;
|
||
|
||
t = TYPE_PTRMEMFUNC_FN_TYPE (type);
|
||
t = cp_build_qualified_type_real (t, type_quals, complain);
|
||
return build_ptrmemfunc_type (t);
|
||
}
|
||
|
||
/* A reference or method type shall not be cv qualified.
|
||
[dcl.ref], [dct.fct] */
|
||
if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
|
||
&& (TREE_CODE (type) == REFERENCE_TYPE
|
||
|| TREE_CODE (type) == METHOD_TYPE))
|
||
{
|
||
bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
|
||
type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
|
||
}
|
||
|
||
/* A restrict-qualified type must be a pointer (or reference)
|
||
to object or incomplete type, or a function type. */
|
||
if ((type_quals & TYPE_QUAL_RESTRICT)
|
||
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (type) != TYPENAME_TYPE
|
||
&& TREE_CODE (type) != FUNCTION_TYPE
|
||
&& !POINTER_TYPE_P (type))
|
||
{
|
||
bad_quals |= TYPE_QUAL_RESTRICT;
|
||
type_quals &= ~TYPE_QUAL_RESTRICT;
|
||
}
|
||
|
||
if (bad_quals == TYPE_UNQUALIFIED)
|
||
/*OK*/;
|
||
else if (!(complain & (tf_error | tf_ignore_bad_quals)))
|
||
return error_mark_node;
|
||
else
|
||
{
|
||
if (complain & tf_ignore_bad_quals)
|
||
/* We're not going to warn about constifying things that can't
|
||
be constified. */
|
||
bad_quals &= ~TYPE_QUAL_CONST;
|
||
if (bad_quals)
|
||
{
|
||
tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
|
||
|
||
if (!(complain & tf_ignore_bad_quals))
|
||
error ("%qV qualifiers cannot be applied to %qT",
|
||
bad_type, type);
|
||
}
|
||
}
|
||
|
||
/* Retrieve (or create) the appropriately qualified variant. */
|
||
result = build_qualified_type (type, type_quals);
|
||
|
||
/* If this was a pointer-to-method type, and we just made a copy,
|
||
then we need to unshare the record that holds the cached
|
||
pointer-to-member-function type, because these will be distinct
|
||
between the unqualified and qualified types. */
|
||
if (result != type
|
||
&& TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)
|
||
TYPE_LANG_SPECIFIC (result) = NULL;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Returns the canonical version of TYPE. In other words, if TYPE is
|
||
a typedef, returns the underlying type. The cv-qualification of
|
||
the type returned matches the type input; they will always be
|
||
compatible types. */
|
||
|
||
tree
|
||
canonical_type_variant (tree t)
|
||
{
|
||
return cp_build_qualified_type (TYPE_MAIN_VARIANT (t), cp_type_quals (t));
|
||
}
|
||
|
||
/* Makes a copy of BINFO and TYPE, which is to be inherited into a
|
||
graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
|
||
and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
|
||
VIRT indicates whether TYPE is inherited virtually or not.
|
||
IGO_PREV points at the previous binfo of the inheritance graph
|
||
order chain. The newly copied binfo's TREE_CHAIN forms this
|
||
ordering.
|
||
|
||
The CLASSTYPE_VBASECLASSES vector of T is constructed in the
|
||
correct order. That is in the order the bases themselves should be
|
||
constructed in.
|
||
|
||
The BINFO_INHERITANCE of a virtual base class points to the binfo
|
||
of the most derived type. ??? We could probably change this so that
|
||
BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
|
||
remove a field. They currently can only differ for primary virtual
|
||
virtual bases. */
|
||
|
||
tree
|
||
copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
|
||
{
|
||
tree new_binfo;
|
||
|
||
if (virt)
|
||
{
|
||
/* See if we've already made this virtual base. */
|
||
new_binfo = binfo_for_vbase (type, t);
|
||
if (new_binfo)
|
||
return new_binfo;
|
||
}
|
||
|
||
new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
|
||
BINFO_TYPE (new_binfo) = type;
|
||
|
||
/* Chain it into the inheritance graph. */
|
||
TREE_CHAIN (*igo_prev) = new_binfo;
|
||
*igo_prev = new_binfo;
|
||
|
||
if (binfo)
|
||
{
|
||
int ix;
|
||
tree base_binfo;
|
||
|
||
gcc_assert (!BINFO_DEPENDENT_BASE_P (binfo));
|
||
gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
|
||
|
||
BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
|
||
BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
|
||
|
||
/* We do not need to copy the accesses, as they are read only. */
|
||
BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
|
||
|
||
/* Recursively copy base binfos of BINFO. */
|
||
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
|
||
{
|
||
tree new_base_binfo;
|
||
|
||
gcc_assert (!BINFO_DEPENDENT_BASE_P (base_binfo));
|
||
new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
|
||
t, igo_prev,
|
||
BINFO_VIRTUAL_P (base_binfo));
|
||
|
||
if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
|
||
BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
|
||
BINFO_BASE_APPEND (new_binfo, new_base_binfo);
|
||
}
|
||
}
|
||
else
|
||
BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
|
||
|
||
if (virt)
|
||
{
|
||
/* Push it onto the list after any virtual bases it contains
|
||
will have been pushed. */
|
||
VEC_quick_push (tree, CLASSTYPE_VBASECLASSES (t), new_binfo);
|
||
BINFO_VIRTUAL_P (new_binfo) = 1;
|
||
BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
|
||
}
|
||
|
||
return new_binfo;
|
||
}
|
||
|
||
/* Hashing of lists so that we don't make duplicates.
|
||
The entry point is `list_hash_canon'. */
|
||
|
||
/* Now here is the hash table. When recording a list, it is added
|
||
to the slot whose index is the hash code mod the table size.
|
||
Note that the hash table is used for several kinds of lists.
