1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/sys/kern/subr_lock.c
Jeff Roberson 2e6b8de462 - Implement a new mechanism for resetting lock profiling. We now
guarantee that all cpus have acknowledged the cleared enable int by
   scheduling the resetting thread on each cpu in succession.  Since all
   lock profiling happens within a critical section this guarantees that
   all cpus have left lock profiling before we clear the datastructures.
 - Assert that the per-thread queue of locks lock profiling is aware of
   is clear on thread exit.  There were several cases where this was not
   true that slows lock profiling and leaks information.
 - Remove all objects from all lists before clearing any per-cpu
   information in reset.  Lock profiling objects can migrate between
   per-cpu caches and previously these migrated objects could be zero'd
   before they'd been removed

Discussed with:	attilio
Sponsored by:	Nokia
2009-03-15 06:41:47 +00:00

670 lines
17 KiB
C

/*-
* Copyright (c) 2006 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This module holds the global variables and functions used to maintain
* lock_object structures.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_mprof.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker_set.h>
#include <sys/lock.h>
#include <sys/lock_profile.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <machine/cpufunc.h>
CTASSERT(LOCK_CLASS_MAX == 15);
struct lock_class *lock_classes[LOCK_CLASS_MAX + 1] = {
&lock_class_mtx_spin,
&lock_class_mtx_sleep,
&lock_class_sx,
&lock_class_rm,
&lock_class_rw,
&lock_class_lockmgr,
};
void
lock_init(struct lock_object *lock, struct lock_class *class, const char *name,
const char *type, int flags)
{
int i;
/* Check for double-init and zero object. */
KASSERT(!lock_initalized(lock), ("lock \"%s\" %p already initialized",
name, lock));
/* Look up lock class to find its index. */
for (i = 0; i < LOCK_CLASS_MAX; i++)
if (lock_classes[i] == class) {
lock->lo_flags = i << LO_CLASSSHIFT;
break;
}
KASSERT(i < LOCK_CLASS_MAX, ("unknown lock class %p", class));
/* Initialize the lock object. */
lock->lo_name = name;
lock->lo_flags |= flags | LO_INITIALIZED;
LOCK_LOG_INIT(lock, 0);
WITNESS_INIT(lock, (type != NULL) ? type : name);
}
void
lock_destroy(struct lock_object *lock)
{
KASSERT(lock_initalized(lock), ("lock %p is not initialized", lock));
WITNESS_DESTROY(lock);
LOCK_LOG_DESTROY(lock, 0);
lock->lo_flags &= ~LO_INITIALIZED;
}
#ifdef DDB
DB_SHOW_COMMAND(lock, db_show_lock)
{
struct lock_object *lock;
struct lock_class *class;
if (!have_addr)
return;
lock = (struct lock_object *)addr;
if (LO_CLASSINDEX(lock) > LOCK_CLASS_MAX) {
db_printf("Unknown lock class: %d\n", LO_CLASSINDEX(lock));
return;
}
class = LOCK_CLASS(lock);
db_printf(" class: %s\n", class->lc_name);
db_printf(" name: %s\n", lock->lo_name);
class->lc_ddb_show(lock);
}
#endif
#ifdef LOCK_PROFILING
/*
* One object per-thread for each lock the thread owns. Tracks individual
* lock instances.
*/
struct lock_profile_object {
LIST_ENTRY(lock_profile_object) lpo_link;
struct lock_object *lpo_obj;
const char *lpo_file;
int lpo_line;
uint16_t lpo_ref;
uint16_t lpo_cnt;
u_int64_t lpo_acqtime;
u_int64_t lpo_waittime;
u_int lpo_contest_locking;
};
/*
* One lock_prof for each (file, line, lock object) triple.
*/
struct lock_prof {
SLIST_ENTRY(lock_prof) link;
struct lock_class *class;
const char *file;
const char *name;
int line;
int ticks;
uintmax_t cnt_wait_max;
uintmax_t cnt_max;
uintmax_t cnt_tot;
uintmax_t cnt_wait;
uintmax_t cnt_cur;
uintmax_t cnt_contest_locking;
};
SLIST_HEAD(lphead, lock_prof);
#define LPROF_HASH_SIZE 4096
#define LPROF_HASH_MASK (LPROF_HASH_SIZE - 1)
#define LPROF_CACHE_SIZE 4096
/*
* Array of objects and profs for each type of object for each cpu. Spinlocks
* are handled seperately because a thread may be preempted and acquire a
* spinlock while in the lock profiling code of a non-spinlock. In this way
* we only need a critical section to protect the per-cpu lists.
