mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-12 14:29:28 +00:00
bc093719ca
The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
373 lines
8.5 KiB
C
373 lines
8.5 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Pseudo-nulmodem driver
|
|
* Mighty handy for use with serial console in Vmware
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/module.h>
|
|
#include <sys/serial.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
MALLOC_DEFINE(M_NMDM, "nullmodem", "nullmodem data structures");
|
|
|
|
static tsw_inwakeup_t nmdm_outwakeup;
|
|
static tsw_outwakeup_t nmdm_inwakeup;
|
|
static tsw_param_t nmdm_param;
|
|
static tsw_modem_t nmdm_modem;
|
|
|
|
static struct ttydevsw nmdm_class = {
|
|
.tsw_flags = TF_NOPREFIX,
|
|
.tsw_inwakeup = nmdm_inwakeup,
|
|
.tsw_outwakeup = nmdm_outwakeup,
|
|
.tsw_param = nmdm_param,
|
|
.tsw_modem = nmdm_modem,
|
|
};
|
|
|
|
static void nmdm_task_tty(void *, int);
|
|
|
|
struct nmdmsoftc;
|
|
|
|
struct nmdmpart {
|
|
struct tty *np_tty;
|
|
int np_dcd;
|
|
struct task np_task;
|
|
struct nmdmpart *np_other;
|
|
struct nmdmsoftc *np_pair;
|
|
struct callout np_callout;
|
|
u_long np_quota;
|
|
u_long np_accumulator;
|
|
int np_rate;
|
|
int np_credits;
|
|
|
|
#define QS 8 /* Quota shift */
|
|
};
|
|
|
|
struct nmdmsoftc {
|
|
struct nmdmpart ns_part1;
|
|
struct nmdmpart ns_part2;
|
|
struct mtx ns_mtx;
|
|
};
|
|
|
|
static int nmdm_count = 0;
|
|
|
|
static struct nmdmsoftc *
|
|
nmdm_alloc(unsigned long unit)
|
|
{
|
|
struct nmdmsoftc *ns;
|
|
struct tty *tp;
|
|
|
|
atomic_add_acq_int(&nmdm_count, 1);
|
|
|
|
ns = malloc(sizeof(*ns), M_NMDM, M_WAITOK|M_ZERO);
|
|
mtx_init(&ns->ns_mtx, "nmdm", NULL, MTX_DEF);
|
|
|
|
/* Hook the pairs together. */
|
|
ns->ns_part1.np_pair = ns;
|
|
ns->ns_part1.np_other = &ns->ns_part2;
|
|
TASK_INIT(&ns->ns_part1.np_task, 0, nmdm_task_tty, &ns->ns_part1);
|
|
callout_init(&ns->ns_part1.np_callout, 0);
|
|
|
|
ns->ns_part2.np_pair = ns;
|
|
ns->ns_part2.np_other = &ns->ns_part1;
|
|
TASK_INIT(&ns->ns_part2.np_task, 0, nmdm_task_tty, &ns->ns_part2);
|
|
callout_init(&ns->ns_part2.np_callout, 0);
|
|
|
|
/* Create device nodes. */
|
|
tp = ns->ns_part1.np_tty = tty_alloc(&nmdm_class, &ns->ns_part1,
|
|
&ns->ns_mtx);
|
|
tty_makedev(tp, NULL, "nmdm%luA", unit);
|
|
|
|
tp = ns->ns_part2.np_tty = tty_alloc(&nmdm_class, &ns->ns_part2,
|
|
&ns->ns_mtx);
|
|
tty_makedev(tp, NULL, "nmdm%luB", unit);
|
|
|
|
return (ns);
|
|
}
|
|
|
|
static void
|
|
nmdm_clone(void *arg, struct ucred *cred, char *name, int nameen,
|
|
struct cdev **dev)
|
|
{
|
|
unsigned long unit;
|
|
char *end;
|
|
struct nmdmsoftc *ns;
|
|
|
|
if (*dev != NULL)
|
|
return;