|
||
While all these live in the same table, they are completely independent,
|
||
and the hash code is computed differently for each of these. */
|
||
|
||
static GTY ((param_is (union tree_node))) htab_t list_hash_table;
|
||
|
||
struct list_proxy
|
||
{
|
||
tree purpose;
|
||
tree value;
|
||
tree chain;
|
||
};
|
||
|
||
/* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
|
||
for a node we are thinking about adding). */
|
||
|
||
static int
|
||
list_hash_eq (const void* entry, const void* data)
|
||
{
|
||
tree t = (tree) entry;
|
||
struct list_proxy *proxy = (struct list_proxy *) data;
|
||
|
||
return (TREE_VALUE (t) == proxy->value
|
||
&& TREE_PURPOSE (t) == proxy->purpose
|
||
&& TREE_CHAIN (t) == proxy->chain);
|
||
}
|
||
|
||
/* Compute a hash code for a list (chain of TREE_LIST nodes
|
||
with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
|
||
TREE_COMMON slots), by adding the hash codes of the individual entries. */
|
||
|
||
static hashval_t
|
||
list_hash_pieces (tree purpose, tree value, tree chain)
|
||
{
|
||
hashval_t hashcode = 0;
|
||
|
||
if (chain)
|
||
hashcode += TREE_HASH (chain);
|
||
|
||
if (value)
|
||
hashcode += TREE_HASH (value);
|
||
else
|
||
hashcode += 1007;
|
||
if (purpose)
|
||
hashcode += TREE_HASH (purpose);
|
||
else
|
||
hashcode += 1009;
|
||
return hashcode;
|
||
}
|
||
|
||
/* Hash an already existing TREE_LIST. */
|
||
|
||
static hashval_t
|
||
list_hash (const void* p)
|
||
{
|
||
tree t = (tree) p;
|
||
return list_hash_pieces (TREE_PURPOSE (t),
|
||
TREE_VALUE (t),
|
||
TREE_CHAIN (t));
|
||
}
|
||
|
||
/* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
|
||
object for an identical list if one already exists. Otherwise, build a
|
||
new one, and record it as the canonical object. */
|
||
|
||
tree
|
||
hash_tree_cons (tree purpose, tree value, tree chain)
|
||
{
|
||
int hashcode = 0;
|
||
void **slot;
|
||
struct list_proxy proxy;
|
||
|
||
/* Hash the list node. */
|
||
hashcode = list_hash_pieces (purpose, value, chain);
|
||
/* Create a proxy for the TREE_LIST we would like to create. We
|
||
don't actually create it so as to avoid creating garbage. */
|
||
proxy.purpose = purpose;
|
||
proxy.value = value;
|
||
proxy.chain = chain;
|
||
/* See if it is already in the table. */
|
||
slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
|
||
INSERT);
|
||
/* If not, create a new node. */
|
||
if (!*slot)
|
||
*slot = tree_cons (purpose, value, chain);
|
||
return (tree) *slot;
|
||
}
|
||
|
||
/* Constructor for hashed lists. */
|
||
|
||
tree
|
||
hash_tree_chain (tree value, tree chain)
|
||
{
|
||
return hash_tree_cons (NULL_TREE, value, chain);
|
||
}
|
||
|
||
void
|
||
debug_binfo (tree elem)
|
||
{
|
||
HOST_WIDE_INT n;
|
||
tree virtuals;
|
||
|
||
fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
|
||
"\nvtable type:\n",
|
||
TYPE_NAME_STRING (BINFO_TYPE (elem)),
|
||
TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
|
||
debug_tree (BINFO_TYPE (elem));
|
||
if (BINFO_VTABLE (elem))
|
||
fprintf (stderr, "vtable decl \"%s\"\n",
|
||
IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
|
||
else
|
||
fprintf (stderr, "no vtable decl yet\n");
|
||
fprintf (stderr, "virtuals:\n");
|
||
virtuals = BINFO_VIRTUALS (elem);
|
||
n = 0;
|
||
|
||
while (virtuals)
|
||
{
|
||
tree fndecl = TREE_VALUE (virtuals);
|
||
fprintf (stderr, "%s [%ld =? %ld]\n",
|
||
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
|
||
(long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
|
||
++n;
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
}
|
||
|
||
/* Build a representation for the qualified name SCOPE::NAME. TYPE is
|
||
the type of the result expression, if known, or NULL_TREE if the
|
||
resulting expression is type-dependent. If TEMPLATE_P is true,
|
||
NAME is known to be a template because the user explicitly used the
|
||
"template" keyword after the "::".
|
||
|
||
All SCOPE_REFs should be built by use of this function. */
|
||
|
||
tree
|
||
build_qualified_name (tree type, tree scope, tree name, bool template_p)
|
||
{
|
||
tree t;
|
||
if (type == error_mark_node
|
||
|| scope == error_mark_node
|
||
|| name == error_mark_node)
|
||
return error_mark_node;
|
||
t = build2 (SCOPE_REF, type, scope, name);
|
||
QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
|
||
return t;
|
||
}
|
||
|
||
/* Returns non-zero if X is an expression for a (possibly overloaded)
|
||
function. If "f" is a function or function template, "f", "c->f",
|
||
"c.f", "C::f", and "f<int>" will all be considered possibly
|
||
overloaded functions. Returns 2 if the function is actually
|
||
overloaded, i.e., if it is impossible to know the the type of the
|
||
function without performing overload resolution. */
|
||
|
||
int
|
||
is_overloaded_fn (tree x)
|
||
{
|
||
/* A baselink is also considered an overloaded function. */
|
||
if (TREE_CODE (x) == OFFSET_REF
|
||
|| TREE_CODE (x) == COMPONENT_REF)
|
||
x = TREE_OPERAND (x, 1);
|
||
if (BASELINK_P (x))
|
||
x = BASELINK_FUNCTIONS (x);
|
||
if (TREE_CODE (x) == TEMPLATE_ID_EXPR
|
||
|| DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
|
||
|| (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
|
||
return 2;
|
||
return (TREE_CODE (x) == FUNCTION_DECL
|
||
|| TREE_CODE (x) == OVERLOAD);
|
||
}
|
||
|
||
/* Returns true iff X is an expression for an overloaded function
|
||
whose type cannot be known without performing overload
|
||
resolution. */
|
||
|
||
bool
|
||
really_overloaded_fn (tree x)
|
||
{
|
||
return is_overloaded_fn (x) == 2;
|
||
}
|
||
|
||
tree
|
||
get_first_fn (tree from)
|
||
{
|
||
gcc_assert (is_overloaded_fn (from));
|
||
/* A baselink is also considered an overloaded function. */
|
||
if (TREE_CODE (from) == COMPONENT_REF)
|
||
from = TREE_OPERAND (from, 1);
|
||
if (BASELINK_P (from))
|
||
from = BASELINK_FUNCTIONS (from);
|
||
return OVL_CURRENT (from);
|
||
}
|
||
|
||
/* Return a new OVL node, concatenating it with the old one. */
|
||
|
||
tree
|
||
ovl_cons (tree decl, tree chain)
|
||
{
|
||
tree result = make_node (OVERLOAD);
|
||
TREE_TYPE (result) = unknown_type_node;
|
||
OVL_FUNCTION (result) = decl;
|
||
TREE_CHAIN (result) = chain;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Build a new overloaded function. If this is the first one,
|
||
just return it; otherwise, ovl_cons the _DECLs */
|
||
|
||
tree
|
||
build_overload (tree decl, tree chain)
|
||
{
|
||
if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
|
||
return decl;
|
||
if (chain && TREE_CODE (chain) != OVERLOAD)
|
||
chain = ovl_cons (chain, NULL_TREE);
|
||
return ovl_cons (decl, chain);
|
||
}
|
||
|
||
|
||
#define PRINT_RING_SIZE 4
|
||
|
||
const char *
|
||
cxx_printable_name (tree decl, int v)
|
||
{
|
||
static tree decl_ring[PRINT_RING_SIZE];
|
||
static char *print_ring[PRINT_RING_SIZE];
|
||
static int ring_counter;
|
||
int i;
|
||
|
||
/* Only cache functions. */
|
||
if (v < 2
|
||
|| TREE_CODE (decl) != FUNCTION_DECL
|
||
|| DECL_LANG_SPECIFIC (decl) == 0)
|
||
return lang_decl_name (decl, v);
|
||
|
||
/* See if this print name is lying around. */
|
||
for (i = 0; i < PRINT_RING_SIZE; i++)
|
||
if (decl_ring[i] == decl)
|
||
/* yes, so return it. */
|
||
return print_ring[i];
|
||
|
||
if (++ring_counter == PRINT_RING_SIZE)
|
||
ring_counter = 0;
|
||
|
||
if (current_function_decl != NULL_TREE)
|
||
{
|
||
if (decl_ring[ring_counter] == current_function_decl)
|
||
ring_counter += 1;
|
||
if (ring_counter == PRINT_RING_SIZE)
|
||
ring_counter = 0;
|
||
gcc_assert (decl_ring[ring_counter] != current_function_decl);
|
||
}
|
||
|
||
if (print_ring[ring_counter])
|
||
free (print_ring[ring_counter]);
