mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-26 16:18:31 +00:00
a4cd5630b0
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
5716 lines
156 KiB
C
5716 lines
156 KiB
C
/* Generate code from machine description to compute values of attributes.
|
||
Copyright (C) 1991, 1993, 1994, 1995 Free Software Foundation, Inc.
|
||
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* This program handles insn attributes and the DEFINE_DELAY and
|
||
DEFINE_FUNCTION_UNIT definitions.
|
||
|
||
It produces a series of functions named `get_attr_...', one for each insn
|
||
attribute. Each of these is given the rtx for an insn and returns a member
|
||
of the enum for the attribute.
|
||
|
||
These subroutines have the form of a `switch' on the INSN_CODE (via
|
||
`recog_memoized'). Each case either returns a constant attribute value
|
||
or a value that depends on tests on other attributes, the form of
|
||
operands, or some random C expression (encoded with a SYMBOL_REF
|
||
expression).
|
||
|
||
If the attribute `alternative', or a random C expression is present,
|
||
`constrain_operands' is called. If either of these cases of a reference to
|
||
an operand is found, `insn_extract' is called.
|
||
|
||
The special attribute `length' is also recognized. For this operand,
|
||
expressions involving the address of an operand or the current insn,
|
||
(address (pc)), are valid. In this case, an initial pass is made to
|
||
set all lengths that do not depend on address. Those that do are set to
|
||
the maximum length. Then each insn that depends on an address is checked
|
||
and possibly has its length changed. The process repeats until no further
|
||
changed are made. The resulting lengths are saved for use by
|
||
`get_attr_length'.
|
||
|
||
A special form of DEFINE_ATTR, where the expression for default value is a
|
||
CONST expression, indicates an attribute that is constant for a given run
|
||
of the compiler. The subroutine generated for these attributes has no
|
||
parameters as it does not depend on any particular insn. Constant
|
||
attributes are typically used to specify which variety of processor is
|
||
used.
|
||
|
||
Internal attributes are defined to handle DEFINE_DELAY and
|
||
DEFINE_FUNCTION_UNIT. Special routines are output for these cases.
|
||
|
||
This program works by keeping a list of possible values for each attribute.
|
||
These include the basic attribute choices, default values for attribute, and
|
||
all derived quantities.
|
||
|
||
As the description file is read, the definition for each insn is saved in a
|
||
`struct insn_def'. When the file reading is complete, a `struct insn_ent'
|
||
is created for each insn and chained to the corresponding attribute value,
|
||
either that specified, or the default.
|
||
|
||
An optimization phase is then run. This simplifies expressions for each
|
||
insn. EQ_ATTR tests are resolved, whenever possible, to a test that
|
||
indicates when the attribute has the specified value for the insn. This
|
||
avoids recursive calls during compilation.
|
||
|
||
The strategy used when processing DEFINE_DELAY and DEFINE_FUNCTION_UNIT
|
||
definitions is to create arbitrarily complex expressions and have the
|
||
optimization simplify them.
|
||
|
||
Once optimization is complete, any required routines and definitions
|
||
will be written.
|
||
|
||
An optimization that is not yet implemented is to hoist the constant
|
||
expressions entirely out of the routines and definitions that are written.
|
||
A way to do this is to iterate over all possible combinations of values
|
||
for constant attributes and generate a set of functions for that given
|
||
combination. An initialization function would be written that evaluates
|
||
the attributes and installs the corresponding set of routines and
|
||
definitions (each would be accessed through a pointer).
|
||
|
||
We use the flags in an RTX as follows:
|
||
`unchanging' (RTX_UNCHANGING_P): This rtx is fully simplified
|
||
independent of the insn code.
|
||
`in_struct' (MEM_IN_STRUCT_P): This rtx is fully simplified
|
||
for the insn code currently being processed (see optimize_attrs).
|
||
`integrated' (RTX_INTEGRATED_P): This rtx is permanent and unique
|
||
(see attr_rtx).
|
||
`volatil' (MEM_VOLATILE_P): During simplify_by_exploding the value of an
|
||
EQ_ATTR rtx is true if !volatil and false if volatil. */
|
||
|
||
|
||
#include "hconfig.h"
|
||
/* varargs must always be included after *config.h. */
|
||
#ifdef __STDC__
|
||
#include <stdarg.h>
|
||
#else
|
||
#include <varargs.h>
|
||
#endif
|
||
#include "rtl.h"
|
||
#include "insn-config.h" /* For REGISTER_CONSTRAINTS */
|
||
#include <stdio.h>
|
||
|
||
#ifndef VMS
|
||
#ifndef USG
|
||
#include <sys/time.h>
|
||
#include <sys/resource.h>
|
||
#endif
|
||
#endif
|
||
|
||
/* We must include obstack.h after <sys/time.h>, to avoid lossage with
|
||
/usr/include/sys/stdtypes.h on Sun OS 4.x. */
|
||
#include "obstack.h"
|
||
|
||
static struct obstack obstack, obstack1, obstack2;
|
||
struct obstack *rtl_obstack = &obstack;
|
||
struct obstack *hash_obstack = &obstack1;
|
||
struct obstack *temp_obstack = &obstack2;
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
|
||
/* Define this so we can link with print-rtl.o to get debug_rtx function. */
|
||
char **insn_name_ptr = 0;
|
||
|
||
extern void free ();
|
||
extern rtx read_rtx ();
|
||
|
||
static void fatal ();
|
||
void fancy_abort ();
|
||
|
||
/* enough space to reserve for printing out ints */
|
||
#define MAX_DIGITS (HOST_BITS_PER_INT * 3 / 10 + 3)
|
||
|
||
/* Define structures used to record attributes and values. */
|
||
|
||
/* As each DEFINE_INSN, DEFINE_PEEPHOLE, or DEFINE_ASM_ATTRIBUTES is
|
||
encountered, we store all the relevant information into a
|
||
`struct insn_def'. This is done to allow attribute definitions to occur
|
||
anywhere in the file. */
|
||
|
||
struct insn_def
|
||
{
|
||
int insn_code; /* Instruction number. */
|
||
int insn_index; /* Expression numer in file, for errors. */
|
||
struct insn_def *next; /* Next insn in chain. */
|
||
rtx def; /* The DEFINE_... */
|
||
int num_alternatives; /* Number of alternatives. */
|
||
int vec_idx; /* Index of attribute vector in `def'. */
|
||
};
|
||
|
||
/* Once everything has been read in, we store in each attribute value a list
|
||
of insn codes that have that value. Here is the structure used for the
|
||
list. */
|
||
|
||
struct insn_ent
|
||
{
|
||
int insn_code; /* Instruction number. */
|
||
int insn_index; /* Index of definition in file */
|
||
struct insn_ent *next; /* Next in chain. */
|
||
};
|
||
|
||
/* Each value of an attribute (either constant or computed) is assigned a
|
||
structure which is used as the listhead of the insns that have that
|
||
value. */
|
||
|
||
struct attr_value
|
||
{
|
||
rtx value; /* Value of attribute. */
|
||
struct attr_value *next; /* Next attribute value in chain. */
|
||
struct insn_ent *first_insn; /* First insn with this value. */
|
||
int num_insns; /* Number of insns with this value. */
|
||
int has_asm_insn; /* True if this value used for `asm' insns */
|
||
};
|
||
|
||
/* Structure for each attribute. */
|
||
|
||
struct attr_desc
|
||
{
|
||
char *name; /* Name of attribute. */
|
||
struct attr_desc *next; /* Next attribute. */
|
||
int is_numeric; /* Values of this attribute are numeric. */
|
||
int negative_ok; /* Allow negative numeric values. */
|
||
int unsigned_p; /* Make the output function unsigned int. */
|
||
int is_const; /* Attribute value constant for each run. */
|
||
int is_special; /* Don't call `write_attr_set'. */
|
||
struct attr_value *first_value; /* First value of this attribute. */
|
||
struct attr_value *default_val; /* Default value for this attribute. */
|
||
};
|
||
|
||
#define NULL_ATTR (struct attr_desc *) NULL
|
||
|
||
/* A range of values. */
|
||
|
||
struct range
|
||
{
|
||
int min;
|
||
int max;
|
||
};
|
||
|
||
/* Structure for each DEFINE_DELAY. */
|
||
|
||
struct delay_desc
|
||
{
|
||
rtx def; /* DEFINE_DELAY expression. */
|
||
struct delay_desc *next; /* Next DEFINE_DELAY. */
|
||
int num; /* Number of DEFINE_DELAY, starting at 1. */
|
||
};
|
||
|
||
/* Record information about each DEFINE_FUNCTION_UNIT. */
|
||
|
||
struct function_unit_op
|
||
{
|
||
rtx condexp; /* Expression TRUE for applicable insn. */
|
||
struct function_unit_op *next; /* Next operation for this function unit. */
|
||
int num; /* Ordinal for this operation type in unit. */
|
||
int ready; /* Cost until data is ready. */
|
||
int issue_delay; /* Cost until unit can accept another insn. */
|
||
rtx conflict_exp; /* Expression TRUE for insns incurring issue delay. */
|
||
rtx issue_exp; /* Expression computing issue delay. */
|
||
};
|
||
|
||
/* Record information about each function unit mentioned in a
|
||
DEFINE_FUNCTION_UNIT. */
|
||
|
||
struct function_unit
|
||
{
|
||
char *name; /* Function unit name. */
|
||
struct function_unit *next; /* Next function unit. */
|
||
int num; /* Ordinal of this unit type. */
|
||
int multiplicity; /* Number of units of this type. */
|
||
int simultaneity; /* Maximum number of simultaneous insns
|
||
on this function unit or 0 if unlimited. */
|
||
rtx condexp; /* Expression TRUE for insn needing unit. */
|
||
int num_opclasses; /* Number of different operation types. */
|
||
struct function_unit_op *ops; /* Pointer to first operation type. */
|
||
int needs_conflict_function; /* Nonzero if a conflict function required. */
|
||
int needs_blockage_function; /* Nonzero if a blockage function required. */
|
||
int needs_range_function; /* Nonzero if blockage range function needed.*/
|
||
rtx default_cost; /* Conflict cost, if constant. */
|
||
struct range issue_delay; /* Range of issue delay values. */
|
||
int max_blockage; /* Maximum time an insn blocks the unit. */
|
||
};
|
||
|
||
/* Listheads of above structures. */
|
||
|
||
/* This one is indexed by the first character of the attribute name. */
|
||
#define MAX_ATTRS_INDEX 256
|
||
static struct attr_desc *attrs[MAX_ATTRS_INDEX];
|
||
static struct insn_def *defs;
|
||
static struct delay_desc *delays;
|
||
static struct function_unit *units;
|
||
|
||
/* An expression where all the unknown terms are EQ_ATTR tests can be
|
||
rearranged into a COND provided we can enumerate all possible
|
||
combinations of the unknown values. The set of combinations become the
|
||
tests of the COND; the value of the expression given that combination is
|
||
computed and becomes the corresponding value. To do this, we must be
|
||
able to enumerate all values for each attribute used in the expression
|
||
(currently, we give up if we find a numeric attribute).
|
||
|
||
If the set of EQ_ATTR tests used in an expression tests the value of N
|
||
different attributes, the list of all possible combinations can be made
|
||
by walking the N-dimensional attribute space defined by those
|
||
attributes. We record each of these as a struct dimension.
|
||
|
||
The algorithm relies on sharing EQ_ATTR nodes: if two nodes in an
|
||
expression are the same, the will also have the same address. We find
|
||
all the EQ_ATTR nodes by marking them MEM_VOLATILE_P. This bit later
|
||
represents the value of an EQ_ATTR node, so once all nodes are marked,
|
||
they are also given an initial value of FALSE.
|
||
|
||
We then separate the set of EQ_ATTR nodes into dimensions for each
|
||
attribute and put them on the VALUES list. Terms are added as needed by
|
||
`add_values_to_cover' so that all possible values of the attribute are
|
||
tested.
|
||
|
||
Each dimension also has a current value. This is the node that is
|
||
currently considered to be TRUE. If this is one of the nodes added by
|
||
`add_values_to_cover', all the EQ_ATTR tests in the original expression
|
||
will be FALSE. Otherwise, only the CURRENT_VALUE will be true.
|
||
|
||
NUM_VALUES is simply the length of the VALUES list and is there for
|
||
convenience.
|
||
|
||
Once the dimensions are created, the algorithm enumerates all possible
|
||
values and computes the current value of the given expression. */
|
||
|
||
struct dimension
|
||
{
|
||
struct attr_desc *attr; /* Attribute for this dimension. */
|
||
rtx values; /* List of attribute values used. */
|
||
rtx current_value; /* Position in the list for the TRUE value. */
|
||
int num_values; /* Length of the values list. */
|
||
};
|
||
|
||
/* Other variables. */
|
||
|
||
static int insn_code_number;
|
||
static int insn_index_number;
|
||
static int got_define_asm_attributes;
|
||
static int must_extract;
|
||
static int must_constrain;
|
||
static int address_used;
|
||
static int length_used;
|
||
static int num_delays;
|
||
static int have_annul_true, have_annul_false;
|
||
static int num_units;
|
||
static int num_insn_ents;
|
||
|
||
/* Used as operand to `operate_exp': */
|
||
|
||
enum operator {PLUS_OP, MINUS_OP, POS_MINUS_OP, EQ_OP, OR_OP, MAX_OP, MIN_OP, RANGE_OP};
|
||
|
||
/* Stores, for each insn code, the number of constraint alternatives. */
|
||
|
||
static int *insn_n_alternatives;
|
||
|
||
/* Stores, for each insn code, a bitmap that has bits on for each possible
|
||
alternative. */
|
||
|
||
static int *insn_alternatives;
|
||
|
||
/* If nonzero, assume that the `alternative' attr has this value.
|
||
This is the hashed, unique string for the numeral
|
||
whose value is chosen alternative. */
|
||
|
||
static char *current_alternative_string;
|
||
|
||
/* Used to simplify expressions. */
|
||
|
||
static rtx true_rtx, false_rtx;
|
||
|
||
/* Used to reduce calls to `strcmp' */
|
||
|
||
static char *alternative_name;
|
||
|
||
/* Simplify an expression. Only call the routine if there is something to
|
||
simplify. */
|
||
#define SIMPLIFY_TEST_EXP(EXP,INSN_CODE,INSN_INDEX) \
|
||
(RTX_UNCHANGING_P (EXP) || MEM_IN_STRUCT_P (EXP) ? (EXP) \
|
||
: simplify_test_exp (EXP, INSN_CODE, INSN_INDEX))
|
||
|
||
/* Simplify (eq_attr ("alternative") ...)
|
||
when we are working with a particular alternative. */
|
||
#define SIMPLIFY_ALTERNATIVE(EXP) \
|
||
if (current_alternative_string \
|
||
&& GET_CODE ((EXP)) == EQ_ATTR \
|
||
&& XSTR ((EXP), 0) == alternative_name) \
|
||
(EXP) = (XSTR ((EXP), 1) == current_alternative_string \
|
||
? true_rtx : false_rtx);
|
||
|
||
/* These are referenced by rtlanal.c and hence need to be defined somewhere.
|
||
They won't actually be used. */
|
||
|
||
rtx frame_pointer_rtx, hard_frame_pointer_rtx, stack_pointer_rtx;
|
||
rtx arg_pointer_rtx;
|
||
|
||
static rtx attr_rtx PVPROTO((enum rtx_code, ...));
|
||
#ifdef HAVE_VPRINTF
|
||
static char *attr_printf PVPROTO((int, char *, ...));
|
||
#else
|
||
static char *attr_printf ();
|
||
#endif
|
||
|
||
static char *attr_string PROTO((char *, int));
|
||
static rtx check_attr_test PROTO((rtx, int));
|
||
static rtx check_attr_value PROTO((rtx, struct attr_desc *));
|
||
static rtx convert_set_attr_alternative PROTO((rtx, int, int, int));
|
||
static rtx convert_set_attr PROTO((rtx, int, int, int));
|
||
static void check_defs PROTO((void));
|
||
static rtx convert_const_symbol_ref PROTO((rtx, struct attr_desc *));
|
||
static rtx make_canonical PROTO((struct attr_desc *, rtx));
|
||
static struct attr_value *get_attr_value PROTO((rtx, struct attr_desc *, int));
|
||
static rtx copy_rtx_unchanging PROTO((rtx));
|
||
static rtx copy_boolean PROTO((rtx));
|
||
static void expand_delays PROTO((void));
|
||
static rtx operate_exp PROTO((enum operator, rtx, rtx));
|
||
static void expand_units PROTO((void));
|
||
static rtx simplify_knowing PROTO((rtx, rtx));
|
||
static rtx encode_units_mask PROTO((rtx));
|
||
static void fill_attr PROTO((struct attr_desc *));
|
||
/* dpx2 compiler chokes if we specify the arg types of the args. */
|
||
static rtx substitute_address PROTO((rtx, rtx (*) (), rtx (*) ()));
|
||
static void make_length_attrs PROTO((void));
|
||
static rtx identity_fn PROTO((rtx));
|
||
static rtx zero_fn PROTO((rtx));
|
||
static rtx one_fn PROTO((rtx));
|
||
static rtx max_fn PROTO((rtx));
|
||
static rtx simplify_cond PROTO((rtx, int, int));
|
||
static rtx simplify_by_alternatives PROTO((rtx, int, int));
|
||
static rtx simplify_by_exploding PROTO((rtx));
|
||
static int find_and_mark_used_attributes PROTO((rtx, rtx *, int *));
|
||
static void unmark_used_attributes PROTO((rtx, struct dimension *, int));
|
||
static int add_values_to_cover PROTO((struct dimension *));
|
||
static int increment_current_value PROTO((struct dimension *, int));
|
||
static rtx test_for_current_value PROTO((struct dimension *, int));
|
||
static rtx simplify_with_current_value PROTO((rtx, struct dimension *, int));
|
||
static rtx simplify_with_current_value_aux PROTO((rtx));
|
||
static void clear_struct_flag PROTO((rtx));
|
||
static int count_sub_rtxs PROTO((rtx, int));
|
||
static void remove_insn_ent PROTO((struct attr_value *, struct insn_ent *));
|
||
static void insert_insn_ent PROTO((struct attr_value *, struct insn_ent *));
|
||
static rtx insert_right_side PROTO((enum rtx_code, rtx, rtx, int, int));
|
||
static rtx make_alternative_compare PROTO((int));
|
||
static int compute_alternative_mask PROTO((rtx, enum rtx_code));
|
||
static rtx evaluate_eq_attr PROTO((rtx, rtx, int, int));
|
||
static rtx simplify_and_tree PROTO((rtx, rtx *, int, int));
|
||
static rtx simplify_or_tree PROTO((rtx, rtx *, int, int));
|
||
static rtx simplify_test_exp PROTO((rtx, int, int));
|
||
static void optimize_attrs PROTO((void));
|
||
static void gen_attr PROTO((rtx));
|
||
static int count_alternatives PROTO((rtx));
|
||
static int compares_alternatives_p PROTO((rtx));
|
||
static int contained_in_p PROTO((rtx, rtx));
|
||
static void gen_insn PROTO((rtx));
|
||
static void gen_delay PROTO((rtx));
|
||
static void gen_unit PROTO((rtx));
|
||
static void write_test_expr PROTO((rtx, int));
|
||
static int max_attr_value PROTO((rtx));
|
||
static void walk_attr_value PROTO((rtx));
|
||
static void write_attr_get PROTO((struct attr_desc *));
|
||
static rtx eliminate_known_true PROTO((rtx, rtx, int, int));
|
||
static void write_attr_set PROTO((struct attr_desc *, int, rtx, char *,
|
||
char *, rtx, int, int));
|
||
static void write_attr_case PROTO((struct attr_desc *, struct attr_value *,
|
||
int, char *, char *, int, rtx));
|
||
static void write_attr_valueq PROTO((struct attr_desc *, char *));
|
||
static void write_attr_value PROTO((struct attr_desc *, rtx));
|
||
static void write_upcase PROTO((char *));
|
||
static void write_indent PROTO((int));
|
||
static void write_eligible_delay PROTO((char *));
|
||
static void write_function_unit_info PROTO((void));
|
||
static void write_complex_function PROTO((struct function_unit *, char *,
|
||
char *));
|
||
static int n_comma_elts PROTO((char *));
|
||
static char *next_comma_elt PROTO((char **));
|
||
static struct attr_desc *find_attr PROTO((char *, int));
|
||
static void make_internal_attr PROTO((char *, rtx, int));
|
||
static struct attr_value *find_most_used PROTO((struct attr_desc *));
|
||
static rtx find_single_value PROTO((struct attr_desc *));
|
||
static rtx make_numeric_value PROTO((int));
|
||
static void extend_range PROTO((struct range *, int, int));
|
||
char *xrealloc PROTO((char *, unsigned));
|
||
char *xmalloc PROTO((unsigned));
|
||
|
||
#define oballoc(size) obstack_alloc (hash_obstack, size)
|
||
|
||
|
||
/* Hash table for sharing RTL and strings. */
|
||
|
||
/* Each hash table slot is a bucket containing a chain of these structures.
|
||
Strings are given negative hash codes; RTL expressions are given positive
|
||
hash codes. */
|
||
|
||
struct attr_hash
|
||
{
|
||
struct attr_hash *next; /* Next structure in the bucket. */
|
||
int hashcode; /* Hash code of this rtx or string. */
|
||
union
|
||
{
|
||
char *str; /* The string (negative hash codes) */
|
||
rtx rtl; /* or the RTL recorded here. */
|
||
} u;
|
||
};
|
||
|
||
/* Now here is the hash table. When recording an RTL, it is added to
|
||
the slot whose index is the hash code mod the table size. Note
|
||
that the hash table is used for several kinds of RTL (see attr_rtx)
|
||
and for strings. While all these live in the same table, they are
|
||
completely independent, and the hash code is computed differently
|
||
for each. */
|
||
|
||
#define RTL_HASH_SIZE 4093
|
||
struct attr_hash *attr_hash_table[RTL_HASH_SIZE];
|
||
|
||
/* Here is how primitive or already-shared RTL's hash
|
||
codes are made. */
|
||
#define RTL_HASH(RTL) ((HOST_WIDE_INT) (RTL) & 0777777)
|
||
|
||
/* Add an entry to the hash table for RTL with hash code HASHCODE. */
|
||
|
||
static void
|
||
attr_hash_add_rtx (hashcode, rtl)
|
||
int hashcode;
|
||
rtx rtl;
|
||
{
|
||
register struct attr_hash *h;
|
||
|
||
h = (struct attr_hash *) obstack_alloc (hash_obstack,
|
||
sizeof (struct attr_hash));
|
||
h->hashcode = hashcode;
|
||
h->u.rtl = rtl;
|
||
h->next = attr_hash_table[hashcode % RTL_HASH_SIZE];
|
||
attr_hash_table[hashcode % RTL_HASH_SIZE] = h;
|
||
}
|
||
|
||
/* Add an entry to the hash table for STRING with hash code HASHCODE. */
|
||
|
||
static void
|
||
attr_hash_add_string (hashcode, str)
|
||
int hashcode;
|
||
char *str;
|
||
{
|
||
register struct attr_hash *h;
|
||
|
||
h = (struct attr_hash *) obstack_alloc (hash_obstack,
|
||
sizeof (struct attr_hash));
|
||
h->hashcode = -hashcode;
|
||
h->u.str = str;
|
||
h->next = attr_hash_table[hashcode % RTL_HASH_SIZE];
|
||
attr_hash_table[hashcode % RTL_HASH_SIZE] = h;
|
||
}
|
||
|
||
/* Generate an RTL expression, but avoid duplicates.
