mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-27 11:55:06 +00:00
237fdd787b
after each SYSINIT() macro invocation. This makes a number of lightweight C parsers much happier with the FreeBSD kernel source, including cflow's prcc and lxr. MFC after: 1 month Discussed with: imp, rink
628 lines
16 KiB
C
628 lines
16 KiB
C
/*
|
|
* Copyright (c) 1999-2005 Apple Computer, Inc.
|
|
* Copyright (c) 2006-2007 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/ipc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/ucred.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/un.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <bsm/audit.h>
|
|
#include <bsm/audit_internal.h>
|
|
#include <bsm/audit_kevents.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
#include <security/audit/audit_private.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
static uma_zone_t audit_record_zone;
|
|
static MALLOC_DEFINE(M_AUDITCRED, "audit_cred", "Audit cred storage");
|
|
MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
|
|
MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
|
|
MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
|
|
|
|
SYSCTL_NODE(_security, OID_AUTO, audit, CTLFLAG_RW, 0,
|
|
"TrustedBSD audit controls");
|
|
|
|
/*
|
|
* Audit control settings that are set/read by system calls and are hence
|
|
* non-static.
|
|
*
|
|
* Define the audit control flags.
|
|
*/
|
|
int audit_enabled;
|
|
int audit_suspended;
|
|
|
|
/*
|
|
* Flags controlling behavior in low storage situations. Should we panic if
|
|
* a write fails? Should we fail stop if we're out of disk space?
|
|
*/
|
|
int audit_panic_on_write_fail;
|
|
int audit_fail_stop;
|
|
int audit_argv;
|
|
int audit_arge;
|
|
|
|
/*
|
|
* Are we currently "failing stop" due to out of disk space?
|
|
*/
|
|
int audit_in_failure;
|
|
|
|
/*
|
|
* Global audit statistics.
|
|
*/
|
|
struct audit_fstat audit_fstat;
|
|
|
|
/*
|
|
* Preselection mask for non-attributable events.
|
|
*/
|
|
struct au_mask audit_nae_mask;
|
|
|
|
/*
|
|
* Mutex to protect global variables shared between various threads and
|
|
* processes.
|
|
*/
|
|
struct mtx audit_mtx;
|
|
|
|
/*
|
|
* Queue of audit records ready for delivery to disk. We insert new records
|
|
* at the tail, and remove records from the head. Also, a count of the
|
|
* number of records used for checking queue depth. In addition, a counter
|
|
* of records that we have allocated but are not yet in the queue, which is
|
|
* needed to estimate the total size of the combined set of records
|
|
* outstanding in the system.
|
|
*/
|
|
struct kaudit_queue audit_q;
|
|
int audit_q_len;
|
|
int audit_pre_q_len;
|
|
|
|
/*
|
|
* Audit queue control settings (minimum free, low/high water marks, etc.)
|
|
*/
|
|
struct au_qctrl audit_qctrl;
|
|
|
|
/*
|
|
* Condition variable to signal to the worker that it has work to do: either
|
|
* new records are in the queue, or a log replacement is taking place.
|
|
*/
|
|
struct cv audit_worker_cv;
|
|
|
|
/*
|
|
* Condition variable to flag when crossing the low watermark, meaning that
|
|
* threads blocked due to hitting the high watermark can wake up and continue
|
|
* to commit records.
|
|
*/
|
|
struct cv audit_watermark_cv;
|
|
|
|
/*
|
|
* Condition variable for auditing threads wait on when in fail-stop mode.
|
|
* Threads wait on this CV forever (and ever), never seeing the light of day
|
|
* again.
|
|
*/
|
|
static struct cv audit_fail_cv;
|
|
|
|
/*
|
|
* Construct an audit record for the passed thread.
|
|
*/
|
|
static int
|
|
audit_record_ctor(void *mem, int size, void *arg, int flags)
|
|
{
|
|
struct kaudit_record *ar;
|
|
struct thread *td;
|
|
|
|
KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size"));
|
|
|
|
td = arg;
|
|
ar = mem;
|
|
bzero(ar, sizeof(*ar));
|
|
ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
|
|
nanotime(&ar->k_ar.ar_starttime);
|
|
|
|
/*
|
|
* Export the subject credential.