|
||
|
||
print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v));
|
||
decl_ring[ring_counter] = decl;
|
||
return print_ring[ring_counter];
|
||
}
|
||
|
||
/* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
|
||
listed in RAISES. */
|
||
|
||
tree
|
||
build_exception_variant (tree type, tree raises)
|
||
{
|
||
tree v = TYPE_MAIN_VARIANT (type);
|
||
int type_quals = TYPE_QUALS (type);
|
||
|
||
for (; v; v = TYPE_NEXT_VARIANT (v))
|
||
if (check_qualified_type (v, type, type_quals)
|
||
&& comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1))
|
||
return v;
|
||
|
||
/* Need to build a new variant. */
|
||
v = build_variant_type_copy (type);
|
||
TYPE_RAISES_EXCEPTIONS (v) = raises;
|
||
return v;
|
||
}
|
||
|
||
/* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
|
||
BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
|
||
arguments. */
|
||
|
||
tree
|
||
bind_template_template_parm (tree t, tree newargs)
|
||
{
|
||
tree decl = TYPE_NAME (t);
|
||
tree t2;
|
||
|
||
t2 = make_aggr_type (BOUND_TEMPLATE_TEMPLATE_PARM);
|
||
decl = build_decl (TYPE_DECL, DECL_NAME (decl), NULL_TREE);
|
||
|
||
/* These nodes have to be created to reflect new TYPE_DECL and template
|
||
arguments. */
|
||
TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
|
||
TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
|
||
TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
|
||
= tree_cons (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t),
|
||
newargs, NULL_TREE);
|
||
|
||
TREE_TYPE (decl) = t2;
|
||
TYPE_NAME (t2) = decl;
|
||
TYPE_STUB_DECL (t2) = decl;
|
||
TYPE_SIZE (t2) = 0;
|
||
|
||
return t2;
|
||
}
|
||
|
||
/* Called from count_trees via walk_tree. */
|
||
|
||
static tree
|
||
count_trees_r (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
++*((int *) data);
|
||
|
||
if (TYPE_P (*tp))
|
||
*walk_subtrees = 0;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Debugging function for measuring the rough complexity of a tree
|
||
representation. */
|
||
|
||
int
|
||
count_trees (tree t)
|
||
{
|
||
int n_trees = 0;
|
||
walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
|
||
return n_trees;
|
||
}
|
||
|
||
/* Called from verify_stmt_tree via walk_tree. */
|
||
|
||
static tree
|
||
verify_stmt_tree_r (tree* tp,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data)
|
||
{
|
||
tree t = *tp;
|
||
htab_t *statements = (htab_t *) data;
|
||
void **slot;
|
||
|
||
if (!STATEMENT_CODE_P (TREE_CODE (t)))
|
||
return NULL_TREE;
|
||
|
||
/* If this statement is already present in the hash table, then
|
||
there is a circularity in the statement tree. */
|
||
gcc_assert (!htab_find (*statements, t));
|
||
|
||
slot = htab_find_slot (*statements, t, INSERT);
|
||
*slot = t;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Debugging function to check that the statement T has not been
|
||
corrupted. For now, this function simply checks that T contains no
|
||
circularities. */
|
||
|
||
void
|
||
verify_stmt_tree (tree t)
|
||
{
|
||
htab_t statements;
|
||
statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
|
||
walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
|
||
htab_delete (statements);
|
||
}
|
||
|
||
/* Check if the type T depends on a type with no linkage and if so, return
|
||
it. If RELAXED_P then do not consider a class type declared within
|
||
a TREE_PUBLIC function to have no linkage. */
|
||
|
||
tree
|
||
no_linkage_check (tree t, bool relaxed_p)
|
||
{
|
||
tree r;
|
||
|
||
/* There's no point in checking linkage on template functions; we
|
||
can't know their complete types. */
|
||
if (processing_template_decl)
|
||
return NULL_TREE;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
tree fn;
|
||
|
||
case RECORD_TYPE:
|
||
if (TYPE_PTRMEMFUNC_P (t))
|
||
goto ptrmem;
|
||
/* Fall through. */
|
||
case UNION_TYPE:
|
||
if (!CLASS_TYPE_P (t))
|
||
return NULL_TREE;
|
||
/* Fall through. */
|
||
case ENUMERAL_TYPE:
|
||
if (TYPE_ANONYMOUS_P (t))
|
||
return t;
|
||
fn = decl_function_context (TYPE_MAIN_DECL (t));
|
||
if (fn && (!relaxed_p || !TREE_PUBLIC (fn)))
|
||
return t;
|
||
return NULL_TREE;
|
||
|
||
case ARRAY_TYPE:
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
return no_linkage_check (TREE_TYPE (t), relaxed_p);
|
||
|
||
case OFFSET_TYPE:
|
||
ptrmem:
|
||
r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
|
||
relaxed_p);
|
||
if (r)
|
||
return r;
|
||
return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
|
||
|
||
case METHOD_TYPE:
|
||
r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p);
|
||
if (r)
|
||
return r;
|
||
/* Fall through. */
|
||
case FUNCTION_TYPE:
|
||
{
|
||
tree parm;
|
||
for (parm = TYPE_ARG_TYPES (t);
|
||
parm && parm != void_list_node;
|
||
parm = TREE_CHAIN (parm))
|
||
{
|
||
r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
|
||
if (r)
|
||
return r;
|
||
}
|
||
return no_linkage_check (TREE_TYPE (t), relaxed_p);
|
||
}
|
||
|
||
default:
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
extern int depth_reached;
|
||
#endif
|
||
|
||
void
|
||
cxx_print_statistics (void)
|
||
{
|
||
print_search_statistics ();
|
||
print_class_statistics ();
|
||
#ifdef GATHER_STATISTICS
|
||
fprintf (stderr, "maximum template instantiation depth reached: %d\n",
|
||
depth_reached);
|
||
#endif
|
||
}
|
||
|
||
/* Return, as an INTEGER_CST node, the number of elements for TYPE
|
||
(which is an ARRAY_TYPE). This counts only elements of the top
|
||
array. */
|
||
|
||
tree
|
||
array_type_nelts_top (tree type)
|
||
{
|
||
return fold_build2 (PLUS_EXPR, sizetype,
|
||
array_type_nelts (type),
|
||
integer_one_node);
|
||
}
|
||
|
||
/* Return, as an INTEGER_CST node, the number of elements for TYPE
|
||
(which is an ARRAY_TYPE). This one is a recursive count of all
|
||
ARRAY_TYPEs that are clumped together. */
|
||
|
||
tree
|
||
array_type_nelts_total (tree type)
|
||
{
|
||
tree sz = array_type_nelts_top (type);
|
||
type = TREE_TYPE (type);
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
tree n = array_type_nelts_top (type);
|
||
sz = fold_build2 (MULT_EXPR, sizetype, sz, n);
|
||
type = TREE_TYPE (type);
|
||
}
|
||
return sz;
|
||
}
|
||
|
||
/* Called from break_out_target_exprs via mapcar. */
|
||
|
||
static tree
|
||
bot_manip (tree* tp, int* walk_subtrees, void* data)
|
||
{
|
||
splay_tree target_remap = ((splay_tree) data);
|
||
tree t = *tp;
|
||
|
||
if (!TYPE_P (t) && TREE_CONSTANT (t))
|
||
{
|
||
/* There can't be any TARGET_EXPRs or their slot variables below
|
||
this point. We used to check !TREE_SIDE_EFFECTS, but then we
|
||
failed to copy an ADDR_EXPR of the slot VAR_DECL. */
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
if (TREE_CODE (t) == TARGET_EXPR)
|
||
{
|
||
tree u;
|
||
|
||
if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
|
||
u = build_cplus_new
|
||
(TREE_TYPE (t), break_out_target_exprs (TREE_OPERAND (t, 1)));
|
||
else
|
||
u = build_target_expr_with_type
|
||
(break_out_target_exprs (TREE_OPERAND (t, 1)), TREE_TYPE (t));
|
||
|
||
/* Map the old variable to the new one. */
|
||
splay_tree_insert (target_remap,
|
||
(splay_tree_key) TREE_OPERAND (t, 0),
|
||
(splay_tree_value) TREE_OPERAND (u, 0));
|
||
|
||
/* Replace the old expression with the new version. */
|
||
*tp = u;
|
||
/* We don't have to go below this point; the recursive call to
|
||
break_out_target_exprs will have handled anything below this
|
||
point. */
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Make a copy of this node. */
|
||
return copy_tree_r (tp, walk_subtrees, NULL);
|
||
}
|
||
|
||
/* Replace all remapped VAR_DECLs in T with their new equivalents.
