mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-29 12:03:03 +00:00
37814395c1
- no longer serialize on Giant for thread_single*() and family in fork, exit and exec - thread_wait() is mpsafe, assert no Giant - reduce scope of Giant in exit to not cover thread_wait and just do vm_waitproc(). - assert that thread_single() family are not called with Giant - remove the DROP/PICKUP_GIANT macros from thread_single() family - assert that thread_suspend_check() s not called with Giant - remove manual drop_giant hack in thread_suspend_check since we know it isn't held. - remove the DROP/PICKUP_GIANT macros from thread_suspend_check() family - mark kse_create() mpsafe
2129 lines
52 KiB
C
2129 lines
52 KiB
C
/*
|
|
* Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer as
|
|
* the first lines of this file unmodified other than the possible
|
|
* addition of one or more copyright notices.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/turnstile.h>
|
|
#include <sys/user.h>
|
|
#include <sys/kse.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/ucontext.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <machine/frame.h>
|
|
|
|
/*
|
|
* KSEGRP related storage.
|
|
*/
|
|
static uma_zone_t ksegrp_zone;
|
|
static uma_zone_t kse_zone;
|
|
static uma_zone_t thread_zone;
|
|
static uma_zone_t upcall_zone;
|
|
|
|
/* DEBUG ONLY */
|
|
SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
|
|
static int thread_debug = 0;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
|
|
&thread_debug, 0, "thread debug");
|
|
|
|
static int max_threads_per_proc = 150;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
|
|
&max_threads_per_proc, 0, "Limit on threads per proc");
|
|
|
|
static int max_groups_per_proc = 50;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
|
|
&max_groups_per_proc, 0, "Limit on thread groups per proc");
|
|
|
|
static int max_threads_hits;
|
|
SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
|
|
&max_threads_hits, 0, "");
|
|
|
|
static int virtual_cpu;
|
|
|
|
#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
|
|
|
|
TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
|
|
TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses);
|
|
TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
|
|
TAILQ_HEAD(, kse_upcall) zombie_upcalls =
|
|
TAILQ_HEAD_INITIALIZER(zombie_upcalls);
|
|
struct mtx kse_zombie_lock;
|
|
MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
|
|
|
|
static void kse_purge(struct proc *p, struct thread *td);
|
|
static void kse_purge_group(struct thread *td);
|
|
static int thread_update_usr_ticks(struct thread *td, int user);
|
|
static void thread_alloc_spare(struct thread *td, struct thread *spare);
|
|
|
|
static int
|
|
sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, new_val;
|
|
int def_val;
|
|
|
|
#ifdef SMP
|
|
def_val = mp_ncpus;
|
|
#else
|
|
def_val = 1;
|
|
#endif
|
|
if (virtual_cpu == 0)
|
|
new_val = def_val;
|
|
else
|
|
new_val = virtual_cpu;
|
|
error = sysctl_handle_int(oidp, &new_val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (new_val < 0)
|
|
return (EINVAL);
|
|
virtual_cpu = new_val;
|
|
return (0);
|
|
}
|
|
|
|
/* DEBUG ONLY */
|
|
SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
|
|
0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
|
|
"debug virtual cpus");
|
|
|
|
/*
|
|
* Prepare a thread for use.
|
|
*/
|
|
static void
|
|
thread_ctor(void *mem, int size, void *arg)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
td->td_state = TDS_INACTIVE;
|
|
td->td_oncpu = NOCPU;
|
|
td->td_critnest = 1;
|
|
}
|
|
|
|
/*
|
|
* Reclaim a thread after use.
|
|
*/
|
|
static void
|
|
thread_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
|
|
#ifdef INVARIANTS
|
|
/* Verify that this thread is in a safe state to free. */
|
|
switch (td->td_state) {
|
|
case TDS_INHIBITED:
|
|
case TDS_RUNNING:
|
|
case TDS_CAN_RUN:
|
|
case TDS_RUNQ:
|
|
/*
|
|
* We must never unlink a thread that is in one of
|
|
* these states, because it is currently active.
|
|
*/
|
|
panic("bad state for thread unlinking");
|
|
/* NOTREACHED */
|
|
case TDS_INACTIVE:
|
|
break;
|
|
default:
|
|
panic("bad thread state");
|
|
/* NOTREACHED */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Initialize type-stable parts of a thread (when newly created).
|
|
*/
|
|
static void
|
|
thread_init(void *mem, int size)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
vm_thread_new(td, 0);
|
|
cpu_thread_setup(td);
|
|
td->td_sleepqueue = sleepq_alloc();
|
|
td->td_turnstile = turnstile_alloc();
|
|
td->td_sched = (struct td_sched *)&td[1];
|
|
}
|
|
|
|
/*
|
|
* Tear down type-stable parts of a thread (just before being discarded).
|
|
*/
|
|
static void
|
|
thread_fini(void *mem, int size)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = (struct thread *)mem;
|
|
turnstile_free(td->td_turnstile);
|
|
sleepq_free(td->td_sleepqueue);
|
|
vm_thread_dispose(td);
|
|
}
|
|
|
|
/*
|
|
* Initialize type-stable parts of a kse (when newly created).
|
|
*/
|
|
static void
|
|
kse_init(void *mem, int size)
|
|
{
|
|
struct kse *ke;
|
|
|
|
ke = (struct kse *)mem;
|
|
ke->ke_sched = (struct ke_sched *)&ke[1];
|
|
}
|
|
|
|
/*
|
|
* Initialize type-stable parts of a ksegrp (when newly created).
|
|
*/
|
|
static void
|
|
ksegrp_init(void *mem, int size)
|
|
{
|
|
struct ksegrp *kg;
|
|
|
|
kg = (struct ksegrp *)mem;
|
|
kg->kg_sched = (struct kg_sched *)&kg[1];
|
|
}
|
|
|
|
/*
|
|
* KSE is linked into kse group.
|
|
*/
|
|
void
|
|
kse_link(struct kse *ke, struct ksegrp *kg)
|
|
{
|
|
struct proc *p = kg->kg_proc;
|
|
|
|
TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
|
|
kg->kg_kses++;
|
|
ke->ke_state = KES_UNQUEUED;
|
|
ke->ke_proc = p;
|
|
ke->ke_ksegrp = kg;
|
|
ke->ke_thread = NULL;
|
|
ke->ke_oncpu = NOCPU;
|
|
ke->ke_flags = 0;
|
|
}
|
|
|
|
void
|
|
kse_unlink(struct kse *ke)
|
|
{
|
|
struct ksegrp *kg;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
kg = ke->ke_ksegrp;
|
|
TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
|
|
if (ke->ke_state == KES_IDLE) {
|
|
TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
|
|
kg->kg_idle_kses--;
|
|
}
|
|
--kg->kg_kses;
|
|
/*
|
|
* Aggregate stats from the KSE
|
|
*/
|
|
kse_stash(ke);
|
|
}
|
|
|
|
void
|
|
ksegrp_link(struct ksegrp *kg, struct proc *p)
|
|
{
|
|
|
|
TAILQ_INIT(&kg->kg_threads);
|
|
TAILQ_INIT(&kg->kg_runq); /* links with td_runq */
|
|
TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */
|
|
TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */
|
|
TAILQ_INIT(&kg->kg_iq); /* all idle kses in ksegrp */
|
|
TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */
|
|
kg->kg_proc = p;
|
|
/*
|
|
* the following counters are in the -zero- section
|
|
* and may not need clearing
|
|
*/
|
|
kg->kg_numthreads = 0;
|
|
kg->kg_runnable = 0;
|
|
kg->kg_kses = 0;
|
|
kg->kg_runq_kses = 0; /* XXXKSE change name */
|
|
kg->kg_idle_kses = 0;
|
|
kg->kg_numupcalls = 0;
|
|
/* link it in now that it's consistent */
|
|
p->p_numksegrps++;
|
|
TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
|
|
}
|
|
|
|
void
|
|
ksegrp_unlink(struct ksegrp *kg)
|
|
{
|
|
struct proc *p;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
|
|
KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses"));
|
|
KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
|
|
|
|
p = kg->kg_proc;
|
|
TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
|
|
p->p_numksegrps--;
|
|
/*
|
|
* Aggregate stats from the KSE
|
|
*/
|
|
ksegrp_stash(kg);
|
|
}
|
|
|
|
struct kse_upcall *
|
|
upcall_alloc(void)
|
|
{
|
|
struct kse_upcall *ku;
|
|
|
|
ku = uma_zalloc(upcall_zone, M_WAITOK);
|
|
bzero(ku, sizeof(*ku));
|
|
return (ku);
|
|
}
|
|
|
|
void
|
|
upcall_free(struct kse_upcall *ku)
|
|
{
|
|
|
|
uma_zfree(upcall_zone, ku);
|
|
}
|
|
|
|
void
|
|
upcall_link(struct kse_upcall *ku, struct ksegrp *kg)
|
|
{
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link);
|
|
ku->ku_ksegrp = kg;
|
|
kg->kg_numupcalls++;
|
|
}
|
|
|
|
void
|
|
upcall_unlink(struct kse_upcall *ku)
|
|
{
|
|
struct ksegrp *kg = ku->ku_ksegrp;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__));
|
|
TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link);
|
|
kg->kg_numupcalls--;
|
|
upcall_stash(ku);
|
|
}
|
|
|
|
void
|
|
upcall_remove(struct thread *td)
|
|
{
|
|
|
|
if (td->td_upcall) {
|
|
td->td_upcall->ku_owner = NULL;
|
|
upcall_unlink(td->td_upcall);
|
|
td->td_upcall = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For a newly created process,
|
|
* link up all the structures and its initial threads etc.
