1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-14 14:55:41 +00:00
freebsd/sys/vm/vm_contig.c
Matthew Dillon 6d03d577a5 Reorg vm_page.c into vm_page.c, vm_pageq.c, and vm_contig.c (for contigmalloc).
Also removed some spl's and added some VM mutexes, but they are not actually
used yet, so this commit does not really make any operational changes
to the system.

vm_page.c relates to vm_page_t manipulation, including high level deactivation,
activation, etc...  vm_pageq.c relates to finding free pages and aquiring
exclusive access to a page queue (exclusivity part not yet implemented).
And the world still builds... :-)
2001-07-04 23:27:09 +00:00

310 lines
9.0 KiB
C

/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
* $FreeBSD$
*/
/*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
/*
* This interface is for merging with malloc() someday.
* Even if we never implement compaction so that contiguous allocation
* works after initialization time, malloc()'s data structures are good
* for statistics and for allocations of less than a page.
*/
void *
contigmalloc1(
unsigned long size, /* should be size_t here and for malloc() */
struct malloc_type *type,
int flags,
unsigned long low,
unsigned long high,
unsigned long alignment,
unsigned long boundary,
vm_map_t map)
{
int i, s, start;
vm_offset_t addr, phys, tmp_addr;
int pass;
vm_page_t pga = vm_page_array;
size = round_page(size);
if (size == 0)
panic("contigmalloc1: size must not be 0");
if ((alignment & (alignment - 1)) != 0)
panic("contigmalloc1: alignment must be a power of 2");
if ((boundary & (boundary - 1)) != 0)
panic("contigmalloc1: boundary must be a power of 2");
start = 0;
for (pass = 0; pass <= 1; pass++) {
s = splvm();
again:
/*
* Find first page in array that is free, within range, aligned, and
* such that the boundary won't be crossed.
*/
for (i = start; i < cnt.v_page_count; i++) {
int pqtype;
phys = VM_PAGE_TO_PHYS(&pga[i]);
pqtype = pga[i].queue - pga[i].pc;
if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
(phys >= low) && (phys < high) &&
((phys & (alignment - 1)) == 0) &&
(((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
break;
}
/*
* If the above failed or we will exceed the upper bound, fail.
*/
if ((i == cnt.v_page_count) ||
((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
vm_page_t m, next;
again1:
for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
m != NULL;
m = next) {
KASSERT(m->queue == PQ_INACTIVE,
("contigmalloc1: page %p is not PQ_INACTIVE", m));
next = TAILQ_NEXT(m, pageq);
if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
goto again1;
vm_page_test_dirty(m);
if (m->dirty) {
if (m->object->type == OBJT_VNODE) {
vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
VOP_UNLOCK(m->object->handle, 0, curproc);
goto again1;
} else if (m->object->type == OBJT_SWAP ||
m->object->type == OBJT_DEFAULT) {
vm_pageout_flush(&m, 1, 0);
goto again1;
}
}
if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
vm_page_cache(m);
}
for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
m != NULL;
m = next) {
KASSERT(m->queue == PQ_ACTIVE,
("contigmalloc1: page %p is not PQ_ACTIVE", m));
next = TAILQ_NEXT(m, pageq);
if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
goto again1;
vm_page_test_dirty(m);
if (m->dirty) {
if (m->object->type == OBJT_VNODE) {
vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
VOP_UNLOCK(m->object->handle, 0, curproc);
goto again1;
} else if (m->object->type == OBJT_SWAP ||
m->object->type == OBJT_DEFAULT) {
vm_pageout_flush(&m, 1, 0);
goto again1;
}
}
if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
vm_page_cache(m);
}
splx(s);
continue;
}
start = i;
/*
* Check successive pages for contiguous and free.
*/
for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
int pqtype;
pqtype = pga[i].queue - pga[i].pc;
if ((VM_PAGE_TO_PHYS(&pga[i]) !=
(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
start++;
goto again;
}
}
for (i = start; i < (start + size / PAGE_SIZE); i++) {
int pqtype;
vm_page_t m = &pga[i];
pqtype = m->queue - m->pc;
if (pqtype == PQ_CACHE) {
vm_page_busy(m);
vm_page_free(m);
}
TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
vm_page_queues[m->queue].lcnt--;
cnt.v_free_count--;
m->valid = VM_PAGE_BITS_ALL;
m->flags = 0;
KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
m->wire_count = 0;
m->busy = 0;
m->queue = PQ_NONE;
m->object = NULL;
vm_page_wire(m);
}
/*
* We've found a contiguous chunk that meets are requirements.
* Allocate kernel VM, unfree and assign the physical pages to it and
* return kernel VM pointer.
*/
tmp_addr = addr = kmem_alloc_pageable(map, size);
if (addr == 0) {
/*
* XXX We almost never run out of kernel virtual
* space, so we don't make the allocated memory
* above available.
*/
splx(s);
return (NULL);
}
for (i = start; i < (start + size / PAGE_SIZE); i++) {
vm_page_t m = &pga[i];
vm_page_insert(m, kernel_object,
OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
tmp_addr += PAGE_SIZE;
}
splx(s);
return ((void *)addr);
}
return NULL;
}
void *
contigmalloc(
unsigned long size, /* should be size_t here and for malloc() */
struct malloc_type *type,
int flags,
unsigned long low,
unsigned long high,
unsigned long alignment,
unsigned long boundary)
{
void * ret;
GIANT_REQUIRED;
ret = contigmalloc1(size, type, flags, low, high, alignment, boundary,
kernel_map);
return (ret);
}
void
contigfree(void *addr, unsigned long size, struct malloc_type *type)
{
GIANT_REQUIRED;
kmem_free(kernel_map, (vm_offset_t)addr, size);
}
vm_offset_t
vm_page_alloc_contig(
vm_offset_t size,
vm_offset_t low,
vm_offset_t high,
vm_offset_t alignment)
{
vm_offset_t ret;
GIANT_REQUIRED;
ret = ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
alignment, 0ul, kernel_map));
return (ret);
}