|
||
DATA is really a splay-tree mapping old variables to new
|
||
variables. */
|
||
|
||
static tree
|
||
bot_replace (tree* t,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data)
|
||
{
|
||
splay_tree target_remap = ((splay_tree) data);
|
||
|
||
if (TREE_CODE (*t) == VAR_DECL)
|
||
{
|
||
splay_tree_node n = splay_tree_lookup (target_remap,
|
||
(splay_tree_key) *t);
|
||
if (n)
|
||
*t = (tree) n->value;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* When we parse a default argument expression, we may create
|
||
temporary variables via TARGET_EXPRs. When we actually use the
|
||
default-argument expression, we make a copy of the expression, but
|
||
we must replace the temporaries with appropriate local versions. */
|
||
|
||
tree
|
||
break_out_target_exprs (tree t)
|
||
{
|
||
static int target_remap_count;
|
||
static splay_tree target_remap;
|
||
|
||
if (!target_remap_count++)
|
||
target_remap = splay_tree_new (splay_tree_compare_pointers,
|
||
/*splay_tree_delete_key_fn=*/NULL,
|
||
/*splay_tree_delete_value_fn=*/NULL);
|
||
walk_tree (&t, bot_manip, target_remap, NULL);
|
||
walk_tree (&t, bot_replace, target_remap, NULL);
|
||
|
||
if (!--target_remap_count)
|
||
{
|
||
splay_tree_delete (target_remap);
|
||
target_remap = NULL;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Similar to `build_nt', but for template definitions of dependent
|
||
expressions */
|
||
|
||
tree
|
||
build_min_nt (enum tree_code code, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
va_start (p, code);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
tree x = va_arg (p, tree);
|
||
TREE_OPERAND (t, i) = x;
|
||
}
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Similar to `build', but for template definitions. */
|
||
|
||
tree
|
||
build_min (enum tree_code code, tree tt, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
va_start (p, tt);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
tree x = va_arg (p, tree);
|
||
TREE_OPERAND (t, i) = x;
|
||
if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
}
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Similar to `build', but for template definitions of non-dependent
|
||
expressions. NON_DEP is the non-dependent expression that has been
|
||
built. */
|
||
|
||
tree
|
||
build_min_non_dep (enum tree_code code, tree non_dep, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
va_start (p, non_dep);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
TREE_TYPE (t) = TREE_TYPE (non_dep);
|
||
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
|
||
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
tree x = va_arg (p, tree);
|
||
TREE_OPERAND (t, i) = x;
|
||
}
|
||
|
||
if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
|
||
/* This should not be considered a COMPOUND_EXPR, because it
|
||
resolves to an overload. */
|
||
COMPOUND_EXPR_OVERLOADED (t) = 1;
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
get_type_decl (tree t)
|
||
{
|
||
if (TREE_CODE (t) == TYPE_DECL)
|
||
return t;
|
||
if (TYPE_P (t))
|
||
return TYPE_STUB_DECL (t);
|
||
gcc_assert (t == error_mark_node);
|
||
return t;
|
||
}
|
||
|
||
/* Returns the namespace that contains DECL, whether directly or
|
||
indirectly. */
|
||
|
||
tree
|
||
decl_namespace_context (tree decl)
|
||
{
|
||
while (1)
|
||
{
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
||
return decl;
|
||
else if (TYPE_P (decl))
|
||
decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
|
||
else
|
||
decl = CP_DECL_CONTEXT (decl);
|
||
}
|
||
}
|
||
|
||
/* Returns true if decl is within an anonymous namespace, however deeply
|
||
nested, or false otherwise. */
|
||
|
||
bool
|
||
decl_anon_ns_mem_p (tree decl)
|
||
{
|
||
while (1)
|
||
{
|
||
if (decl == NULL_TREE || decl == error_mark_node)
|
||
return false;
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL
|
||
&& DECL_NAME (decl) == NULL_TREE)
|
||
return true;
|
||
/* Classes and namespaces inside anonymous namespaces have
|
||
TREE_PUBLIC == 0, so we can shortcut the search. */
|
||
else if (TYPE_P (decl))
|
||
return (TREE_PUBLIC (TYPE_NAME (decl)) == 0);
|
||
else if (TREE_CODE (decl) == NAMESPACE_DECL)
|
||
return (TREE_PUBLIC (decl) == 0);
|
||
else
|
||
decl = DECL_CONTEXT (decl);
|
||
}
|
||
}
|
||
|
||
/* Return truthvalue of whether T1 is the same tree structure as T2.