|
|
*/
|
|
cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred);
|
|
ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid;
|
|
ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid;
|
|
ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0];
|
|
ar->k_ar.ar_subj_auid = td->td_ucred->cr_audit.ai_auid;
|
|
ar->k_ar.ar_subj_asid = td->td_ucred->cr_audit.ai_asid;
|
|
ar->k_ar.ar_subj_pid = td->td_proc->p_pid;
|
|
ar->k_ar.ar_subj_amask = td->td_ucred->cr_audit.ai_mask;
|
|
ar->k_ar.ar_subj_term_addr = td->td_ucred->cr_audit.ai_termid;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
audit_record_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct kaudit_record *ar;
|
|
|
|
KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size"));
|
|
|
|
ar = mem;
|
|
if (ar->k_ar.ar_arg_upath1 != NULL)
|
|
free(ar->k_ar.ar_arg_upath1, M_AUDITPATH);
|
|
if (ar->k_ar.ar_arg_upath2 != NULL)
|
|
free(ar->k_ar.ar_arg_upath2, M_AUDITPATH);
|
|
if (ar->k_ar.ar_arg_text != NULL)
|
|
free(ar->k_ar.ar_arg_text, M_AUDITTEXT);
|
|
if (ar->k_udata != NULL)
|
|
free(ar->k_udata, M_AUDITDATA);
|
|
if (ar->k_ar.ar_arg_argv != NULL)
|
|
free(ar->k_ar.ar_arg_argv, M_AUDITTEXT);
|
|
if (ar->k_ar.ar_arg_envv != NULL)
|
|
free(ar->k_ar.ar_arg_envv, M_AUDITTEXT);
|
|
}
|
|
|
|
/*
|
|
* Initialize the Audit subsystem: configuration state, work queue,
|
|
* synchronization primitives, worker thread, and trigger device node. Also
|
|
* call into the BSM assembly code to initialize it.
|
|
*/
|
|
static void
|
|
audit_init(void)
|
|
{
|
|
|
|
audit_enabled = 0;
|
|
audit_suspended = 0;
|
|
audit_panic_on_write_fail = 0;
|
|
audit_fail_stop = 0;
|
|
audit_in_failure = 0;
|
|
audit_argv = 0;
|
|
audit_arge = 0;
|
|
|
|
audit_fstat.af_filesz = 0; /* '0' means unset, unbounded. */
|
|
audit_fstat.af_currsz = 0;
|
|
audit_nae_mask.am_success = 0;
|
|
audit_nae_mask.am_failure = 0;
|
|
|
|
TAILQ_INIT(&audit_q);
|
|
audit_q_len = 0;
|
|
audit_pre_q_len = 0;
|
|
audit_qctrl.aq_hiwater = AQ_HIWATER;
|
|
audit_qctrl.aq_lowater = AQ_LOWATER;
|
|
audit_qctrl.aq_bufsz = AQ_BUFSZ;
|
|
audit_qctrl.aq_minfree = AU_FS_MINFREE;
|
|
|
|
mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
|
|
cv_init(&audit_worker_cv, "audit_worker_cv");
|
|
cv_init(&audit_watermark_cv, "audit_watermark_cv");
|
|
cv_init(&audit_fail_cv, "audit_fail_cv");
|
|
|
|
audit_record_zone = uma_zcreate("audit_record",
|
|
sizeof(struct kaudit_record), audit_record_ctor,
|
|
audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
|
|
/* Initialize the BSM audit subsystem. */
|
|
kau_init();
|
|
|
|
audit_trigger_init();
|
|
|
|
/* Register shutdown handler. */
|
|
EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL,
|
|
SHUTDOWN_PRI_FIRST);
|
|
|
|
/* Start audit worker thread. */
|
|
audit_worker_init();
|
|
}
|
|
|
|
SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL);
|
|
|
|
/*
|
|
* Drain the audit queue and close the log at shutdown. Note that this can
|
|
* be called both from the system shutdown path and also from audit
|
|
* configuration syscalls, so 'arg' and 'howto' are ignored.