*/
struct lock_prof_type {
struct lphead lpt_lpalloc;
struct lpohead lpt_lpoalloc;
struct lphead lpt_hash[LPROF_HASH_SIZE];
struct lock_prof lpt_prof[LPROF_CACHE_SIZE];
struct lock_profile_object lpt_objs[LPROF_CACHE_SIZE];
};
struct lock_prof_cpu {
struct lock_prof_type lpc_types[2]; /* One for spin one for other. */
};
struct lock_prof_cpu *lp_cpu[MAXCPU];
volatile int lock_prof_enable = 0;
static volatile int lock_prof_resetting;
/* SWAG: sbuf size = avg stat. line size * number of locks */
#define LPROF_SBUF_SIZE 256 * 400
static int lock_prof_rejected;
static int lock_prof_skipspin;
static int lock_prof_skipcount;
#ifndef USE_CPU_NANOSECONDS
u_int64_t
nanoseconds(void)
{
struct bintime bt;
u_int64_t ns;
binuptime(&bt);
/* From bintime2timespec */
ns = bt.sec * (u_int64_t)1000000000;
ns += ((uint64_t)1000000000 * (uint32_t)(bt.frac >> 32)) >> 32;
return (ns);
}
#endif
static void
lock_prof_init_type(struct lock_prof_type *type)
{
int i;
SLIST_INIT(&type->lpt_lpalloc);
LIST_INIT(&type->lpt_lpoalloc);
for (i = 0; i < LPROF_CACHE_SIZE; i++) {
SLIST_INSERT_HEAD(&type->lpt_lpalloc, &type->lpt_prof[i],
link);
LIST_INSERT_HEAD(&type->lpt_lpoalloc, &type->lpt_objs[i],
lpo_link);
}
}
static void
lock_prof_init(void *arg)
{
int cpu;
for (cpu = 0; cpu <= mp_maxid; cpu++) {
lp_cpu[cpu] = malloc(sizeof(*lp_cpu[cpu]), M_DEVBUF,
M_WAITOK | M_ZERO);
lock_prof_init_type(&lp_cpu[cpu]->lpc_types[0]);
lock_prof_init_type(&lp_cpu[cpu]->lpc_types[1]);
}
}
SYSINIT(lockprof, SI_SUB_SMP, SI_ORDER_ANY, lock_prof_init, NULL);
/*
* To be certain that lock profiling has idled on all cpus before we
* reset, we schedule the resetting thread on all active cpus. Since
* all operations happen within critical sections we can be sure that
* it is safe to zero the profiling structures.
*/
static void
lock_prof_idle(void)
{
struct thread *td;
int cpu;
td = curthread;
thread_lock(td);
for (cpu = 0; cpu <= mp_maxid; cpu++) {
if (CPU_ABSENT(cpu))
continue;
sched_bind(td, cpu);
}
sched_unbind(td);
thread_unlock(td);
}
static void
lock_prof_reset_wait(void)
{
/*
* Spin relinquishing our cpu so that lock_prof_idle may
* run on it.
*/
while (lock_prof_resetting)
sched_relinquish(curthread);
}
static void
lock_prof_reset(void)
{
struct lock_prof_cpu *lpc;
int enabled, i, cpu;
/*
* We not only race with acquiring and releasing locks but also
* thread exit. To be certain that threads exit without valid head
* pointers they must see resetting set before enabled is cleared.
* Otherwise a lock may not be removed from a per-thread list due
* to disabled being set but not wait for reset() to remove it below.
*/
atomic_store_rel_int(&lock_prof_resetting, 1);
enabled = lock_prof_enable;
lock_prof_enable = 0;
lock_prof_idle();
/*
* Some objects may have migrated between CPUs. Clear all links
* before we zero the structures. Some items may still be linked
* into per-thread lists as well.