|
||
Return 1 if they are the same. Return 0 if they are different. */
|
||
|
||
bool
|
||
cp_tree_equal (tree t1, tree t2)
|
||
{
|
||
enum tree_code code1, code2;
|
||
|
||
if (t1 == t2)
|
||
return true;
|
||
if (!t1 || !t2)
|
||
return false;
|
||
|
||
for (code1 = TREE_CODE (t1);
|
||
code1 == NOP_EXPR || code1 == CONVERT_EXPR
|
||
|| code1 == NON_LVALUE_EXPR;
|
||
code1 = TREE_CODE (t1))
|
||
t1 = TREE_OPERAND (t1, 0);
|
||
for (code2 = TREE_CODE (t2);
|
||
code2 == NOP_EXPR || code2 == CONVERT_EXPR
|
||
|| code1 == NON_LVALUE_EXPR;
|
||
code2 = TREE_CODE (t2))
|
||
t2 = TREE_OPERAND (t2, 0);
|
||
|
||
/* They might have become equal now. */
|
||
if (t1 == t2)
|
||
return true;
|
||
|
||
if (code1 != code2)
|
||
return false;
|
||
|
||
switch (code1)
|
||
{
|
||
case INTEGER_CST:
|
||
return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
||
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
|
||
|
||
case REAL_CST:
|
||
return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
|
||
|
||
case STRING_CST:
|
||
return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
|
||
&& !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
||
TREE_STRING_LENGTH (t1));
|
||
|
||
case COMPLEX_CST:
|
||
return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
|
||
&& cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
|
||
|
||
case CONSTRUCTOR:
|
||
/* We need to do this when determining whether or not two
|
||
non-type pointer to member function template arguments
|
||
are the same. */
|
||
if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
|
||
/* The first operand is RTL. */
|
||
&& TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0)))
|
||
return false;
|
||
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case TREE_LIST:
|
||
if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
|
||
return false;
|
||
if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
|
||
return false;
|
||
return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
|
||
|
||
case SAVE_EXPR:
|
||
return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
case CALL_EXPR:
|
||
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
||
return false;
|
||
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case TARGET_EXPR:
|
||
{
|
||
tree o1 = TREE_OPERAND (t1, 0);
|
||
tree o2 = TREE_OPERAND (t2, 0);
|
||
|
||
/* Special case: if either target is an unallocated VAR_DECL,
|
||
it means that it's going to be unified with whatever the
|
||
TARGET_EXPR is really supposed to initialize, so treat it
|
||
as being equivalent to anything. */
|
||
if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (o1))
|
||
/*Nop*/;
|
||
else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (o2))
|
||
/*Nop*/;
|
||
else if (!cp_tree_equal (o1, o2))
|
||
return false;
|
||
|
||
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
}
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
||
return false;
|
||
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
|
||
return false;
|
||
return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case CONST_DECL:
|
||
case FUNCTION_DECL:
|
||
case TEMPLATE_DECL:
|
||
case IDENTIFIER_NODE:
|
||
case SSA_NAME:
|
||
return false;
|
||
|
||
case BASELINK:
|
||
return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
|
||
&& BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
|
||
&& cp_tree_equal (BASELINK_FUNCTIONS (t1),
|
||
BASELINK_FUNCTIONS (t2)));
|
||
|
||
case TEMPLATE_PARM_INDEX:
|
||
return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
|
||
&& TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
|
||
&& same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
|
||
TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
|
||
|
||
case TEMPLATE_ID_EXPR:
|
||
{
|
||
unsigned ix;
|
||
tree vec1, vec2;
|
||
|
||
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
||
return false;
|
||
vec1 = TREE_OPERAND (t1, 1);
|
||
vec2 = TREE_OPERAND (t2, 1);
|
||
|
||
if (!vec1 || !vec2)
|
||
return !vec1 && !vec2;
|
||
|
||
if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2))
|
||
return false;
|
||
|
||
for (ix = TREE_VEC_LENGTH (vec1); ix--;)
|
||
if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix),
|
||
TREE_VEC_ELT (vec2, ix)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
case SIZEOF_EXPR:
|
||
case ALIGNOF_EXPR:
|
||
{
|
||
tree o1 = TREE_OPERAND (t1, 0);
|
||
tree o2 = TREE_OPERAND (t2, 0);
|
||
|
||
if (TREE_CODE (o1) != TREE_CODE (o2))
|
||
return false;
|
||
if (TYPE_P (o1))
|
||
return same_type_p (o1, o2);
|
||
else
|
||
return cp_tree_equal (o1, o2);
|
||
}
|
||
|
||
case PTRMEM_CST:
|
||
/* Two pointer-to-members are the same if they point to the same
|
||
field or function in the same class. */
|
||
if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
|
||
return false;
|
||
|
||
return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
|
||
|
||
case OVERLOAD:
|
||
if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
|
||
return false;
|
||
return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (TREE_CODE_CLASS (code1))
|
||
{
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_expression:
|
||
case tcc_reference:
|
||
case tcc_statement:
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TREE_CODE_LENGTH (code1); ++i)
|
||
if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
case tcc_type:
|
||
return same_type_p (t1, t2);
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
/* We can get here with --disable-checking. */
|
||
return false;
|
||
}
|
||
|
||
/* The type of ARG when used as an lvalue. */
|
||
|
||
tree
|
||
lvalue_type (tree arg)
|
||
{
|
||
tree type = TREE_TYPE (arg);
|
||
return type;
|
||
}
|
||
|
||
/* The type of ARG for printing error messages; denote lvalues with
|
||
reference types. */
|
||
|
||
tree
|
||
error_type (tree arg)
|
||
{
|
||
tree type = TREE_TYPE (arg);
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
;
|
||
else if (TREE_CODE (type) == ERROR_MARK)
|
||
;
|
||
else if (real_lvalue_p (arg))
|
||
type = build_reference_type (lvalue_type (arg));
|
||
else if (IS_AGGR_TYPE (type))
|
||
type = lvalue_type (arg);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Does FUNCTION use a variable-length argument list? */
|
||
|
||
int
|
||
varargs_function_p (tree function)
|
||
{
|
||
tree parm = TYPE_ARG_TYPES (TREE_TYPE (function));
|
||
for (; parm; parm = TREE_CHAIN (parm))
|
||
if (TREE_VALUE (parm) == void_type_node)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Returns 1 if decl is a member of a class. */
|
||
|
||
int
|
||
member_p (tree decl)
|
||
{
|
||
const tree ctx = DECL_CONTEXT (decl);
|
||
return (ctx && TYPE_P (ctx));
|
||
}
|
||
|
||
/* Create a placeholder for member access where we don't actually have an
|
||
object that the access is against. */
|
||
|
||
tree
|
||
build_dummy_object (tree type)
|
||
{
|
||
tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
|
||
return build_indirect_ref (decl, NULL);
|
||
}
|
||
|
||
/* We've gotten a reference to a member of TYPE. Return *this if appropriate,
|
||
or a dummy object otherwise. If BINFOP is non-0, it is filled with the
|
||
binfo path from current_class_type to TYPE, or 0. */
|
||
|
||
tree
|
||
maybe_dummy_object (tree type, tree* binfop)
|
||
{
|
||
tree decl, context;
|
||
tree binfo;
|
||
|
||
if (current_class_type
|
||
&& (binfo = lookup_base (current_class_type, type,
|
||
ba_unique | ba_quiet, NULL)))
|
||
context = current_class_type;
|
||
else
|
||
{
|
||
/* Reference from a nested class member function. */