|
|
*/
|
|
void
|
|
audit_shutdown(void *arg, int howto)
|
|
{
|
|
|
|
audit_rotate_vnode(NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Return the current thread's audit record, if any.
|
|
*/
|
|
struct kaudit_record *
|
|
currecord(void)
|
|
{
|
|
|
|
return (curthread->td_ar);
|
|
}
|
|
|
|
/*
|
|
* XXXAUDIT: There are a number of races present in the code below due to
|
|
* release and re-grab of the mutex. The code should be revised to become
|
|
* slightly less racy.
|
|
*
|
|
* XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
|
|
* pre_q space, suspending the system call until there is room?
|
|
*/
|
|
struct kaudit_record *
|
|
audit_new(int event, struct thread *td)
|
|
{
|
|
struct kaudit_record *ar;
|
|
int no_record;
|
|
|
|
mtx_lock(&audit_mtx);
|
|
no_record = (audit_suspended || !audit_enabled);
|
|
mtx_unlock(&audit_mtx);
|
|
if (no_record)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Note: the number of outstanding uncommitted audit records is
|
|
* limited to the number of concurrent threads servicing system calls
|
|
* in the kernel.
|
|
*/
|
|
ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK);
|
|
ar->k_ar.ar_event = event;
|
|
|
|
mtx_lock(&audit_mtx);
|
|
audit_pre_q_len++;
|
|
mtx_unlock(&audit_mtx);
|
|
|
|
return (ar);
|
|
}
|
|
|
|
void
|
|
audit_free(struct kaudit_record *ar)
|
|
{
|
|
|
|
uma_zfree(audit_record_zone, ar);
|
|
}
|
|
|
|
void
|
|
audit_commit(struct kaudit_record *ar, int error, int retval)
|
|
{
|
|
au_event_t event;
|
|
au_class_t class;
|
|
au_id_t auid;
|
|
int sorf;
|
|
struct au_mask *aumask;
|
|
|
|
if (ar == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Decide whether to commit the audit record by checking the error
|
|
* value from the system call and using the appropriate audit mask.
|
|
*/
|
|
if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID)
|
|
aumask = &audit_nae_mask;
|
|
else
|
|
aumask = &ar->k_ar.ar_subj_amask;
|
|
|
|
if (error)
|
|
sorf = AU_PRS_FAILURE;
|
|
else
|
|
sorf = AU_PRS_SUCCESS;
|
|
|
|
switch(ar->k_ar.ar_event) {
|
|
case AUE_OPEN_RWTC:
|
|
/*
|
|
* The open syscall always writes a AUE_OPEN_RWTC event;
|
|
* change it to the proper type of event based on the flags
|
|
* and the error value.
|
|
*/
|
|
ar->k_ar.ar_event = audit_flags_and_error_to_openevent(
|
|
ar->k_ar.ar_arg_fflags, error);
|
|
break;
|
|
|
|
case AUE_SYSCTL:
|
|
ar->k_ar.ar_event = audit_ctlname_to_sysctlevent(
|
|
ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
|
|
break;
|
|
|
|
case AUE_AUDITON:
|
|
/* Convert the auditon() command to an event. */
|
|
ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
|
|
break;
|
|
}
|
|
|
|
auid = ar->k_ar.ar_subj_auid;
|
|
event = ar->k_ar.ar_event;
|
|
class = au_event_class(event);
|
|
|
|
ar->k_ar_commit |= AR_COMMIT_KERNEL;
|
|
if (au_preselect(event, class, aumask, sorf) != 0)
|
|
ar->k_ar_commit |= AR_PRESELECT_TRAIL;
|
|
if (audit_pipe_preselect(auid, event, class, sorf,
|
|
ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0)
|
|
ar->k_ar_commit |= AR_PRESELECT_PIPE;
|
|
if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE |
|
|
AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE)) == 0) {
|
|
mtx_lock(&audit_mtx);
|
|
audit_pre_q_len--;
|
|
mtx_unlock(&audit_mtx);
|
|
audit_free(ar);
|
|
return;
|
|
}
|
|
|
|
ar->k_ar.ar_errno = error;
|
|
ar->k_ar.ar_retval = retval;
|
|
nanotime(&ar->k_ar.ar_endtime);
|
|
|
|
/*
|
|
* Note: it could be that some records initiated while audit was
|
|
* enabled should still be committed?
