1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-25 11:37:56 +00:00
freebsd/lib/msun/ld80/e_rem_pio2l.h
Bruce Evans 27aa844253 Centralize the complications for special efficient rounding to integers.
This was open-coded in range reduction for trig and exp functions.  Now
there are 3 static inline functions rnint[fl]() that replace open-coded
expressions, and type-generic irint() and i64rint() macros that hide the
complications for efficiently using non-generic irint() and irintl()
functions and casts.

Special details:

ld128/e_rem_pio2l.h needs to use i64rint() since it needs a 46-bit integer
result.  Everything else only needs a (less than) 32-bit integer result so
uses irint().

Float and double cases now use float_t and double_t locally instead of
STRICT_ASSIGN() to avoid bugs in extra precision.

On amd64, inline asm is now only used for irint() on long doubles.  The SSE
asm for irint() on amd64 only existed because the ifdef tangles made the
correct method of simply casting to int for this case non-obvious.
2018-07-20 12:42:24 +00:00

144 lines
4.3 KiB
C

/* From: @(#)e_rem_pio2.c 1.4 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* Optimized by Bruce D. Evans.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* ld80 version of __ieee754_rem_pio2l(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __kernel_rem_pio2()
*/
#include <float.h>
#include "math.h"
#include "math_private.h"
#include "fpmath.h"
#define BIAS (LDBL_MAX_EXP - 1)
/*
* invpio2: 64 bits of 2/pi
* pio2_1: first 39 bits of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 39 bits of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 39 bits of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
static const double
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
pio2_1 = 1.57079632679597125389e+00, /* 0x3FF921FB, 0x54444000 */
pio2_2 = -1.07463465549783099519e-12, /* -0x12e7b967674000.0p-92 */
pio2_3 = 6.36831716351370313614e-25; /* 0x18a2e037074000.0p-133 */
#if defined(__amd64__) || defined(__i386__)
/* Long double constants are slow on these arches, and broken on i386. */
static const volatile double
invpio2hi = 6.3661977236758138e-01, /* 0x145f306dc9c883.0p-53 */
invpio2lo = -3.9356538861223811e-17, /* -0x16b00000000000.0p-107 */
pio2_1thi = -1.0746346554971943e-12, /* -0x12e7b9676733af.0p-92 */
pio2_1tlo = 8.8451028997905949e-29, /* 0x1c080000000000.0p-146 */
pio2_2thi = 6.3683171635109499e-25, /* 0x18a2e03707344a.0p-133 */
pio2_2tlo = 2.3183081793789774e-41, /* 0x10280000000000.0p-187 */
pio2_3thi = -2.7529965190440717e-37, /* -0x176b7ed8fbbacc.0p-174 */
pio2_3tlo = -4.2006647512740502e-54; /* -0x19c00000000000.0p-230 */
#define invpio2 ((long double)invpio2hi + invpio2lo)
#define pio2_1t ((long double)pio2_1thi + pio2_1tlo)
#define pio2_2t ((long double)pio2_2thi + pio2_2tlo)
#define pio2_3t ((long double)pio2_3thi + pio2_3tlo)
#else
static const long double
invpio2 = 6.36619772367581343076e-01L, /* 0xa2f9836e4e44152a.0p-64 */
pio2_1t = -1.07463465549719416346e-12L, /* -0x973dcb3b399d747f.0p-103 */
pio2_2t = 6.36831716351095013979e-25L, /* 0xc51701b839a25205.0p-144 */
pio2_3t = -2.75299651904407171810e-37L; /* -0xbb5bf6c7ddd660ce.0p-185 */
#endif
static inline __always_inline int
__ieee754_rem_pio2l(long double x, long double *y)
{
union IEEEl2bits u,u1;
long double z,w,t,r,fn;
double tx[3],ty[2];
int e0,ex,i,j,nx,n;
int16_t expsign;
u.e = x;
expsign = u.xbits.expsign;
ex = expsign & 0x7fff;
if (ex < BIAS + 25 || (ex == BIAS + 25 && u.bits.manh < 0xc90fdaa2)) {
/* |x| ~< 2^25*(pi/2), medium size */
fn = rnintl(x*invpio2);
n = irint(fn);
r = x-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 102 bit */
{
union IEEEl2bits u2;
int ex1;
j = ex;
y[0] = r-w;
u2.e = y[0];
ex1 = u2.xbits.expsign & 0x7fff;
i = j-ex1;
if(i>22) { /* 2nd iteration needed, good to 141 */
t = r;
w = fn*pio2_2;
r = t-w;
w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
u2.e = y[0];
ex1 = u2.xbits.expsign & 0x7fff;
i = j-ex1;
if(i>61) { /* 3rd iteration need, 180 bits acc */
t = r; /* will cover all possible cases */
w = fn*pio2_3;
r = t-w;
w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
}
y[1] = (r-y[0])-w;
return n;
}
/*
* all other (large) arguments
*/
if(ex==0x7fff) { /* x is inf or NaN */
y[0]=y[1]=x-x; return 0;
}
/* set z = scalbn(|x|,ilogb(x)-23) */
u1.e = x;
e0 = ex - BIAS - 23; /* e0 = ilogb(|x|)-23; */
u1.xbits.expsign = ex - e0;
z = u1.e;
for(i=0;i<2;i++) {
tx[i] = (double)((int32_t)(z));
z = (z-tx[i])*two24;
}
tx[2] = z;
nx = 3;
while(tx[nx-1]==zero) nx--; /* skip zero term */
n = __kernel_rem_pio2(tx,ty,e0,nx,2);
r = (long double)ty[0] + ty[1];
w = ty[1] - (r - ty[0]);
if(expsign<0) {y[0] = -r; y[1] = -w; return -n;}
y[0] = r; y[1] = w; return n;
}