|
||
context = type;
|
||
binfo = TYPE_BINFO (type);
|
||
}
|
||
|
||
if (binfop)
|
||
*binfop = binfo;
|
||
|
||
if (current_class_ref && context == current_class_type
|
||
/* Kludge: Make sure that current_class_type is actually
|
||
correct. It might not be if we're in the middle of
|
||
tsubst_default_argument. */
|
||
&& same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)),
|
||
current_class_type))
|
||
decl = current_class_ref;
|
||
/* APPLE LOCAL begin radar 6154598 */
|
||
else if (cur_block)
|
||
{
|
||
tree this_copiedin_var = lookup_name (this_identifier);
|
||
gcc_assert (!current_class_ref);
|
||
gcc_assert (this_copiedin_var);
|
||
decl = build_x_arrow (this_copiedin_var);
|
||
}
|
||
/* APPLE LOCAL end radar 6154598 */
|
||
else
|
||
decl = build_dummy_object (context);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Returns 1 if OB is a placeholder object, or a pointer to one. */
|
||
|
||
int
|
||
is_dummy_object (tree ob)
|
||
{
|
||
if (TREE_CODE (ob) == INDIRECT_REF)
|
||
ob = TREE_OPERAND (ob, 0);
|
||
return (TREE_CODE (ob) == NOP_EXPR
|
||
&& TREE_OPERAND (ob, 0) == void_zero_node);
|
||
}
|
||
|
||
/* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
|
||
|
||
int
|
||
pod_type_p (tree t)
|
||
{
|
||
t = strip_array_types (t);
|
||
|
||
if (t == error_mark_node)
|
||
return 1;
|
||
if (INTEGRAL_TYPE_P (t))
|
||
return 1; /* integral, character or enumeral type */
|
||
if (FLOAT_TYPE_P (t))
|
||
return 1;
|
||
if (TYPE_PTR_P (t))
|
||
return 1; /* pointer to non-member */
|
||
if (TYPE_PTR_TO_MEMBER_P (t))
|
||
return 1; /* pointer to member */
|
||
|
||
if (TREE_CODE (t) == VECTOR_TYPE)
|
||
return 1; /* vectors are (small) arrays of scalars */
|
||
|
||
if (! CLASS_TYPE_P (t))
|
||
return 0; /* other non-class type (reference or function) */
|
||
if (CLASSTYPE_NON_POD_P (t))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Nonzero iff type T is a class template implicit specialization. */
|
||
|
||
bool
|
||
class_tmpl_impl_spec_p (tree t)
|
||
{
|
||
return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
|
||
}
|
||
|
||
/* Returns 1 iff zero initialization of type T means actually storing
|
||
zeros in it. */
|
||
|
||
int
|
||
zero_init_p (tree t)
|
||
{
|
||
t = strip_array_types (t);
|
||
|
||
if (t == error_mark_node)
|
||
return 1;
|
||
|
||
/* NULL pointers to data members are initialized with -1. */
|
||
if (TYPE_PTRMEM_P (t))
|
||
return 0;
|
||
|
||
/* Classes that contain types that can't be zero-initialized, cannot
|
||
be zero-initialized themselves. */
|
||
if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Table of valid C++ attributes. */
|
||
const struct attribute_spec cxx_attribute_table[] =
|
||
{
|
||
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
{ "java_interface", 0, 0, false, false, false, handle_java_interface_attribute },
|
||
{ "com_interface", 0, 0, false, false, false, handle_com_interface_attribute },
|
||
{ "init_priority", 1, 1, true, false, false, handle_init_priority_attribute },
|
||
{ NULL, 0, 0, false, false, false, NULL }
|
||
};
|
||
|
||
/* Handle a "java_interface" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
static tree
|
||
handle_java_interface_attribute (tree* node,
|
||
tree name,
|
||
tree args ATTRIBUTE_UNUSED ,
|
||
int flags,
|
||
bool* no_add_attrs)
|
||
{
|
||
if (DECL_P (*node)
|
||
|| !CLASS_TYPE_P (*node)
|
||
|| !TYPE_FOR_JAVA (*node))
|
||
{
|
||
error ("%qE attribute can only be applied to Java class definitions",
|
||
name);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*node = build_variant_type_copy (*node);
|
||
TYPE_JAVA_INTERFACE (*node) = 1;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "com_interface" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
static tree
|
||
handle_com_interface_attribute (tree* node,
|
||
tree name,
|
||
tree args ATTRIBUTE_UNUSED ,
|
||
int flags ATTRIBUTE_UNUSED ,
|
||
bool* no_add_attrs)
|
||
{
|
||
static int warned;
|
||
|
||
*no_add_attrs = true;
|
||
|
||
if (DECL_P (*node)
|
||
|| !CLASS_TYPE_P (*node)
|
||
|| *node != TYPE_MAIN_VARIANT (*node))
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute can only be applied "
|
||
"to class definitions", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (!warned++)
|
||
warning (0, "%qE is obsolete; g++ vtables are now COM-compatible by default",
|
||
name);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle an "init_priority" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
static tree
|
||
handle_init_priority_attribute (tree* node,
|
||
tree name,
|
||
tree args,
|
||
int flags ATTRIBUTE_UNUSED ,
|
||
bool* no_add_attrs)
|
||
{
|
||
tree initp_expr = TREE_VALUE (args);
|
||
tree decl = *node;
|
||
tree type = TREE_TYPE (decl);
|
||
int pri;
|
||
|
||
STRIP_NOPS (initp_expr);
|
||
|
||
if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
|
||
{
|
||
error ("requested init_priority is not an integer constant");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
pri = TREE_INT_CST_LOW (initp_expr);
|
||
|
||
type = strip_array_types (type);
|
||
|
||
if (decl == NULL_TREE
|
||
|| TREE_CODE (decl) != VAR_DECL
|
||
|| !TREE_STATIC (decl)
|
||
|| DECL_EXTERNAL (decl)
|
||
|| (TREE_CODE (type) != RECORD_TYPE
|
||
&& TREE_CODE (type) != UNION_TYPE)
|
||
/* Static objects in functions are initialized the
|
||
first time control passes through that
|
||
function. This is not precise enough to pin down an
|
||
init_priority value, so don't allow it. */
|
||
|| current_function_decl)
|
||
{
|
||
error ("can only use %qE attribute on file-scope definitions "
|
||
"of objects of class type", name);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (pri > MAX_INIT_PRIORITY || pri <= 0)
|
||
{
|
||
error ("requested init_priority is out of range");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Check for init_priorities that are reserved for
|
||
language and runtime support implementations.*/
|
||
if (pri <= MAX_RESERVED_INIT_PRIORITY)
|
||
{
|
||
warning
|
||
(0, "requested init_priority is reserved for internal use");
|
||
}
|
||
|
||
if (SUPPORTS_INIT_PRIORITY)
|
||
{
|
||
SET_DECL_INIT_PRIORITY (decl, pri);
|
||
DECL_HAS_INIT_PRIORITY_P (decl) = 1;
|
||
return NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
error ("%qE attribute is not supported on this platform", name);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
|
||
thing pointed to by the constant. */
|
||
|
||
tree
|
||
make_ptrmem_cst (tree type, tree member)
|
||
{
|
||
tree ptrmem_cst = make_node (PTRMEM_CST);
|
||
TREE_TYPE (ptrmem_cst) = type;
|
||
PTRMEM_CST_MEMBER (ptrmem_cst) = member;
|
||
return ptrmem_cst;
|
||
}
|
||
|
||
/* Build a variant of TYPE that has the indicated ATTRIBUTES. May
|
||
return an existing type of an appropriate type already exists. */
|
||
|
||
tree
|
||
cp_build_type_attribute_variant (tree type, tree attributes)
|
||
{
|
||
tree new_type;
|
||
|
||
new_type = build_type_attribute_variant (type, attributes);
|
||
if (TREE_CODE (new_type) == FUNCTION_TYPE
|
||
&& (TYPE_RAISES_EXCEPTIONS (new_type)
|
||
!= TYPE_RAISES_EXCEPTIONS (type)))
|
||
new_type = build_exception_variant (new_type,
|
||
TYPE_RAISES_EXCEPTIONS (type));
|
||
|
||
/* Making a new main variant of a class type is broken. */
|
||
gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
|
||
|
||
return new_type;
|
||
}
|
||
|
||
/* Apply FUNC to all language-specific sub-trees of TP in a pre-order
|
||
traversal. Called from walk_tree. */
|
||
|
||
tree
|
||
cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