|
|
*/
|
|
mtx_lock(&audit_mtx);
|
|
if (audit_suspended || !audit_enabled) {
|
|
audit_pre_q_len--;
|
|
mtx_unlock(&audit_mtx);
|
|
audit_free(ar);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Constrain the number of committed audit records based on the
|
|
* configurable parameter.
|
|
*/
|
|
while (audit_q_len >= audit_qctrl.aq_hiwater)
|
|
cv_wait(&audit_watermark_cv, &audit_mtx);
|
|
|
|
TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
|
|
audit_q_len++;
|
|
audit_pre_q_len--;
|
|
cv_signal(&audit_worker_cv);
|
|
mtx_unlock(&audit_mtx);
|
|
}
|
|
|
|
/*
|
|
* audit_syscall_enter() is called on entry to each system call. It is
|
|
* responsible for deciding whether or not to audit the call (preselection),
|
|
* and if so, allocating a per-thread audit record. audit_new() will fill in
|
|
* basic thread/credential properties.
|
|
*/
|
|
void
|
|
audit_syscall_enter(unsigned short code, struct thread *td)
|
|
{
|
|
struct au_mask *aumask;
|
|
au_class_t class;
|
|
au_event_t event;
|
|
au_id_t auid;
|
|
|
|
KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
|
|
|
|
/*
|
|
* In FreeBSD, each ABI has its own system call table, and hence
|
|
* mapping of system call codes to audit events. Convert the code to
|
|
* an audit event identifier using the process system call table
|
|
* reference. In Darwin, there's only one, so we use the global
|
|
* symbol for the system call table. No audit record is generated
|
|
* for bad system calls, as no operation has been performed.
|
|
*/
|
|
if (code >= td->td_proc->p_sysent->sv_size)
|
|
return;
|
|
|
|
event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
|
|
if (event == AUE_NULL)
|
|
return;
|
|
|
|
/*
|
|
* Check which audit mask to use; either the kernel non-attributable
|
|
* event mask or the process audit mask.
|
|
*/
|
|
auid = td->td_ucred->cr_audit.ai_auid;
|
|
if (auid == AU_DEFAUDITID)
|
|
aumask = &audit_nae_mask;
|
|
else
|
|
aumask = &td->td_ucred->cr_audit.ai_mask;
|
|
|
|
/*
|
|
* Allocate an audit record, if preselection allows it, and store in
|
|
* the thread for later use.
|
|
*/
|
|
class = au_event_class(event);
|
|
if (au_preselect(event, class, aumask, AU_PRS_BOTH)) {
|
|
/*
|
|
* If we're out of space and need to suspend unprivileged
|
|
* processes, do that here rather than trying to allocate
|
|
* another audit record.
|
|
*
|
|
* Note: we might wish to be able to continue here in the
|
|
* future, if the system recovers. That should be possible
|
|
* by means of checking the condition in a loop around
|
|
* cv_wait(). It might be desirable to reevaluate whether an
|
|
* audit record is still required for this event by
|
|
* re-calling au_preselect().
|
|
*/
|
|
if (audit_in_failure &&
|
|
priv_check(td, PRIV_AUDIT_FAILSTOP) != 0) {
|
|
cv_wait(&audit_fail_cv, &audit_mtx);
|
|
panic("audit_failing_stop: thread continued");
|
|
}
|
|
td->td_ar = audit_new(event, td);
|
|
} else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0))
|
|
td->td_ar = audit_new(event, td);
|
|
else
|
|
td->td_ar = NULL;
|
|
}
|
|
|
|
/*
|
|
* audit_syscall_exit() is called from the return of every system call, or in
|
|
* the event of exit1(), during the execution of exit1(). It is responsible
|
|
* for committing the audit record, if any, along with return condition.
|
|
*/
|
|
void
|
|
audit_syscall_exit(int error, struct thread *td)
|
|
{
|
|
int retval;
|
|
|
|
/*
|
|
* Commit the audit record as desired; once we pass the record into
|
|
* audit_commit(), the memory is owned by the audit subsystem. The
|
|
* return value from the system call is stored on the user thread.