|
||
Set the RTX_INTEGRATED_P flag for these permanent objects.
|
||
|
||
In some cases we cannot uniquify; then we return an ordinary
|
||
impermanent rtx with RTX_INTEGRATED_P clear.
|
||
|
||
Args are like gen_rtx, but without the mode:
|
||
|
||
rtx attr_rtx (code, [element1, ..., elementn]) */
|
||
|
||
/*VARARGS1*/
|
||
static rtx
|
||
attr_rtx VPROTO((enum rtx_code code, ...))
|
||
{
|
||
#ifndef __STDC__
|
||
enum rtx_code code;
|
||
#endif
|
||
va_list p;
|
||
register int i; /* Array indices... */
|
||
register char *fmt; /* Current rtx's format... */
|
||
register rtx rt_val; /* RTX to return to caller... */
|
||
int hashcode;
|
||
register struct attr_hash *h;
|
||
struct obstack *old_obstack = rtl_obstack;
|
||
|
||
VA_START (p, code);
|
||
|
||
#ifndef __STDC__
|
||
code = va_arg (p, enum rtx_code);
|
||
#endif
|
||
|
||
/* For each of several cases, search the hash table for an existing entry.
|
||
Use that entry if one is found; otherwise create a new RTL and add it
|
||
to the table. */
|
||
|
||
if (GET_RTX_CLASS (code) == '1')
|
||
{
|
||
rtx arg0 = va_arg (p, rtx);
|
||
|
||
/* A permanent object cannot point to impermanent ones. */
|
||
if (! RTX_INTEGRATED_P (arg0))
|
||
{
|
||
rt_val = rtx_alloc (code);
|
||
XEXP (rt_val, 0) = arg0;
|
||
va_end (p);
|
||
return rt_val;
|
||
}
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XEXP (h->u.rtl, 0) == arg0)
|
||
goto found;
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XEXP (rt_val, 0) = arg0;
|
||
}
|
||
}
|
||
else if (GET_RTX_CLASS (code) == 'c'
|
||
|| GET_RTX_CLASS (code) == '2'
|
||
|| GET_RTX_CLASS (code) == '<')
|
||
{
|
||
rtx arg0 = va_arg (p, rtx);
|
||
rtx arg1 = va_arg (p, rtx);
|
||
|
||
/* A permanent object cannot point to impermanent ones. */
|
||
if (! RTX_INTEGRATED_P (arg0) || ! RTX_INTEGRATED_P (arg1))
|
||
{
|
||
rt_val = rtx_alloc (code);
|
||
XEXP (rt_val, 0) = arg0;
|
||
XEXP (rt_val, 1) = arg1;
|
||
va_end (p);
|
||
return rt_val;
|
||
}
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XEXP (h->u.rtl, 0) == arg0
|
||
&& XEXP (h->u.rtl, 1) == arg1)
|
||
goto found;
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XEXP (rt_val, 0) = arg0;
|
||
XEXP (rt_val, 1) = arg1;
|
||
}
|
||
}
|
||
else if (GET_RTX_LENGTH (code) == 1
|
||
&& GET_RTX_FORMAT (code)[0] == 's')
|
||
{
|
||
char * arg0 = va_arg (p, char *);
|
||
|
||
if (code == SYMBOL_REF)
|
||
arg0 = attr_string (arg0, strlen (arg0));
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XSTR (h->u.rtl, 0) == arg0)
|
||
goto found;
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XSTR (rt_val, 0) = arg0;
|
||
}
|
||
}
|
||
else if (GET_RTX_LENGTH (code) == 2
|
||
&& GET_RTX_FORMAT (code)[0] == 's'
|
||
&& GET_RTX_FORMAT (code)[1] == 's')
|
||
{
|
||
char *arg0 = va_arg (p, char *);
|
||
char *arg1 = va_arg (p, char *);
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XSTR (h->u.rtl, 0) == arg0
|
||
&& XSTR (h->u.rtl, 1) == arg1)
|
||
goto found;
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XSTR (rt_val, 0) = arg0;
|
||
XSTR (rt_val, 1) = arg1;
|
||
}
|
||
}
|
||
else if (code == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
|
||
if (arg0 == 0)
|
||
return false_rtx;
|
||
if (arg0 == 1)
|
||
return true_rtx;
|
||
goto nohash;
|
||
}
|
||
else
|
||
{
|
||
nohash:
|
||
rt_val = rtx_alloc (code); /* Allocate the storage space. */
|
||
|
||
fmt = GET_RTX_FORMAT (code); /* Find the right format... */
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*fmt++)
|
||
{
|
||
case '0': /* Unused field. */
|
||
break;
|
||
|
||
case 'i': /* An integer? */
|
||
XINT (rt_val, i) = va_arg (p, int);
|
||
break;
|
||
|
||
case 'w': /* A wide integer? */
|
||
XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
|
||
break;
|
||
|
||
case 's': /* A string? */
|
||
XSTR (rt_val, i) = va_arg (p, char *);
|
||
break;
|
||
|
||
case 'e': /* An expression? */
|
||
case 'u': /* An insn? Same except when printing. */
|
||
XEXP (rt_val, i) = va_arg (p, rtx);
|
||
break;
|
||
|
||
case 'E': /* An RTX vector? */
|
||
XVEC (rt_val, i) = va_arg (p, rtvec);
|
||
break;
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
va_end (p);
|
||
return rt_val;
|
||
}
|
||
|
||
rtl_obstack = old_obstack;
|
||
va_end (p);
|
||
attr_hash_add_rtx (hashcode, rt_val);
|
||
RTX_INTEGRATED_P (rt_val) = 1;
|
||
return rt_val;
|
||
|
||
found:
|
||
va_end (p);
|
||
return h->u.rtl;
|
||
}
|
||
|
||
/* Create a new string printed with the printf line arguments into a space
|
||
of at most LEN bytes:
|
||
|
||
rtx attr_printf (len, format, [arg1, ..., argn]) */
|
||
|
||
#ifdef HAVE_VPRINTF
|
||
|
||
/*VARARGS2*/
|
||
static char *
|
||
attr_printf VPROTO((register int len, char *fmt, ...))
|
||
{
|
||
#ifndef __STDC__
|
||
register int len;
|
||
char *fmt;
|
||
#endif
|
||
va_list p;
|
||
register char *str;
|
||
|
||
VA_START (p, fmt);
|
||
|
||
#ifndef __STDC__
|
||
len = va_arg (p, int);
|
||
fmt = va_arg (p, char*);
|
||
#endif
|
||
|
||
/* Print the string into a temporary location. */
|
||
str = (char *) alloca (len);
|
||
vsprintf (str, fmt, p);
|
||
va_end (p);
|
||
|
||
return attr_string (str, strlen (str));
|
||
}
|
||
|
||
#else /* not HAVE_VPRINTF */
|
||
|
||
static char *
|
||
attr_printf (len, fmt, arg1, arg2, arg3)
|
||
int len;
|
||
char *fmt;
|
||
char *arg1, *arg2, *arg3; /* also int */
|
||
{
|
||
register char *str;
|
||
|
||
/* Print the string into a temporary location. */
|
||
str = (char *) alloca (len);
|
||
sprintf (str, fmt, arg1, arg2, arg3);
|
||
|
||
return attr_string (str, strlen (str));
|
||
}
|
||
#endif /* not HAVE_VPRINTF */
|
||
|
||
rtx
|
||
attr_eq (name, value)
|
||
char *name, *value;
|
||
{
|
||
return attr_rtx (EQ_ATTR, attr_string (name, strlen (name)),
|
||
attr_string (value, strlen (value)));
|
||
}
|
||
|
||
char *
|
||
attr_numeral (n)
|
||
int n;
|
||
{
|
||
return XSTR (make_numeric_value (n), 0);
|
||
}
|
||
|
||
/* Return a permanent (possibly shared) copy of a string STR (not assumed
|
||
to be null terminated) with LEN bytes. */
|
||
|
||
static char *
|
||
attr_string (str, len)
|
||
char *str;
|
||
int len;
|
||
{
|
||
register struct attr_hash *h;
|
||
int hashcode;
|
||
int i;
|
||
register char *new_str;
|
||
|
||
/* Compute the hash code. */
|
||
hashcode = (len + 1) * 613 + (unsigned)str[0];
|
||
for (i = 1; i <= len; i += 2)
|
||
hashcode = ((hashcode * 613) + (unsigned)str[i]);
|
||
if (hashcode < 0)
|
||
hashcode = -hashcode;
|
||
|
||
/* Search the table for the string. */
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == -hashcode && h->u.str[0] == str[0]
|
||
&& !strncmp (h->u.str, str, len))
|
||
return h->u.str; /* <-- return if found. */
|
||
|
||
/* Not found; create a permanent copy and add it to the hash table. */
|
||
new_str = (char *) obstack_alloc (hash_obstack, len + 1);
|
||
bcopy (str, new_str, len);
|
||
new_str[len] = '\0';
|
||
attr_hash_add_string (hashcode, new_str);
|
||
|
||
return new_str; /* Return the new string. */
|
||
}
|
||
|
||
/* Check two rtx's for equality of contents,
|
||
taking advantage of the fact that if both are hashed
|
||
then they can't be equal unless they are the same object. */
|
||
|
||
int
|
||
attr_equal_p (x, y)
|
||
rtx x, y;
|
||
{
|
||
return (x == y || (! (RTX_INTEGRATED_P (x) && RTX_INTEGRATED_P (y))
|
||
&& rtx_equal_p (x, y)));
|
||
}
|
||
|
||
/* Copy an attribute value expression,
|
||
descending to all depths, but not copying any
|
||
permanent hashed subexpressions. */
|
||
|
||
rtx
|
||
attr_copy_rtx (orig)
|
||
register rtx orig;
|
||
{
|
||
register rtx copy;
|
||
register int i, j;
|
||
register RTX_CODE code;
|
||
register char *format_ptr;
|
||
|
||
/* No need to copy a permanent object. */
|
||
if (RTX_INTEGRATED_P (orig))
|
||
return orig;
|
||
|
||
code = GET_CODE (orig);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
return orig;
|
||
}
|
||
|
||
copy = rtx_alloc (code);
|
||
PUT_MODE (copy, GET_MODE (orig));
|
||
copy->in_struct = orig->in_struct;
|
||
copy->volatil = orig->volatil;
|
||
copy->unchanging = orig->unchanging;
|
||
copy->integrated = orig->integrated;
|
||
|
||
format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
|
||
{
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
XEXP (copy, i) = XEXP (orig, i);
|
||
if (XEXP (orig, i) != NULL)
|
||
XEXP (copy, i) = attr_copy_rtx (XEXP (orig, i));
|
||
break;
|
||
|
||
case 'E':
|
||
case 'V':
|
||
XVEC (copy, i) = XVEC (orig, i);
|
||
if (XVEC (orig, i) != NULL)
|
||
{
|
||
XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
|
||
for (j = 0; j < XVECLEN (copy, i); j++)
|
||
XVECEXP (copy, i, j) = attr_copy_rtx (XVECEXP (orig, i, j));
|
||
}
|
||
break;
|
||
|
||
case 'n':
|
||
case 'i':
|
||
XINT (copy, i) = XINT (orig, i);
|
||
break;
|
||
|
||
case 'w':
|
||
XWINT (copy, i) = XWINT (orig, i);
|
||
break;
|
||
|
||
case 's':
|
||
case 'S':
|
||
XSTR (copy, i) = XSTR (orig, i);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
return copy;
|
||
}
|
||
|
||
/* Given a test expression for an attribute, ensure it is validly formed.
|
||
IS_CONST indicates whether the expression is constant for each compiler
|
||
run (a constant expression may not test any particular insn).
|
||
|
||
Convert (eq_attr "att" "a1,a2") to (ior (eq_attr ... ) (eq_attrq ..))
|
||
and (eq_attr "att" "!a1") to (not (eq_attr "att" "a1")). Do the latter
|
||
test first so that (eq_attr "att" "!a1,a2,a3") works as expected.
|
||
|
||
Update the string address in EQ_ATTR expression to be the same used
|
||
in the attribute (or `alternative_name') to speed up subsequent
|
||
`find_attr' calls and eliminate most `strcmp' calls.
|
||
|
||
Return the new expression, if any. */
|
||
|
||
static rtx
|
||
check_attr_test (exp, is_const)
|
||
rtx exp;
|
||
int is_const;
|
||
{
|
||
struct attr_desc *attr;
|
||
struct attr_value *av;
|
||
char *name_ptr, *p;
|
||
rtx orexp, newexp;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case EQ_ATTR:
|
||
/* Handle negation test. */
|
||
if (XSTR (exp, 1)[0] == '!')
|
||
return check_attr_test (attr_rtx (NOT,
|
||
attr_eq (XSTR (exp, 0),
|
||
&XSTR (exp, 1)[1])),
|
||
is_const);
|
||
|
||
else if (n_comma_elts (XSTR (exp, 1)) == 1)
|
||
{
|
||
attr = find_attr (XSTR (exp, 0), 0);
|
||
if (attr == NULL)
|
||
{
|
||
if (! strcmp (XSTR (exp, 0), "alternative"))
|
||
{
|
||
XSTR (exp, 0) = alternative_name;
|
||
/* This can't be simplified any further. */
|
||
RTX_UNCHANGING_P (exp) = 1;
|
||
return exp;
|
||
}
|
||
else
|
||
fatal ("Unknown attribute `%s' in EQ_ATTR", XEXP (exp, 0));
|
||
}
|
||
|
||
if (is_const && ! attr->is_const)
|
||
fatal ("Constant expression uses insn attribute `%s' in EQ_ATTR",
|
||
XEXP (exp, 0));
|
||
|
||
/* Copy this just to make it permanent,
|
||
so expressions using it can be permanent too. */
|
||
exp = attr_eq (XSTR (exp, 0), XSTR (exp, 1));
|
||
|
||
/* It shouldn't be possible to simplify the value given to a
|
||
constant attribute, so don't expand this until it's time to
|
||
write the test expression. */
|
||
if (attr->is_const)
|
||
RTX_UNCHANGING_P (exp) = 1;
|
||
|
||
if (attr->is_numeric)
|
||
{
|
||
for (p = XSTR (exp, 1); *p; p++)
|
||
if (*p < '0' || *p > '9')
|
||
fatal ("Attribute `%s' takes only numeric values",
|
||
XEXP (exp, 0));
|
||
}
|
||
else
|
||
{
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (GET_CODE (av->value) == CONST_STRING
|
||
&& ! strcmp (XSTR (exp, 1), XSTR (av->value, 0)))
|
||
break;
|
||
|
||
if (av == NULL)
|
||
fatal ("Unknown value `%s' for `%s' attribute",
|
||
XEXP (exp, 1), XEXP (exp, 0));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Make an IOR tree of the possible values. */
|
||
orexp = false_rtx;
|
||
name_ptr = XSTR (exp, 1);
|
||
while ((p = next_comma_elt (&name_ptr)) != NULL)
|
||
{
|
||
newexp = attr_eq (XSTR (exp, 0), p);
|
||
orexp = insert_right_side (IOR, orexp, newexp, -2, -2);
|
||
}
|
||
|
||
return check_attr_test (orexp, is_const);
|
||
}
|
||
break;
|
||
|
||
case ATTR_FLAG:
|
||
break;
|
||
|
||
case CONST_INT:
|
||
/* Either TRUE or FALSE. */
|
||
if (XWINT (exp, 0))
|
||
return true_rtx;
|
||
else
|
||
return false_rtx;
|
||
|
||
case IOR:
|
||
case AND:
|
||
XEXP (exp, 0) = check_attr_test (XEXP (exp, 0), is_const);
|
||
XEXP (exp, 1) = check_attr_test (XEXP (exp, 1), is_const);
|
||
break;
|
||
|
||
case NOT:
|
||
XEXP (exp, 0) = check_attr_test (XEXP (exp, 0), is_const);
|
||
break;
|
||
|
||
case MATCH_OPERAND:
|
||
if (is_const)
|
||
fatal ("RTL operator \"%s\" not valid in constant attribute test",
|
||
GET_RTX_NAME (MATCH_OPERAND));
|
||
/* These cases can't be simplified. */
|
||
RTX_UNCHANGING_P (exp) = 1;
|
||
break;
|
||
|
||
case LE: case LT: case GT: case GE:
|
||
case LEU: case LTU: case GTU: case GEU:
|
||
case NE: case EQ:
|
||
if (GET_CODE (XEXP (exp, 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (exp, 1)) == SYMBOL_REF)
|
||
exp = attr_rtx (GET_CODE (exp),
|
||
attr_rtx (SYMBOL_REF, XSTR (XEXP (exp, 0), 0)),
|
||
attr_rtx (SYMBOL_REF, XSTR (XEXP (exp, 1), 0)));
|
||
/* These cases can't be simplified. */
|
||
RTX_UNCHANGING_P (exp) = 1;
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
if (is_const)
|
||
{
|
||
/* These cases are valid for constant attributes, but can't be
|
||
simplified. */
|
||
exp = attr_rtx (SYMBOL_REF, XSTR (exp, 0));
|
||
RTX_UNCHANGING_P (exp) = 1;
|
||
break;
|
||
}
|
||
default:
|
||
fatal ("RTL operator \"%s\" not valid in attribute test",
|
||
GET_RTX_NAME (GET_CODE (exp)));
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Given an expression, ensure that it is validly formed and that all named
|
||
attribute values are valid for the given attribute. Issue a fatal error
|
||
if not. If no attribute is specified, assume a numeric attribute.
|
||
|
||
Return a perhaps modified replacement expression for the value. */
|
||
|
||
static rtx
|
||
check_attr_value (exp, attr)
|
||
rtx exp;
|
||
struct attr_desc *attr;
|
||
{
|
||
struct attr_value *av;
|
||
char *p;
|
||
int i;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case CONST_INT:
|
||
if (attr && ! attr->is_numeric)
|
||
fatal ("CONST_INT not valid for non-numeric `%s' attribute",
|
||
attr->name);
|
||
|
||
if (INTVAL (exp) < 0)
|
||
fatal ("Negative numeric value specified for `%s' attribute",
|
||
attr->name);
|
||
|
||
break;
|
||
|
||
case CONST_STRING:
|
||
if (! strcmp (XSTR (exp, 0), "*"))
|
||
break;
|
||
|
||
if (attr == 0 || attr->is_numeric)
|
||
{
|
||
p = XSTR (exp, 0);
|
||
if (attr && attr->negative_ok && *p == '-')
|
||
p++;
|
||
for (; *p; p++)
|
||
if (*p > '9' || *p < '0')
|
||
fatal ("Non-numeric value for numeric `%s' attribute",
|
||
attr ? attr->name : "internal");
|
||
break;
|
||
}
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (GET_CODE (av->value) == CONST_STRING
|
||
&& ! strcmp (XSTR (av->value, 0), XSTR (exp, 0)))
|
||
break;
|
||
|
||
if (av == NULL)
|
||
fatal ("Unknown value `%s' for `%s' attribute",
|
||
XSTR (exp, 0), attr ? attr->name : "internal");
|
||
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
XEXP (exp, 0) = check_attr_test (XEXP (exp, 0),
|
||
attr ? attr->is_const : 0);
|
||
XEXP (exp, 1) = check_attr_value (XEXP (exp, 1), attr);
|
||
XEXP (exp, 2) = check_attr_value (XEXP (exp, 2), attr);
|
||
break;
|
||
|
||
case COND:
|
||
if (XVECLEN (exp, 0) % 2 != 0)
|
||
fatal ("First operand of COND must have even length");
|
||
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
XVECEXP (exp, 0, i) = check_attr_test (XVECEXP (exp, 0, i),
|
||
attr ? attr->is_const : 0);
|
||
XVECEXP (exp, 0, i + 1)
|
||
= check_attr_value (XVECEXP (exp, 0, i + 1), attr);
|
||
}
|
||
|
||
XEXP (exp, 1) = check_attr_value (XEXP (exp, 1), attr);
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
if (attr && attr->is_const)
|
||
/* A constant SYMBOL_REF is valid as a constant attribute test and
|
||
is expanded later by make_canonical into a COND. */
|
||
return attr_rtx (SYMBOL_REF, XSTR (exp, 0));
|
||
/* Otherwise, fall through... */
|
||
|
||
default:
|
||
fatal ("Invalid operation `%s' for attribute value",
|
||
GET_RTX_NAME (GET_CODE (exp)));
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Given an SET_ATTR_ALTERNATIVE expression, convert to the canonical SET.