|
|
*/
|
|
void
|
|
proc_linkup(struct proc *p, struct ksegrp *kg,
|
|
struct kse *ke, struct thread *td)
|
|
{
|
|
|
|
TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */
|
|
TAILQ_INIT(&p->p_threads); /* all threads in proc */
|
|
TAILQ_INIT(&p->p_suspended); /* Threads suspended */
|
|
p->p_numksegrps = 0;
|
|
p->p_numthreads = 0;
|
|
|
|
ksegrp_link(kg, p);
|
|
kse_link(ke, kg);
|
|
thread_link(td, kg);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct kse_switchin_args {
|
|
const struct __mcontext *mcp;
|
|
long val;
|
|
long *loc;
|
|
};
|
|
#endif
|
|
|
|
int
|
|
kse_switchin(struct thread *td, struct kse_switchin_args *uap)
|
|
{
|
|
mcontext_t mc;
|
|
int error;
|
|
|
|
error = (uap->mcp == NULL) ? EINVAL : 0;
|
|
if (!error)
|
|
error = copyin(uap->mcp, &mc, sizeof(mc));
|
|
if (!error && uap->loc != NULL)
|
|
error = (suword(uap->loc, uap->val) != 0) ? EINVAL : 0;
|
|
if (!error)
|
|
error = set_mcontext(td, &mc);
|
|
return ((error == 0) ? EJUSTRETURN : error);
|
|
}
|
|
|
|
/*
|
|
struct kse_thr_interrupt_args {
|
|
struct kse_thr_mailbox * tmbx;
|
|
int cmd;
|
|
long data;
|
|
};
|
|
*/
|
|
int
|
|
kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td2;
|
|
|
|
p = td->td_proc;
|
|
|
|
if (!(p->p_flag & P_SA))
|
|
return (EINVAL);
|
|
|
|
switch (uap->cmd) {
|
|
case KSE_INTR_SENDSIG:
|
|
if (uap->data < 0 || uap->data > _SIG_MAXSIG)
|
|
return (EINVAL);
|
|
case KSE_INTR_INTERRUPT:
|
|
case KSE_INTR_RESTART:
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
FOREACH_THREAD_IN_PROC(p, td2) {
|
|
if (td2->td_mailbox == uap->tmbx)
|
|
break;
|
|
}
|
|
if (td2 == NULL) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
return (ESRCH);
|
|
}
|
|
if (uap->cmd == KSE_INTR_SENDSIG) {
|
|
if (uap->data > 0) {
|
|
td2->td_flags &= ~TDF_INTERRUPT;
|
|
mtx_unlock_spin(&sched_lock);
|
|
tdsignal(td2, (int)uap->data, SIGTARGET_TD);
|
|
} else {
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
} else {
|
|
td2->td_flags |= TDF_INTERRUPT | TDF_ASTPENDING;
|
|
if (TD_CAN_UNBIND(td2))
|
|
td2->td_upcall->ku_flags |= KUF_DOUPCALL;
|
|
if (uap->cmd == KSE_INTR_INTERRUPT)
|
|
td2->td_intrval = EINTR;
|
|
else
|
|
td2->td_intrval = ERESTART;
|
|
if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR))
|
|
sleepq_abort(td2);
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
case KSE_INTR_SIGEXIT:
|
|
if (uap->data < 1 || uap->data > _SIG_MAXSIG)
|
|
return (EINVAL);
|
|
PROC_LOCK(p);
|
|
sigexit(td, (int)uap->data);
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
struct kse_exit_args {
|
|
register_t dummy;
|
|
};
|
|
*/
|
|
int
|
|
kse_exit(struct thread *td, struct kse_exit_args *uap)
|
|
{
|
|
struct proc *p;
|
|
struct ksegrp *kg;
|
|
struct kse *ke;
|
|
struct kse_upcall *ku, *ku2;
|
|
int error, count;
|
|
|
|
p = td->td_proc;
|
|
if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
|
|
return (EINVAL);
|
|
kg = td->td_ksegrp;
|
|
count = 0;
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
FOREACH_UPCALL_IN_GROUP(kg, ku2) {
|
|
if (ku2->ku_flags & KUF_EXITING)
|
|
count++;
|
|
}
|
|
if ((kg->kg_numupcalls - count) == 1 &&
|
|
(kg->kg_numthreads > 1)) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
return (EDEADLK);
|
|
}
|
|
ku->ku_flags |= KUF_EXITING;
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
error = suword(&ku->ku_mailbox->km_flags, ku->ku_mflags|KMF_DONE);
|
|
PROC_LOCK(p);
|
|
if (error)
|
|
psignal(p, SIGSEGV);
|
|
mtx_lock_spin(&sched_lock);
|
|
upcall_remove(td);
|
|
ke = td->td_kse;
|
|
if (p->p_numthreads == 1) {
|
|
kse_purge(p, td);
|
|
p->p_flag &= ~P_SA;
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
} else {
|
|
if (kg->kg_numthreads == 1) { /* Shutdown a group */
|
|
kse_purge_group(td);
|
|
ke->ke_flags |= KEF_EXIT;
|
|
}
|
|
thread_stopped(p);
|
|
thread_exit();
|
|
/* NOTREACHED */
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Either becomes an upcall or waits for an awakening event and
|
|
* then becomes an upcall. Only error cases return.