|
|
if (strncmp(name, "nmdm", 4) != 0)
|
|
return;
|
|
|
|
/* Device name must be "nmdm%lu%c", where %c is 'A' or 'B'. */
|
|
name += 4;
|
|
unit = strtoul(name, &end, 10);
|
|
if (unit == ULONG_MAX || name == end)
|
|
return;
|
|
if ((end[0] != 'A' && end[0] != 'B') || end[1] != '\0')
|
|
return;
|
|
|
|
/* XXX: pass privileges? */
|
|
ns = nmdm_alloc(unit);
|
|
|
|
if (end[0] == 'A')
|
|
*dev = ns->ns_part1.np_tty->t_dev;
|
|
else
|
|
*dev = ns->ns_part2.np_tty->t_dev;
|
|
}
|
|
|
|
static void
|
|
nmdm_timeout(void *arg)
|
|
{
|
|
struct nmdmpart *np = arg;
|
|
|
|
if (np->np_rate == 0)
|
|
return;
|
|
|
|
/*
|
|
* Do a simple Floyd-Steinberg dither here to avoid FP math.
|
|
* Wipe out unused quota from last tick.
|
|
*/
|
|
np->np_accumulator += np->np_credits;
|
|
np->np_quota = np->np_accumulator >> QS;
|
|
np->np_accumulator &= ((1 << QS) - 1);
|
|
|
|
taskqueue_enqueue(taskqueue_swi, &np->np_task);
|
|
callout_reset(&np->np_callout, np->np_rate, nmdm_timeout, np);
|
|
}
|
|
|
|
static void
|
|
nmdm_task_tty(void *arg, int pending __unused)
|
|
{
|
|
struct tty *tp, *otp;
|
|
struct nmdmpart *np = arg;
|
|
char c;
|
|
|
|
tp = np->np_tty;
|
|
tty_lock(tp);
|
|
|
|
otp = np->np_other->np_tty;
|
|
KASSERT(otp != NULL, ("NULL otp in nmdmstart"));
|
|
KASSERT(otp != tp, ("NULL otp == tp nmdmstart"));
|
|
if (np->np_other->np_dcd) {
|
|
if (!tty_opened(tp)) {
|
|
np->np_other->np_dcd = 0;
|
|
ttydisc_modem(otp, 0);
|
|
}
|
|
} else {
|
|
if (tty_opened(tp)) {
|
|
np->np_other->np_dcd = 1;
|
|
ttydisc_modem(otp, 1);
|
|
}
|
|
}
|
|
|
|
while (ttydisc_rint_poll(otp) > 0) {
|
|
if (np->np_rate && !np->np_quota)
|
|
break;
|
|
if (ttydisc_getc(tp, &c, 1) != 1)
|
|
break;
|
|
np->np_quota--;
|
|
ttydisc_rint(otp, c, 0);
|
|
}
|
|
|
|
ttydisc_rint_done(otp);
|
|
|
|
tty_unlock(tp);
|
|
}
|
|
|
|
static int
|
|
bits_per_char(struct termios *t)
|
|
{
|
|
int bits;
|
|
|
|
bits = 1; /* start bit */
|
|
switch (t->c_cflag & CSIZE) {
|
|
case CS5: bits += 5; break;
|
|
case CS6: bits += 6; break;
|
|
case CS7: bits += 7; break;
|
|
case CS8: bits += 8; break;
|
|
}
|
|
bits++; /* stop bit */
|
|
if (t->c_cflag & PARENB)
|
|
bits++;
|
|
if (t->c_cflag & CSTOPB)
|
|
bits++;
|
|
return (bits);
|
|
}
|
|
|
|
static int
|
|
nmdm_param(struct tty *tp, struct termios *t)
|
|
{
|
|
struct nmdmpart *np = tty_softc(tp);
|
|
struct tty *tp2;
|
|
int bpc, rate, speed, i;
|
|
|
|
tp2 = np->np_other->np_tty;
|
|
|
|
if (!((t->c_cflag | tp2->t_termios.c_cflag) & CDSR_OFLOW)) {
|
|
np->np_rate = 0;
|
|
np->np_other->np_rate = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* DSRFLOW one either side enables rate-simulation for both
|
|
* directions.