|
||
It becomes a COND with each test being (eq_attr "alternative "n") */
|
||
|
||
static rtx
|
||
convert_set_attr_alternative (exp, num_alt, insn_code, insn_index)
|
||
rtx exp;
|
||
int num_alt;
|
||
int insn_code, insn_index;
|
||
{
|
||
rtx condexp;
|
||
int i;
|
||
|
||
if (XVECLEN (exp, 1) != num_alt)
|
||
fatal ("Bad number of entries in SET_ATTR_ALTERNATIVE for insn %d",
|
||
insn_index);
|
||
|
||
/* Make a COND with all tests but the last. Select the last value via the
|
||
default. */
|
||
condexp = rtx_alloc (COND);
|
||
XVEC (condexp, 0) = rtvec_alloc ((num_alt - 1) * 2);
|
||
|
||
for (i = 0; i < num_alt - 1; i++)
|
||
{
|
||
char *p;
|
||
p = attr_numeral (i);
|
||
|
||
XVECEXP (condexp, 0, 2 * i) = attr_eq (alternative_name, p);
|
||
#if 0
|
||
/* Sharing this EQ_ATTR rtl causes trouble. */
|
||
XVECEXP (condexp, 0, 2 * i) = rtx_alloc (EQ_ATTR);
|
||
XSTR (XVECEXP (condexp, 0, 2 * i), 0) = alternative_name;
|
||
XSTR (XVECEXP (condexp, 0, 2 * i), 1) = p;
|
||
#endif
|
||
XVECEXP (condexp, 0, 2 * i + 1) = XVECEXP (exp, 1, i);
|
||
}
|
||
|
||
XEXP (condexp, 1) = XVECEXP (exp, 1, i);
|
||
|
||
return attr_rtx (SET, attr_rtx (ATTR, XSTR (exp, 0)), condexp);
|
||
}
|
||
|
||
/* Given a SET_ATTR, convert to the appropriate SET. If a comma-separated
|
||
list of values is given, convert to SET_ATTR_ALTERNATIVE first. */
|
||
|
||
static rtx
|
||
convert_set_attr (exp, num_alt, insn_code, insn_index)
|
||
rtx exp;
|
||
int num_alt;
|
||
int insn_code, insn_index;
|
||
{
|
||
rtx newexp;
|
||
char *name_ptr;
|
||
char *p;
|
||
int n;
|
||
|
||
/* See how many alternative specified. */
|
||
n = n_comma_elts (XSTR (exp, 1));
|
||
if (n == 1)
|
||
return attr_rtx (SET,
|
||
attr_rtx (ATTR, XSTR (exp, 0)),
|
||
attr_rtx (CONST_STRING, XSTR (exp, 1)));
|
||
|
||
newexp = rtx_alloc (SET_ATTR_ALTERNATIVE);
|
||
XSTR (newexp, 0) = XSTR (exp, 0);
|
||
XVEC (newexp, 1) = rtvec_alloc (n);
|
||
|
||
/* Process each comma-separated name. */
|
||
name_ptr = XSTR (exp, 1);
|
||
n = 0;
|
||
while ((p = next_comma_elt (&name_ptr)) != NULL)
|
||
XVECEXP (newexp, 1, n++) = attr_rtx (CONST_STRING, p);
|
||
|
||
return convert_set_attr_alternative (newexp, num_alt, insn_code, insn_index);
|
||
}
|
||
|
||
/* Scan all definitions, checking for validity. Also, convert any SET_ATTR
|
||
and SET_ATTR_ALTERNATIVE expressions to the corresponding SET
|
||
expressions. */
|
||
|
||
static void
|
||
check_defs ()
|
||
{
|
||
struct insn_def *id;
|
||
struct attr_desc *attr;
|
||
int i;
|
||
rtx value;
|
||
|
||
for (id = defs; id; id = id->next)
|
||
{
|
||
if (XVEC (id->def, id->vec_idx) == NULL)
|
||
continue;
|
||
|
||
for (i = 0; i < XVECLEN (id->def, id->vec_idx); i++)
|
||
{
|
||
value = XVECEXP (id->def, id->vec_idx, i);
|
||
switch (GET_CODE (value))
|
||
{
|
||
case SET:
|
||
if (GET_CODE (XEXP (value, 0)) != ATTR)
|
||
fatal ("Bad attribute set in pattern %d", id->insn_index);
|
||
break;
|
||
|
||
case SET_ATTR_ALTERNATIVE:
|
||
value = convert_set_attr_alternative (value,
|
||
id->num_alternatives,
|
||
id->insn_code,
|
||
id->insn_index);
|
||
break;
|
||
|
||
case SET_ATTR:
|
||
value = convert_set_attr (value, id->num_alternatives,
|
||
id->insn_code, id->insn_index);
|
||
break;
|
||
|
||
default:
|
||
fatal ("Invalid attribute code `%s' for pattern %d",
|
||
GET_RTX_NAME (GET_CODE (value)), id->insn_index);
|
||
}
|
||
|
||
if ((attr = find_attr (XSTR (XEXP (value, 0), 0), 0)) == NULL)
|
||
fatal ("Unknown attribute `%s' for pattern number %d",
|
||
XSTR (XEXP (value, 0), 0), id->insn_index);
|
||
|
||
XVECEXP (id->def, id->vec_idx, i) = value;
|
||
XEXP (value, 1) = check_attr_value (XEXP (value, 1), attr);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given a constant SYMBOL_REF expression, convert to a COND that
|
||
explicitly tests each enumerated value. */
|
||
|
||
static rtx
|
||
convert_const_symbol_ref (exp, attr)
|
||
rtx exp;
|
||
struct attr_desc *attr;
|
||
{
|
||
rtx condexp;
|
||
struct attr_value *av;
|
||
int i;
|
||
int num_alt = 0;
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
num_alt++;
|
||
|
||
/* Make a COND with all tests but the last, and in the original order.
|
||
Select the last value via the default. Note that the attr values
|
||
are constructed in reverse order. */
|
||
|
||
condexp = rtx_alloc (COND);
|
||
XVEC (condexp, 0) = rtvec_alloc ((num_alt - 1) * 2);
|
||
av = attr->first_value;
|
||
XEXP (condexp, 1) = av->value;
|
||
|
||
for (i = num_alt - 2; av = av->next, i >= 0; i--)
|
||
{
|
||
char *p, *string;
|
||
rtx value;
|
||
|
||
string = p = (char *) oballoc (2
|
||
+ strlen (attr->name)
|
||
+ strlen (XSTR (av->value, 0)));
|
||
strcpy (p, attr->name);
|
||
strcat (p, "_");
|
||
strcat (p, XSTR (av->value, 0));
|
||
for (; *p != '\0'; p++)
|
||
if (*p >= 'a' && *p <= 'z')
|
||
*p -= 'a' - 'A';
|
||
|
||
value = attr_rtx (SYMBOL_REF, string);
|
||
RTX_UNCHANGING_P (value) = 1;
|
||
|
||
XVECEXP (condexp, 0, 2 * i) = attr_rtx (EQ, exp, value);
|
||
|
||
XVECEXP (condexp, 0, 2 * i + 1) = av->value;
|
||
}
|
||
|
||
return condexp;
|
||
}
|
||
|
||
/* Given a valid expression for an attribute value, remove any IF_THEN_ELSE
|
||
expressions by converting them into a COND. This removes cases from this
|
||
program. Also, replace an attribute value of "*" with the default attribute
|
||
value. */
|
||
|
||
static rtx
|
||
make_canonical (attr, exp)
|
||
struct attr_desc *attr;
|
||
rtx exp;
|
||
{
|
||
int i;
|
||
rtx newexp;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case CONST_INT:
|
||
exp = make_numeric_value (INTVAL (exp));
|
||
break;
|
||
|
||
case CONST_STRING:
|
||
if (! strcmp (XSTR (exp, 0), "*"))
|
||
{
|
||
if (attr == 0 || attr->default_val == 0)
|
||
fatal ("(attr_value \"*\") used in invalid context.");
|
||
exp = attr->default_val->value;
|
||
}
|
||
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
if (!attr->is_const || RTX_UNCHANGING_P (exp))
|
||
break;
|
||
/* The SYMBOL_REF is constant for a given run, so mark it as unchanging.
|
||
This makes the COND something that won't be considered an arbitrary
|
||
expression by walk_attr_value. */
|
||
RTX_UNCHANGING_P (exp) = 1;
|
||
exp = convert_const_symbol_ref (exp, attr);
|
||
RTX_UNCHANGING_P (exp) = 1;
|
||
exp = check_attr_value (exp, attr);
|
||
/* Goto COND case since this is now a COND. Note that while the
|
||
new expression is rescanned, all symbol_ref notes are mared as
|
||
unchanging. */
|
||
goto cond;
|
||
|
||
case IF_THEN_ELSE:
|
||
newexp = rtx_alloc (COND);
|
||
XVEC (newexp, 0) = rtvec_alloc (2);
|
||
XVECEXP (newexp, 0, 0) = XEXP (exp, 0);
|
||
XVECEXP (newexp, 0, 1) = XEXP (exp, 1);
|
||
|
||
XEXP (newexp, 1) = XEXP (exp, 2);
|
||
|
||
exp = newexp;
|
||
/* Fall through to COND case since this is now a COND. */
|
||
|
||
case COND:
|
||
cond:
|
||
{
|
||
int allsame = 1;
|
||
rtx defval;
|
||
|
||
/* First, check for degenerate COND. */
|
||
if (XVECLEN (exp, 0) == 0)
|
||
return make_canonical (attr, XEXP (exp, 1));
|
||
defval = XEXP (exp, 1) = make_canonical (attr, XEXP (exp, 1));
|
||
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
XVECEXP (exp, 0, i) = copy_boolean (XVECEXP (exp, 0, i));
|
||
XVECEXP (exp, 0, i + 1)
|
||
= make_canonical (attr, XVECEXP (exp, 0, i + 1));
|
||
if (! rtx_equal_p (XVECEXP (exp, 0, i + 1), defval))
|
||
allsame = 0;
|
||
}
|
||
if (allsame)
|
||
return defval;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
static rtx
|
||
copy_boolean (exp)
|
||
rtx exp;
|
||
{
|
||
if (GET_CODE (exp) == AND || GET_CODE (exp) == IOR)
|
||
return attr_rtx (GET_CODE (exp), copy_boolean (XEXP (exp, 0)),
|
||
copy_boolean (XEXP (exp, 1)));
|
||
return exp;
|
||
}
|
||
|
||
/* Given a value and an attribute description, return a `struct attr_value *'
|
||
that represents that value. This is either an existing structure, if the
|
||
value has been previously encountered, or a newly-created structure.
|
||
|
||
`insn_code' is the code of an insn whose attribute has the specified
|
||
value (-2 if not processing an insn). We ensure that all insns for
|
||
a given value have the same number of alternatives if the value checks
|
||
alternatives. */
|
||
|
||
static struct attr_value *
|
||
get_attr_value (value, attr, insn_code)
|
||
rtx value;
|
||
struct attr_desc *attr;
|
||
int insn_code;
|
||
{
|
||
struct attr_value *av;
|
||
int num_alt = 0;
|
||
|
||
value = make_canonical (attr, value);
|
||
if (compares_alternatives_p (value))
|
||
{
|
||
if (insn_code < 0 || insn_alternatives == NULL)
|
||
fatal ("(eq_attr \"alternatives\" ...) used in non-insn context");
|
||
else
|
||
num_alt = insn_alternatives[insn_code];
|
||
}
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (rtx_equal_p (value, av->value)
|
||
&& (num_alt == 0 || av->first_insn == NULL
|
||
|| insn_alternatives[av->first_insn->insn_code]))
|
||
return av;
|
||
|
||
av = (struct attr_value *) oballoc (sizeof (struct attr_value));
|
||
av->value = value;
|
||
av->next = attr->first_value;
|
||
attr->first_value = av;
|
||
av->first_insn = NULL;
|
||
av->num_insns = 0;
|
||
av->has_asm_insn = 0;
|
||
|
||
return av;
|
||
}
|
||
|
||
/* After all DEFINE_DELAYs have been read in, create internal attributes
|
||
to generate the required routines.
|
||
|
||
First, we compute the number of delay slots for each insn (as a COND of
|
||
each of the test expressions in DEFINE_DELAYs). Then, if more than one
|
||
delay type is specified, we compute a similar function giving the
|
||
DEFINE_DELAY ordinal for each insn.
|
||
|
||
Finally, for each [DEFINE_DELAY, slot #] pair, we compute an attribute that
|
||
tells whether a given insn can be in that delay slot.
|
||
|
||
Normal attribute filling and optimization expands these to contain the
|
||
information needed to handle delay slots. */
|
||
|
||
static void
|
||
expand_delays ()
|
||
{
|
||
struct delay_desc *delay;
|
||
rtx condexp;
|
||
rtx newexp;
|
||
int i;
|
||
char *p;
|
||
|
||
/* First, generate data for `num_delay_slots' function. */
|
||
|
||
condexp = rtx_alloc (COND);
|
||
XVEC (condexp, 0) = rtvec_alloc (num_delays * 2);
|
||
XEXP (condexp, 1) = make_numeric_value (0);
|
||
|
||
for (i = 0, delay = delays; delay; i += 2, delay = delay->next)
|
||
{
|
||
XVECEXP (condexp, 0, i) = XEXP (delay->def, 0);
|
||
XVECEXP (condexp, 0, i + 1)
|
||
= make_numeric_value (XVECLEN (delay->def, 1) / 3);
|
||
}
|
||
|
||
make_internal_attr ("*num_delay_slots", condexp, 0);
|
||
|
||
/* If more than one delay type, do the same for computing the delay type. */
|
||
if (num_delays > 1)
|
||
{
|
||
condexp = rtx_alloc (COND);
|
||
XVEC (condexp, 0) = rtvec_alloc (num_delays * 2);
|
||
XEXP (condexp, 1) = make_numeric_value (0);
|
||
|
||
for (i = 0, delay = delays; delay; i += 2, delay = delay->next)
|
||
{
|
||
XVECEXP (condexp, 0, i) = XEXP (delay->def, 0);
|
||
XVECEXP (condexp, 0, i + 1) = make_numeric_value (delay->num);
|
||
}
|
||
|
||
make_internal_attr ("*delay_type", condexp, 1);
|
||
}
|
||
|
||
/* For each delay possibility and delay slot, compute an eligibility
|
||
attribute for non-annulled insns and for each type of annulled (annul
|
||
if true and annul if false). */
|
||
for (delay = delays; delay; delay = delay->next)
|
||
{
|
||
for (i = 0; i < XVECLEN (delay->def, 1); i += 3)
|
||
{
|
||
condexp = XVECEXP (delay->def, 1, i);
|
||
if (condexp == 0) condexp = false_rtx;
|
||
newexp = attr_rtx (IF_THEN_ELSE, condexp,
|
||
make_numeric_value (1), make_numeric_value (0));
|
||
|
||
p = attr_printf (sizeof ("*delay__") + MAX_DIGITS*2, "*delay_%d_%d",
|
||
delay->num, i / 3);
|
||
make_internal_attr (p, newexp, 1);
|
||
|
||
if (have_annul_true)
|
||
{
|
||
condexp = XVECEXP (delay->def, 1, i + 1);
|
||
if (condexp == 0) condexp = false_rtx;
|
||
newexp = attr_rtx (IF_THEN_ELSE, condexp,
|
||
make_numeric_value (1),
|
||
make_numeric_value (0));
|
||
p = attr_printf (sizeof ("*annul_true__") + MAX_DIGITS*2,
|
||
"*annul_true_%d_%d", delay->num, i / 3);
|
||
make_internal_attr (p, newexp, 1);
|
||
}
|
||
|
||
if (have_annul_false)
|
||
{
|
||
condexp = XVECEXP (delay->def, 1, i + 2);
|
||
if (condexp == 0) condexp = false_rtx;
|
||
newexp = attr_rtx (IF_THEN_ELSE, condexp,
|
||
make_numeric_value (1),
|
||
make_numeric_value (0));
|
||
p = attr_printf (sizeof ("*annul_false__") + MAX_DIGITS*2,
|
||
"*annul_false_%d_%d", delay->num, i / 3);
|
||
make_internal_attr (p, newexp, 1);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function is given a left and right side expression and an operator.
|
||
Each side is a conditional expression, each alternative of which has a
|
||
numerical value. The function returns another conditional expression
|
||
which, for every possible set of condition values, returns a value that is
|
||
the operator applied to the values of the two sides.
|
||
|
||
Since this is called early, it must also support IF_THEN_ELSE. */
|
||
|
||
static rtx
|
||
operate_exp (op, left, right)
|
||
enum operator op;
|
||
rtx left, right;
|
||
{
|
||
int left_value, right_value;
|
||
rtx newexp;
|
||
int i;
|
||
|
||
/* If left is a string, apply operator to it and the right side. */
|
||
if (GET_CODE (left) == CONST_STRING)
|
||
{
|
||
/* If right is also a string, just perform the operation. */
|
||
if (GET_CODE (right) == CONST_STRING)
|
||
{
|
||
left_value = atoi (XSTR (left, 0));
|
||
right_value = atoi (XSTR (right, 0));
|
||
switch (op)
|
||
{
|
||
case PLUS_OP:
|
||
i = left_value + right_value;
|
||
break;
|
||
|
||
case MINUS_OP:
|
||
i = left_value - right_value;
|
||
break;
|
||
|
||
case POS_MINUS_OP: /* The positive part of LEFT - RIGHT. */
|
||
if (left_value > right_value)
|
||
i = left_value - right_value;
|
||
else
|
||
i = 0;
|
||
break;
|
||
|
||
case OR_OP:
|
||
i = left_value | right_value;
|
||
break;
|
||
|
||
case EQ_OP:
|
||
i = left_value == right_value;
|
||
break;
|
||
|
||
case RANGE_OP:
|
||
i = (left_value << (HOST_BITS_PER_INT / 2)) | right_value;
|
||
break;
|
||
|
||
case MAX_OP:
|
||
if (left_value > right_value)
|
||
i = left_value;
|
||
else
|
||
i = right_value;
|
||
break;
|
||
|
||
case MIN_OP:
|
||
if (left_value < right_value)
|
||
i = left_value;
|
||
else
|
||
i = right_value;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return make_numeric_value (i);
|
||
}
|
||
else if (GET_CODE (right) == IF_THEN_ELSE)
|
||
{
|
||
/* Apply recursively to all values within. */
|
||
rtx newleft = operate_exp (op, left, XEXP (right, 1));
|
||
rtx newright = operate_exp (op, left, XEXP (right, 2));
|
||
if (rtx_equal_p (newleft, newright))
|
||
return newleft;
|
||
return attr_rtx (IF_THEN_ELSE, XEXP (right, 0), newleft, newright);
|
||
}
|
||
else if (GET_CODE (right) == COND)
|
||
{
|
||
int allsame = 1;
|
||
rtx defval;
|
||
|
||
newexp = rtx_alloc (COND);
|
||
XVEC (newexp, 0) = rtvec_alloc (XVECLEN (right, 0));
|
||
defval = XEXP (newexp, 1) = operate_exp (op, left, XEXP (right, 1));
|
||
|
||
for (i = 0; i < XVECLEN (right, 0); i += 2)
|
||
{
|
||
XVECEXP (newexp, 0, i) = XVECEXP (right, 0, i);
|
||
XVECEXP (newexp, 0, i + 1)
|
||
= operate_exp (op, left, XVECEXP (right, 0, i + 1));
|
||
if (! rtx_equal_p (XVECEXP (newexp, 0, i + 1),
|
||
defval))
|
||
allsame = 0;
|
||
}
|
||
|
||
/* If the resulting cond is trivial (all alternatives
|
||
give the same value), optimize it away. */
|
||
if (allsame)
|
||
{
|
||
obstack_free (rtl_obstack, newexp);
|
||
return operate_exp (op, left, XEXP (right, 1));
|
||
}
|
||
|
||
/* If the result is the same as the RIGHT operand,
|
||
just use that. */
|
||
if (rtx_equal_p (newexp, right))
|
||
{
|
||
obstack_free (rtl_obstack, newexp);
|
||
return right;
|
||
}
|
||
|
||
return newexp;
|
||
}
|
||
else
|
||
fatal ("Badly formed attribute value");
|
||
}
|
||
|
||
/* Otherwise, do recursion the other way. */
|
||
else if (GET_CODE (left) == IF_THEN_ELSE)
|
||
{
|
||
rtx newleft = operate_exp (op, XEXP (left, 1), right);
|
||
rtx newright = operate_exp (op, XEXP (left, 2), right);
|
||
if (rtx_equal_p (newleft, newright))
|
||
return newleft;
|
||
return attr_rtx (IF_THEN_ELSE, XEXP (left, 0), newleft, newright);
|
||
}
|
||
else if (GET_CODE (left) == COND)
|
||
{
|
||
int allsame = 1;
|
||
rtx defval;
|
||
|
||
newexp = rtx_alloc (COND);
|
||
XVEC (newexp, 0) = rtvec_alloc (XVECLEN (left, 0));
|
||
defval = XEXP (newexp, 1) = operate_exp (op, XEXP (left, 1), right);
|
||
|
||
for (i = 0; i < XVECLEN (left, 0); i += 2)
|
||
{
|
||
XVECEXP (newexp, 0, i) = XVECEXP (left, 0, i);
|
||
XVECEXP (newexp, 0, i + 1)
|
||
= operate_exp (op, XVECEXP (left, 0, i + 1), right);
|
||
if (! rtx_equal_p (XVECEXP (newexp, 0, i + 1),
|
||
defval))
|
||
allsame = 0;
|
||
}
|
||
|
||
/* If the cond is trivial (all alternatives give the same value),
|
||
optimize it away. */
|
||
if (allsame)
|
||
{
|
||
obstack_free (rtl_obstack, newexp);
|
||
return operate_exp (op, XEXP (left, 1), right);
|
||
}
|
||
|
||
/* If the result is the same as the LEFT operand,
|
||
just use that. */
|
||
if (rtx_equal_p (newexp, left))
|
||
{
|
||
obstack_free (rtl_obstack, newexp);
|
||
return left;
|
||
}
|
||
|
||
return newexp;
|
||
}
|
||
|
||
else
|
||
fatal ("Badly formed attribute value.");
|
||
/* NOTREACHED */
|
||
return NULL;
|
||
}
|
||
|
||
/* Once all attributes and DEFINE_FUNCTION_UNITs have been read, we
|
||
construct a number of attributes.
|
||
|
||
The first produces a function `function_units_used' which is given an
|
||
insn and produces an encoding showing which function units are required
|
||
for the execution of that insn. If the value is non-negative, the insn
|
||
uses that unit; otherwise, the value is a one's compliment mask of units
|
||
used.
|
||
|
||
The second produces a function `result_ready_cost' which is used to
|
||
determine the time that the result of an insn will be ready and hence
|
||
a worst-case schedule.
|
||
|
||
Both of these produce quite complex expressions which are then set as the
|
||
default value of internal attributes. Normal attribute simplification
|
||
should produce reasonable expressions.
|
||
|
||
For each unit, a `<name>_unit_ready_cost' function will take an
|
||
insn and give the delay until that unit will be ready with the result
|
||
and a `<name>_unit_conflict_cost' function is given an insn already
|
||
executing on the unit and a candidate to execute and will give the
|
||
cost from the time the executing insn started until the candidate
|
||
can start (ignore limitations on the number of simultaneous insns).
|
||
|
||
For each unit, a `<name>_unit_blockage' function is given an insn
|
||
already executing on the unit and a candidate to execute and will
|
||
give the delay incurred due to function unit conflicts. The range of
|
||
blockage cost values for a given executing insn is given by the
|
||
`<name>_unit_blockage_range' function. These values are encoded in
|
||
an int where the upper half gives the minimum value and the lower
|
||
half gives the maximum value. */
|
||
|
||
static void
|
||
expand_units ()
|
||
{
|
||
struct function_unit *unit, **unit_num;
|
||
struct function_unit_op *op, **op_array, ***unit_ops;
|
||
rtx unitsmask;
|
||
rtx readycost;
|
||
rtx newexp;
|
||
char *str;
|
||
int i, j, u, num, nvalues;
|
||
|
||
/* Rebuild the condition for the unit to share the RTL expressions.