|
|
*/
|
|
/*
|
|
struct kse_release_args {
|
|
struct timespec *timeout;
|
|
};
|
|
*/
|
|
int
|
|
kse_release(struct thread *td, struct kse_release_args *uap)
|
|
{
|
|
struct proc *p;
|
|
struct ksegrp *kg;
|
|
struct kse_upcall *ku;
|
|
struct timespec timeout;
|
|
struct timeval tv;
|
|
sigset_t sigset;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
kg = td->td_ksegrp;
|
|
if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
|
|
return (EINVAL);
|
|
if (uap->timeout != NULL) {
|
|
if ((error = copyin(uap->timeout, &timeout, sizeof(timeout))))
|
|
return (error);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &timeout);
|
|
}
|
|
if (td->td_flags & TDF_SA)
|
|
td->td_pflags |= TDP_UPCALLING;
|
|
else {
|
|
ku->ku_mflags = fuword(&ku->ku_mailbox->km_flags);
|
|
if (ku->ku_mflags == -1) {
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGSEGV);
|
|
}
|
|
}
|
|
PROC_LOCK(p);
|
|
if (ku->ku_mflags & KMF_WAITSIGEVENT) {
|
|
/* UTS wants to wait for signal event */
|
|
if (!(p->p_flag & P_SIGEVENT) && !(ku->ku_flags & KUF_DOUPCALL))
|
|
error = msleep(&p->p_siglist, &p->p_mtx, PPAUSE|PCATCH,
|
|
"ksesigwait", (uap->timeout ? tvtohz(&tv) : 0));
|
|
p->p_flag &= ~P_SIGEVENT;
|
|
sigset = p->p_siglist;
|
|
PROC_UNLOCK(p);
|
|
error = copyout(&sigset, &ku->ku_mailbox->km_sigscaught,
|
|
sizeof(sigset));
|
|
} else {
|
|
if (! kg->kg_completed && !(ku->ku_flags & KUF_DOUPCALL)) {
|
|
kg->kg_upsleeps++;
|
|
error = msleep(&kg->kg_completed, &p->p_mtx,
|
|
PPAUSE|PCATCH, "kserel",
|
|
(uap->timeout ? tvtohz(&tv) : 0));
|
|
kg->kg_upsleeps--;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
if (ku->ku_flags & KUF_DOUPCALL) {
|
|
mtx_lock_spin(&sched_lock);
|
|
ku->ku_flags &= ~KUF_DOUPCALL;
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* struct kse_wakeup_args {
|
|
struct kse_mailbox *mbx;
|
|
}; */
|
|
int
|
|
kse_wakeup(struct thread *td, struct kse_wakeup_args *uap)
|
|
{
|
|
struct proc *p;
|
|
struct ksegrp *kg;
|
|
struct kse_upcall *ku;
|
|
struct thread *td2;
|
|
|
|
p = td->td_proc;
|
|
td2 = NULL;
|
|
ku = NULL;
|
|
/* KSE-enabled processes only, please. */
|
|
if (!(p->p_flag & P_SA))
|
|
return (EINVAL);
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
if (uap->mbx) {
|
|
FOREACH_KSEGRP_IN_PROC(p, kg) {
|
|
FOREACH_UPCALL_IN_GROUP(kg, ku) {
|
|
if (ku->ku_mailbox == uap->mbx)
|
|
break;
|
|
}
|
|
if (ku)
|
|
break;
|
|
}
|
|
} else {
|
|
kg = td->td_ksegrp;
|
|
if (kg->kg_upsleeps) {
|
|
wakeup_one(&kg->kg_completed);
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
ku = TAILQ_FIRST(&kg->kg_upcalls);
|
|
}
|
|
if (ku) {
|
|
if ((td2 = ku->ku_owner) == NULL) {
|
|
panic("%s: no owner", __func__);
|
|
} else if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) &&
|
|
((td2->td_wchan == &kg->kg_completed) ||
|
|
(td2->td_wchan == &p->p_siglist &&
|
|
(ku->ku_mflags & KMF_WAITSIGEVENT)))) {
|
|
sleepq_abort(td2);
|
|
} else {
|
|
ku->ku_flags |= KUF_DOUPCALL;
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
return (ESRCH);
|
|
}
|
|
|
|
/*
|
|
* No new KSEG: first call: use current KSE, don't schedule an upcall
|
|
* All other situations, do allocate max new KSEs and schedule an upcall.
|
|
*/
|
|
/* struct kse_create_args {
|
|
struct kse_mailbox *mbx;
|
|
int newgroup;
|
|
}; */
|
|
int
|
|
kse_create(struct thread *td, struct kse_create_args *uap)
|
|
{
|
|
struct kse *newke;
|
|
struct ksegrp *newkg;
|
|
struct ksegrp *kg;
|
|
struct proc *p;
|
|
struct kse_mailbox mbx;
|
|
struct kse_upcall *newku;
|
|
int err, ncpus, sa = 0, first = 0;
|
|
struct thread *newtd;
|
|
|
|
p = td->td_proc;
|
|
if ((err = copyin(uap->mbx, &mbx, sizeof(mbx))))
|
|
return (err);
|
|
|
|
/* Too bad, why hasn't kernel always a cpu counter !? */
|
|
#ifdef SMP
|
|
ncpus = mp_ncpus;
|
|
#else
|
|
ncpus = 1;
|
|
#endif
|
|
if (virtual_cpu != 0)
|
|
ncpus = virtual_cpu;
|
|
if (!(mbx.km_flags & KMF_BOUND))
|
|
sa = TDF_SA;
|
|
else
|
|
ncpus = 1;
|
|
PROC_LOCK(p);
|
|
if (!(p->p_flag & P_SA)) {
|
|
first = 1;
|
|
p->p_flag |= P_SA;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
if (!sa && !uap->newgroup && !first)
|
|
return (EINVAL);
|
|
kg = td->td_ksegrp;
|
|
if (uap->newgroup) {
|
|
/* Have race condition but it is cheap */
|
|
if (p->p_numksegrps >= max_groups_per_proc)
|
|
return (EPROCLIM);
|
|
/*
|
|
* If we want a new KSEGRP it doesn't matter whether
|
|
* we have already fired up KSE mode before or not.
|
|
* We put the process in KSE mode and create a new KSEGRP.
|
|
*/
|
|
newkg = ksegrp_alloc();
|
|
bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp,
|
|
kg_startzero, kg_endzero));
|
|
bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
|
|
RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
if (p->p_numksegrps >= max_groups_per_proc) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
ksegrp_free(newkg);
|
|
return (EPROCLIM);
|
|
}
|
|
ksegrp_link(newkg, p);
|
|
sched_fork_ksegrp(kg, newkg);
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
} else {
|
|
if (!first && ((td->td_flags & TDF_SA) ^ sa) != 0)
|
|
return (EINVAL);
|
|
newkg = kg;
|
|
}
|
|
|
|
/*
|
|
* Creating upcalls more than number of physical cpu does
|
|
* not help performance.
|
|
*/
|
|
if (newkg->kg_numupcalls >= ncpus)
|
|
return (EPROCLIM);
|
|
|
|
if (newkg->kg_numupcalls == 0) {
|
|
/*
|
|
* Initialize KSE group
|
|
*
|
|
* For multiplxed group, create KSEs as many as physical
|
|
* cpus. This increases concurrent even if userland
|
|
* is not MP safe and can only run on single CPU.
|
|
* In ideal world, every physical cpu should execute a thread.
|
|
* If there is enough KSEs, threads in kernel can be
|
|
* executed parallel on different cpus with full speed,
|
|
* Concurrent in kernel shouldn't be restricted by number of
|
|
* upcalls userland provides. Adding more upcall structures
|
|
* only increases concurrent in userland.
|
|
*
|
|
* For bound thread group, because there is only thread in the
|
|
* group, we only create one KSE for the group. Thread in this
|
|
* kind of group will never schedule an upcall when blocked,
|
|
* this intends to simulate pthread system scope thread.
|
|
*/
|
|
while (newkg->kg_kses < ncpus) {
|
|
newke = kse_alloc();
|
|
bzero(&newke->ke_startzero, RANGEOF(struct kse,
|
|
ke_startzero, ke_endzero));
|
|
#if 0
|
|
mtx_lock_spin(&sched_lock);
|
|
bcopy(&ke->ke_startcopy, &newke->ke_startcopy,
|
|
RANGEOF(struct kse, ke_startcopy, ke_endcopy));
|
|
mtx_unlock_spin(&sched_lock);
|
|
#endif
|
|
mtx_lock_spin(&sched_lock);
|
|
kse_link(newke, newkg);
|
|
sched_fork_kse(td->td_kse, newke);
|
|
/* Add engine */
|
|
kse_reassign(newke);
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
}
|
|
newku = upcall_alloc();
|
|
newku->ku_mailbox = uap->mbx;
|
|
newku->ku_func = mbx.km_func;
|
|
bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t));
|
|
|
|
/* For the first call this may not have been set */
|
|
if (td->td_standin == NULL)
|
|
thread_alloc_spare(td, NULL);
|
|
|
|
PROC_LOCK(p);
|
|
if (newkg->kg_numupcalls >= ncpus) {
|
|
PROC_UNLOCK(p);
|
|
upcall_free(newku);
|
|
return (EPROCLIM);
|
|
}
|
|
if (first && sa) {
|
|
SIGSETOR(p->p_siglist, td->td_siglist);
|
|
SIGEMPTYSET(td->td_siglist);
|
|
SIGFILLSET(td->td_sigmask);
|
|
SIG_CANTMASK(td->td_sigmask);
|
|
}
|
|
mtx_lock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
upcall_link(newku, newkg);
|
|
if (mbx.km_quantum)
|
|
newkg->kg_upquantum = max(1, mbx.km_quantum/tick);
|
|
|
|
/*
|
|
* Each upcall structure has an owner thread, find which
|
|
* one owns it.
|
|
*/
|
|
if (uap->newgroup) {
|
|
/*
|
|
* Because new ksegrp hasn't thread,
|
|
* create an initial upcall thread to own it.
|
|
*/
|
|
newtd = thread_schedule_upcall(td, newku);
|
|
} else {
|
|
/*
|
|
* If current thread hasn't an upcall structure,
|
|
* just assign the upcall to it.
|
|
*/
|
|
if (td->td_upcall == NULL) {
|
|
newku->ku_owner = td;
|
|
td->td_upcall = newku;
|
|
newtd = td;
|
|
} else {
|
|
/*
|
|
* Create a new upcall thread to own it.