|
|
* If there was an error, the return value is set to -1, imitating
|
|
* the behavior of the cerror routine.
|
|
*/
|
|
if (error)
|
|
retval = -1;
|
|
else
|
|
retval = td->td_retval[0];
|
|
|
|
audit_commit(td->td_ar, error, retval);
|
|
td->td_ar = NULL;
|
|
}
|
|
|
|
void
|
|
audit_cred_copy(struct ucred *src, struct ucred *dest)
|
|
{
|
|
|
|
bcopy(&src->cr_audit, &dest->cr_audit, sizeof(dest->cr_audit));
|
|
}
|
|
|
|
void
|
|
audit_cred_destroy(struct ucred *cred)
|
|
{
|
|
|
|
}
|
|
|
|
void
|
|
audit_cred_init(struct ucred *cred)
|
|
{
|
|
|
|
bzero(&cred->cr_audit, sizeof(cred->cr_audit));
|
|
}
|
|
|
|
/*
|
|
* Initialize audit information for the first kernel process (proc 0) and for
|
|
* the first user process (init).
|
|
*/
|
|
void
|
|
audit_cred_kproc0(struct ucred *cred)
|
|
{
|
|
|
|
cred->cr_audit.ai_auid = AU_DEFAUDITID;
|
|
cred->cr_audit.ai_termid.at_type = AU_IPv4;
|
|
}
|
|
|
|
void
|
|
audit_cred_proc1(struct ucred *cred)
|
|
{
|
|
|
|
cred->cr_audit.ai_auid = AU_DEFAUDITID;
|
|
cred->cr_audit.ai_termid.at_type = AU_IPv4;
|
|
}
|
|
|
|
void
|
|
audit_thread_alloc(struct thread *td)
|
|
{
|
|
|
|
td->td_ar = NULL;
|
|
}
|
|
|
|
void
|
|
audit_thread_free(struct thread *td)
|
|
{
|
|
|
|
KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL"));
|
|
}
|
|
|
|
void
|
|
audit_proc_coredump(struct thread *td, char *path, int errcode)
|
|
{
|
|
struct kaudit_record *ar;
|
|
struct au_mask *aumask;
|
|
au_class_t class;
|
|
int ret, sorf;
|
|
char **pathp;
|
|
au_id_t auid;
|
|
|
|
ret = 0;
|
|
|
|
/*
|
|
* Make sure we are using the correct preselection mask.
|
|
*/
|
|
auid = td->td_ucred->cr_audit.ai_auid;
|
|
if (auid == AU_DEFAUDITID)
|
|
aumask = &audit_nae_mask;
|
|
else
|
|
aumask = &td->td_ucred->cr_audit.ai_mask;
|
|
/*
|
|
* It's possible for coredump(9) generation to fail. Make sure that
|
|
* we handle this case correctly for preselection.
|
|
*/
|
|
if (errcode != 0)
|
|
sorf = AU_PRS_FAILURE;
|
|
else
|
|
sorf = AU_PRS_SUCCESS;
|
|
class = au_event_class(AUE_CORE);
|
|
if (au_preselect(AUE_CORE, class, aumask, sorf) == 0)
|
|
return;
|
|
/*
|
|
* If we are interested in seeing this audit record, allocate it.
|
|
* Where possible coredump records should contain a pathname and arg32
|
|
* (signal) tokens.
|
|
*/
|
|
ar = audit_new(AUE_CORE, td);
|
|
if (path != NULL) {
|
|
pathp = &ar->k_ar.ar_arg_upath1;
|
|
*pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK);
|
|
audit_canon_path(td, path, *pathp);
|
|
ARG_SET_VALID(ar, ARG_UPATH1);
|
|
}
|
|
ar->k_ar.ar_arg_signum = td->td_proc->p_sig;
|
|
ARG_SET_VALID(ar, ARG_SIGNUM);
|
|
if (errcode != 0)
|
|
ret = 1;
|
|
audit_commit(ar, errcode, ret);
|
|
}
|