|
|
* NB: the two directions may run at different rates.
|
|
*/
|
|
|
|
/* Find the larger of the number of bits transmitted */
|
|
bpc = imax(bits_per_char(t), bits_per_char(&tp2->t_termios));
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
/* Use the slower of our receive and their transmit rate */
|
|
speed = imin(tp2->t_termios.c_ospeed, t->c_ispeed);
|
|
if (speed == 0) {
|
|
np->np_rate = 0;
|
|
np->np_other->np_rate = 0;
|
|
return (0);
|
|
}
|
|
|
|
speed <<= QS; /* [bit/sec, scaled] */
|
|
speed /= bpc; /* [char/sec, scaled] */
|
|
rate = (hz << QS) / speed; /* [hz per callout] */
|
|
if (rate == 0)
|
|
rate = 1;
|
|
|
|
speed *= rate;
|
|
speed /= hz; /* [(char/sec)/tick, scaled */
|
|
|
|
np->np_credits = speed;
|
|
np->np_rate = rate;
|
|
callout_reset(&np->np_callout, rate, nmdm_timeout, np);
|
|
|
|
/*
|
|
* swap pointers for second pass so the other end gets
|
|
* updated as well.
|
|
*/
|
|
np = np->np_other;
|
|
t = &tp2->t_termios;
|
|
tp2 = tp;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nmdm_modem(struct tty *tp, int sigon, int sigoff)
|
|
{
|
|
struct nmdmpart *np = tty_softc(tp);
|
|
int i = 0;
|
|
|
|
if (sigon || sigoff) {
|
|
if (sigon & SER_DTR)
|
|
np->np_other->np_dcd = 1;
|
|
if (sigoff & SER_DTR)
|
|
np->np_other->np_dcd = 0;
|
|
|
|
ttydisc_modem(np->np_other->np_tty, np->np_other->np_dcd);
|
|
|
|
return (0);
|
|
} else {
|
|
if (np->np_dcd)
|
|
i |= SER_DCD;
|
|
if (np->np_other->np_dcd)
|
|
i |= SER_DTR;
|
|
|
|
return (i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nmdm_inwakeup(struct tty *tp)
|
|
{
|
|
struct nmdmpart *np = tty_softc(tp);
|
|
|
|
/* We can receive again, so wake up the other side. */
|
|
taskqueue_enqueue(taskqueue_swi, &np->np_other->np_task);
|
|
}
|
|
|
|
static void
|
|
nmdm_outwakeup(struct tty *tp)
|
|
{
|
|
struct nmdmpart *np = tty_softc(tp);
|
|
|
|
/* We can transmit again, so wake up our side. */
|
|
taskqueue_enqueue(taskqueue_swi, &np->np_task);
|
|
}
|
|
|
|
/*
|
|
* Module handling
|
|
*/
|
|
static int
|
|
nmdm_modevent(module_t mod, int type, void *data)
|
|
{
|
|
static eventhandler_tag tag;
|
|
|
|
switch(type) {
|
|
case MOD_LOAD:
|
|
tag = EVENTHANDLER_REGISTER(dev_clone, nmdm_clone, 0, 1000);
|
|
if (tag == NULL)
|
|
return (ENOMEM);
|
|
break;
|
|
|
|
case MOD_SHUTDOWN:
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
if (nmdm_count != 0)
|
|
return (EBUSY);
|
|
EVENTHANDLER_DEREGISTER(dev_clone, tag);
|
|
break;
|
|
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
DEV_MODULE(nmdm, nmdm_modevent, NULL);
|