|
|
*/
|
|
newtd = thread_schedule_upcall(td, newku);
|
|
}
|
|
}
|
|
if (!sa) {
|
|
newtd->td_mailbox = mbx.km_curthread;
|
|
newtd->td_flags &= ~TDF_SA;
|
|
if (newtd != td) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
cpu_set_upcall_kse(newtd, newku);
|
|
mtx_lock_spin(&sched_lock);
|
|
}
|
|
} else {
|
|
newtd->td_flags |= TDF_SA;
|
|
}
|
|
if (newtd != td)
|
|
setrunqueue(newtd);
|
|
mtx_unlock_spin(&sched_lock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize global thread allocation resources.
|
|
*/
|
|
void
|
|
threadinit(void)
|
|
{
|
|
|
|
thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
|
|
thread_ctor, thread_dtor, thread_init, thread_fini,
|
|
UMA_ALIGN_CACHE, 0);
|
|
ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
|
|
NULL, NULL, ksegrp_init, NULL,
|
|
UMA_ALIGN_CACHE, 0);
|
|
kse_zone = uma_zcreate("KSE", sched_sizeof_kse(),
|
|
NULL, NULL, kse_init, NULL,
|
|
UMA_ALIGN_CACHE, 0);
|
|
upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
|
|
}
|
|
|
|
/*
|
|
* Stash an embarasingly extra thread into the zombie thread queue.
|
|
*/
|
|
void
|
|
thread_stash(struct thread *td)
|
|
{
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
}
|
|
|
|
/*
|
|
* Stash an embarasingly extra kse into the zombie kse queue.
|
|
*/
|
|
void
|
|
kse_stash(struct kse *ke)
|
|
{
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
}
|
|
|
|
/*
|
|
* Stash an embarasingly extra upcall into the zombie upcall queue.
|
|
*/
|
|
|
|
void
|
|
upcall_stash(struct kse_upcall *ku)
|
|
{
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
}
|
|
|
|
/*
|
|
* Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
|
|
*/
|
|
void
|
|
ksegrp_stash(struct ksegrp *kg)
|
|
{
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
}
|
|
|
|
/*
|
|
* Reap zombie kse resource.
|
|
*/
|
|
void
|
|
thread_reap(void)
|
|
{
|
|
struct thread *td_first, *td_next;
|
|
struct kse *ke_first, *ke_next;
|
|
struct ksegrp *kg_first, * kg_next;
|
|
struct kse_upcall *ku_first, *ku_next;
|
|
|
|
/*
|
|
* Don't even bother to lock if none at this instant,
|
|
* we really don't care about the next instant..
|
|
*/
|
|
if ((!TAILQ_EMPTY(&zombie_threads))
|
|
|| (!TAILQ_EMPTY(&zombie_kses))
|
|
|| (!TAILQ_EMPTY(&zombie_ksegrps))
|
|
|| (!TAILQ_EMPTY(&zombie_upcalls))) {
|
|
mtx_lock_spin(&kse_zombie_lock);
|
|
td_first = TAILQ_FIRST(&zombie_threads);
|
|
ke_first = TAILQ_FIRST(&zombie_kses);
|
|
kg_first = TAILQ_FIRST(&zombie_ksegrps);
|
|
ku_first = TAILQ_FIRST(&zombie_upcalls);
|
|
if (td_first)
|
|
TAILQ_INIT(&zombie_threads);
|
|
if (ke_first)
|
|
TAILQ_INIT(&zombie_kses);
|
|
if (kg_first)
|
|
TAILQ_INIT(&zombie_ksegrps);
|
|
if (ku_first)
|
|
TAILQ_INIT(&zombie_upcalls);
|
|
mtx_unlock_spin(&kse_zombie_lock);
|
|
while (td_first) {
|
|
td_next = TAILQ_NEXT(td_first, td_runq);
|
|
if (td_first->td_ucred)
|
|
crfree(td_first->td_ucred);
|
|
thread_free(td_first);
|
|
td_first = td_next;
|
|
}
|
|
while (ke_first) {
|
|
ke_next = TAILQ_NEXT(ke_first, ke_procq);
|
|
kse_free(ke_first);
|
|
ke_first = ke_next;
|
|
}
|
|
while (kg_first) {
|
|
kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
|
|
ksegrp_free(kg_first);
|
|
kg_first = kg_next;
|
|
}
|
|
while (ku_first) {
|
|
ku_next = TAILQ_NEXT(ku_first, ku_link);
|
|
upcall_free(ku_first);
|
|
ku_first = ku_next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a ksegrp.
|
|
*/
|
|
struct ksegrp *
|
|
ksegrp_alloc(void)
|
|
{
|
|
return (uma_zalloc(ksegrp_zone, M_WAITOK));
|
|
}
|
|
|
|
/*
|
|
* Allocate a kse.
|
|
*/
|
|
struct kse *
|
|
kse_alloc(void)
|
|
{
|
|
return (uma_zalloc(kse_zone, M_WAITOK));
|
|
}
|
|
|
|
/*
|
|
* Allocate a thread.
|
|
*/
|
|
struct thread *
|
|
thread_alloc(void)
|
|
{
|
|
thread_reap(); /* check if any zombies to get */
|
|
return (uma_zalloc(thread_zone, M_WAITOK));
|
|
}
|
|
|
|
/*
|
|
* Deallocate a ksegrp.
|
|
*/
|
|
void
|
|
ksegrp_free(struct ksegrp *td)
|
|
{
|
|
uma_zfree(ksegrp_zone, td);
|
|
}
|
|
|
|
/*
|
|
* Deallocate a kse.
|
|
*/
|
|
void
|
|
kse_free(struct kse *td)
|
|
{
|
|
uma_zfree(kse_zone, td);
|
|
}
|
|
|
|
/*
|
|
* Deallocate a thread.
|
|
*/
|
|
void
|
|
thread_free(struct thread *td)
|
|
{
|
|
|
|
cpu_thread_clean(td);
|
|
uma_zfree(thread_zone, td);
|
|
}
|
|
|
|
/*
|
|
* Store the thread context in the UTS's mailbox.
|
|
* then add the mailbox at the head of a list we are building in user space.
|
|
* The list is anchored in the ksegrp structure.
|
|
*/
|
|
int
|
|
thread_export_context(struct thread *td, int willexit)
|
|
{
|
|
struct proc *p;
|
|
struct ksegrp *kg;
|
|
uintptr_t mbx;
|
|
void *addr;
|
|
int error = 0, temp, sig;
|
|
mcontext_t mc;
|
|
|
|
p = td->td_proc;
|
|
kg = td->td_ksegrp;
|
|
|
|
/* Export the user/machine context. */
|
|
get_mcontext(td, &mc, 0);
|
|
addr = (void *)(&td->td_mailbox->tm_context.uc_mcontext);
|
|
error = copyout(&mc, addr, sizeof(mcontext_t));
|
|
if (error)
|
|
goto bad;
|
|
|
|
/* Exports clock ticks in kernel mode */
|
|
addr = (caddr_t)(&td->td_mailbox->tm_sticks);
|
|
temp = fuword32(addr) + td->td_usticks;
|
|
if (suword32(addr, temp)) {
|
|
error = EFAULT;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Post sync signal, or process SIGKILL and SIGSTOP.
|
|
* For sync signal, it is only possible when the signal is not
|
|
* caught by userland or process is being debugged.
|
|
*/
|
|
PROC_LOCK(p);
|
|
if (td->td_flags & TDF_NEEDSIGCHK) {
|
|
mtx_lock_spin(&sched_lock);
|
|
td->td_flags &= ~TDF_NEEDSIGCHK;
|
|
mtx_unlock_spin(&sched_lock);
|
|
mtx_lock(&p->p_sigacts->ps_mtx);
|
|
while ((sig = cursig(td)) != 0)
|
|
postsig(sig);
|
|
mtx_unlock(&p->p_sigacts->ps_mtx);
|
|
}
|
|
if (willexit)
|
|
SIGFILLSET(td->td_sigmask);
|
|
PROC_UNLOCK(p);
|
|
|
|
/* Get address in latest mbox of list pointer */
|
|
addr = (void *)(&td->td_mailbox->tm_next);
|
|
/*
|
|
* Put the saved address of the previous first
|
|
* entry into this one
|
|
*/
|
|
for (;;) {
|
|
mbx = (uintptr_t)kg->kg_completed;
|
|
if (suword(addr, mbx)) {
|
|
error = EFAULT;
|
|
goto bad;
|
|
}
|
|
PROC_LOCK(p);
|
|
if (mbx == (uintptr_t)kg->kg_completed) {
|
|
kg->kg_completed = td->td_mailbox;
|
|
/*
|
|
* The thread context may be taken away by
|
|
* other upcall threads when we unlock
|
|
* process lock. it's no longer valid to
|
|
* use it again in any other places.