|
||
void *data, struct pointer_set_t *pset)
|
||
{
|
||
enum tree_code code = TREE_CODE (*tp);
|
||
location_t save_locus;
|
||
tree result;
|
||
|
||
#define WALK_SUBTREE(NODE) \
|
||
do \
|
||
{ \
|
||
result = walk_tree (&(NODE), func, data, pset); \
|
||
if (result) goto out; \
|
||
} \
|
||
while (0)
|
||
|
||
/* Set input_location here so we get the right instantiation context
|
||
if we call instantiate_decl from inlinable_function_p. */
|
||
save_locus = input_location;
|
||
if (EXPR_HAS_LOCATION (*tp))
|
||
input_location = EXPR_LOCATION (*tp);
|
||
|
||
/* Not one of the easy cases. We must explicitly go through the
|
||
children. */
|
||
result = NULL_TREE;
|
||
switch (code)
|
||
{
|
||
case DEFAULT_ARG:
|
||
case TEMPLATE_TEMPLATE_PARM:
|
||
case BOUND_TEMPLATE_TEMPLATE_PARM:
|
||
case UNBOUND_CLASS_TEMPLATE:
|
||
case TEMPLATE_PARM_INDEX:
|
||
case TEMPLATE_TYPE_PARM:
|
||
case TYPENAME_TYPE:
|
||
case TYPEOF_TYPE:
|
||
case BASELINK:
|
||
/* None of these have subtrees other than those already walked
|
||
above. */
|
||
*walk_subtrees_p = 0;
|
||
break;
|
||
|
||
case TINST_LEVEL:
|
||
WALK_SUBTREE (TINST_DECL (*tp));
|
||
*walk_subtrees_p = 0;
|
||
break;
|
||
|
||
case PTRMEM_CST:
|
||
WALK_SUBTREE (TREE_TYPE (*tp));
|
||
*walk_subtrees_p = 0;
|
||
break;
|
||
|
||
case TREE_LIST:
|
||
WALK_SUBTREE (TREE_PURPOSE (*tp));
|
||
break;
|
||
|
||
case OVERLOAD:
|
||
WALK_SUBTREE (OVL_FUNCTION (*tp));
|
||
WALK_SUBTREE (OVL_CHAIN (*tp));
|
||
*walk_subtrees_p = 0;
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
if (TYPE_PTRMEMFUNC_P (*tp))
|
||
WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
|
||
break;
|
||
|
||
default:
|
||
input_location = save_locus;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* We didn't find what we were looking for. */
|
||
out:
|
||
input_location = save_locus;
|
||
return result;
|
||
|
||
#undef WALK_SUBTREE
|
||
}
|
||
|
||
/* Decide whether there are language-specific reasons to not inline a
|
||
function as a tree. */
|
||
|
||
int
|
||
cp_cannot_inline_tree_fn (tree* fnp)
|
||
{
|
||
tree fn = *fnp;
|
||
|
||
/* We can inline a template instantiation only if it's fully
|
||
instantiated. */
|
||
if (DECL_TEMPLATE_INFO (fn)
|
||
&& TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
|
||
{
|
||
/* Don't instantiate functions that are not going to be
|
||
inlined. */
|
||
if (!DECL_INLINE (DECL_TEMPLATE_RESULT
|
||
(template_for_substitution (fn))))
|
||
return 1;
|
||
|
||
fn = *fnp = instantiate_decl (fn, /*defer_ok=*/0, /*undefined_ok=*/0);
|
||
|
||
if (TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
|
||
return 1;
|
||
}
|
||
|
||
if (flag_really_no_inline
|
||
&& lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) == NULL)
|
||
return 1;
|
||
|
||
/* Don't auto-inline functions that might be replaced at link-time
|
||
with an alternative definition. */
|
||
if (!DECL_DECLARED_INLINE_P (fn) && DECL_REPLACEABLE_P (fn))
|
||
{
|
||
DECL_UNINLINABLE (fn) = 1;
|
||
return 1;
|
||
}
|
||
|
||
if (varargs_function_p (fn))
|
||
{
|
||
DECL_UNINLINABLE (fn) = 1;
|
||
return 1;
|
||
}
|
||
|
||
if (! function_attribute_inlinable_p (fn))
|
||
{
|
||
DECL_UNINLINABLE (fn) = 1;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Add any pending functions other than the current function (already
|
||
handled by the caller), that thus cannot be inlined, to FNS_P, then
|
||
return the latest function added to the array, PREV_FN. */
|
||
|
||
tree
|
||
cp_add_pending_fn_decls (void* fns_p, tree prev_fn)
|
||
{
|
||
varray_type *fnsp = (varray_type *)fns_p;
|
||
struct saved_scope *s;
|
||
|
||
for (s = scope_chain; s; s = s->prev)
|
||
if (s->function_decl && s->function_decl != prev_fn)
|
||
{
|
||
VARRAY_PUSH_TREE (*fnsp, s->function_decl);
|
||
prev_fn = s->function_decl;
|
||
}
|
||
|
||
return prev_fn;
|
||
}
|
||
|
||
/* Determine whether VAR is a declaration of an automatic variable in
|
||
function FN. */
|
||
|
||
int
|
||
cp_auto_var_in_fn_p (tree var, tree fn)
|
||
{
|
||
return (DECL_P (var) && DECL_CONTEXT (var) == fn
|
||
&& nonstatic_local_decl_p (var));
|
||
}
|
||
|
||
/* Like save_expr, but for C++. */
|
||
|
||
tree
|
||
cp_save_expr (tree expr)
|
||
{
|
||
/* There is no reason to create a SAVE_EXPR within a template; if
|
||
needed, we can create the SAVE_EXPR when instantiating the
|
||
template. Furthermore, the middle-end cannot handle C++-specific
|
||
tree codes. */
|
||
if (processing_template_decl)
|
||
return expr;
|
||
return save_expr (expr);
|
||
}
|
||
|
||
/* Initialize tree.c. */
|
||
|
||
void
|
||
init_tree (void)
|
||
{
|
||
list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
|
||
}
|
||
|
||
/* Returns the kind of special function that DECL (a FUNCTION_DECL)
|
||
is. Note that sfk_none is zero, so this function can be used as a
|
||
predicate to test whether or not DECL is a special function. */
|
||
|
||
special_function_kind
|
||
special_function_p (tree decl)
|
||
{
|
||
/* Rather than doing all this stuff with magic names, we should
|
||
probably have a field of type `special_function_kind' in
|
||
DECL_LANG_SPECIFIC. */
|
||
if (DECL_COPY_CONSTRUCTOR_P (decl))
|
||
return sfk_copy_constructor;
|
||
if (DECL_CONSTRUCTOR_P (decl))
|
||
return sfk_constructor;
|
||
if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
|
||
return sfk_assignment_operator;
|
||
if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
|
||
return sfk_destructor;
|
||
if (DECL_COMPLETE_DESTRUCTOR_P (decl))
|
||
return sfk_complete_destructor;
|
||
if (DECL_BASE_DESTRUCTOR_P (decl))
|
||
return sfk_base_destructor;
|
||
if (DECL_DELETING_DESTRUCTOR_P (decl))
|
||
return sfk_deleting_destructor;
|
||
if (DECL_CONV_FN_P (decl))
|
||
return sfk_conversion;
|
||
|
||
return sfk_none;
|
||
}
|
||
|
||
/* Returns nonzero if TYPE is a character type, including wchar_t. */
|
||
|
||
int
|
||
char_type_p (tree type)
|
||
{
|
||
return (same_type_p (type, char_type_node)
|
||
|| same_type_p (type, unsigned_char_type_node)
|
||
|| same_type_p (type, signed_char_type_node)
|
||
|| same_type_p (type, wchar_type_node));
|
||
}
|
||
|
||
/* Returns the kind of linkage associated with the indicated DECL. Th
|
||
value returned is as specified by the language standard; it is
|
||
independent of implementation details regarding template
|
||
instantiation, etc. For example, it is possible that a declaration
|
||
to which this function assigns external linkage would not show up
|
||
as a global symbol when you run `nm' on the resulting object file. */
|
||
|
||
linkage_kind
|
||
decl_linkage (tree decl)
|
||
{
|
||
/* This function doesn't attempt to calculate the linkage from first
|
||
principles as given in [basic.link]. Instead, it makes use of
|
||
the fact that we have already set TREE_PUBLIC appropriately, and
|
||
then handles a few special cases. Ideally, we would calculate
|
||
linkage first, and then transform that into a concrete
|
||
implementation. */
|
||
|
||
/* Things that don't have names have no linkage. */
|
||
if (!DECL_NAME (decl))
|
||
return lk_none;
|
||
|
||
/* Things that are TREE_PUBLIC have external linkage. */
|
||
if (TREE_PUBLIC (decl))
|
||
return lk_external;
|
||
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
||
return lk_external;
|
||
|
||
/* Linkage of a CONST_DECL depends on the linkage of the enumeration
|
||
type. */
|
||
if (TREE_CODE (decl) == CONST_DECL)
|
||
return decl_linkage (TYPE_NAME (TREE_TYPE (decl)));
|
||
|
||
/* Some things that are not TREE_PUBLIC have external linkage, too.