|
||
Sharing is required by simplify_by_exploding. Build the issue delay
|
||
expressions. Validate the expressions we were given for the conditions
|
||
and conflict vector. Then make attributes for use in the conflict
|
||
function. */
|
||
|
||
for (unit = units; unit; unit = unit->next)
|
||
{
|
||
unit->condexp = check_attr_test (unit->condexp, 0);
|
||
|
||
for (op = unit->ops; op; op = op->next)
|
||
{
|
||
rtx issue_delay = make_numeric_value (op->issue_delay);
|
||
rtx issue_exp = issue_delay;
|
||
|
||
/* Build, validate, and simplify the issue delay expression. */
|
||
if (op->conflict_exp != true_rtx)
|
||
issue_exp = attr_rtx (IF_THEN_ELSE, op->conflict_exp,
|
||
issue_exp, make_numeric_value (0));
|
||
issue_exp = check_attr_value (make_canonical (NULL_ATTR,
|
||
issue_exp),
|
||
NULL_ATTR);
|
||
issue_exp = simplify_knowing (issue_exp, unit->condexp);
|
||
op->issue_exp = issue_exp;
|
||
|
||
/* Make an attribute for use in the conflict function if needed. */
|
||
unit->needs_conflict_function = (unit->issue_delay.min
|
||
!= unit->issue_delay.max);
|
||
if (unit->needs_conflict_function)
|
||
{
|
||
str = attr_printf (strlen (unit->name) + sizeof ("*_cost_") + MAX_DIGITS,
|
||
"*%s_cost_%d", unit->name, op->num);
|
||
make_internal_attr (str, issue_exp, 1);
|
||
}
|
||
|
||
/* Validate the condition. */
|
||
op->condexp = check_attr_test (op->condexp, 0);
|
||
}
|
||
}
|
||
|
||
/* Compute the mask of function units used. Initially, the unitsmask is
|
||
zero. Set up a conditional to compute each unit's contribution. */
|
||
unitsmask = make_numeric_value (0);
|
||
newexp = rtx_alloc (IF_THEN_ELSE);
|
||
XEXP (newexp, 2) = make_numeric_value (0);
|
||
|
||
/* Merge each function unit into the unit mask attributes. */
|
||
for (unit = units; unit; unit = unit->next)
|
||
{
|
||
XEXP (newexp, 0) = unit->condexp;
|
||
XEXP (newexp, 1) = make_numeric_value (1 << unit->num);
|
||
unitsmask = operate_exp (OR_OP, unitsmask, newexp);
|
||
}
|
||
|
||
/* Simplify the unit mask expression, encode it, and make an attribute
|
||
for the function_units_used function. */
|
||
unitsmask = simplify_by_exploding (unitsmask);
|
||
unitsmask = encode_units_mask (unitsmask);
|
||
make_internal_attr ("*function_units_used", unitsmask, 2);
|
||
|
||
/* Create an array of ops for each unit. Add an extra unit for the
|
||
result_ready_cost function that has the ops of all other units. */
|
||
unit_ops = (struct function_unit_op ***)
|
||
alloca ((num_units + 1) * sizeof (struct function_unit_op **));
|
||
unit_num = (struct function_unit **)
|
||
alloca ((num_units + 1) * sizeof (struct function_unit *));
|
||
|
||
unit_num[num_units] = unit = (struct function_unit *)
|
||
alloca (sizeof (struct function_unit));
|
||
unit->num = num_units;
|
||
unit->num_opclasses = 0;
|
||
|
||
for (unit = units; unit; unit = unit->next)
|
||
{
|
||
unit_num[num_units]->num_opclasses += unit->num_opclasses;
|
||
unit_num[unit->num] = unit;
|
||
unit_ops[unit->num] = op_array = (struct function_unit_op **)
|
||
alloca (unit->num_opclasses * sizeof (struct function_unit_op *));
|
||
|
||
for (op = unit->ops; op; op = op->next)
|
||
op_array[op->num] = op;
|
||
}
|
||
|
||
/* Compose the array of ops for the extra unit. */
|
||
unit_ops[num_units] = op_array = (struct function_unit_op **)
|
||
alloca (unit_num[num_units]->num_opclasses
|
||
* sizeof (struct function_unit_op *));
|
||
|
||
for (unit = units, i = 0; unit; i += unit->num_opclasses, unit = unit->next)
|
||
bcopy ((char *) unit_ops[unit->num], (char *) &op_array[i],
|
||
unit->num_opclasses * sizeof (struct function_unit_op *));
|
||
|
||
/* Compute the ready cost function for each unit by computing the
|
||
condition for each non-default value. */
|
||
for (u = 0; u <= num_units; u++)
|
||
{
|
||
rtx orexp;
|
||
int value;
|
||
|
||
unit = unit_num[u];
|
||
op_array = unit_ops[unit->num];
|
||
num = unit->num_opclasses;
|
||
|
||
/* Sort the array of ops into increasing ready cost order. */
|
||
for (i = 0; i < num; i++)
|
||
for (j = num - 1; j > i; j--)
|
||
if (op_array[j-1]->ready < op_array[j]->ready)
|
||
{
|
||
op = op_array[j];
|
||
op_array[j] = op_array[j-1];
|
||
op_array[j-1] = op;
|
||
}
|
||
|
||
/* Determine how many distinct non-default ready cost values there
|
||
are. We use a default ready cost value of 1. */
|
||
nvalues = 0; value = 1;
|
||
for (i = num - 1; i >= 0; i--)
|
||
if (op_array[i]->ready > value)
|
||
{
|
||
value = op_array[i]->ready;
|
||
nvalues++;
|
||
}
|
||
|
||
if (nvalues == 0)
|
||
readycost = make_numeric_value (1);
|
||
else
|
||
{
|
||
/* Construct the ready cost expression as a COND of each value from
|
||
the largest to the smallest. */
|
||
readycost = rtx_alloc (COND);
|
||
XVEC (readycost, 0) = rtvec_alloc (nvalues * 2);
|
||
XEXP (readycost, 1) = make_numeric_value (1);
|
||
|
||
nvalues = 0; orexp = false_rtx; value = op_array[0]->ready;
|
||
for (i = 0; i < num; i++)
|
||
{
|
||
op = op_array[i];
|
||
if (op->ready <= 1)
|
||
break;
|
||
else if (op->ready == value)
|
||
orexp = insert_right_side (IOR, orexp, op->condexp, -2, -2);
|
||
else
|
||
{
|
||
XVECEXP (readycost, 0, nvalues * 2) = orexp;
|
||
XVECEXP (readycost, 0, nvalues * 2 + 1)
|
||
= make_numeric_value (value);
|
||
nvalues++;
|
||
value = op->ready;
|
||
orexp = op->condexp;
|
||
}
|
||
}
|
||
XVECEXP (readycost, 0, nvalues * 2) = orexp;
|
||
XVECEXP (readycost, 0, nvalues * 2 + 1) = make_numeric_value (value);
|
||
}
|
||
|
||
if (u < num_units)
|
||
{
|
||
rtx max_blockage = 0, min_blockage = 0;
|
||
|
||
/* Simplify the readycost expression by only considering insns
|
||
that use the unit. */
|
||
readycost = simplify_knowing (readycost, unit->condexp);
|
||
|
||
/* Determine the blockage cost the executing insn (E) given
|
||
the candidate insn (C). This is the maximum of the issue
|
||
delay, the pipeline delay, and the simultaneity constraint.
|
||
Each function_unit_op represents the characteristics of the
|
||
candidate insn, so in the expressions below, C is a known
|
||
term and E is an unknown term.
|
||
|
||
We compute the blockage cost for each E for every possible C.
|
||
Thus OP represents E, and READYCOST is a list of values for
|
||
every possible C.
|
||
|
||
The issue delay function for C is op->issue_exp and is used to
|
||
write the `<name>_unit_conflict_cost' function. Symbolicly
|
||
this is "ISSUE-DELAY (E,C)".
|
||
|
||
The pipeline delay results form the FIFO constraint on the
|
||
function unit and is "READY-COST (E) + 1 - READY-COST (C)".
|
||
|
||
The simultaneity constraint is based on how long it takes to
|
||
fill the unit given the minimum issue delay. FILL-TIME is the
|
||
constant "MIN (ISSUE-DELAY (*,*)) * (SIMULTANEITY - 1)", and
|
||
the simultaneity constraint is "READY-COST (E) - FILL-TIME"
|
||
if SIMULTANEITY is non-zero and zero otherwise.
|
||
|
||
Thus, BLOCKAGE (E,C) when SIMULTANEITY is zero is
|
||
|
||
MAX (ISSUE-DELAY (E,C),
|
||
READY-COST (E) - (READY-COST (C) - 1))
|
||
|
||
and otherwise
|
||
|
||
MAX (ISSUE-DELAY (E,C),
|
||
READY-COST (E) - (READY-COST (C) - 1),
|
||
READY-COST (E) - FILL-TIME)
|
||
|
||
The `<name>_unit_blockage' function is computed by determining
|
||
this value for each candidate insn. As these values are
|
||
computed, we also compute the upper and lower bounds for
|
||
BLOCKAGE (E,*). These are combined to form the function
|
||
`<name>_unit_blockage_range'. Finally, the maximum blockage
|
||
cost, MAX (BLOCKAGE (*,*)), is computed. */
|
||
|
||
for (op = unit->ops; op; op = op->next)
|
||
{
|
||
rtx blockage = operate_exp (POS_MINUS_OP, readycost,
|
||
make_numeric_value (1));
|
||
|
||
if (unit->simultaneity != 0)
|
||
{
|
||
rtx filltime = make_numeric_value ((unit->simultaneity - 1)
|
||
* unit->issue_delay.min);
|
||
blockage = operate_exp (MIN_OP, blockage, filltime);
|
||
}
|
||
|
||
blockage = operate_exp (POS_MINUS_OP,
|
||
make_numeric_value (op->ready),
|
||
blockage);
|
||
|
||
blockage = operate_exp (MAX_OP, blockage, op->issue_exp);
|
||
blockage = simplify_knowing (blockage, unit->condexp);
|
||
|
||
/* Add this op's contribution to MAX (BLOCKAGE (E,*)) and
|
||
MIN (BLOCKAGE (E,*)). */
|
||
if (max_blockage == 0)
|
||
max_blockage = min_blockage = blockage;
|
||
else
|
||
{
|
||
max_blockage
|
||
= simplify_knowing (operate_exp (MAX_OP, max_blockage,
|
||
blockage),
|
||
unit->condexp);
|
||
min_blockage
|
||
= simplify_knowing (operate_exp (MIN_OP, min_blockage,
|
||
blockage),
|
||
unit->condexp);
|
||
}
|
||
|
||
/* Make an attribute for use in the blockage function. */
|
||
str = attr_printf (strlen (unit->name) + sizeof ("*_block_") + MAX_DIGITS,
|
||
"*%s_block_%d", unit->name, op->num);
|
||
make_internal_attr (str, blockage, 1);
|
||
}
|
||
|
||
/* Record MAX (BLOCKAGE (*,*)). */
|
||
unit->max_blockage = max_attr_value (max_blockage);
|
||
|
||
/* See if the upper and lower bounds of BLOCKAGE (E,*) are the
|
||
same. If so, the blockage function carries no additional
|
||
information and is not written. */
|
||
newexp = operate_exp (EQ_OP, max_blockage, min_blockage);
|
||
newexp = simplify_knowing (newexp, unit->condexp);
|
||
unit->needs_blockage_function
|
||
= (GET_CODE (newexp) != CONST_STRING
|
||
|| atoi (XSTR (newexp, 0)) != 1);
|
||
|
||
/* If the all values of BLOCKAGE (E,C) have the same value,
|
||
neither blockage function is written. */
|
||
unit->needs_range_function
|
||
= (unit->needs_blockage_function
|
||
|| GET_CODE (max_blockage) != CONST_STRING);
|
||
|
||
if (unit->needs_range_function)
|
||
{
|
||
/* Compute the blockage range function and make an attribute
|
||
for writing it's value. */
|
||
newexp = operate_exp (RANGE_OP, min_blockage, max_blockage);
|
||
newexp = simplify_knowing (newexp, unit->condexp);
|
||
|
||
str = attr_printf (strlen (unit->name) + sizeof ("*_unit_blockage_range"),
|
||
"*%s_unit_blockage_range", unit->name);
|
||
make_internal_attr (str, newexp, 4);
|
||
}
|
||
|
||
str = attr_printf (strlen (unit->name) + sizeof ("*_unit_ready_cost"),
|
||
"*%s_unit_ready_cost", unit->name);
|
||
}
|
||
else
|
||
str = "*result_ready_cost";
|
||
|
||
/* Make an attribute for the ready_cost function. Simplifying
|
||
further with simplify_by_exploding doesn't win. */
|
||
make_internal_attr (str, readycost, 0);
|
||
}
|
||
|
||
/* For each unit that requires a conflict cost function, make an attribute
|
||
that maps insns to the operation number. */
|
||
for (unit = units; unit; unit = unit->next)
|
||
{
|
||
rtx caseexp;
|
||
|
||
if (! unit->needs_conflict_function
|
||
&& ! unit->needs_blockage_function)
|
||
continue;
|
||
|
||
caseexp = rtx_alloc (COND);
|
||
XVEC (caseexp, 0) = rtvec_alloc ((unit->num_opclasses - 1) * 2);
|
||
|
||
for (op = unit->ops; op; op = op->next)
|
||
{
|
||
/* Make our adjustment to the COND being computed. If we are the
|
||
last operation class, place our values into the default of the
|
||
COND. */
|
||
if (op->num == unit->num_opclasses - 1)
|
||
{
|
||
XEXP (caseexp, 1) = make_numeric_value (op->num);
|
||
}
|
||
else
|
||
{
|
||
XVECEXP (caseexp, 0, op->num * 2) = op->condexp;
|
||
XVECEXP (caseexp, 0, op->num * 2 + 1)
|
||
= make_numeric_value (op->num);
|
||
}
|
||
}
|
||
|
||
/* Simplifying caseexp with simplify_by_exploding doesn't win. */
|
||
str = attr_printf (strlen (unit->name) + sizeof ("*_cases"),
|
||
"*%s_cases", unit->name);
|
||
make_internal_attr (str, caseexp, 1);
|
||
}
|
||
}
|
||
|
||
/* Simplify EXP given KNOWN_TRUE. */
|
||
|
||
static rtx
|
||
simplify_knowing (exp, known_true)
|
||
rtx exp, known_true;
|
||
{
|
||
if (GET_CODE (exp) != CONST_STRING)
|
||
{
|
||
exp = attr_rtx (IF_THEN_ELSE, known_true, exp,
|
||
make_numeric_value (max_attr_value (exp)));
|
||
exp = simplify_by_exploding (exp);
|
||
}
|
||
return exp;
|
||
}
|
||
|
||
/* Translate the CONST_STRING expressions in X to change the encoding of
|
||
value. On input, the value is a bitmask with a one bit for each unit
|
||
used; on output, the value is the unit number (zero based) if one
|
||
and only one unit is used or the one's compliment of the bitmask. */
|
||
|
||
static rtx
|
||
encode_units_mask (x)
|
||
rtx x;
|
||
{
|
||
register int i;
|
||
register int j;
|
||
register enum rtx_code code;
|
||
register char *fmt;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_STRING:
|
||
i = atoi (XSTR (x, 0));
|
||
if (i < 0)
|
||
abort (); /* The sign bit encodes a one's compliment mask. */
|
||
else if (i != 0 && i == (i & -i))
|
||
/* Only one bit is set, so yield that unit number. */
|
||
for (j = 0; (i >>= 1) != 0; j++)
|
||
;
|
||
else
|
||
j = ~i;
|
||
return attr_rtx (CONST_STRING, attr_printf (MAX_DIGITS, "%d", j));
|
||
|
||
case REG:
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case EQ_ATTR:
|
||
return x;
|
||
}
|
||
|
||
/* Compare the elements. If any pair of corresponding elements
|
||
fail to match, return 0 for the whole things. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'V':
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
XVECEXP (x, i, j) = encode_units_mask (XVECEXP (x, i, j));
|
||
break;
|
||
|
||
case 'e':
|
||
XEXP (x, i) = encode_units_mask (XEXP (x, i));
|
||
break;
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Once all attributes and insns have been read and checked, we construct for
|
||
each attribute value a list of all the insns that have that value for
|
||
the attribute. */
|
||
|
||
static void
|
||
fill_attr (attr)
|
||
struct attr_desc *attr;
|
||
{
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
struct insn_def *id;
|
||
int i;
|
||
rtx value;
|
||
|
||
/* Don't fill constant attributes. The value is independent of
|
||
any particular insn. */
|
||
if (attr->is_const)
|
||
return;
|
||
|
||
for (id = defs; id; id = id->next)
|
||
{
|
||
/* If no value is specified for this insn for this attribute, use the
|
||
default. */
|
||
value = NULL;
|
||
if (XVEC (id->def, id->vec_idx))
|
||
for (i = 0; i < XVECLEN (id->def, id->vec_idx); i++)
|
||
if (! strcmp (XSTR (XEXP (XVECEXP (id->def, id->vec_idx, i), 0), 0),
|
||
attr->name))
|
||
value = XEXP (XVECEXP (id->def, id->vec_idx, i), 1);
|
||
|
||
if (value == NULL)
|
||
av = attr->default_val;
|
||
else
|
||
av = get_attr_value (value, attr, id->insn_code);
|
||
|
||
ie = (struct insn_ent *) oballoc (sizeof (struct insn_ent));
|
||
ie->insn_code = id->insn_code;
|
||
ie->insn_index = id->insn_code;
|
||
insert_insn_ent (av, ie);
|
||
}
|
||
}
|
||
|
||
/* Given an expression EXP, see if it is a COND or IF_THEN_ELSE that has a
|
||
test that checks relative positions of insns (uses MATCH_DUP or PC).
|
||
If so, replace it with what is obtained by passing the expression to
|
||
ADDRESS_FN. If not but it is a COND or IF_THEN_ELSE, call this routine
|
||
recursively on each value (including the default value). Otherwise,
|
||
return the value returned by NO_ADDRESS_FN applied to EXP. */
|
||
|
||
static rtx
|
||
substitute_address (exp, no_address_fn, address_fn)
|
||
rtx exp;
|
||
rtx (*no_address_fn) ();
|
||
rtx (*address_fn) ();
|
||
{
|
||
int i;
|
||
rtx newexp;
|
||
|
||
if (GET_CODE (exp) == COND)
|
||
{
|
||
/* See if any tests use addresses. */
|
||
address_used = 0;
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
walk_attr_value (XVECEXP (exp, 0, i));
|
||
|
||
if (address_used)
|
||
return (*address_fn) (exp);
|
||
|
||
/* Make a new copy of this COND, replacing each element. */
|
||
newexp = rtx_alloc (COND);
|
||
XVEC (newexp, 0) = rtvec_alloc (XVECLEN (exp, 0));
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
XVECEXP (newexp, 0, i) = XVECEXP (exp, 0, i);
|
||
XVECEXP (newexp, 0, i + 1)
|
||
= substitute_address (XVECEXP (exp, 0, i + 1),
|
||
no_address_fn, address_fn);
|
||
}
|
||
|
||
XEXP (newexp, 1) = substitute_address (XEXP (exp, 1),
|
||
no_address_fn, address_fn);
|
||
|
||
return newexp;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == IF_THEN_ELSE)
|
||
{
|
||
address_used = 0;
|
||
walk_attr_value (XEXP (exp, 0));
|
||
if (address_used)
|
||
return (*address_fn) (exp);
|
||
|
||
return attr_rtx (IF_THEN_ELSE,
|
||
substitute_address (XEXP (exp, 0),
|
||
no_address_fn, address_fn),
|
||
substitute_address (XEXP (exp, 1),
|
||
no_address_fn, address_fn),
|
||
substitute_address (XEXP (exp, 2),
|
||
no_address_fn, address_fn));
|
||
}
|
||
|
||
return (*no_address_fn) (exp);
|
||
}
|
||
|
||
/* Make new attributes from the `length' attribute. The following are made,
|
||
each corresponding to a function called from `shorten_branches' or
|
||
`get_attr_length':
|
||
|
||
*insn_default_length This is the length of the insn to be returned
|
||
by `get_attr_length' before `shorten_branches'
|
||
has been called. In each case where the length
|
||
depends on relative addresses, the largest
|
||
possible is used. This routine is also used
|
||
to compute the initial size of the insn.
|
||
|
||
*insn_variable_length_p This returns 1 if the insn's length depends
|
||
on relative addresses, zero otherwise.
|
||
|
||
*insn_current_length This is only called when it is known that the
|
||
insn has a variable length and returns the
|
||
current length, based on relative addresses.
|
||
*/
|
||
|
||
static void
|
||
make_length_attrs ()
|
||
{
|
||
static char *new_names[] = {"*insn_default_length",
|
||
"*insn_variable_length_p",
|
||
"*insn_current_length"};
|
||
static rtx (*no_address_fn[]) PROTO((rtx)) = {identity_fn, zero_fn, zero_fn};
|
||
static rtx (*address_fn[]) PROTO((rtx)) = {max_fn, one_fn, identity_fn};
|
||
int i;
|
||
struct attr_desc *length_attr, *new_attr;
|
||
struct attr_value *av, *new_av;
|
||
struct insn_ent *ie, *new_ie;
|
||
|
||
/* See if length attribute is defined. If so, it must be numeric. Make
|
||
it special so we don't output anything for it. */
|
||
length_attr = find_attr ("length", 0);
|
||
if (length_attr == 0)
|
||
return;
|
||
|
||
if (! length_attr->is_numeric)
|
||
fatal ("length attribute must be numeric.");
|
||
|
||
length_attr->is_const = 0;
|
||
length_attr->is_special = 1;
|
||
|
||
/* Make each new attribute, in turn. */
|
||
for (i = 0; i < sizeof new_names / sizeof new_names[0]; i++)
|
||
{
|
||
make_internal_attr (new_names[i],
|
||
substitute_address (length_attr->default_val->value,
|
||
no_address_fn[i], address_fn[i]),
|
||
0);
|
||
new_attr = find_attr (new_names[i], 0);
|
||
for (av = length_attr->first_value; av; av = av->next)
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
{
|
||
new_av = get_attr_value (substitute_address (av->value,
|
||
no_address_fn[i],
|
||
address_fn[i]),
|
||
new_attr, ie->insn_code);
|
||
new_ie = (struct insn_ent *) oballoc (sizeof (struct insn_ent));
|
||
new_ie->insn_code = ie->insn_code;
|
||
new_ie->insn_index = ie->insn_index;
|
||
insert_insn_ent (new_av, new_ie);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Utility functions called from above routine. */
|
||
|
||
static rtx
|
||
identity_fn (exp)
|
||
rtx exp;
|
||
{
|
||
return exp;
|
||
}
|
||
|
||
static rtx
|
||
zero_fn (exp)
|
||
rtx exp;
|
||
{
|
||
return make_numeric_value (0);
|
||
}
|
||
|
||
static rtx
|
||
one_fn (exp)
|
||
rtx exp;
|
||
{
|
||
return make_numeric_value (1);
|
||
}
|
||
|
||
static rtx
|
||
max_fn (exp)
|
||
rtx exp;
|
||
{
|
||
return make_numeric_value (max_attr_value (exp));
|
||
}
|
||
|
||
/* Take a COND expression and see if any of the conditions in it can be
|
||
simplified. If any are known true or known false for the particular insn
|
||
code, the COND can be further simplified.