|
|
*/
|
|
td->td_mailbox = NULL;
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
td->td_usticks = 0;
|
|
return (0);
|
|
|
|
bad:
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGILL);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Take the list of completed mailboxes for this KSEGRP and put them on this
|
|
* upcall's mailbox as it's the next one going up.
|
|
*/
|
|
static int
|
|
thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku)
|
|
{
|
|
struct proc *p = kg->kg_proc;
|
|
void *addr;
|
|
uintptr_t mbx;
|
|
|
|
addr = (void *)(&ku->ku_mailbox->km_completed);
|
|
for (;;) {
|
|
mbx = (uintptr_t)kg->kg_completed;
|
|
if (suword(addr, mbx)) {
|
|
PROC_LOCK(p);
|
|
psignal(p, SIGSEGV);
|
|
PROC_UNLOCK(p);
|
|
return (EFAULT);
|
|
}
|
|
PROC_LOCK(p);
|
|
if (mbx == (uintptr_t)kg->kg_completed) {
|
|
kg->kg_completed = NULL;
|
|
PROC_UNLOCK(p);
|
|
break;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function should be called at statclock interrupt time
|
|
*/
|
|
int
|
|
thread_statclock(int user)
|
|
{
|
|
struct thread *td = curthread;
|
|
struct ksegrp *kg = td->td_ksegrp;
|
|
|
|
if (kg->kg_numupcalls == 0 || !(td->td_flags & TDF_SA))
|
|
return (0);
|
|
if (user) {
|
|
/* Current always do via ast() */
|
|
mtx_lock_spin(&sched_lock);
|
|
td->td_flags |= (TDF_USTATCLOCK|TDF_ASTPENDING);
|
|
mtx_unlock_spin(&sched_lock);
|
|
td->td_uuticks++;
|
|
} else {
|
|
if (td->td_mailbox != NULL)
|
|
td->td_usticks++;
|
|
else {
|
|
/* XXXKSE
|
|
* We will call thread_user_enter() for every
|
|
* kernel entry in future, so if the thread mailbox
|
|
* is NULL, it must be a UTS kernel, don't account
|
|
* clock ticks for it.
|
|
*/
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Export state clock ticks for userland
|
|
*/
|
|
static int
|
|
thread_update_usr_ticks(struct thread *td, int user)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct kse_thr_mailbox *tmbx;
|
|
struct kse_upcall *ku;
|
|
struct ksegrp *kg;
|
|
caddr_t addr;
|
|
u_int uticks;
|
|
|
|
if ((ku = td->td_upcall) == NULL)
|
|
return (-1);
|
|
|
|
tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
|
|
if ((tmbx == NULL) || (tmbx == (void *)-1))
|
|
return (-1);
|
|
if (user) {
|
|
uticks = td->td_uuticks;
|
|
td->td_uuticks = 0;
|
|
addr = (caddr_t)&tmbx->tm_uticks;
|
|
} else {
|
|
uticks = td->td_usticks;
|
|
td->td_usticks = 0;
|
|
addr = (caddr_t)&tmbx->tm_sticks;
|
|
}
|
|
if (uticks) {
|
|
if (suword32(addr, uticks+fuword32(addr))) {
|
|
PROC_LOCK(p);
|
|
psignal(p, SIGSEGV);
|
|
PROC_UNLOCK(p);
|
|
return (-2);
|
|
}
|
|
}
|
|
kg = td->td_ksegrp;
|
|
if (kg->kg_upquantum && ticks >= kg->kg_nextupcall) {
|
|
mtx_lock_spin(&sched_lock);
|
|
td->td_upcall->ku_flags |= KUF_DOUPCALL;
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Discard the current thread and exit from its context.
|
|
*
|
|
* Because we can't free a thread while we're operating under its context,
|
|
* push the current thread into our CPU's deadthread holder. This means
|
|
* we needn't worry about someone else grabbing our context before we
|
|
* do a cpu_throw().
|
|
*/
|
|
void
|
|
thread_exit(void)
|
|
{
|
|
struct thread *td;
|
|
struct kse *ke;
|
|
struct proc *p;
|
|
struct ksegrp *kg;
|
|
|
|
td = curthread;
|
|
kg = td->td_ksegrp;
|
|
p = td->td_proc;
|
|
ke = td->td_kse;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
KASSERT(p != NULL, ("thread exiting without a process"));
|
|
KASSERT(ke != NULL, ("thread exiting without a kse"));
|
|
KASSERT(kg != NULL, ("thread exiting without a kse group"));
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
CTR1(KTR_PROC, "thread_exit: thread %p", td);
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
|
|
if (td->td_standin != NULL) {
|
|
thread_stash(td->td_standin);
|
|
td->td_standin = NULL;
|
|
}
|
|
|
|
cpu_thread_exit(td); /* XXXSMP */
|
|
|
|
/*
|
|
* The last thread is left attached to the process
|
|
* So that the whole bundle gets recycled. Skip
|
|
* all this stuff.
|
|
*/
|
|
if (p->p_numthreads > 1) {
|
|
thread_unlink(td);
|
|
if (p->p_maxthrwaits)
|
|
wakeup(&p->p_numthreads);
|
|
/*
|
|
* The test below is NOT true if we are the
|
|
* sole exiting thread. P_STOPPED_SNGL is unset
|
|
* in exit1() after it is the only survivor.
|
|
*/
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
if (p->p_numthreads == p->p_suspcount) {
|
|
thread_unsuspend_one(p->p_singlethread);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Because each upcall structure has an owner thread,
|
|
* owner thread exits only when process is in exiting
|
|
* state, so upcall to userland is no longer needed,
|
|
* deleting upcall structure is safe here.
|
|
* So when all threads in a group is exited, all upcalls
|
|
* in the group should be automatically freed.
|
|
*/
|
|
if (td->td_upcall)
|
|
upcall_remove(td);
|
|
|
|
sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
|
|
sched_exit_kse(FIRST_KSE_IN_PROC(p), ke);
|
|
ke->ke_state = KES_UNQUEUED;
|
|
ke->ke_thread = NULL;
|
|
/*
|
|
* Decide what to do with the KSE attached to this thread.
|
|
*/
|
|
if (ke->ke_flags & KEF_EXIT) {
|
|
kse_unlink(ke);
|
|
if (kg->kg_kses == 0) {
|
|
sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), kg);
|
|
ksegrp_unlink(kg);
|
|
}
|
|
}
|
|
else
|
|
kse_reassign(ke);
|
|
PROC_UNLOCK(p);
|
|
td->td_kse = NULL;
|
|
td->td_state = TDS_INACTIVE;
|
|
#if 0
|
|
td->td_proc = NULL;
|
|
#endif
|
|
td->td_ksegrp = NULL;
|
|
td->td_last_kse = NULL;
|
|
PCPU_SET(deadthread, td);
|
|
} else {
|
|
PROC_UNLOCK(p);
|
|
}
|
|
/* XXX Shouldn't cpu_throw() here. */
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
cpu_throw(td, choosethread());
|
|
panic("I'm a teapot!");
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Do any thread specific cleanups that may be needed in wait()
|
|
* called with Giant, proc and schedlock not held.
|
|
*/
|
|
void
|
|
thread_wait(struct proc *p)
|
|
{
|
|
struct thread *td;
|
|
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
|
|
KASSERT((p->p_numksegrps == 1), ("Multiple ksegrps in wait1()"));
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (td->td_standin != NULL) {
|
|
thread_free(td->td_standin);
|
|
td->td_standin = NULL;
|
|
}
|
|
cpu_thread_clean(td);
|
|
}
|
|
thread_reap(); /* check for zombie threads etc. */
|
|
}
|
|
|
|
/*
|
|
* Link a thread to a process.
|
|
* set up anything that needs to be initialized for it to
|
|
* be used by the process.
|
|
*
|
|
* Note that we do not link to the proc's ucred here.
|
|
* The thread is linked as if running but no KSE assigned.