*/
for (cpu = 0; cpu <= mp_maxid; cpu++) {
lpc = lp_cpu[cpu];
for (i = 0; i < LPROF_CACHE_SIZE; i++) {
LIST_REMOVE(&lpc->lpc_types[0].lpt_objs[i], lpo_link);
LIST_REMOVE(&lpc->lpc_types[1].lpt_objs[i], lpo_link);
}
}
for (cpu = 0; cpu <= mp_maxid; cpu++) {
lpc = lp_cpu[cpu];
bzero(lpc, sizeof(*lpc));
lock_prof_init_type(&lpc->lpc_types[0]);
lock_prof_init_type(&lpc->lpc_types[1]);
}
atomic_store_rel_int(&lock_prof_resetting, 0);
lock_prof_enable = enabled;
}
static void
lock_prof_output(struct lock_prof *lp, struct sbuf *sb)
{
const char *p;
for (p = lp->file; p != NULL && strncmp(p, "../", 3) == 0; p += 3);
sbuf_printf(sb,
"%8ju %9ju %11ju %11ju %11ju %6ju %6ju %2ju %6ju %s:%d (%s:%s)\n",
lp->cnt_max / 1000, lp->cnt_wait_max / 1000, lp->cnt_tot / 1000,
lp->cnt_wait / 1000, lp->cnt_cur,
lp->cnt_cur == 0 ? (uintmax_t)0 :
lp->cnt_tot / (lp->cnt_cur * 1000),
lp->cnt_cur == 0 ? (uintmax_t)0 :
lp->cnt_wait / (lp->cnt_cur * 1000),
(uintmax_t)0, lp->cnt_contest_locking,
p, lp->line, lp->class->lc_name, lp->name);
}
static void
lock_prof_sum(struct lock_prof *match, struct lock_prof *dst, int hash,
int spin, int t)
{
struct lock_prof_type *type;
struct lock_prof *l;
int cpu;
dst->file = match->file;
dst->line = match->line;
dst->class = match->class;
dst->name = match->name;
for (cpu = 0; cpu <= mp_maxid; cpu++) {
if (lp_cpu[cpu] == NULL)
continue;
type = &lp_cpu[cpu]->lpc_types[spin];
SLIST_FOREACH(l, &type->lpt_hash[hash], link) {
if (l->ticks == t)
continue;
if (l->file != match->file || l->line != match->line ||
l->name != match->name)
continue;
l->ticks = t;
if (l->cnt_max > dst->cnt_max)
dst->cnt_max = l->cnt_max;
if (l->cnt_wait_max > dst->cnt_wait_max)
dst->cnt_wait_max = l->cnt_wait_max;
dst->cnt_tot += l->cnt_tot;
dst->cnt_wait += l->cnt_wait;
dst->cnt_cur += l->cnt_cur;
dst->cnt_contest_locking += l->cnt_contest_locking;
}
}
}
static void
lock_prof_type_stats(struct lock_prof_type *type, struct sbuf *sb, int spin,
int t)
{
struct lock_prof *l;
int i;
for (i = 0; i < LPROF_HASH_SIZE; ++i) {
SLIST_FOREACH(l, &type->lpt_hash[i], link) {
struct lock_prof lp = {};
if (l->ticks == t)
continue;
lock_prof_sum(l, &lp, i, spin, t);
lock_prof_output(&lp, sb);
if (sbuf_overflowed(sb))
return;
}
}
}
static int
dump_lock_prof_stats(SYSCTL_HANDLER_ARGS)
{
static int multiplier = 1;
struct sbuf *sb;
int error, cpu, t;
int enabled;
retry_sbufops:
sb = sbuf_new(NULL, NULL, LPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
sbuf_printf(sb, "\n%8s %9s %11s %11s %11s %6s %6s %2s %6s %s\n",
"max", "wait_max", "total", "wait_total", "count", "avg", "wait_avg", "cnt_hold", "cnt_lock", "name");
enabled = lock_prof_enable;
lock_prof_enable = 0;
lock_prof_idle();
t = ticks;
for (cpu = 0; cpu <= mp_maxid; cpu++) {
if (lp_cpu[cpu] == NULL)
continue;
lock_prof_type_stats(&lp_cpu[cpu]->lpc_types[0], sb, 0, t);
lock_prof_type_stats(&lp_cpu[cpu]->lpc_types[1], sb, 1, t);
if (sbuf_overflowed(sb)) {
sbuf_delete(sb);
multiplier++;
goto retry_sbufops;
}
}
lock_prof_enable = enabled;
sbuf_finish(sb);
error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
sbuf_delete(sb);
return (error);
}
static int