|
||
|
||
Also call ourselves on any COND operations that are values of this COND.
|
||
|
||
We do not modify EXP; rather, we make and return a new rtx. */
|
||
|
||
static rtx
|
||
simplify_cond (exp, insn_code, insn_index)
|
||
rtx exp;
|
||
int insn_code, insn_index;
|
||
{
|
||
int i, j;
|
||
/* We store the desired contents here,
|
||
then build a new expression if they don't match EXP. */
|
||
rtx defval = XEXP (exp, 1);
|
||
rtx new_defval = XEXP (exp, 1);
|
||
|
||
int len = XVECLEN (exp, 0);
|
||
rtx *tests = (rtx *) alloca (len * sizeof (rtx));
|
||
int allsame = 1;
|
||
char *first_spacer;
|
||
|
||
/* This lets us free all storage allocated below, if appropriate. */
|
||
first_spacer = (char *) obstack_finish (rtl_obstack);
|
||
|
||
bcopy ((char *) &XVECEXP (exp, 0, 0), (char *) tests, len * sizeof (rtx));
|
||
|
||
/* See if default value needs simplification. */
|
||
if (GET_CODE (defval) == COND)
|
||
new_defval = simplify_cond (defval, insn_code, insn_index);
|
||
|
||
/* Simplify the subexpressions, and see what tests we can get rid of. */
|
||
|
||
for (i = 0; i < len; i += 2)
|
||
{
|
||
rtx newtest, newval;
|
||
|
||
/* Simplify this test. */
|
||
newtest = SIMPLIFY_TEST_EXP (tests[i], insn_code, insn_index);
|
||
tests[i] = newtest;
|
||
|
||
newval = tests[i + 1];
|
||
/* See if this value may need simplification. */
|
||
if (GET_CODE (newval) == COND)
|
||
newval = simplify_cond (newval, insn_code, insn_index);
|
||
|
||
/* Look for ways to delete or combine this test. */
|
||
if (newtest == true_rtx)
|
||
{
|
||
/* If test is true, make this value the default
|
||
and discard this + any following tests. */
|
||
len = i;
|
||
defval = tests[i + 1];
|
||
new_defval = newval;
|
||
}
|
||
|
||
else if (newtest == false_rtx)
|
||
{
|
||
/* If test is false, discard it and its value. */
|
||
for (j = i; j < len - 2; j++)
|
||
tests[j] = tests[j + 2];
|
||
len -= 2;
|
||
}
|
||
|
||
else if (i > 0 && attr_equal_p (newval, tests[i - 1]))
|
||
{
|
||
/* If this value and the value for the prev test are the same,
|
||
merge the tests. */
|
||
|
||
tests[i - 2]
|
||
= insert_right_side (IOR, tests[i - 2], newtest,
|
||
insn_code, insn_index);
|
||
|
||
/* Delete this test/value. */
|
||
for (j = i; j < len - 2; j++)
|
||
tests[j] = tests[j + 2];
|
||
len -= 2;
|
||
}
|
||
|
||
else
|
||
tests[i + 1] = newval;
|
||
}
|
||
|
||
/* If the last test in a COND has the same value
|
||
as the default value, that test isn't needed. */
|
||
|
||
while (len > 0 && attr_equal_p (tests[len - 1], new_defval))
|
||
len -= 2;
|
||
|
||
/* See if we changed anything. */
|
||
if (len != XVECLEN (exp, 0) || new_defval != XEXP (exp, 1))
|
||
allsame = 0;
|
||
else
|
||
for (i = 0; i < len; i++)
|
||
if (! attr_equal_p (tests[i], XVECEXP (exp, 0, i)))
|
||
{
|
||
allsame = 0;
|
||
break;
|
||
}
|
||
|
||
if (len == 0)
|
||
{
|
||
obstack_free (rtl_obstack, first_spacer);
|
||
if (GET_CODE (defval) == COND)
|
||
return simplify_cond (defval, insn_code, insn_index);
|
||
return defval;
|
||
}
|
||
else if (allsame)
|
||
{
|
||
obstack_free (rtl_obstack, first_spacer);
|
||
return exp;
|
||
}
|
||
else
|
||
{
|
||
rtx newexp = rtx_alloc (COND);
|
||
|
||
XVEC (newexp, 0) = rtvec_alloc (len);
|
||
bcopy ((char *) tests, (char *) &XVECEXP (newexp, 0, 0),
|
||
len * sizeof (rtx));
|
||
XEXP (newexp, 1) = new_defval;
|
||
return newexp;
|
||
}
|
||
}
|
||
|
||
/* Remove an insn entry from an attribute value. */
|
||
|
||
static void
|
||
remove_insn_ent (av, ie)
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
{
|
||
struct insn_ent *previe;
|
||
|
||
if (av->first_insn == ie)
|
||
av->first_insn = ie->next;
|
||
else
|
||
{
|
||
for (previe = av->first_insn; previe->next != ie; previe = previe->next)
|
||
;
|
||
previe->next = ie->next;
|
||
}
|
||
|
||
av->num_insns--;
|
||
if (ie->insn_code == -1)
|
||
av->has_asm_insn = 0;
|
||
|
||
num_insn_ents--;
|
||
}
|
||
|
||
/* Insert an insn entry in an attribute value list. */
|
||
|
||
static void
|
||
insert_insn_ent (av, ie)
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
{
|
||
ie->next = av->first_insn;
|
||
av->first_insn = ie;
|
||
av->num_insns++;
|
||
if (ie->insn_code == -1)
|
||
av->has_asm_insn = 1;
|
||
|
||
num_insn_ents++;
|
||
}
|
||
|
||
/* This is a utility routine to take an expression that is a tree of either
|
||
AND or IOR expressions and insert a new term. The new term will be
|
||
inserted at the right side of the first node whose code does not match
|
||
the root. A new node will be created with the root's code. Its left
|
||
side will be the old right side and its right side will be the new
|
||
term.
|
||
|
||
If the `term' is itself a tree, all its leaves will be inserted. */
|
||
|
||
static rtx
|
||
insert_right_side (code, exp, term, insn_code, insn_index)
|
||
enum rtx_code code;
|
||
rtx exp;
|
||
rtx term;
|
||
int insn_code, insn_index;
|
||
{
|
||
rtx newexp;
|
||
|
||
/* Avoid consing in some special cases. */
|
||
if (code == AND && term == true_rtx)
|
||
return exp;
|
||
if (code == AND && term == false_rtx)
|
||
return false_rtx;
|
||
if (code == AND && exp == true_rtx)
|
||
return term;
|
||
if (code == AND && exp == false_rtx)
|
||
return false_rtx;
|
||
if (code == IOR && term == true_rtx)
|
||
return true_rtx;
|
||
if (code == IOR && term == false_rtx)
|
||
return exp;
|
||
if (code == IOR && exp == true_rtx)
|
||
return true_rtx;
|
||
if (code == IOR && exp == false_rtx)
|
||
return term;
|
||
if (attr_equal_p (exp, term))
|
||
return exp;
|
||
|
||
if (GET_CODE (term) == code)
|
||
{
|
||
exp = insert_right_side (code, exp, XEXP (term, 0),
|
||
insn_code, insn_index);
|
||
exp = insert_right_side (code, exp, XEXP (term, 1),
|
||
insn_code, insn_index);
|
||
|
||
return exp;
|
||
}
|
||
|
||
if (GET_CODE (exp) == code)
|
||
{
|
||
rtx new = insert_right_side (code, XEXP (exp, 1),
|
||
term, insn_code, insn_index);
|
||
if (new != XEXP (exp, 1))
|
||
/* Make a copy of this expression and call recursively. */
|
||
newexp = attr_rtx (code, XEXP (exp, 0), new);
|
||
else
|
||
newexp = exp;
|
||
}
|
||
else
|
||
{
|
||
/* Insert the new term. */
|
||
newexp = attr_rtx (code, exp, term);
|
||
}
|
||
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
|
||
/* If we have an expression which AND's a bunch of
|
||
(not (eq_attrq "alternative" "n"))
|
||
terms, we may have covered all or all but one of the possible alternatives.
|
||
If so, we can optimize. Similarly for IOR's of EQ_ATTR.
|
||
|
||
This routine is passed an expression and either AND or IOR. It returns a
|
||
bitmask indicating which alternatives are mentioned within EXP. */
|
||
|
||
static int
|
||
compute_alternative_mask (exp, code)
|
||
rtx exp;
|
||
enum rtx_code code;
|
||
{
|
||
char *string;
|
||
if (GET_CODE (exp) == code)
|
||
return compute_alternative_mask (XEXP (exp, 0), code)
|
||
| compute_alternative_mask (XEXP (exp, 1), code);
|
||
|
||
else if (code == AND && GET_CODE (exp) == NOT
|
||
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR
|
||
&& XSTR (XEXP (exp, 0), 0) == alternative_name)
|
||
string = XSTR (XEXP (exp, 0), 1);
|
||
|
||
else if (code == IOR && GET_CODE (exp) == EQ_ATTR
|
||
&& XSTR (exp, 0) == alternative_name)
|
||
string = XSTR (exp, 1);
|
||
|
||
else
|
||
return 0;
|
||
|
||
if (string[1] == 0)
|
||
return 1 << (string[0] - '0');
|
||
return 1 << atoi (string);
|
||
}
|
||
|
||
/* Given I, a single-bit mask, return RTX to compare the `alternative'
|
||
attribute with the value represented by that bit. */
|
||
|
||
static rtx
|
||
make_alternative_compare (mask)
|
||
int mask;
|
||
{
|
||
rtx newexp;
|
||
int i;
|
||
|
||
/* Find the bit. */
|
||
for (i = 0; (mask & (1 << i)) == 0; i++)
|
||
;
|
||
|
||
newexp = attr_rtx (EQ_ATTR, alternative_name, attr_numeral (i));
|
||
RTX_UNCHANGING_P (newexp) = 1;
|
||
|
||
return newexp;
|
||
}
|
||
|
||
/* If we are processing an (eq_attr "attr" "value") test, we find the value
|
||
of "attr" for this insn code. From that value, we can compute a test
|
||
showing when the EQ_ATTR will be true. This routine performs that
|
||
computation. If a test condition involves an address, we leave the EQ_ATTR
|
||
intact because addresses are only valid for the `length' attribute.
|
||
|
||
EXP is the EQ_ATTR expression and VALUE is the value of that attribute
|
||
for the insn corresponding to INSN_CODE and INSN_INDEX. */
|
||
|
||
static rtx
|
||
evaluate_eq_attr (exp, value, insn_code, insn_index)
|
||
rtx exp;
|
||
rtx value;
|
||
int insn_code, insn_index;
|
||
{
|
||
rtx orexp, andexp;
|
||
rtx right;
|
||
rtx newexp;
|
||
int i;
|
||
|
||
if (GET_CODE (value) == CONST_STRING)
|
||
{
|
||
if (! strcmp (XSTR (value, 0), XSTR (exp, 1)))
|
||
newexp = true_rtx;
|
||
else
|
||
newexp = false_rtx;
|
||
}
|
||
else if (GET_CODE (value) == COND)
|
||
{
|
||
/* We construct an IOR of all the cases for which the requested attribute
|
||
value is present. Since we start with FALSE, if it is not present,
|
||
FALSE will be returned.
|
||
|
||
Each case is the AND of the NOT's of the previous conditions with the
|
||
current condition; in the default case the current condition is TRUE.
|
||
|
||
For each possible COND value, call ourselves recursively.
|
||
|
||
The extra TRUE and FALSE expressions will be eliminated by another
|
||
call to the simplification routine. */
|
||
|
||
orexp = false_rtx;
|
||
andexp = true_rtx;
|
||
|
||
if (current_alternative_string)
|
||
clear_struct_flag (value);
|
||
|
||
for (i = 0; i < XVECLEN (value, 0); i += 2)
|
||
{
|
||
rtx this = SIMPLIFY_TEST_EXP (XVECEXP (value, 0, i),
|
||
insn_code, insn_index);
|
||
|
||
SIMPLIFY_ALTERNATIVE (this);
|
||
|
||
right = insert_right_side (AND, andexp, this,
|
||
insn_code, insn_index);
|
||
right = insert_right_side (AND, right,
|
||
evaluate_eq_attr (exp,
|
||
XVECEXP (value, 0,
|
||
i + 1),
|
||
insn_code, insn_index),
|
||
insn_code, insn_index);
|
||
orexp = insert_right_side (IOR, orexp, right,
|
||
insn_code, insn_index);
|
||
|
||
/* Add this condition into the AND expression. */
|
||
newexp = attr_rtx (NOT, this);
|
||
andexp = insert_right_side (AND, andexp, newexp,
|
||
insn_code, insn_index);
|
||
}
|
||
|
||
/* Handle the default case. */
|
||
right = insert_right_side (AND, andexp,
|
||
evaluate_eq_attr (exp, XEXP (value, 1),
|
||
insn_code, insn_index),
|
||
insn_code, insn_index);
|
||
newexp = insert_right_side (IOR, orexp, right, insn_code, insn_index);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
/* If uses an address, must return original expression. But set the
|
||
RTX_UNCHANGING_P bit so we don't try to simplify it again. */
|
||
|
||
address_used = 0;
|
||
walk_attr_value (newexp);
|
||
|
||
if (address_used)
|
||
{
|
||
/* This had `&& current_alternative_string', which seems to be wrong. */
|
||
if (! RTX_UNCHANGING_P (exp))
|
||
return copy_rtx_unchanging (exp);
|
||
return exp;
|
||
}
|
||
else
|
||
return newexp;
|
||
}
|
||
|
||
/* This routine is called when an AND of a term with a tree of AND's is
|
||
encountered. If the term or its complement is present in the tree, it
|
||
can be replaced with TRUE or FALSE, respectively.
|
||
|
||
Note that (eq_attr "att" "v1") and (eq_attr "att" "v2") cannot both
|
||
be true and hence are complementary.
|
||
|
||
There is one special case: If we see
|
||
(and (not (eq_attr "att" "v1"))
|
||
(eq_attr "att" "v2"))
|
||
this can be replaced by (eq_attr "att" "v2"). To do this we need to
|
||
replace the term, not anything in the AND tree. So we pass a pointer to
|
||
the term. */
|
||
|
||
static rtx
|
||
simplify_and_tree (exp, pterm, insn_code, insn_index)
|
||
rtx exp;
|
||
rtx *pterm;
|
||
int insn_code, insn_index;
|
||
{
|
||
rtx left, right;
|
||
rtx newexp;
|
||
rtx temp;
|
||
int left_eliminates_term, right_eliminates_term;
|
||
|
||
if (GET_CODE (exp) == AND)
|
||
{
|
||
left = simplify_and_tree (XEXP (exp, 0), pterm, insn_code, insn_index);
|
||
right = simplify_and_tree (XEXP (exp, 1), pterm, insn_code, insn_index);
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (GET_CODE (exp), left, right);
|
||
|
||
exp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
else if (GET_CODE (exp) == IOR)
|
||
{
|
||
/* For the IOR case, we do the same as above, except that we can
|
||
only eliminate `term' if both sides of the IOR would do so. */
|
||
temp = *pterm;
|
||
left = simplify_and_tree (XEXP (exp, 0), &temp, insn_code, insn_index);
|
||
left_eliminates_term = (temp == true_rtx);
|
||
|
||
temp = *pterm;
|
||
right = simplify_and_tree (XEXP (exp, 1), &temp, insn_code, insn_index);
|
||
right_eliminates_term = (temp == true_rtx);
|
||
|
||
if (left_eliminates_term && right_eliminates_term)
|
||
*pterm = true_rtx;
|
||
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (GET_CODE (exp), left, right);
|
||
|
||
exp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
/* Check for simplifications. Do some extra checking here since this
|
||
routine is called so many times. */
|
||
|
||
if (exp == *pterm)
|
||
return true_rtx;
|
||
|
||
else if (GET_CODE (exp) == NOT && XEXP (exp, 0) == *pterm)
|
||
return false_rtx;
|
||
|
||
else if (GET_CODE (*pterm) == NOT && exp == XEXP (*pterm, 0))
|
||
return false_rtx;
|
||
|
||
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == EQ_ATTR)
|
||
{
|
||
if (XSTR (exp, 0) != XSTR (*pterm, 0))
|
||
return exp;
|
||
|
||
if (! strcmp (XSTR (exp, 1), XSTR (*pterm, 1)))
|
||
return true_rtx;
|
||
else
|
||
return false_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (*pterm) == EQ_ATTR && GET_CODE (exp) == NOT
|
||
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR)
|
||
{
|
||
if (XSTR (*pterm, 0) != XSTR (XEXP (exp, 0), 0))
|
||
return exp;
|
||
|
||
if (! strcmp (XSTR (*pterm, 1), XSTR (XEXP (exp, 0), 1)))
|
||
return false_rtx;
|
||
else
|
||
return true_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == NOT
|
||
&& GET_CODE (XEXP (*pterm, 0)) == EQ_ATTR)
|
||
{
|
||
if (XSTR (exp, 0) != XSTR (XEXP (*pterm, 0), 0))
|
||
return exp;
|
||
|
||
if (! strcmp (XSTR (exp, 1), XSTR (XEXP (*pterm, 0), 1)))
|
||
return false_rtx;
|
||
else
|
||
*pterm = true_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == NOT && GET_CODE (*pterm) == NOT)
|
||
{
|
||
if (attr_equal_p (XEXP (exp, 0), XEXP (*pterm, 0)))
|
||
return true_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == NOT)
|
||
{
|
||
if (attr_equal_p (XEXP (exp, 0), *pterm))
|
||
return false_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (*pterm) == NOT)
|
||
{
|
||
if (attr_equal_p (XEXP (*pterm, 0), exp))
|
||
return false_rtx;
|
||
}
|
||
|
||
else if (attr_equal_p (exp, *pterm))
|
||
return true_rtx;
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Similar to `simplify_and_tree', but for IOR trees. */
|
||
|
||
static rtx
|
||
simplify_or_tree (exp, pterm, insn_code, insn_index)
|
||
rtx exp;
|
||
rtx *pterm;
|
||
int insn_code, insn_index;
|
||
{
|
||
rtx left, right;
|
||
rtx newexp;
|
||
rtx temp;
|
||
int left_eliminates_term, right_eliminates_term;
|
||
|
||
if (GET_CODE (exp) == IOR)
|
||
{
|
||
left = simplify_or_tree (XEXP (exp, 0), pterm, insn_code, insn_index);
|
||
right = simplify_or_tree (XEXP (exp, 1), pterm, insn_code, insn_index);
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (GET_CODE (exp), left, right);
|
||
|
||
exp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
else if (GET_CODE (exp) == AND)
|
||
{
|
||
/* For the AND case, we do the same as above, except that we can
|
||
only eliminate `term' if both sides of the AND would do so. */
|
||
temp = *pterm;
|
||
left = simplify_or_tree (XEXP (exp, 0), &temp, insn_code, insn_index);
|
||
left_eliminates_term = (temp == false_rtx);
|
||
|
||
temp = *pterm;
|
||
right = simplify_or_tree (XEXP (exp, 1), &temp, insn_code, insn_index);
|
||
right_eliminates_term = (temp == false_rtx);
|
||
|
||
if (left_eliminates_term && right_eliminates_term)
|
||
*pterm = false_rtx;
|
||
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (GET_CODE (exp), left, right);
|
||
|
||
exp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
if (attr_equal_p (exp, *pterm))
|
||
return false_rtx;
|
||
|
||
else if (GET_CODE (exp) == NOT && attr_equal_p (XEXP (exp, 0), *pterm))
|
||
return true_rtx;
|
||
|
||
else if (GET_CODE (*pterm) == NOT && attr_equal_p (XEXP (*pterm, 0), exp))
|
||
return true_rtx;
|
||
|
||
else if (GET_CODE (*pterm) == EQ_ATTR && GET_CODE (exp) == NOT
|
||
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR
|
||
&& XSTR (*pterm, 0) == XSTR (XEXP (exp, 0), 0))
|
||
*pterm = false_rtx;
|
||
|
||
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == NOT
|
||
&& GET_CODE (XEXP (*pterm, 0)) == EQ_ATTR
|
||
&& XSTR (exp, 0) == XSTR (XEXP (*pterm, 0), 0))
|
||
return false_rtx;
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Given an expression, see if it can be simplified for a particular insn
|
||
code based on the values of other attributes being tested. This can
|
||
eliminate nested get_attr_... calls.
|
||
|
||
Note that if an endless recursion is specified in the patterns, the
|
||
optimization will loop. However, it will do so in precisely the cases where
|
||
an infinite recursion loop could occur during compilation. It's better that
|
||
it occurs here! */
|
||
|
||
static rtx
|
||
simplify_test_exp (exp, insn_code, insn_index)
|
||
rtx exp;
|
||
int insn_code, insn_index;
|
||
{
|
||
rtx left, right;
|
||
struct attr_desc *attr;
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
int i;
|
||
rtx newexp = exp;
|
||
char *spacer = (char *) obstack_finish (rtl_obstack);
|
||
|
||
/* Don't re-simplify something we already simplified. */
|
||
if (RTX_UNCHANGING_P (exp) || MEM_IN_STRUCT_P (exp))
|
||
return exp;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case AND:
|
||
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
|
||
SIMPLIFY_ALTERNATIVE (left);
|
||
if (left == false_rtx)
|
||
{
|
||
obstack_free (rtl_obstack, spacer);
|
||
return false_rtx;
|
||
}
|
||
right = SIMPLIFY_TEST_EXP (XEXP (exp, 1), insn_code, insn_index);
|
||
SIMPLIFY_ALTERNATIVE (right);
|
||
if (left == false_rtx)
|
||
{
|
||
obstack_free (rtl_obstack, spacer);
|
||
return false_rtx;
|
||
}
|
||
|
||
/* If either side is an IOR and we have (eq_attr "alternative" ..")