|
|
*/
|
|
void
|
|
thread_link(struct thread *td, struct ksegrp *kg)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = kg->kg_proc;
|
|
td->td_state = TDS_INACTIVE;
|
|
td->td_proc = p;
|
|
td->td_ksegrp = kg;
|
|
td->td_last_kse = NULL;
|
|
td->td_flags = 0;
|
|
td->td_kse = NULL;
|
|
|
|
LIST_INIT(&td->td_contested);
|
|
callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
|
|
TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
|
|
TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
|
|
p->p_numthreads++;
|
|
kg->kg_numthreads++;
|
|
}
|
|
|
|
void
|
|
thread_unlink(struct thread *td)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct ksegrp *kg = td->td_ksegrp;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
TAILQ_REMOVE(&p->p_threads, td, td_plist);
|
|
p->p_numthreads--;
|
|
TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
|
|
kg->kg_numthreads--;
|
|
/* could clear a few other things here */
|
|
}
|
|
|
|
/*
|
|
* Purge a ksegrp resource. When a ksegrp is preparing to
|
|
* exit, it calls this function.
|
|
*/
|
|
static void
|
|
kse_purge_group(struct thread *td)
|
|
{
|
|
struct ksegrp *kg;
|
|
struct kse *ke;
|
|
|
|
kg = td->td_ksegrp;
|
|
KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__));
|
|
while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
|
|
KASSERT(ke->ke_state == KES_IDLE,
|
|
("%s: wrong idle KSE state", __func__));
|
|
kse_unlink(ke);
|
|
}
|
|
KASSERT((kg->kg_kses == 1),
|
|
("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses));
|
|
KASSERT((kg->kg_numupcalls == 0),
|
|
("%s: ksegrp still has %d upcall datas",
|
|
__func__, kg->kg_numupcalls));
|
|
}
|
|
|
|
/*
|
|
* Purge a process's KSE resource. When a process is preparing to
|
|
* exit, it calls kse_purge to release any extra KSE resources in
|
|
* the process.
|
|
*/
|
|
static void
|
|
kse_purge(struct proc *p, struct thread *td)
|
|
{
|
|
struct ksegrp *kg;
|
|
struct kse *ke;
|
|
|
|
KASSERT(p->p_numthreads == 1, ("bad thread number"));
|
|
while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) {
|
|
TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
|
|
p->p_numksegrps--;
|
|
/*
|
|
* There is no ownership for KSE, after all threads
|
|
* in the group exited, it is possible that some KSEs
|
|
* were left in idle queue, gc them now.
|
|
*/
|
|
while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
|
|
KASSERT(ke->ke_state == KES_IDLE,
|
|
("%s: wrong idle KSE state", __func__));
|
|
TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
|
|
kg->kg_idle_kses--;
|
|
TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
|
|
kg->kg_kses--;
|
|
kse_stash(ke);
|
|
}
|
|
KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) ||
|
|
((kg->kg_kses == 1) && (kg == td->td_ksegrp)),
|
|
("ksegrp has wrong kg_kses: %d", kg->kg_kses));
|
|
KASSERT((kg->kg_numupcalls == 0),
|
|
("%s: ksegrp still has %d upcall datas",
|
|
__func__, kg->kg_numupcalls));
|
|
|
|
if (kg != td->td_ksegrp)
|
|
ksegrp_stash(kg);
|
|
}
|
|
TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp);
|
|
p->p_numksegrps++;
|
|
}
|
|
|
|
/*
|
|
* This function is intended to be used to initialize a spare thread
|
|
* for upcall. Initialize thread's large data area outside sched_lock
|
|
* for thread_schedule_upcall().
|
|
*/
|
|
void
|
|
thread_alloc_spare(struct thread *td, struct thread *spare)
|
|
{
|
|
|
|
if (td->td_standin)
|
|
return;
|
|
if (spare == NULL)
|
|
spare = thread_alloc();
|
|
td->td_standin = spare;
|
|
bzero(&spare->td_startzero,
|
|
(unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
|
|
spare->td_proc = td->td_proc;
|
|
spare->td_ucred = crhold(td->td_ucred);
|
|
}
|
|
|
|
/*
|
|
* Create a thread and schedule it for upcall on the KSE given.
|
|
* Use our thread's standin so that we don't have to allocate one.
|
|
*/
|
|
struct thread *
|
|
thread_schedule_upcall(struct thread *td, struct kse_upcall *ku)
|
|
{
|
|
struct thread *td2;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
/*
|
|
* Schedule an upcall thread on specified kse_upcall,
|
|
* the kse_upcall must be free.
|
|
* td must have a spare thread.
|
|
*/
|
|
KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__));
|
|
if ((td2 = td->td_standin) != NULL) {
|
|
td->td_standin = NULL;
|
|
} else {
|
|
panic("no reserve thread when scheduling an upcall");
|
|
return (NULL);
|
|
}
|
|
CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
|
|
td2, td->td_proc->p_pid, td->td_proc->p_comm);
|
|
bcopy(&td->td_startcopy, &td2->td_startcopy,
|
|
(unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
|
|
thread_link(td2, ku->ku_ksegrp);
|
|
/* inherit blocked thread's context */
|
|
cpu_set_upcall(td2, td);
|
|
/* Let the new thread become owner of the upcall */
|
|
ku->ku_owner = td2;
|
|
td2->td_upcall = ku;
|
|
td2->td_flags = TDF_SA;
|
|
td2->td_pflags = TDP_UPCALLING;
|
|
td2->td_kse = NULL;
|
|
td2->td_state = TDS_CAN_RUN;
|
|
td2->td_inhibitors = 0;
|
|
SIGFILLSET(td2->td_sigmask);
|
|
SIG_CANTMASK(td2->td_sigmask);
|
|
sched_fork_thread(td, td2);
|
|
return (td2); /* bogus.. should be a void function */
|
|
}
|
|
|
|
/*
|
|
* It is only used when thread generated a trap and process is being
|
|
* debugged.
|
|
*/
|
|
void
|
|
thread_signal_add(struct thread *td, int sig)
|
|
{
|
|
struct proc *p;
|
|
siginfo_t siginfo;
|
|
struct sigacts *ps;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
ps = p->p_sigacts;
|
|
mtx_assert(&ps->ps_mtx, MA_OWNED);
|
|
|
|
cpu_thread_siginfo(sig, 0, &siginfo);
|
|
mtx_unlock(&ps->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
error = copyout(&siginfo, &td->td_mailbox->tm_syncsig, sizeof(siginfo));
|
|
if (error) {
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGILL);
|
|
}
|
|
PROC_LOCK(p);
|
|
SIGADDSET(td->td_sigmask, sig);
|
|
mtx_lock(&ps->ps_mtx);
|
|
}
|
|
|
|
void
|
|
thread_switchout(struct thread *td)
|
|
{
|
|
struct kse_upcall *ku;
|
|
struct thread *td2;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
|
|
/*
|
|
* If the outgoing thread is in threaded group and has never
|
|
* scheduled an upcall, decide whether this is a short
|
|
* or long term event and thus whether or not to schedule
|
|
* an upcall.
|
|
* If it is a short term event, just suspend it in
|
|
* a way that takes its KSE with it.
|
|
* Select the events for which we want to schedule upcalls.
|
|
* For now it's just sleep.
|
|
* XXXKSE eventually almost any inhibition could do.
|
|
*/
|
|
if (TD_CAN_UNBIND(td) && (td->td_standin) && TD_ON_SLEEPQ(td)) {
|
|
/*
|
|
* Release ownership of upcall, and schedule an upcall
|
|
* thread, this new upcall thread becomes the owner of
|
|
* the upcall structure.
|
|
*/
|
|
ku = td->td_upcall;
|
|
ku->ku_owner = NULL;
|
|
td->td_upcall = NULL;
|
|
td->td_flags &= ~TDF_CAN_UNBIND;
|
|
td2 = thread_schedule_upcall(td, ku);
|
|
setrunqueue(td2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup done on the thread when it enters the kernel.
|
|
* XXXKSE Presently only for syscalls but eventually all kernel entries.
|
|
*/
|
|
void
|
|
thread_user_enter(struct proc *p, struct thread *td)
|
|
{
|
|
struct ksegrp *kg;
|
|
struct kse_upcall *ku;
|
|
struct kse_thr_mailbox *tmbx;
|
|
uint32_t tflags;
|
|
|
|
kg = td->td_ksegrp;
|
|
|
|
/*
|
|
* First check that we shouldn't just abort.
|
|
* But check if we are the single thread first!
|
|
*/
|
|
if (p->p_flag & P_SINGLE_EXIT) {
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
thread_stopped(p);
|
|
thread_exit();
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* If we are doing a syscall in a KSE environment,
|
|
* note where our mailbox is. There is always the
|
|
* possibility that we could do this lazily (in kse_reassign()),
|
|
* but for now do it every time.