enable_lock_prof(SYSCTL_HANDLER_ARGS)
{
int error, v;
v = lock_prof_enable;
error = sysctl_handle_int(oidp, &v, v, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == lock_prof_enable)
return (0);
if (v == 1)
lock_prof_reset();
lock_prof_enable = !!v;
return (0);
}
static int
reset_lock_prof_stats(SYSCTL_HANDLER_ARGS)
{
int error, v;
v = 0;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == 0)
return (0);
lock_prof_reset();
return (0);
}
static struct lock_prof *
lock_profile_lookup(struct lock_object *lo, int spin, const char *file,
int line)
{
const char *unknown = "(unknown)";
struct lock_prof_type *type;
struct lock_prof *lp;
struct lphead *head;
const char *p;
u_int hash;
p = file;
if (p == NULL || *p == '\0')
p = unknown;
hash = (uintptr_t)lo->lo_name * 31 + (uintptr_t)p * 31 + line;
hash &= LPROF_HASH_MASK;
type = &lp_cpu[PCPU_GET(cpuid)]->lpc_types[spin];
head = &type->lpt_hash[hash];
SLIST_FOREACH(lp, head, link) {
if (lp->line == line && lp->file == p &&
lp->name == lo->lo_name)
return (lp);
}
lp = SLIST_FIRST(&type->lpt_lpalloc);
if (lp == NULL) {
lock_prof_rejected++;
return (lp);
}
SLIST_REMOVE_HEAD(&type->lpt_lpalloc, link);
lp->file = p;
lp->line = line;
lp->class = LOCK_CLASS(lo);
lp->name = lo->lo_name;
SLIST_INSERT_HEAD(&type->lpt_hash[hash], lp, link);
return (lp);
}
static struct lock_profile_object *
lock_profile_object_lookup(struct lock_object *lo, int spin, const char *file,
int line)
{
struct lock_profile_object *l;
struct lock_prof_type *type;
struct lpohead *head;
head = &curthread->td_lprof[spin];
LIST_FOREACH(l, head, lpo_link)
if (l->lpo_obj == lo && l->lpo_file == file &&
l->lpo_line == line)
return (l);
type = &lp_cpu[PCPU_GET(cpuid)]->lpc_types[spin];
l = LIST_FIRST(&type->lpt_lpoalloc);
if (l == NULL) {
lock_prof_rejected++;
return (NULL);
}
LIST_REMOVE(l, lpo_link);
l->lpo_obj = lo;
l->lpo_file = file;
l->lpo_line = line;
l->lpo_cnt = 0;
LIST_INSERT_HEAD(head, l, lpo_link);
return (l);
}
void
lock_profile_obtain_lock_success(struct lock_object *lo, int contested,
uint64_t waittime, const char *file, int line)
{
static int lock_prof_count;
struct lock_profile_object *l;
int spin;
/* don't reset the timer when/if recursing */
if (!lock_prof_enable || (lo->lo_flags & LO_NOPROFILE))
return;
if (lock_prof_skipcount &&
(++lock_prof_count % lock_prof_skipcount) != 0)
return;
spin = (LOCK_CLASS(lo)->lc_flags & LC_SPINLOCK) ? 1 : 0;
if (spin && lock_prof_skipspin == 1)
return;
critical_enter();
/* Recheck enabled now that we're in a critical section. */
if (lock_prof_enable == 0)
goto out;
l = lock_profile_object_lookup(lo, spin, file, line);
if (l == NULL)
goto out;
l->lpo_cnt++;
if (++l->lpo_ref > 1)
goto out;
l->lpo_contest_locking = contested;
l->lpo_acqtime = nanoseconds();
if (waittime && (l->lpo_acqtime > waittime))
l->lpo_waittime = l->lpo_acqtime - waittime;
else
l->lpo_waittime = 0;
out:
critical_exit();
}
void
lock_profile_thread_exit(struct thread *td)
{
#ifdef INVARIANTS
struct lock_profile_object *l;
MPASS(curthread->td_critnest == 0);
#endif
/*
* If lock profiling was disabled we have to wait for reset to
* clear our pointers before we can exit safely.