|
||
For example, on targets that don't have weak symbols, we make all
|
||
template instantiations have internal linkage (in the object
|
||
file), but the symbols should still be treated as having external
|
||
linkage from the point of view of the language. */
|
||
if (TREE_CODE (decl) != TYPE_DECL && DECL_LANG_SPECIFIC (decl)
|
||
&& DECL_COMDAT (decl))
|
||
return lk_external;
|
||
|
||
/* Things in local scope do not have linkage, if they don't have
|
||
TREE_PUBLIC set. */
|
||
if (decl_function_context (decl))
|
||
return lk_none;
|
||
|
||
/* Members of the anonymous namespace also have TREE_PUBLIC unset, but
|
||
are considered to have external linkage for language purposes. DECLs
|
||
really meant to have internal linkage have DECL_THIS_STATIC set. */
|
||
if (TREE_CODE (decl) == TYPE_DECL
|
||
|| ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)
|
||
&& !DECL_THIS_STATIC (decl)))
|
||
return lk_external;
|
||
|
||
/* Everything else has internal linkage. */
|
||
return lk_internal;
|
||
}
|
||
|
||
/* EXP is an expression that we want to pre-evaluate. Returns (in
|
||
*INITP) an expression that will perform the pre-evaluation. The
|
||
value returned by this function is a side-effect free expression
|
||
equivalent to the pre-evaluated expression. Callers must ensure
|
||
that *INITP is evaluated before EXP. */
|
||
|
||
tree
|
||
stabilize_expr (tree exp, tree* initp)
|
||
{
|
||
tree init_expr;
|
||
|
||
if (!TREE_SIDE_EFFECTS (exp))
|
||
init_expr = NULL_TREE;
|
||
else if (!real_lvalue_p (exp)
|
||
|| !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp)))
|
||
{
|
||
init_expr = get_target_expr (exp);
|
||
exp = TARGET_EXPR_SLOT (init_expr);
|
||
}
|
||
else
|
||
{
|
||
exp = build_unary_op (ADDR_EXPR, exp, 1);
|
||
init_expr = get_target_expr (exp);
|
||
exp = TARGET_EXPR_SLOT (init_expr);
|
||
exp = build_indirect_ref (exp, 0);
|
||
}
|
||
*initp = init_expr;
|
||
|
||
gcc_assert (!TREE_SIDE_EFFECTS (exp));
|
||
return exp;
|
||
}
|
||
|
||
/* Add NEW, an expression whose value we don't care about, after the
|
||
similar expression ORIG. */
|
||
|
||
tree
|
||
add_stmt_to_compound (tree orig, tree new)
|
||
{
|
||
if (!new || !TREE_SIDE_EFFECTS (new))
|
||
return orig;
|
||
if (!orig || !TREE_SIDE_EFFECTS (orig))
|
||
return new;
|
||
return build2 (COMPOUND_EXPR, void_type_node, orig, new);
|
||
}
|
||
|
||
/* Like stabilize_expr, but for a call whose arguments we want to
|
||
pre-evaluate. CALL is modified in place to use the pre-evaluated
|
||
arguments, while, upon return, *INITP contains an expression to
|
||
compute the arguments. */
|
||
|
||
void
|
||
stabilize_call (tree call, tree *initp)
|
||
{
|
||
tree inits = NULL_TREE;
|
||
tree t;
|
||
|
||
if (call == error_mark_node)
|
||
return;
|
||
|
||
gcc_assert (TREE_CODE (call) == CALL_EXPR
|
||
|| TREE_CODE (call) == AGGR_INIT_EXPR);
|
||
|
||
for (t = TREE_OPERAND (call, 1); t; t = TREE_CHAIN (t))
|
||
if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
|
||
{
|
||
tree init;
|
||
TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
|
||
inits = add_stmt_to_compound (inits, init);
|
||
}
|
||
|
||
*initp = inits;
|
||
}
|
||
|
||
/* Like stabilize_expr, but for an initialization.
|
||
|
||
If the initialization is for an object of class type, this function
|
||
takes care not to introduce additional temporaries.
|
||
|
||
Returns TRUE iff the expression was successfully pre-evaluated,
|
||
i.e., if INIT is now side-effect free, except for, possible, a
|
||
single call to a constructor. */
|
||
|
||
bool
|
||
stabilize_init (tree init, tree *initp)
|
||
{
|
||
tree t = init;
|
||
|
||
*initp = NULL_TREE;
|
||
|
||
if (t == error_mark_node)
|
||
return true;
|
||
|
||
if (TREE_CODE (t) == INIT_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR)
|
||
{
|
||
TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp);
|
||
return true;
|
||
}
|
||
|
||
if (TREE_CODE (t) == INIT_EXPR)
|
||
t = TREE_OPERAND (t, 1);
|
||
if (TREE_CODE (t) == TARGET_EXPR)
|
||
t = TARGET_EXPR_INITIAL (t);
|
||
if (TREE_CODE (t) == COMPOUND_EXPR)
|
||
t = expr_last (t);
|
||
if (TREE_CODE (t) == CONSTRUCTOR
|
||
&& EMPTY_CONSTRUCTOR_P (t))
|
||
/* Default-initialization. */
|
||
return true;
|
||
|
||
/* If the initializer is a COND_EXPR, we can't preevaluate
|
||
anything. */
|
||
if (TREE_CODE (t) == COND_EXPR)
|
||
return false;
|
||
|
||
if (TREE_CODE (t) == CALL_EXPR
|
||
|| TREE_CODE (t) == AGGR_INIT_EXPR)
|
||
{
|
||
stabilize_call (t, initp);
|
||
return true;
|
||
}
|
||
|
||
/* The initialization is being performed via a bitwise copy -- and
|
||
the item copied may have side effects. */
|
||
return TREE_SIDE_EFFECTS (init);
|
||
}
|
||
|
||
/* Like "fold", but should be used whenever we might be processing the
|
||
body of a template. */
|
||
|
||
tree
|
||
fold_if_not_in_template (tree expr)
|
||
{
|
||
/* In the body of a template, there is never any need to call
|
||
"fold". We will call fold later when actually instantiating the
|
||
template. Integral constant expressions in templates will be
|
||
evaluated via fold_non_dependent_expr, as necessary. */
|
||
if (processing_template_decl)
|
||
return expr;
|
||
|
||
/* Fold C++ front-end specific tree codes. */
|
||
if (TREE_CODE (expr) == UNARY_PLUS_EXPR)
|
||
return fold_convert (TREE_TYPE (expr), TREE_OPERAND (expr, 0));
|
||
|
||
return fold (expr);
|
||
}
|
||
|
||
/* Returns true if a cast to TYPE may appear in an integral constant
|
||
expression. */
|
||
|
||
bool
|
||
cast_valid_in_integral_constant_expression_p (tree type)
|
||
{
|
||
return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
|
||
|| dependent_type_p (type)
|
||
|| type == error_mark_node);
|
||
}
|
||
|
||
|
||
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
||
/* Complain that some language-specific thing hanging off a tree
|
||
node has been accessed improperly. */
|
||
|
||
void
|
||
lang_check_failed (const char* file, int line, const char* function)
|
||
{
|
||
internal_error ("lang_* check: failed in %s, at %s:%d",
|
||
function, trim_filename (file), line);
|
||
}
|
||
#endif /* ENABLE_TREE_CHECKING */
|
||
|
||
#include "gt-cp-tree.h"
|