|
|
*/
|
|
kg = td->td_ksegrp;
|
|
if (td->td_flags & TDF_SA) {
|
|
ku = td->td_upcall;
|
|
KASSERT(ku, ("%s: no upcall owned", __func__));
|
|
KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__));
|
|
KASSERT(!TD_CAN_UNBIND(td), ("%s: can unbind", __func__));
|
|
ku->ku_mflags = fuword32((void *)&ku->ku_mailbox->km_flags);
|
|
tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
|
|
if ((tmbx == NULL) || (tmbx == (void *)-1L) ||
|
|
(ku->ku_mflags & KMF_NOUPCALL)) {
|
|
td->td_mailbox = NULL;
|
|
} else {
|
|
if (td->td_standin == NULL)
|
|
thread_alloc_spare(td, NULL);
|
|
tflags = fuword32(&tmbx->tm_flags);
|
|
/*
|
|
* On some architectures, TP register points to thread
|
|
* mailbox but not points to kse mailbox, and userland
|
|
* can not atomically clear km_curthread, but can
|
|
* use TP register, and set TMF_NOUPCALL in thread
|
|
* flag to indicate a critical region.
|
|
*/
|
|
if (tflags & TMF_NOUPCALL) {
|
|
td->td_mailbox = NULL;
|
|
} else {
|
|
td->td_mailbox = tmbx;
|
|
mtx_lock_spin(&sched_lock);
|
|
td->td_flags |= TDF_CAN_UNBIND;
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The extra work we go through if we are a threaded process when we
|
|
* return to userland.
|
|
*
|
|
* If we are a KSE process and returning to user mode, check for
|
|
* extra work to do before we return (e.g. for more syscalls
|
|
* to complete first). If we were in a critical section, we should
|
|
* just return to let it finish. Same if we were in the UTS (in
|
|
* which case the mailbox's context's busy indicator will be set).
|
|
* The only traps we suport will have set the mailbox.
|
|
* We will clear it here.
|
|
*/
|
|
int
|
|
thread_userret(struct thread *td, struct trapframe *frame)
|
|
{
|
|
int error = 0, upcalls, uts_crit;
|
|
struct kse_upcall *ku;
|
|
struct ksegrp *kg, *kg2;
|
|
struct proc *p;
|
|
struct timespec ts;
|
|
|
|
p = td->td_proc;
|
|
kg = td->td_ksegrp;
|
|
ku = td->td_upcall;
|
|
|
|
/* Nothing to do with bound thread */
|
|
if (!(td->td_flags & TDF_SA))
|
|
return (0);
|
|
|
|
/*
|
|
* Stat clock interrupt hit in userland, it
|
|
* is returning from interrupt, charge thread's
|
|
* userland time for UTS.
|
|
*/
|
|
if (td->td_flags & TDF_USTATCLOCK) {
|
|
thread_update_usr_ticks(td, 1);
|
|
mtx_lock_spin(&sched_lock);
|
|
td->td_flags &= ~TDF_USTATCLOCK;
|
|
mtx_unlock_spin(&sched_lock);
|
|
if (kg->kg_completed ||
|
|
(td->td_upcall->ku_flags & KUF_DOUPCALL))
|
|
thread_user_enter(p, td);
|
|
}
|
|
|
|
uts_crit = (td->td_mailbox == NULL);
|
|
/*
|
|
* Optimisation:
|
|
* This thread has not started any upcall.
|
|
* If there is no work to report other than ourself,
|
|
* then it can return direct to userland.
|
|
*/
|
|
if (TD_CAN_UNBIND(td)) {
|
|
mtx_lock_spin(&sched_lock);
|
|
td->td_flags &= ~TDF_CAN_UNBIND;
|
|
if ((td->td_flags & TDF_NEEDSIGCHK) == 0 &&
|
|
(kg->kg_completed == NULL) &&
|
|
(ku->ku_flags & KUF_DOUPCALL) == 0 &&
|
|
(kg->kg_upquantum && ticks < kg->kg_nextupcall)) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
thread_update_usr_ticks(td, 0);
|
|
nanotime(&ts);
|
|
error = copyout(&ts,
|
|
(caddr_t)&ku->ku_mailbox->km_timeofday,
|
|
sizeof(ts));
|
|
td->td_mailbox = 0;
|
|
ku->ku_mflags = 0;
|
|
if (error)
|
|
goto out;
|
|
return (0);
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
thread_export_context(td, 0);
|
|
/*
|
|
* There is something to report, and we own an upcall
|
|
* strucuture, we can go to userland.
|
|
* Turn ourself into an upcall thread.
|
|
*/
|
|
td->td_pflags |= TDP_UPCALLING;
|
|
} else if (td->td_mailbox && (ku == NULL)) {
|
|
thread_export_context(td, 1);
|
|
PROC_LOCK(p);
|
|
/*
|
|
* There are upcall threads waiting for
|
|
* work to do, wake one of them up.
|
|
* XXXKSE Maybe wake all of them up.
|
|
*/
|
|
if (kg->kg_upsleeps)
|
|
wakeup_one(&kg->kg_completed);
|
|
mtx_lock_spin(&sched_lock);
|
|
thread_stopped(p);
|
|
thread_exit();
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
KASSERT(ku != NULL, ("upcall is NULL\n"));
|
|
KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind"));
|
|
|
|
if (p->p_numthreads > max_threads_per_proc) {
|
|
max_threads_hits++;
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
p->p_maxthrwaits++;
|
|
while (p->p_numthreads > max_threads_per_proc) {
|
|
upcalls = 0;
|
|
FOREACH_KSEGRP_IN_PROC(p, kg2) {
|
|
if (kg2->kg_numupcalls == 0)
|
|
upcalls++;
|
|
else
|
|
upcalls += kg2->kg_numupcalls;
|
|
}
|
|
if (upcalls >= max_threads_per_proc)
|
|
break;
|
|
mtx_unlock_spin(&sched_lock);
|
|
if (msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH,
|
|
"maxthreads", 0)) {
|
|
mtx_lock_spin(&sched_lock);
|
|
break;
|
|
} else {
|
|
mtx_lock_spin(&sched_lock);
|
|
}
|
|
}
|
|
p->p_maxthrwaits--;
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
if (td->td_pflags & TDP_UPCALLING) {
|
|
uts_crit = 0;
|
|
kg->kg_nextupcall = ticks+kg->kg_upquantum;
|
|
/*
|
|
* There is no more work to do and we are going to ride
|
|
* this thread up to userland as an upcall.
|
|
* Do the last parts of the setup needed for the upcall.
|
|
*/
|
|
CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
|
|
td, td->td_proc->p_pid, td->td_proc->p_comm);
|
|
|
|
td->td_pflags &= ~TDP_UPCALLING;
|
|
if (ku->ku_flags & KUF_DOUPCALL) {
|
|
mtx_lock_spin(&sched_lock);
|
|
ku->ku_flags &= ~KUF_DOUPCALL;
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|
|
/*
|
|
* Set user context to the UTS
|
|
*/
|
|
if (!(ku->ku_mflags & KMF_NOUPCALL)) {
|
|
cpu_set_upcall_kse(td, ku);
|
|
error = suword(&ku->ku_mailbox->km_curthread, 0);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Unhook the list of completed threads.
|
|
* anything that completes after this gets to
|
|
* come in next time.
|
|
* Put the list of completed thread mailboxes on
|
|
* this KSE's mailbox.
|
|
*/
|
|
if (!(ku->ku_mflags & KMF_NOCOMPLETED) &&
|
|
(error = thread_link_mboxes(kg, ku)) != 0)
|
|
goto out;
|
|
}
|
|
if (!uts_crit) {
|
|
nanotime(&ts);
|
|
error = copyout(&ts, &ku->ku_mailbox->km_timeofday, sizeof(ts));
|
|
}
|
|
|
|
out:
|
|
if (error) {
|
|
/*
|
|
* Things are going to be so screwed we should just kill
|
|
* the process.
|
|
* how do we do that?
|
|
*/
|
|
PROC_LOCK(td->td_proc);
|
|
psignal(td->td_proc, SIGSEGV);
|
|
PROC_UNLOCK(td->td_proc);
|
|
} else {
|
|
/*
|
|
* Optimisation:
|
|
* Ensure that we have a spare thread available,
|
|
* for when we re-enter the kernel.
|
|
*/
|
|
if (td->td_standin == NULL)
|
|
thread_alloc_spare(td, NULL);
|
|
}
|
|
|
|
ku->ku_mflags = 0;
|
|
/*
|
|
* Clear thread mailbox first, then clear system tick count.
|
|
* The order is important because thread_statclock() use
|
|
* mailbox pointer to see if it is an userland thread or
|
|
* an UTS kernel thread.