|
||
present on both sides, apply the distributive law since this will
|
||
yield simplifications. */
|
||
if ((GET_CODE (left) == IOR || GET_CODE (right) == IOR)
|
||
&& compute_alternative_mask (left, IOR)
|
||
&& compute_alternative_mask (right, IOR))
|
||
{
|
||
if (GET_CODE (left) == IOR)
|
||
{
|
||
rtx tem = left;
|
||
left = right;
|
||
right = tem;
|
||
}
|
||
|
||
newexp = attr_rtx (IOR,
|
||
attr_rtx (AND, left, XEXP (right, 0)),
|
||
attr_rtx (AND, left, XEXP (right, 1)));
|
||
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
|
||
/* Try with the term on both sides. */
|
||
right = simplify_and_tree (right, &left, insn_code, insn_index);
|
||
if (left == XEXP (exp, 0) && right == XEXP (exp, 1))
|
||
left = simplify_and_tree (left, &right, insn_code, insn_index);
|
||
|
||
if (left == false_rtx || right == false_rtx)
|
||
{
|
||
obstack_free (rtl_obstack, spacer);
|
||
return false_rtx;
|
||
}
|
||
else if (left == true_rtx)
|
||
{
|
||
return right;
|
||
}
|
||
else if (right == true_rtx)
|
||
{
|
||
return left;
|
||
}
|
||
/* See if all or all but one of the insn's alternatives are specified
|
||
in this tree. Optimize if so. */
|
||
|
||
else if (insn_code >= 0
|
||
&& (GET_CODE (left) == AND
|
||
|| (GET_CODE (left) == NOT
|
||
&& GET_CODE (XEXP (left, 0)) == EQ_ATTR
|
||
&& XSTR (XEXP (left, 0), 0) == alternative_name)
|
||
|| GET_CODE (right) == AND
|
||
|| (GET_CODE (right) == NOT
|
||
&& GET_CODE (XEXP (right, 0)) == EQ_ATTR
|
||
&& XSTR (XEXP (right, 0), 0) == alternative_name)))
|
||
{
|
||
i = compute_alternative_mask (exp, AND);
|
||
if (i & ~insn_alternatives[insn_code])
|
||
fatal ("Invalid alternative specified for pattern number %d",
|
||
insn_index);
|
||
|
||
/* If all alternatives are excluded, this is false. */
|
||
i ^= insn_alternatives[insn_code];
|
||
if (i == 0)
|
||
return false_rtx;
|
||
else if ((i & (i - 1)) == 0 && insn_alternatives[insn_code] > 1)
|
||
{
|
||
/* If just one excluded, AND a comparison with that one to the
|
||
front of the tree. The others will be eliminated by
|
||
optimization. We do not want to do this if the insn has one
|
||
alternative and we have tested none of them! */
|
||
left = make_alternative_compare (i);
|
||
right = simplify_and_tree (exp, &left, insn_code, insn_index);
|
||
newexp = attr_rtx (AND, left, right);
|
||
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (AND, left, right);
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
break;
|
||
|
||
case IOR:
|
||
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
|
||
SIMPLIFY_ALTERNATIVE (left);
|
||
if (left == true_rtx)
|
||
{
|
||
obstack_free (rtl_obstack, spacer);
|
||
return true_rtx;
|
||
}
|
||
right = SIMPLIFY_TEST_EXP (XEXP (exp, 1), insn_code, insn_index);
|
||
SIMPLIFY_ALTERNATIVE (right);
|
||
if (right == true_rtx)
|
||
{
|
||
obstack_free (rtl_obstack, spacer);
|
||
return true_rtx;
|
||
}
|
||
|
||
right = simplify_or_tree (right, &left, insn_code, insn_index);
|
||
if (left == XEXP (exp, 0) && right == XEXP (exp, 1))
|
||
left = simplify_or_tree (left, &right, insn_code, insn_index);
|
||
|
||
if (right == true_rtx || left == true_rtx)
|
||
{
|
||
obstack_free (rtl_obstack, spacer);
|
||
return true_rtx;
|
||
}
|
||
else if (left == false_rtx)
|
||
{
|
||
return right;
|
||
}
|
||
else if (right == false_rtx)
|
||
{
|
||
return left;
|
||
}
|
||
|
||
/* Test for simple cases where the distributive law is useful. I.e.,
|
||
convert (ior (and (x) (y))
|
||
(and (x) (z)))
|
||
to (and (x)
|
||
(ior (y) (z)))
|
||
*/
|
||
|
||
else if (GET_CODE (left) == AND && GET_CODE (right) == AND
|
||
&& attr_equal_p (XEXP (left, 0), XEXP (right, 0)))
|
||
{
|
||
newexp = attr_rtx (IOR, XEXP (left, 1), XEXP (right, 1));
|
||
|
||
left = XEXP (left, 0);
|
||
right = newexp;
|
||
newexp = attr_rtx (AND, left, right);
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
|
||
/* See if all or all but one of the insn's alternatives are specified
|
||
in this tree. Optimize if so. */
|
||
|
||
else if (insn_code >= 0
|
||
&& (GET_CODE (left) == IOR
|
||
|| (GET_CODE (left) == EQ_ATTR
|
||
&& XSTR (left, 0) == alternative_name)
|
||
|| GET_CODE (right) == IOR
|
||
|| (GET_CODE (right) == EQ_ATTR
|
||
&& XSTR (right, 0) == alternative_name)))
|
||
{
|
||
i = compute_alternative_mask (exp, IOR);
|
||
if (i & ~insn_alternatives[insn_code])
|
||
fatal ("Invalid alternative specified for pattern number %d",
|
||
insn_index);
|
||
|
||
/* If all alternatives are included, this is true. */
|
||
i ^= insn_alternatives[insn_code];
|
||
if (i == 0)
|
||
return true_rtx;
|
||
else if ((i & (i - 1)) == 0 && insn_alternatives[insn_code] > 1)
|
||
{
|
||
/* If just one excluded, IOR a comparison with that one to the
|
||
front of the tree. The others will be eliminated by
|
||
optimization. We do not want to do this if the insn has one
|
||
alternative and we have tested none of them! */
|
||
left = make_alternative_compare (i);
|
||
right = simplify_and_tree (exp, &left, insn_code, insn_index);
|
||
newexp = attr_rtx (IOR, attr_rtx (NOT, left), right);
|
||
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (IOR, left, right);
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
if (GET_CODE (XEXP (exp, 0)) == NOT)
|
||
{
|
||
left = SIMPLIFY_TEST_EXP (XEXP (XEXP (exp, 0), 0),
|
||
insn_code, insn_index);
|
||
SIMPLIFY_ALTERNATIVE (left);
|
||
return left;
|
||
}
|
||
|
||
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
|
||
SIMPLIFY_ALTERNATIVE (left);
|
||
if (GET_CODE (left) == NOT)
|
||
return XEXP (left, 0);
|
||
|
||
if (left == false_rtx)
|
||
{
|
||
obstack_free (rtl_obstack, spacer);
|
||
return true_rtx;
|
||
}
|
||
else if (left == true_rtx)
|
||
{
|
||
obstack_free (rtl_obstack, spacer);
|
||
return false_rtx;
|
||
}
|
||
|
||
/* Try to apply De`Morgan's laws. */
|
||
else if (GET_CODE (left) == IOR)
|
||
{
|
||
newexp = attr_rtx (AND,
|
||
attr_rtx (NOT, XEXP (left, 0)),
|
||
attr_rtx (NOT, XEXP (left, 1)));
|
||
|
||
newexp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
else if (GET_CODE (left) == AND)
|
||
{
|
||
newexp = attr_rtx (IOR,
|
||
attr_rtx (NOT, XEXP (left, 0)),
|
||
attr_rtx (NOT, XEXP (left, 1)));
|
||
|
||
newexp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
else if (left != XEXP (exp, 0))
|
||
{
|
||
newexp = attr_rtx (NOT, left);
|
||
}
|
||
break;
|
||
|
||
case EQ_ATTR:
|
||
if (current_alternative_string && XSTR (exp, 0) == alternative_name)
|
||
return (XSTR (exp, 1) == current_alternative_string
|
||
? true_rtx : false_rtx);
|
||
|
||
/* Look at the value for this insn code in the specified attribute.
|
||
We normally can replace this comparison with the condition that
|
||
would give this insn the values being tested for. */
|
||
if (XSTR (exp, 0) != alternative_name
|
||
&& (attr = find_attr (XSTR (exp, 0), 0)) != NULL)
|
||
for (av = attr->first_value; av; av = av->next)
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
if (ie->insn_code == insn_code)
|
||
return evaluate_eq_attr (exp, av->value, insn_code, insn_index);
|
||
}
|
||
|
||
/* We have already simplified this expression. Simplifying it again
|
||
won't buy anything unless we weren't given a valid insn code
|
||
to process (i.e., we are canonicalizing something.). */
|
||
if (insn_code != -2 /* Seems wrong: && current_alternative_string. */
|
||
&& ! RTX_UNCHANGING_P (newexp))
|
||
return copy_rtx_unchanging (newexp);
|
||
|
||
return newexp;
|
||
}
|
||
|
||
/* Optimize the attribute lists by seeing if we can determine conditional
|
||
values from the known values of other attributes. This will save subroutine
|
||
calls during the compilation. */
|
||
|
||
static void
|
||
optimize_attrs ()
|
||
{
|
||
struct attr_desc *attr;
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
rtx newexp;
|
||
int something_changed = 1;
|
||
int i;
|
||
struct attr_value_list { struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
struct attr_desc * attr;
|
||
struct attr_value_list *next; };
|
||
struct attr_value_list **insn_code_values;
|
||
struct attr_value_list *ivbuf;
|
||
struct attr_value_list *iv;
|
||
|
||
/* For each insn code, make a list of all the insn_ent's for it,
|
||
for all values for all attributes. */
|
||
|
||
if (num_insn_ents == 0)
|
||
return;
|
||
|
||
/* Make 2 extra elements, for "code" values -2 and -1. */
|
||
insn_code_values
|
||
= (struct attr_value_list **) alloca ((insn_code_number + 2)
|
||
* sizeof (struct attr_value_list *));
|
||
bzero ((char *) insn_code_values,
|
||
(insn_code_number + 2) * sizeof (struct attr_value_list *));
|
||
|
||
/* Offset the table address so we can index by -2 or -1. */
|
||
insn_code_values += 2;
|
||
|
||
/* Allocate the attr_value_list structures using xmalloc rather than
|
||
alloca, because using alloca can overflow the maximum permitted
|
||
stack limit on SPARC Lynx. */
|
||
iv = ivbuf = ((struct attr_value_list *)
|
||
xmalloc (num_insn_ents * sizeof (struct attr_value_list)));
|
||
|
||
for (i = 0; i < MAX_ATTRS_INDEX; i++)
|
||
for (attr = attrs[i]; attr; attr = attr->next)
|
||
for (av = attr->first_value; av; av = av->next)
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
{
|
||
iv->attr = attr;
|
||
iv->av = av;
|
||
iv->ie = ie;
|
||
iv->next = insn_code_values[ie->insn_code];
|
||
insn_code_values[ie->insn_code] = iv;
|
||
iv++;
|
||
}
|
||
|
||
/* Sanity check on num_insn_ents. */
|
||
if (iv != ivbuf + num_insn_ents)
|
||
abort ();
|
||
|
||
/* Process one insn code at a time. */
|
||
for (i = -2; i < insn_code_number; i++)
|
||
{
|
||
/* Clear the MEM_IN_STRUCT_P flag everywhere relevant.
|
||
We use it to mean "already simplified for this insn". */
|
||
for (iv = insn_code_values[i]; iv; iv = iv->next)
|
||
clear_struct_flag (iv->av->value);
|
||
|
||
/* Loop until nothing changes for one iteration. */
|
||
something_changed = 1;
|
||
while (something_changed)
|
||
{
|
||
something_changed = 0;
|
||
for (iv = insn_code_values[i]; iv; iv = iv->next)
|
||
{
|
||
struct obstack *old = rtl_obstack;
|
||
char *spacer = (char *) obstack_finish (temp_obstack);
|
||
|
||
attr = iv->attr;
|
||
av = iv->av;
|
||
ie = iv->ie;
|
||
if (GET_CODE (av->value) != COND)
|
||
continue;
|
||
|
||
rtl_obstack = temp_obstack;
|
||
#if 0 /* This was intended as a speed up, but it was slower. */
|
||
if (insn_n_alternatives[ie->insn_code] > 6
|
||
&& count_sub_rtxs (av->value, 200) >= 200)
|
||
newexp = simplify_by_alternatives (av->value, ie->insn_code,
|
||
ie->insn_index);
|
||
else
|
||
#endif
|
||
newexp = simplify_cond (av->value, ie->insn_code,
|
||
ie->insn_index);
|
||
|
||
rtl_obstack = old;
|
||
if (newexp != av->value)
|
||
{
|
||
newexp = attr_copy_rtx (newexp);
|
||
remove_insn_ent (av, ie);
|
||
av = get_attr_value (newexp, attr, ie->insn_code);
|
||
iv->av = av;
|
||
insert_insn_ent (av, ie);
|
||
something_changed = 1;
|
||
}
|
||
obstack_free (temp_obstack, spacer);
|
||
}
|
||
}
|
||
}
|
||
|
||
free (ivbuf);
|
||
}
|
||
|
||
#if 0
|
||
static rtx
|
||
simplify_by_alternatives (exp, insn_code, insn_index)
|
||
rtx exp;
|
||
int insn_code, insn_index;
|
||
{
|
||
int i;
|
||
int len = insn_n_alternatives[insn_code];
|
||
rtx newexp = rtx_alloc (COND);
|
||
rtx ultimate;
|
||
|
||
|
||
XVEC (newexp, 0) = rtvec_alloc (len * 2);
|
||
|
||
/* It will not matter what value we use as the default value
|
||
of the new COND, since that default will never be used.
|
||
Choose something of the right type. */
|
||
for (ultimate = exp; GET_CODE (ultimate) == COND;)
|
||
ultimate = XEXP (ultimate, 1);
|
||
XEXP (newexp, 1) = ultimate;
|
||
|
||
for (i = 0; i < insn_n_alternatives[insn_code]; i++)
|
||
{
|
||
current_alternative_string = attr_numeral (i);
|
||
XVECEXP (newexp, 0, i * 2) = make_alternative_compare (1 << i);
|
||
XVECEXP (newexp, 0, i * 2 + 1)
|
||
= simplify_cond (exp, insn_code, insn_index);
|
||
}
|
||
|
||
current_alternative_string = 0;
|
||
return simplify_cond (newexp, insn_code, insn_index);
|
||
}
|
||
#endif
|
||
|
||
/* If EXP is a suitable expression, reorganize it by constructing an
|
||
equivalent expression that is a COND with the tests being all combinations
|
||
of attribute values and the values being simple constants. */
|
||
|
||
static rtx
|
||
simplify_by_exploding (exp)
|
||
rtx exp;
|
||
{
|
||
rtx list = 0, link, condexp, defval;
|
||
struct dimension *space;
|
||
rtx *condtest, *condval;
|
||
int i, j, total, ndim = 0;
|
||
int most_tests, num_marks, new_marks;
|
||
|
||
/* Locate all the EQ_ATTR expressions. */
|
||
if (! find_and_mark_used_attributes (exp, &list, &ndim) || ndim == 0)
|
||
{
|
||
unmark_used_attributes (list, 0, 0);
|
||
return exp;
|
||
}
|
||
|
||
/* Create an attribute space from the list of used attributes. For each
|
||
dimension in the attribute space, record the attribute, list of values
|
||
used, and number of values used. Add members to the list of values to
|
||
cover the domain of the attribute. This makes the expanded COND form
|
||
order independent. */
|
||
|
||
space = (struct dimension *) alloca (ndim * sizeof (struct dimension));
|
||
|
||
total = 1;
|
||
for (ndim = 0; list; ndim++)
|
||
{
|
||
/* Pull the first attribute value from the list and record that
|
||
attribute as another dimension in the attribute space. */
|
||
char *name = XSTR (XEXP (list, 0), 0);
|
||
rtx *prev;
|
||
|
||
if ((space[ndim].attr = find_attr (name, 0)) == 0
|
||
|| space[ndim].attr->is_numeric)
|
||
{
|
||
unmark_used_attributes (list, space, ndim);
|
||
return exp;
|
||
}
|
||
|
||
/* Add all remaining attribute values that refer to this attribute. */
|
||
space[ndim].num_values = 0;
|
||
space[ndim].values = 0;
|
||
prev = &list;
|
||
for (link = list; link; link = *prev)
|
||
if (! strcmp (XSTR (XEXP (link, 0), 0), name))
|
||
{
|
||
space[ndim].num_values++;
|
||
*prev = XEXP (link, 1);
|
||
XEXP (link, 1) = space[ndim].values;
|
||
space[ndim].values = link;
|
||
}
|
||
else
|
||
prev = &XEXP (link, 1);
|
||
|
||
/* Add sufficient members to the list of values to make the list
|
||
mutually exclusive and record the total size of the attribute
|
||
space. */
|
||
total *= add_values_to_cover (&space[ndim]);
|
||
}
|
||
|
||
/* Sort the attribute space so that the attributes go from non-constant
|
||
to constant and from most values to least values. */
|
||
for (i = 0; i < ndim; i++)
|
||
for (j = ndim - 1; j > i; j--)
|
||
if ((space[j-1].attr->is_const && !space[j].attr->is_const)
|
||
|| space[j-1].num_values < space[j].num_values)
|
||
{
|
||
struct dimension tmp;
|
||
tmp = space[j];
|
||
space[j] = space[j-1];
|
||
space[j-1] = tmp;
|
||
}
|
||
|
||
/* Establish the initial current value. */
|
||
for (i = 0; i < ndim; i++)
|
||
space[i].current_value = space[i].values;
|
||
|
||
condtest = (rtx *) alloca (total * sizeof (rtx));
|
||
condval = (rtx *) alloca (total * sizeof (rtx));
|
||
|
||
/* Expand the tests and values by iterating over all values in the
|
||
attribute space. */
|
||
for (i = 0;; i++)
|
||
{
|
||
condtest[i] = test_for_current_value (space, ndim);
|
||
condval[i] = simplify_with_current_value (exp, space, ndim);
|
||
if (! increment_current_value (space, ndim))
|
||
break;
|
||
}
|
||
if (i != total - 1)
|
||
abort ();
|
||
|
||
/* We are now finished with the original expression. */
|
||
unmark_used_attributes (0, space, ndim);
|
||
|
||
/* Find the most used constant value and make that the default. */
|
||
most_tests = -1;
|
||
for (i = num_marks = 0; i < total; i++)
|
||
if (GET_CODE (condval[i]) == CONST_STRING
|
||
&& ! MEM_VOLATILE_P (condval[i]))
|
||
{
|
||
/* Mark the unmarked constant value and count how many are marked. */
|
||
MEM_VOLATILE_P (condval[i]) = 1;
|
||
for (j = new_marks = 0; j < total; j++)
|
||
if (GET_CODE (condval[j]) == CONST_STRING
|
||
&& MEM_VOLATILE_P (condval[j]))
|
||
new_marks++;
|
||
if (new_marks - num_marks > most_tests)
|
||
{
|
||
most_tests = new_marks - num_marks;
|
||
defval = condval[i];
|
||
}
|
||
num_marks = new_marks;
|
||
}
|
||
/* Clear all the marks. */
|
||
for (i = 0; i < total; i++)
|
||
MEM_VOLATILE_P (condval[i]) = 0;
|
||
|
||
/* Give up if nothing is constant. */
|
||
if (num_marks == 0)
|
||
return exp;
|
||
|
||
/* If all values are the default, use that. */
|
||
if (total == most_tests)
|
||
return defval;
|
||
|
||
/* Make a COND with the most common constant value the default. (A more
|
||
complex method where tests with the same value were combined didn't
|
||
seem to improve things.) */
|
||
condexp = rtx_alloc (COND);
|
||
XVEC (condexp, 0) = rtvec_alloc ((total - most_tests) * 2);
|
||
XEXP (condexp, 1) = defval;
|
||
for (i = j = 0; i < total; i++)
|
||
if (condval[i] != defval)
|
||
{
|
||
XVECEXP (condexp, 0, 2 * j) = condtest[i];
|
||
XVECEXP (condexp, 0, 2 * j + 1) = condval[i];
|
||
j++;
|
||
}
|
||
|
||
return condexp;
|
||
}
|
||
|
||
/* Set the MEM_VOLATILE_P flag for all EQ_ATTR expressions in EXP and
|
||
verify that EXP can be simplified to a constant term if all the EQ_ATTR
|
||
tests have known value. */
|
||
|
||
static int
|
||
find_and_mark_used_attributes (exp, terms, nterms)
|
||
rtx exp, *terms;
|
||
int *nterms;
|
||
{
|
||
int i;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case EQ_ATTR:
|
||
if (! MEM_VOLATILE_P (exp))
|
||
{
|
||
rtx link = rtx_alloc (EXPR_LIST);
|
||
XEXP (link, 0) = exp;
|
||
XEXP (link, 1) = *terms;
|
||
*terms = link;
|
||
*nterms += 1;
|
||
MEM_VOLATILE_P (exp) = 1;
|
||
}
|
||
case CONST_STRING:
|
||