*/
lock_prof_reset_wait();
#ifdef INVARIANTS
LIST_FOREACH(l, &td->td_lprof[0], lpo_link)
printf("thread still holds lock acquired at %s:%d\n",
l->lpo_file, l->lpo_line);
LIST_FOREACH(l, &td->td_lprof[1], lpo_link)
printf("thread still holds lock acquired at %s:%d\n",
l->lpo_file, l->lpo_line);
#endif
MPASS(LIST_FIRST(&td->td_lprof[0]) == NULL);
MPASS(LIST_FIRST(&td->td_lprof[1]) == NULL);
}
void
lock_profile_release_lock(struct lock_object *lo)
{
struct lock_profile_object *l;
struct lock_prof_type *type;
struct lock_prof *lp;
u_int64_t holdtime;
struct lpohead *head;
int spin;
if (lo->lo_flags & LO_NOPROFILE)
return;
spin = (LOCK_CLASS(lo)->lc_flags & LC_SPINLOCK) ? 1 : 0;
head = &curthread->td_lprof[spin];
if (LIST_FIRST(head) == NULL)
return;
critical_enter();
/* Recheck enabled now that we're in a critical section. */
if (lock_prof_enable == 0 && lock_prof_resetting == 1)
goto out;
/*
* If lock profiling is not enabled we still want to remove the
* lpo from our queue.
*/
LIST_FOREACH(l, head, lpo_link)
if (l->lpo_obj == lo)
break;
if (l == NULL)
goto out;
if (--l->lpo_ref > 0)
goto out;
lp = lock_profile_lookup(lo, spin, l->lpo_file, l->lpo_line);
if (lp == NULL)
goto release;
holdtime = nanoseconds() - l->lpo_acqtime;
if (holdtime < 0)
goto release;
/*
* Record if the lock has been held longer now than ever
* before.
*/
if (holdtime > lp->cnt_max)
lp->cnt_max = holdtime;
if (l->lpo_waittime > lp->cnt_wait_max)
lp->cnt_wait_max = l->lpo_waittime;
lp->cnt_tot += holdtime;
lp->cnt_wait += l->lpo_waittime;
lp->cnt_contest_locking += l->lpo_contest_locking;
lp->cnt_cur += l->lpo_cnt;
release:
LIST_REMOVE(l, lpo_link);
type = &lp_cpu[PCPU_GET(cpuid)]->lpc_types[spin];
LIST_INSERT_HEAD(&type->lpt_lpoalloc, l, lpo_link);
out:
critical_exit();
}
SYSCTL_NODE(_debug, OID_AUTO, lock, CTLFLAG_RD, NULL, "lock debugging");
SYSCTL_NODE(_debug_lock, OID_AUTO, prof, CTLFLAG_RD, NULL, "lock profiling");
SYSCTL_INT(_debug_lock_prof, OID_AUTO, skipspin, CTLFLAG_RW,
&lock_prof_skipspin, 0, "Skip profiling on spinlocks.");
SYSCTL_INT(_debug_lock_prof, OID_AUTO, skipcount, CTLFLAG_RW,
&lock_prof_skipcount, 0, "Sample approximately every N lock acquisitions.");
SYSCTL_INT(_debug_lock_prof, OID_AUTO, rejected, CTLFLAG_RD,
&lock_prof_rejected, 0, "Number of rejected profiling records");
SYSCTL_PROC(_debug_lock_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
NULL, 0, dump_lock_prof_stats, "A", "Lock profiling statistics");
SYSCTL_PROC(_debug_lock_prof, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
NULL, 0, reset_lock_prof_stats, "I", "Reset lock profiling statistics");
SYSCTL_PROC(_debug_lock_prof, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
NULL, 0, enable_lock_prof, "I", "Enable lock profiling");
#endif