|
|
*/
|
|
td->td_mailbox = NULL;
|
|
td->td_usticks = 0;
|
|
return (error); /* go sync */
|
|
}
|
|
|
|
/*
|
|
* Enforce single-threading.
|
|
*
|
|
* Returns 1 if the caller must abort (another thread is waiting to
|
|
* exit the process or similar). Process is locked!
|
|
* Returns 0 when you are successfully the only thread running.
|
|
* A process has successfully single threaded in the suspend mode when
|
|
* There are no threads in user mode. Threads in the kernel must be
|
|
* allowed to continue until they get to the user boundary. They may even
|
|
* copy out their return values and data before suspending. They may however be
|
|
* accellerated in reaching the user boundary as we will wake up
|
|
* any sleeping threads that are interruptable. (PCATCH).
|
|
*/
|
|
int
|
|
thread_single(int force_exit)
|
|
{
|
|
struct thread *td;
|
|
struct thread *td2;
|
|
struct proc *p;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT((td != NULL), ("curthread is NULL"));
|
|
|
|
if ((p->p_flag & P_SA) == 0 && p->p_numthreads == 1)
|
|
return (0);
|
|
|
|
/* Is someone already single threading? */
|
|
if (p->p_singlethread)
|
|
return (1);
|
|
|
|
if (force_exit == SINGLE_EXIT) {
|
|
p->p_flag |= P_SINGLE_EXIT;
|
|
} else
|
|
p->p_flag &= ~P_SINGLE_EXIT;
|
|
p->p_flag |= P_STOPPED_SINGLE;
|
|
mtx_lock_spin(&sched_lock);
|
|
p->p_singlethread = td;
|
|
while ((p->p_numthreads - p->p_suspcount) != 1) {
|
|
FOREACH_THREAD_IN_PROC(p, td2) {
|
|
if (td2 == td)
|
|
continue;
|
|
td2->td_flags |= TDF_ASTPENDING;
|
|
if (TD_IS_INHIBITED(td2)) {
|
|
if (force_exit == SINGLE_EXIT) {
|
|
if (TD_IS_SUSPENDED(td2)) {
|
|
thread_unsuspend_one(td2);
|
|
}
|
|
if (TD_ON_SLEEPQ(td2) &&
|
|
(td2->td_flags & TDF_SINTR)) {
|
|
sleepq_abort(td2);
|
|
}
|
|
} else {
|
|
if (TD_IS_SUSPENDED(td2))
|
|
continue;
|
|
/*
|
|
* maybe other inhibitted states too?
|
|
* XXXKSE Is it totally safe to
|
|
* suspend a non-interruptable thread?
|
|
*/
|
|
if (td2->td_inhibitors &
|
|
(TDI_SLEEPING | TDI_SWAPPED))
|
|
thread_suspend_one(td2);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Maybe we suspended some threads.. was it enough?
|
|
*/
|
|
if ((p->p_numthreads - p->p_suspcount) == 1)
|
|
break;
|
|
|
|
/*
|
|
* Wake us up when everyone else has suspended.
|
|
* In the mean time we suspend as well.
|
|
*/
|
|
thread_suspend_one(td);
|
|
PROC_UNLOCK(p);
|
|
mi_switch(SW_VOL);
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_LOCK(p);
|
|
mtx_lock_spin(&sched_lock);
|
|
}
|
|
if (force_exit == SINGLE_EXIT) {
|
|
if (td->td_upcall)
|
|
upcall_remove(td);
|
|
kse_purge(p, td);
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called in from locations that can safely check to see
|
|
* whether we have to suspend or at least throttle for a
|
|
* single-thread event (e.g. fork).
|
|
*
|
|
* Such locations include userret().
|
|
* If the "return_instead" argument is non zero, the thread must be able to
|
|
* accept 0 (caller may continue), or 1 (caller must abort) as a result.
|
|
*
|
|
* The 'return_instead' argument tells the function if it may do a
|
|
* thread_exit() or suspend, or whether the caller must abort and back
|
|
* out instead.
|
|
*
|
|
* If the thread that set the single_threading request has set the
|
|
* P_SINGLE_EXIT bit in the process flags then this call will never return
|
|
* if 'return_instead' is false, but will exit.
|
|
*
|
|
* P_SINGLE_EXIT | return_instead == 0| return_instead != 0
|
|
*---------------+--------------------+---------------------
|
|
* 0 | returns 0 | returns 0 or 1
|
|
* | when ST ends | immediatly
|
|
*---------------+--------------------+---------------------
|
|
* 1 | thread exits | returns 1
|
|
* | | immediatly
|
|
* 0 = thread_exit() or suspension ok,
|
|
* other = return error instead of stopping the thread.
|
|
*
|
|
* While a full suspension is under effect, even a single threading
|
|
* thread would be suspended if it made this call (but it shouldn't).
|
|
* This call should only be made from places where
|
|
* thread_exit() would be safe as that may be the outcome unless
|
|
* return_instead is set.
|
|
*/
|
|
int
|
|
thread_suspend_check(int return_instead)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
while (P_SHOULDSTOP(p)) {
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
KASSERT(p->p_singlethread != NULL,
|
|
("singlethread not set"));
|
|
/*
|
|
* The only suspension in action is a
|
|
* single-threading. Single threader need not stop.
|
|
* XXX Should be safe to access unlocked
|
|
* as it can only be set to be true by us.
|
|
*/
|
|
if (p->p_singlethread == td)
|
|
return (0); /* Exempt from stopping. */
|
|
}
|
|
if (return_instead)
|
|
return (1);
|
|
|
|
mtx_lock_spin(&sched_lock);
|
|
thread_stopped(p);
|
|
/*
|
|
* If the process is waiting for us to exit,
|
|
* this thread should just suicide.
|
|
* Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
|
|
*/
|
|
if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
|
|
if (p->p_flag & P_SA)
|
|
thread_exit();
|
|
else
|
|
thr_exit1();
|
|
}
|
|
|
|
/*
|
|
* When a thread suspends, it just
|
|
* moves to the processes's suspend queue
|
|
* and stays there.
|
|
*/
|
|
thread_suspend_one(td);
|
|
if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
|
|
if (p->p_numthreads == p->p_suspcount) {
|
|
thread_unsuspend_one(p->p_singlethread);
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
mi_switch(SW_INVOL);
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_LOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
thread_suspend_one(struct thread *td)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
|
|
p->p_suspcount++;
|
|
TD_SET_SUSPENDED(td);
|
|
TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
|
|
/*
|
|
* Hack: If we are suspending but are on the sleep queue
|
|
* then we are in msleep or the cv equivalent. We
|
|
* want to look like we have two Inhibitors.
|
|
* May already be set.. doesn't matter.
|
|
*/
|
|
if (TD_ON_SLEEPQ(td))
|
|
TD_SET_SLEEPING(td);
|
|
}
|
|
|
|
void
|
|
thread_unsuspend_one(struct thread *td)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
TAILQ_REMOVE(&p->p_suspended, td, td_runq);
|
|
TD_CLR_SUSPENDED(td);
|
|
p->p_suspcount--;
|
|
setrunnable(td);
|
|
}
|
|
|
|
/*
|
|
* Allow all threads blocked by single threading to continue running.
|
|
*/
|
|
void
|
|
thread_unsuspend(struct proc *p)
|
|
{
|
|
struct thread *td;
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if (!P_SHOULDSTOP(p)) {
|
|
while (( td = TAILQ_FIRST(&p->p_suspended))) {
|
|
thread_unsuspend_one(td);
|
|
}
|
|
} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
|
|
(p->p_numthreads == p->p_suspcount)) {
|
|
/*
|
|
* Stopping everything also did the job for the single
|
|
* threading request. Now we've downgraded to single-threaded,
|
|
* let it continue.
|
|
*/
|
|
thread_unsuspend_one(p->p_singlethread);
|
|
}
|
|
}
|
|
|
|
void
|
|
thread_single_end(void)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
p->p_flag &= ~P_STOPPED_SINGLE;
|
|
mtx_lock_spin(&sched_lock);
|
|
p->p_singlethread = NULL;
|
|
/*
|
|
* If there are other threads they mey now run,
|
|
* unless of course there is a blanket 'stop order'
|
|
* on the process. The single threader must be allowed
|
|
* to continue however as this is a bad place to stop.
|
|
*/
|
|
if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
|
|
while (( td = TAILQ_FIRST(&p->p_suspended))) {
|
|
thread_unsuspend_one(td);
|
|
}
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
}
|