return 1;
|
||
|
||
case IF_THEN_ELSE:
|
||
if (! find_and_mark_used_attributes (XEXP (exp, 2), terms, nterms))
|
||
return 0;
|
||
case IOR:
|
||
case AND:
|
||
if (! find_and_mark_used_attributes (XEXP (exp, 1), terms, nterms))
|
||
return 0;
|
||
case NOT:
|
||
if (! find_and_mark_used_attributes (XEXP (exp, 0), terms, nterms))
|
||
return 0;
|
||
return 1;
|
||
|
||
case COND:
|
||
for (i = 0; i < XVECLEN (exp, 0); i++)
|
||
if (! find_and_mark_used_attributes (XVECEXP (exp, 0, i), terms, nterms))
|
||
return 0;
|
||
if (! find_and_mark_used_attributes (XEXP (exp, 1), terms, nterms))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Clear the MEM_VOLATILE_P flag in all EQ_ATTR expressions on LIST and
|
||
in the values of the NDIM-dimensional attribute space SPACE. */
|
||
|
||
static void
|
||
unmark_used_attributes (list, space, ndim)
|
||
rtx list;
|
||
struct dimension *space;
|
||
int ndim;
|
||
{
|
||
rtx link, exp;
|
||
int i;
|
||
|
||
for (i = 0; i < ndim; i++)
|
||
unmark_used_attributes (space[i].values, 0, 0);
|
||
|
||
for (link = list; link; link = XEXP (link, 1))
|
||
{
|
||
exp = XEXP (link, 0);
|
||
if (GET_CODE (exp) == EQ_ATTR)
|
||
MEM_VOLATILE_P (exp) = 0;
|
||
}
|
||
}
|
||
|
||
/* Update the attribute dimension DIM so that all values of the attribute
|
||
are tested. Return the updated number of values. */
|
||
|
||
static int
|
||
add_values_to_cover (dim)
|
||
struct dimension *dim;
|
||
{
|
||
struct attr_value *av;
|
||
rtx exp, link, *prev;
|
||
int nalt = 0;
|
||
|
||
for (av = dim->attr->first_value; av; av = av->next)
|
||
if (GET_CODE (av->value) == CONST_STRING)
|
||
nalt++;
|
||
|
||
if (nalt < dim->num_values)
|
||
abort ();
|
||
else if (nalt == dim->num_values)
|
||
; /* Ok. */
|
||
else if (nalt * 2 < dim->num_values * 3)
|
||
{
|
||
/* Most all the values of the attribute are used, so add all the unused
|
||
values. */
|
||
prev = &dim->values;
|
||
for (link = dim->values; link; link = *prev)
|
||
prev = &XEXP (link, 1);
|
||
|
||
for (av = dim->attr->first_value; av; av = av->next)
|
||
if (GET_CODE (av->value) == CONST_STRING)
|
||
{
|
||
exp = attr_eq (dim->attr->name, XSTR (av->value, 0));
|
||
if (MEM_VOLATILE_P (exp))
|
||
continue;
|
||
|
||
link = rtx_alloc (EXPR_LIST);
|
||
XEXP (link, 0) = exp;
|
||
XEXP (link, 1) = 0;
|
||
*prev = link;
|
||
prev = &XEXP (link, 1);
|
||
}
|
||
dim->num_values = nalt;
|
||
}
|
||
else
|
||
{
|
||
rtx orexp = false_rtx;
|
||
|
||
/* Very few values are used, so compute a mutually exclusive
|
||
expression. (We could do this for numeric values if that becomes
|
||
important.) */
|
||
prev = &dim->values;
|
||
for (link = dim->values; link; link = *prev)
|
||
{
|
||
orexp = insert_right_side (IOR, orexp, XEXP (link, 0), -2, -2);
|
||
prev = &XEXP (link, 1);
|
||
}
|
||
link = rtx_alloc (EXPR_LIST);
|
||
XEXP (link, 0) = attr_rtx (NOT, orexp);
|
||
XEXP (link, 1) = 0;
|
||
*prev = link;
|
||
dim->num_values++;
|
||
}
|
||
return dim->num_values;
|
||
}
|
||
|
||
/* Increment the current value for the NDIM-dimensional attribute space SPACE
|
||
and return FALSE if the increment overflowed. */
|
||
|
||
static int
|
||
increment_current_value (space, ndim)
|
||
struct dimension *space;
|
||
int ndim;
|
||
{
|
||
int i;
|
||
|
||
for (i = ndim - 1; i >= 0; i--)
|
||
{
|
||
if ((space[i].current_value = XEXP (space[i].current_value, 1)) == 0)
|
||
space[i].current_value = space[i].values;
|
||
else
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Construct an expression corresponding to the current value for the
|
||
NDIM-dimensional attribute space SPACE. */
|
||
|
||
static rtx
|
||
test_for_current_value (space, ndim)
|
||
struct dimension *space;
|
||
int ndim;
|
||
{
|
||
int i;
|
||
rtx exp = true_rtx;
|
||
|
||
for (i = 0; i < ndim; i++)
|
||
exp = insert_right_side (AND, exp, XEXP (space[i].current_value, 0),
|
||
-2, -2);
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Given the current value of the NDIM-dimensional attribute space SPACE,
|
||
set the corresponding EQ_ATTR expressions to that value and reduce
|
||
the expression EXP as much as possible. On input [and output], all
|
||
known EQ_ATTR expressions are set to FALSE. */
|
||
|
||
static rtx
|
||
simplify_with_current_value (exp, space, ndim)
|
||
rtx exp;
|
||
struct dimension *space;
|
||
int ndim;
|
||
{
|
||
int i;
|
||
rtx x;
|
||
|
||
/* Mark each current value as TRUE. */
|
||
for (i = 0; i < ndim; i++)
|
||
{
|
||
x = XEXP (space[i].current_value, 0);
|
||
if (GET_CODE (x) == EQ_ATTR)
|
||
MEM_VOLATILE_P (x) = 0;
|
||
}
|
||
|
||
exp = simplify_with_current_value_aux (exp);
|
||
|
||
/* Change each current value back to FALSE. */
|
||
for (i = 0; i < ndim; i++)
|
||
{
|
||
x = XEXP (space[i].current_value, 0);
|
||
if (GET_CODE (x) == EQ_ATTR)
|
||
MEM_VOLATILE_P (x) = 1;
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Reduce the expression EXP based on the MEM_VOLATILE_P settings of
|
||
all EQ_ATTR expressions. */
|
||
|
||
static rtx
|
||
simplify_with_current_value_aux (exp)
|
||
rtx exp;
|
||
{
|
||
register int i;
|
||
rtx cond;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case EQ_ATTR:
|
||
if (MEM_VOLATILE_P (exp))
|
||
return false_rtx;
|
||
else
|
||
return true_rtx;
|
||
case CONST_STRING:
|
||
return exp;
|
||
|
||
case IF_THEN_ELSE:
|
||
cond = simplify_with_current_value_aux (XEXP (exp, 0));
|
||
if (cond == true_rtx)
|
||
return simplify_with_current_value_aux (XEXP (exp, 1));
|
||
else if (cond == false_rtx)
|
||
return simplify_with_current_value_aux (XEXP (exp, 2));
|
||
else
|
||
return attr_rtx (IF_THEN_ELSE, cond,
|
||
simplify_with_current_value_aux (XEXP (exp, 1)),
|
||
simplify_with_current_value_aux (XEXP (exp, 2)));
|
||
|
||
case IOR:
|
||
cond = simplify_with_current_value_aux (XEXP (exp, 1));
|
||
if (cond == true_rtx)
|
||
return cond;
|
||
else if (cond == false_rtx)
|
||
return simplify_with_current_value_aux (XEXP (exp, 0));
|
||
else
|
||
return attr_rtx (IOR, cond,
|
||
simplify_with_current_value_aux (XEXP (exp, 0)));
|
||
|
||
case AND:
|
||
cond = simplify_with_current_value_aux (XEXP (exp, 1));
|
||
if (cond == true_rtx)
|
||
return simplify_with_current_value_aux (XEXP (exp, 0));
|
||
else if (cond == false_rtx)
|
||
return cond;
|
||
else
|
||
return attr_rtx (AND, cond,
|
||
simplify_with_current_value_aux (XEXP (exp, 0)));
|
||
|
||
case NOT:
|
||
cond = simplify_with_current_value_aux (XEXP (exp, 0));
|
||
if (cond == true_rtx)
|
||
return false_rtx;
|
||
else if (cond == false_rtx)
|
||
return true_rtx;
|
||
else
|
||
return attr_rtx (NOT, cond);
|
||
|
||
case COND:
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
cond = simplify_with_current_value_aux (XVECEXP (exp, 0, i));
|
||
if (cond == true_rtx)
|
||
return simplify_with_current_value_aux (XVECEXP (exp, 0, i + 1));
|
||
else if (cond == false_rtx)
|
||
continue;
|
||
else
|
||
abort (); /* With all EQ_ATTR's of known value, a case should
|
||
have been selected. */
|
||
}
|
||
return simplify_with_current_value_aux (XEXP (exp, 1));
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Clear the MEM_IN_STRUCT_P flag in EXP and its subexpressions. */
|
||
|
||
static void
|
||
clear_struct_flag (x)
|
||
rtx x;
|
||
{
|
||
register int i;
|
||
register int j;
|
||
register enum rtx_code code;
|
||
register char *fmt;
|
||
|
||
MEM_IN_STRUCT_P (x) = 0;
|
||
if (RTX_UNCHANGING_P (x))
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case EQ_ATTR:
|
||
case ATTR_FLAG:
|
||
return;
|
||
}
|
||
|
||
/* Compare the elements. If any pair of corresponding elements
|
||
fail to match, return 0 for the whole things. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'V':
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
clear_struct_flag (XVECEXP (x, i, j));
|
||
break;
|
||
|
||
case 'e':
|
||
clear_struct_flag (XEXP (x, i));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the number of RTX objects making up the expression X.
|
||
But if we count more more than MAX objects, stop counting. */
|
||
|
||
static int
|
||
count_sub_rtxs (x, max)
|
||
rtx x;
|
||
int max;
|
||
{
|
||
register int i;
|
||
register int j;
|
||
register enum rtx_code code;
|
||
register char *fmt;
|
||
int total = 0;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case EQ_ATTR:
|
||
case ATTR_FLAG:
|
||
return 1;
|
||
}
|
||
|
||
/* Compare the elements. If any pair of corresponding elements
|
||
fail to match, return 0 for the whole things. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (total >= max)
|
||
return total;
|
||
|
||
switch (fmt[i])
|
||
{
|
||
case 'V':
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
total += count_sub_rtxs (XVECEXP (x, i, j), max);
|
||
break;
|
||
|
||
case 'e':
|
||
total += count_sub_rtxs (XEXP (x, i), max);
|
||
break;
|
||
}
|
||
}
|
||
return total;
|
||
|
||
}
|
||
|
||
/* Create table entries for DEFINE_ATTR. */
|
||
|
||
static void
|
||
gen_attr (exp)
|
||
rtx exp;
|
||
{
|
||
struct attr_desc *attr;
|
||
struct attr_value *av;
|
||
char *name_ptr;
|
||
char *p;
|
||
|
||
/* Make a new attribute structure. Check for duplicate by looking at
|
||
attr->default_val, since it is initialized by this routine. */
|
||
attr = find_attr (XSTR (exp, 0), 1);
|
||
if (attr->default_val)
|
||
fatal ("Duplicate definition for `%s' attribute", attr->name);
|
||
|
||
if (*XSTR (exp, 1) == '\0')
|
||
attr->is_numeric = 1;
|
||
else
|
||
{
|
||
name_ptr = XSTR (exp, 1);
|
||
while ((p = next_comma_elt (&name_ptr)) != NULL)
|
||
{
|
||
av = (struct attr_value *) oballoc (sizeof (struct attr_value));
|
||
av->value = attr_rtx (CONST_STRING, p);
|
||
av->next = attr->first_value;
|
||
attr->first_value = av;
|
||
av->first_insn = NULL;
|
||
av->num_insns = 0;
|
||
av->has_asm_insn = 0;
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (XEXP (exp, 2)) == CONST)
|
||
{
|
||
attr->is_const = 1;
|
||
if (attr->is_numeric)
|
||
fatal ("Constant attributes may not take numeric values");
|
||
/* Get rid of the CONST node. It is allowed only at top-level. */
|
||
XEXP (exp, 2) = XEXP (XEXP (exp, 2), 0);
|
||
}
|
||
|
||
if (! strcmp (attr->name, "length") && ! attr->is_numeric)
|
||
fatal ("`length' attribute must take numeric values");
|
||
|
||
/* Set up the default value. */
|
||
XEXP (exp, 2) = check_attr_value (XEXP (exp, 2), attr);
|
||
attr->default_val = get_attr_value (XEXP (exp, 2), attr, -2);
|
||
}
|
||
|
||
/* Given a pattern for DEFINE_PEEPHOLE or DEFINE_INSN, return the number of
|
||
alternatives in the constraints. Assume all MATCH_OPERANDs have the same
|
||
number of alternatives as this should be checked elsewhere. */
|
||
|
||
static int
|
||
count_alternatives (exp)
|
||
rtx exp;
|
||
{
|
||
int i, j, n;
|
||
char *fmt;
|
||
|
||
if (GET_CODE (exp) == MATCH_OPERAND)
|
||
return n_comma_elts (XSTR (exp, 2));
|
||
|
||
for (i = 0, fmt = GET_RTX_FORMAT (GET_CODE (exp));
|
||
i < GET_RTX_LENGTH (GET_CODE (exp)); i++)
|
||
switch (*fmt++)
|
||
{
|
||
case 'e':
|
||
case 'u':
|
||
n = count_alternatives (XEXP (exp, i));
|
||
if (n)
|
||
return n;
|
||
break;
|
||
|
||
case 'E':
|
||
case 'V':
|
||
if (XVEC (exp, i) != NULL)
|
||
for (j = 0; j < XVECLEN (exp, i); j++)
|
||
{
|
||
n = count_alternatives (XVECEXP (exp, i, j));
|
||
if (n)
|
||
return n;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns non-zero if the given expression contains an EQ_ATTR with the
|
||
`alternative' attribute. */
|
||
|
||
static int
|
||
compares_alternatives_p (exp)
|
||
rtx exp;
|
||
{
|
||
int i, j;
|
||
char *fmt;
|
||
|
||
if (GET_CODE (exp) == EQ_ATTR && XSTR (exp, 0) == alternative_name)
|
||
return 1;
|
||
|
||
for (i = 0, fmt = GET_RTX_FORMAT (GET_CODE (exp));
|
||
i < GET_RTX_LENGTH (GET_CODE (exp)); i++)
|
||
switch (*fmt++)
|
||
{
|
||
case 'e':
|
||
case 'u':
|
||
if (compares_alternatives_p (XEXP (exp, i)))
|
||
return 1;
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (exp, i); j++)
|
||
if (compares_alternatives_p (XVECEXP (exp, i, j)))
|
||
return 1;
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns non-zero is INNER is contained in EXP. */
|
||
|
||
static int
|
||
contained_in_p (inner, exp)
|
||
rtx inner;
|
||
rtx exp;
|
||
{
|
||
int i, j;
|
||
char *fmt;
|
||
|
||
if (rtx_equal_p (inner, exp))
|
||
return 1;
|
||
|
||
for (i = 0, fmt = GET_RTX_FORMAT (GET_CODE (exp));
|
||
i < GET_RTX_LENGTH (GET_CODE (exp)); i++)
|
||
switch (*fmt++)
|
||
{
|
||
case 'e':
|
||
case 'u':
|
||
if (contained_in_p (inner, XEXP (exp, i)))
|
||
return 1;
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (exp, i); j++)
|
||
if (contained_in_p (inner, XVECEXP (exp, i, j)))
|
||
return 1;
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Process DEFINE_PEEPHOLE, DEFINE_INSN, and DEFINE_ASM_ATTRIBUTES. */
|
||
|
||
static void
|
||
gen_insn (exp)
|
||
rtx exp;
|
||
{
|
||
struct insn_def *id;
|
||
|
||
id = (struct insn_def *) oballoc (sizeof (struct insn_def));
|
||
id->next = defs;
|
||
defs = id;
|
||
id->def = exp;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case DEFINE_INSN:
|
||
id->insn_code = insn_code_number++;
|
||
id->insn_index = insn_index_number++;
|
||
id->num_alternatives = count_alternatives (exp);
|
||
if (id->num_alternatives == 0)
|
||
id->num_alternatives = 1;
|
||
id->vec_idx = 4;
|
||
break;
|
||
|
||
case DEFINE_PEEPHOLE:
|
||
id->insn_code = insn_code_number++;
|
||
id->insn_index = insn_index_number++;
|
||
id->num_alternatives = count_alternatives (exp);
|
||
if (id->num_alternatives == 0)
|
||
id->num_alternatives = 1;
|
||
id->vec_idx = 3;
|
||
break;
|
||
|
||
case DEFINE_ASM_ATTRIBUTES:
|
||
id->insn_code = -1;
|
||
id->insn_index = -1;
|
||
id->num_alternatives = 1;
|
||
id->vec_idx = 0;
|
||
got_define_asm_attributes = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Process a DEFINE_DELAY. Validate the vector length, check if annul
|
||
true or annul false is specified, and make a `struct delay_desc'. */
|
||
|
||
static void
|
||
gen_delay (def)
|
||
rtx def;
|
||
{
|
||
struct delay_desc *delay;
|
||
int i;
|
||
|
||
if (XVECLEN (def, 1) % 3 != 0)
|
||
fatal ("Number of elements in DEFINE_DELAY must be multiple of three.");
|
||
|
||
for (i = 0; i < XVECLEN (def, 1); i += 3)
|
||
{
|
||
if (XVECEXP (def, 1, i + 1))
|
||
have_annul_true = 1;
|
||
if (XVECEXP (def, 1, i + 2))
|
||
have_annul_false = 1;
|
||
}
|
||
|
||
delay = (struct delay_desc *) oballoc (sizeof (struct delay_desc));
|
||
delay->def = def;
|
||
delay->num = ++num_delays;
|
||
delay->next = delays;
|
||
delays = delay;
|
||
}
|
||
|
||
/* Process a DEFINE_FUNCTION_UNIT.
|
||
|
||
This gives information about a function unit contained in the CPU.
|
||
We fill in a `struct function_unit_op' and a `struct function_unit'
|
||
with information used later by `expand_unit'. */
|
||
|
||
static void
|
||
gen_unit (def)
|
||
rtx def;
|
||
{
|
||
struct function_unit *unit;
|
||
struct function_unit_op *op;
|
||
char *name = XSTR (def, 0);
|
||
int multiplicity = XINT (def, 1);
|
||
int simultaneity = XINT (def, 2);
|
||
rtx condexp = XEXP (def, 3);
|
||
int ready_cost = MAX (XINT (def, 4), 1);
|
||
int issue_delay = MAX (XINT (def, 5), 1);
|
||
|
||
/* See if we have already seen this function unit. If so, check that
|
||
the multiplicity and simultaneity values are the same. If not, make
|
||
a structure for this function unit. */
|
||
for (unit = units; unit; unit = unit->next)
|
||
if (! strcmp (unit->name, name))
|
||
{
|
||
if (unit->multiplicity != multiplicity
|
||
|| unit->simultaneity != simultaneity)
|
||
fatal ("Differing specifications given for `%s' function unit.",
|
||
unit->name);
|
||
break;
|
||
}
|
||
|
||
if (unit == 0)
|
||
{
|
||
unit = (struct function_unit *) oballoc (sizeof (struct function_unit));
|
||
unit->name = name;
|
||
unit->multiplicity = multiplicity;
|
||
unit->simultaneity = simultaneity;
|
||
unit->issue_delay.min = unit->issue_delay.max = issue_delay;
|
||
unit->num = num_units++;
|
||
unit->num_opclasses = 0;
|
||
unit->condexp = false_rtx;
|
||
unit->ops = 0;
|
||
unit->next = units;
|
||
units = unit;
|
||
}
|
||
|
||
/* Make a new operation class structure entry and initialize it. */
|
||
op = (struct function_unit_op *) oballoc (sizeof (struct function_unit_op));
|
||
op->condexp = condexp;
|
||
op->num = unit->num_opclasses++;
|
||
op->ready = ready_cost;
|
||
op->issue_delay = issue_delay;
|
||
op->next = unit->ops;
|
||
unit->ops = op;
|
||
|
||
/* Set our issue expression based on whether or not an optional conflict
|
||
vector was specified. */
|
||
if (XVEC (def, 6))
|
||
{
|
||
/* Compute the IOR of all the specified expressions. */
|
||
rtx orexp = false_rtx;
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (def, 6); i++)
|
||
orexp = insert_right_side (IOR, orexp, XVECEXP (def, 6, i), -2, -2);
|
||
|
||
op->conflict_exp = orexp;
|
||
extend_range (&unit->issue_delay, 1, issue_delay);
|
||
}
|
||
else
|
||
{
|
||
op->conflict_exp = true_rtx;
|
||
extend_range (&unit->issue_delay, issue_delay, issue_delay);
|
||
}
|
||
|
||
/* Merge our conditional into that of the function unit so we can determine
|
||
which insns are used by the function unit. */
|
||
unit->condexp = insert_right_side (IOR, unit->condexp, op->condexp, -2, -2);
|
||
}
|
||
|
||
/* Given a piece of RTX, print a C expression to test it's truth value.
|
||
We use AND and IOR both for logical and bit-wise operations, so
|
||
interpret them as logical unless they are inside a comparison expression.
|
||
The second operand of this function will be non-zero in that case. */
|
||
|
||
static void
|
||
write_test_expr (exp, in_comparison)
|
||
rtx exp;
|
||
int in_comparison;
|
||
{
|
||
int comparison_operator = 0;
|
||
RTX_CODE code;
|
||
struct attr_desc *attr;
|
||
|
||
/* In order not to worry about operator precedence, surround our part of
|
||
the expression with parentheses. */
|
||
|
||
printf ("(");
|
||
code = GET_CODE (exp);
|
||
switch (code)
|
||
{
|
||
/* Binary operators. */
|
||
case EQ: case NE:
|
||
case GE: case GT: case GEU: case GTU:
|
||
case LE: case LT: case LEU: case LTU:
|
||
comparison_operator = 1;
|
||
|
||
case PLUS: case MINUS: case MULT: case DIV: case MOD:
|
||
case AND: case IOR: case XOR:
|
||
case ASHIFT: case LSHIFTRT: case ASHIFTRT:
|
||
write_test_expr (XEXP (exp, 0), in_comparison || comparison_operator);
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
printf (" == ");
|
||
break;
|
||
case NE:
|
||
printf (" != ");
|
||
break;
|
||
case GE:
|
||
printf (" >= ");
|
||
break;
|
||
case GT:
|
||
printf (" > ");
|
||
break;
|
||
case GEU:
|
||
printf (" >= (unsigned) ");
|
||
break;
|
||
case GTU:
|
||
printf (" > (unsigned) ");
|
||
break;
|
||
case LE:
|
||
printf (" <= ");
|
||
break;
|
||
case LT:
|
||
printf (" < ");
|
||
break;
|
||
case LEU:
|
||
printf (" <= (unsigned) ");
|
||
break;
|
||
case LTU:
|
||
printf (" < (unsigned) ");
|
||
break;
|
||
case PLUS:
|
||
printf (" + ");
|
||
break;
|
||
case MINUS:
|
||
printf (" - ");
|
||
break;
|
||
case MULT:
|
||
printf (" * ");
|
||
break;
|
||
case DIV:
|
||
printf (" / ");
|
||
break;
|
||
case MOD:
|
||
printf (" %% ");
|
||
break;
|
||
case AND:
|
||
if (in_comparison)
|
||
printf (" & ");
|
||
else
|
||
printf (" && ");
|
||
break;
|
||
case IOR:
|
||
if (in_comparison)
|
||
printf (" | ");
|
||
else
|
||
printf (" || ");
|
||
break;
|
||
case XOR:
|
||
printf (" ^ ");
|
||
break;
|
||
case ASHIFT:
|
||
printf (" << ");
|
||
break;
|
||
case LSHIFTRT:
|
||
case ASHIFTRT:
|
||
printf (" >> ");
|
||
break;
|
||
}
|
||
|
||
write_test_expr (XEXP (exp, 1), in_comparison || comparison_operator);
|
||
break;
|
||
|
||
case NOT:
|
||
/* Special-case (not (eq_attrq "alternative" "x")) */
|
||
if (! in_comparison && GET_CODE (XEXP (exp, 0)) == EQ_ATTR
|
||
&& XSTR (XEXP (exp, 0), 0) == alternative_name)
|
||
{
|
||
printf ("which_alternative != %s", XSTR (XEXP (exp, 0), 1));
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, fall through to normal unary operator. */
|
||
|
||
/* Unary operators. */
|
||
case ABS: case NEG:
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
if (in_comparison)
|
||
printf ("~ ");
|
||
else
|
||
printf ("! ");
|
||
break;
|
||
case ABS:
|
||
printf ("abs ");
|
||
break;
|
||
case NEG:
|
||
printf ("-");
|
||
break;
|
||
}
|
||
|
||
write_test_expr (XEXP (exp, 0), in_comparison);
|
||
break;
|
||
|
||
/* Comparison test of an attribute with a value. Most of these will
|
||
have been removed by optimization. Handle "alternative"
|
||
specially and give error if EQ_ATTR present inside a comparison. */
|
||
case EQ_ATTR:
|
||
if (in_comparison)
|
||
fatal ("EQ_ATTR not valid inside comparison");
|
||
|
||
if (XSTR (exp, 0) == alternative_name)
|
||
{
|
||
printf ("which_alternative == %s", XSTR (exp, 1));
|
||
break;
|
||
}
|
||
|
||
attr = find_attr (XSTR (exp, 0), 0);
|
||
if (! attr) abort ();
|
||
|
||
/* Now is the time to expand the value of a constant attribute. */
|
||
if (attr->is_const)
|
||
{
|
||
write_test_expr (evaluate_eq_attr (exp, attr->default_val->value,
|
||
-2, -2),
|
||
in_comparison);
|
||
}
|
||
else
|
||
{
|
||
printf ("get_attr_%s (insn) == ", attr->name);
|
||
write_attr_valueq (attr, XSTR (exp, 1));
|
||
}
|
||
break;
|
||
|
||
/* Comparison test of flags for define_delays. */
|
||
case ATTR_FLAG:
|
||
if (in_comparison)
|
||
fatal ("ATTR_FLAG not valid inside comparison");
|
||
printf ("(flags & ATTR_FLAG_%s) != 0", XSTR (exp, 0));
|
||
break;
|
||
|
||
/* See if an operand matches a predicate. */
|
||
case MATCH_OPERAND:
|
||
/* If only a mode is given, just ensure the mode matches the operand.
|
||
If neither a mode nor predicate is given, error. */
|
||
if (XSTR (exp, 1) == NULL || *XSTR (exp, 1) == '\0')
|
||
{
|
||
if (GET_MODE (exp) == VOIDmode)
|
||
fatal ("Null MATCH_OPERAND specified as test");
|
||
else
|
||
printf ("GET_MODE (operands[%d]) == %smode",
|
||
XINT (exp, 0), GET_MODE_NAME (GET_MODE (exp)));
|
||
}
|
||
else
|
||
printf ("%s (operands[%d], %smode)",
|
||
XSTR (exp, 1), XINT (exp, 0), GET_MODE_NAME (GET_MODE (exp)));
|
||
break;
|
||
|
||
/* Constant integer. */
|
||
case CONST_INT:
|
||
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
|
||
printf ("%d", XWINT (exp, 0));
|
||
#else
|
||
printf ("%ld", XWINT (exp, 0));
|
||
#endif
|
||
break;
|
||
|
||
/* A random C expression. */
|
||
case SYMBOL_REF:
|
||
printf ("%s", XSTR (exp, 0));
|
||
break;
|
||
|
||
/* The address of the branch target. */
|
||
case MATCH_DUP:
|
||
printf ("insn_addresses[INSN_UID (operands[%d])]", XINT (exp, 0));
|
||
break;
|
||
|
||
/* The address of the current insn. It would be more consistent with
|
||
other usage to make this the address of the NEXT insn, but this gets
|
||
too confusing because of the ambiguity regarding the length of the
|
||
current insn. */
|
||
case PC:
|
||
printf ("insn_current_address");
|
||
break;
|
||
|
||
default:
|
||
fatal ("bad RTX code `%s' in attribute calculation\n",
|
||
GET_RTX_NAME (code));
|
||
}
|
||
|
||
printf (")");
|
||
}
|
||
|
||
/* Given an attribute value, return the maximum CONST_STRING argument
|
||
encountered. It is assumed that they are all numeric. */
|
||
|
||
static int
|
||
max_attr_value (exp)
|
||
rtx exp;
|
||
{
|
||
int current_max = 0;
|
||
int n;
|
||
int i;
|
||
|
||
if (GET_CODE (exp) == CONST_STRING)
|
||
return atoi (XSTR (exp, 0));
|
||
|
||
else if (GET_CODE (exp) == COND)
|
||
{
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
n = max_attr_value (XVECEXP (exp, 0, i + 1));
|
||
if (n > current_max)
|
||
current_max = n;
|
||
}
|
||
|
||
n = max_attr_value (XEXP (exp, 1));
|
||
if (n > current_max)
|
||
current_max = n;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == IF_THEN_ELSE)
|
||
{
|
||
current_max = max_attr_value (XEXP (exp, 1));
|
||
n = max_attr_value (XEXP (exp, 2));
|
||
if (n > current_max)
|
||
current_max = n;
|
||
}
|
||
|
||
else
|
||
abort ();
|
||
|
||
return current_max;
|
||
}
|
||
|
||
/* Scan an attribute value, possibly a conditional, and record what actions
|
||
will be required to do any conditional tests in it.
|
||
|
||
Specifically, set
|
||
`must_extract' if we need to extract the insn operands
|
||
`must_constrain' if we must compute `which_alternative'
|
||
`address_used' if an address expression was used
|
||
`length_used' if an (eq_attr "length" ...) was used
|
||
*/
|
||
|
||
static void
|
||
walk_attr_value (exp)
|
||
rtx exp;
|
||
{
|
||
register int i, j;
|
||
register char *fmt;
|
||
RTX_CODE code;
|
||
|
||
if (exp == NULL)
|
||
return;
|
||
|
||
code = GET_CODE (exp);
|
||
switch (code)
|
||
{
|
||
case SYMBOL_REF:
|
||
if (! RTX_UNCHANGING_P (exp))
|
||
/* Since this is an arbitrary expression, it can look at anything.
|
||
However, constant expressions do not depend on any particular
|
||
insn. */
|
||
must_extract = must_constrain = 1;
|
||
return;
|
||
|
||
case MATCH_OPERAND:
|
||
must_extract = 1;
|
||
return;
|
||
|
||
case EQ_ATTR:
|
||
if (XSTR (exp, 0) == alternative_name)
|
||
must_extract = must_constrain = 1;
|
||
else if (strcmp (XSTR (exp, 0), "length") == 0)
|
||
length_used = 1;
|
||
return;
|
||
|
||
case MATCH_DUP:
|
||
must_extract = 1;
|
||
address_used = 1;
|
||
return;
|
||
|
||
case PC:
|
||
address_used = 1;
|
||
return;
|
||
|
||
case ATTR_FLAG:
|
||
return;
|
||
}
|
||
|
||
for (i = 0, fmt = GET_RTX_FORMAT (code); i < GET_RTX_LENGTH (code); i++)
|
||
switch (*fmt++)
|
||
{
|
||
case 'e':
|
||
case 'u':
|
||
walk_attr_value (XEXP (exp, i));
|
||
break;
|
||
|
||
case 'E':
|
||
if (XVEC (exp, i) != NULL)
|
||
for (j = 0; j < XVECLEN (exp, i); j++)
|
||
walk_attr_value (XVECEXP (exp, i, j));
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Write out a function to obtain the attribute for a given INSN. */
|
||
|
||
static void
|
||
write_attr_get (attr)
|
||
struct attr_desc *attr;
|
||
{
|
||
struct attr_value *av, *common_av;
|
||
|
||
/* Find the most used attribute value. Handle that as the `default' of the
|
||
switch we will generate. */
|
||
common_av = find_most_used (attr);
|
||
|
||
/* Write out start of function, then all values with explicit `case' lines,
|
||
then a `default', then the value with the most uses. */
|
||
if (!attr->is_numeric)
|
||
printf ("enum attr_%s\n", attr->name);
|
||
else if (attr->unsigned_p)
|
||
printf ("unsigned int\n");
|
||
else
|
||
printf ("int\n");
|
||
|
||
/* If the attribute name starts with a star, the remainder is the name of
|
||
the subroutine to use, instead of `get_attr_...'. */
|
||
if (attr->name[0] == '*')
|
||
printf ("%s (insn)\n", &attr->name[1]);
|
||
else if (attr->is_const == 0)
|
||
printf ("get_attr_%s (insn)\n", attr->name);
|
||
else
|
||
{
|
||
printf ("get_attr_%s ()\n", attr->name);
|
||
printf ("{\n");
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av->num_insns != 0)
|
||
write_attr_set (attr, 2, av->value, "return", ";",
|
||
true_rtx, av->first_insn->insn_code,
|
||
av->first_insn->insn_index);
|
||
|
||
printf ("}\n\n");
|
||
return;
|
||
}
|
||
printf (" rtx insn;\n");
|
||
printf ("{\n");
|
||
printf (" switch (recog_memoized (insn))\n");
|
||
printf (" {\n");
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (attr, av, 1, "return", ";", 4, true_rtx);
|
||
|
||
write_attr_case (attr, common_av, 0, "return", ";", 4, true_rtx);
|
||
printf (" }\n}\n\n");
|
||
}
|
||
|
||
/* Given an AND tree of known true terms (because we are inside an `if' with
|
||
that as the condition or are in an `else' clause) and an expression,
|
||
replace any known true terms with TRUE. Use `simplify_and_tree' to do
|
||
the bulk of the work. */
|
||
|
||
static rtx
|
||
eliminate_known_true (known_true, exp, insn_code, insn_index)
|
||
rtx known_true;
|
||
rtx exp;
|
||
int insn_code, insn_index;
|
||
{
|
||
rtx term;
|
||
|
||
known_true = SIMPLIFY_TEST_EXP (known_true, insn_code, insn_index);
|
||
|
||
if (GET_CODE (known_true) == AND)
|
||
{
|
||
exp = eliminate_known_true (XEXP (known_true, 0), exp,
|
||
insn_code, insn_index);
|
||
exp = eliminate_known_true (XEXP (known_true, 1), exp,
|
||
insn_code, insn_index);
|
||
}
|
||
else
|
||
{
|
||
term = known_true;
|
||
exp = simplify_and_tree (exp, &term, insn_code, insn_index);
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Write out a series of tests and assignment statements to perform tests and
|
||
sets of an attribute value. We are passed an indentation amount and prefix
|
||
and suffix strings to write around each attribute value (e.g., "return"
|
||
and ";"). */
|
||
|
||
static void
|
||
write_attr_set (attr, indent, value, prefix, suffix, known_true,
|
||
insn_code, insn_index)
|
||
struct attr_desc *attr;
|
||
int indent;
|
||
rtx value;
|
||
char *prefix;
|
||
char *suffix;
|
||
rtx known_true;
|
||
int insn_code, insn_index;
|
||
{
|
||
if (GET_CODE (value) == CONST_STRING)
|
||
{
|
||
write_indent (indent);
|
||
printf ("%s ", prefix);
|
||
write_attr_value (attr, value);
|
||
printf ("%s\n", suffix);
|
||
}
|
||
else if (GET_CODE (value) == COND)
|
||
{
|
||
/* Assume the default value will be the default of the COND unless we
|
||
find an always true expression. */
|
||
rtx default_val = XEXP (value, 1);
|
||
rtx our_known_true = known_true;
|
||
rtx newexp;
|
||
int first_if = 1;
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (value, 0); i += 2)
|
||
{
|
||
rtx testexp;
|
||
rtx inner_true;
|
||
|
||
testexp = eliminate_known_true (our_known_true,
|
||
XVECEXP (value, 0, i),
|
||
insn_code, insn_index);
|
||
newexp = attr_rtx (NOT, testexp);
|
||
newexp = insert_right_side (AND, our_known_true, newexp,
|
||
insn_code, insn_index);
|
||
|
||
/* If the test expression is always true or if the next `known_true'
|
||
expression is always false, this is the last case, so break
|
||
out and let this value be the `else' case. */
|
||
if (testexp == true_rtx || newexp == false_rtx)
|
||
{
|
||
default_val = XVECEXP (value, 0, i + 1);
|
||
break;
|
||
}
|
||
|
||
/* Compute the expression to pass to our recursive call as being
|
||
known true. */
|
||
inner_true = insert_right_side (AND, our_known_true,
|
||
testexp, insn_code, insn_index);
|
||
|
||
/* If this is always false, skip it. */
|
||
if (inner_true == false_rtx)
|
||
continue;
|
||
|
||
write_indent (indent);
|
||
printf ("%sif ", first_if ? "" : "else ");
|
||
first_if = 0;
|
||
write_test_expr (testexp, 0);
|
||
printf ("\n");
|
||
write_indent (indent + 2);
|
||
printf ("{\n");
|
||
|
||
write_attr_set (attr, indent + 4,
|
||
XVECEXP (value, 0, i + 1), prefix, suffix,
|
||
inner_true, insn_code, insn_index);
|
||
write_indent (indent + 2);
|
||
printf ("}\n");
|
||
our_known_true = newexp;
|
||
}
|
||
|
||
if (! first_if)
|
||
{
|
||
write_indent (indent);
|
||
printf ("else\n");
|
||
write_indent (indent + 2);
|
||
printf ("{\n");
|
||
}
|
||
|
||
write_attr_set (attr, first_if ? indent : indent + 4, default_val,
|
||
prefix, suffix, our_known_true, insn_code, insn_index);
|
||
|
||
if (! first_if)
|
||
{
|
||
write_indent (indent + 2);
|
||
printf ("}\n");
|
||
}
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Write out the computation for one attribute value. */
|
||
|
||
static void
|
||
write_attr_case (attr, av, write_case_lines, prefix, suffix, indent,
|
||
known_true)
|
||
struct attr_desc *attr;
|
||
struct attr_value *av;
|
||
int write_case_lines;
|
||
char *prefix, *suffix;
|
||
int indent;
|
||
rtx known_true;
|
||
{
|
||
struct insn_ent *ie;
|
||
|
||
if (av->num_insns == 0)
|
||
return;
|
||
|
||
if (av->has_asm_insn)
|
||
{
|
||
write_indent (indent);
|
||
printf ("case -1:\n");
|
||
write_indent (indent + 2);
|
||
printf ("if (GET_CODE (PATTERN (insn)) != ASM_INPUT\n");
|
||
write_indent (indent + 2);
|
||
printf (" && asm_noperands (PATTERN (insn)) < 0)\n");
|
||
write_indent (indent + 2);
|
||
printf (" fatal_insn_not_found (insn);\n");
|
||
}
|
||
|
||
if (write_case_lines)
|
||
{
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
if (ie->insn_code != -1)
|
||
{
|
||
write_indent (indent);
|
||
printf ("case %d:\n", ie->insn_code);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
write_indent (indent);
|
||
printf ("default:\n");
|
||
}
|
||
|
||
/* See what we have to do to output this value. */
|
||
must_extract = must_constrain = address_used = 0;
|
||
walk_attr_value (av->value);
|
||
|
||
if (must_extract)
|
||
{
|
||
write_indent (indent + 2);
|
||
printf ("insn_extract (insn);\n");
|
||
}
|
||
|
||
if (must_constrain)
|
||
{
|
||
#ifdef REGISTER_CONSTRAINTS
|
||
write_indent (indent + 2);
|
||
printf ("if (! constrain_operands (INSN_CODE (insn), reload_completed))\n");
|
||
write_indent (indent + 2);
|
||
printf (" fatal_insn_not_found (insn);\n");
|
||
#endif
|
||
}
|
||
|
||
write_attr_set (attr, indent + 2, av->value, prefix, suffix,
|
||
known_true, av->first_insn->insn_code,
|
||
av->first_insn->insn_index);
|
||
|
||
if (strncmp (prefix, "return", 6))
|
||
{
|
||
write_indent (indent + 2);
|
||
printf ("break;\n");
|
||
}
|
||
printf ("\n");
|
||
}
|
||
|
||
/* Utilities to write names in various forms. */
|
||
|
||
static void
|
||
write_attr_valueq (attr, s)
|
||
struct attr_desc *attr;
|
||
char *s;
|
||
{
|
||
if (attr->is_numeric)
|
||
{
|
||
printf ("%s", s);
|
||
/* Make the blockage range values easier to read. */
|
||
if (strlen (s) > 1)
|
||
printf (" /* 0x%x */", atoi (s));
|
||
}
|
||
else
|
||
{
|
||
write_upcase (attr->name);
|
||
printf ("_");
|
||
write_upcase (s);
|
||
}
|
||
}
|
||
|
||
static void
|
||
write_attr_value (attr, value)
|
||
struct attr_desc *attr;
|
||
rtx value;
|
||
{
|
||
if (GET_CODE (value) != CONST_STRING)
|
||
abort ();
|
||
|
||
write_attr_valueq (attr, XSTR (value, 0));
|
||
}
|
||
|
||
static void
|
||
write_upcase (str)
|
||
char *str;
|
||
{
|
||
while (*str)
|
||
if (*str < 'a' || *str > 'z')
|
||
printf ("%c", *str++);
|
||
else
|
||
printf ("%c", *str++ - 'a' + 'A');
|
||
}
|
||
|
||
static void
|
||
write_indent (indent)
|
||
int indent;
|
||
{
|
||
for (; indent > 8; indent -= 8)
|
||
printf ("\t");
|
||
|
||
for (; indent; indent--)
|
||
printf (" ");
|
||
}
|
||
|
||
/* Write a subroutine that is given an insn that requires a delay slot, a
|
||
delay slot ordinal, and a candidate insn. It returns non-zero if the
|
||
candidate can be placed in the specified delay slot of the insn.
|
||
|
||
We can write as many as three subroutines. `eligible_for_delay'
|
||
handles normal delay slots, `eligible_for_annul_true' indicates that
|
||
the specified insn can be annulled if the branch is true, and likewise
|
||
for `eligible_for_annul_false'.
|
||
|
||
KIND is a string distinguishing these three cases ("delay", "annul_true",
|
||
or "annul_false"). */
|
||
|
||
static void
|
||
write_eligible_delay (kind)
|
||
char *kind;
|
||
{
|
||
struct delay_desc *delay;
|
||
int max_slots;
|
||
char str[50];
|
||
struct attr_desc *attr;
|
||
struct attr_value *av, *common_av;
|
||
int i;
|
||
|
||
/* Compute the maximum number of delay slots required. We use the delay
|
||
ordinal times this number plus one, plus the slot number as an index into
|
||
the appropriate predicate to test. */
|
||
|
||
for (delay = delays, max_slots = 0; delay; delay = delay->next)
|
||
if (XVECLEN (delay->def, 1) / 3 > max_slots)
|
||
max_slots = XVECLEN (delay->def, 1) / 3;
|
||
|
||
/* Write function prelude. */
|
||
|
||
printf ("int\n");
|
||
printf ("eligible_for_%s (delay_insn, slot, candidate_insn, flags)\n",
|
||
kind);
|
||
printf (" rtx delay_insn;\n");
|
||
printf (" int slot;\n");
|
||
printf (" rtx candidate_insn;\n");
|
||
printf (" int flags;\n");
|
||
printf ("{\n");
|
||
printf (" rtx insn;\n");
|
||
printf ("\n");
|
||
printf (" if (slot >= %d)\n", max_slots);
|
||
printf (" abort ();\n");
|
||
printf ("\n");
|
||
|
||
/* If more than one delay type, find out which type the delay insn is. */
|
||
|
||
if (num_delays > 1)
|
||
{
|
||
attr = find_attr ("*delay_type", 0);
|
||
if (! attr) abort ();
|
||
common_av = find_most_used (attr);
|
||
|
||
printf (" insn = delay_insn;\n");
|
||
printf (" switch (recog_memoized (insn))\n");
|
||
printf (" {\n");
|
||
|
||
sprintf (str, " * %d;\n break;", max_slots);
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (attr, av, 1, "slot +=", str, 4, true_rtx);
|
||
|
||
write_attr_case (attr, common_av, 0, "slot +=", str, 4, true_rtx);
|
||
printf (" }\n\n");
|
||
|
||
/* Ensure matched. Otherwise, shouldn't have been called. */
|
||
printf (" if (slot < %d)\n", max_slots);
|
||
printf (" abort ();\n\n");
|
||
}
|
||
|
||
/* If just one type of delay slot, write simple switch. */
|
||
if (num_delays == 1 && max_slots == 1)
|
||
{
|
||
printf (" insn = candidate_insn;\n");
|
||
printf (" switch (recog_memoized (insn))\n");
|
||
printf (" {\n");
|
||
|
||
attr = find_attr ("*delay_1_0", 0);
|
||
if (! attr) abort ();
|
||
common_av = find_most_used (attr);
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (attr, av, 1, "return", ";", 4, true_rtx);
|
||
|
||
write_attr_case (attr, common_av, 0, "return", ";", 4, true_rtx);
|
||
printf (" }\n");
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Write a nested CASE. The first indicates which condition we need to
|
||
test, and the inner CASE tests the condition. */
|
||
printf (" insn = candidate_insn;\n");
|
||
printf (" switch (slot)\n");
|
||
printf (" {\n");
|
||
|
||
for (delay = delays; delay; delay = delay->next)
|
||
for (i = 0; i < XVECLEN (delay->def, 1); i += 3)
|
||
{
|
||
printf (" case %d:\n",
|
||
(i / 3) + (num_delays == 1 ? 0 : delay->num * max_slots));
|
||
printf (" switch (recog_memoized (insn))\n");
|
||
printf ("\t{\n");
|
||
|
||
sprintf (str, "*%s_%d_%d", kind, delay->num, i / 3);
|
||
attr = find_attr (str, 0);
|
||
if (! attr) abort ();
|
||
common_av = find_most_used (attr);
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (attr, av, 1, "return", ";", 8, true_rtx);
|
||
|
||
write_attr_case (attr, common_av, 0, "return", ";", 8, true_rtx);
|
||
printf (" }\n");
|
||
}
|
||
|
||
printf (" default:\n");
|
||
printf (" abort ();\n");
|
||
printf (" }\n");
|
||
}
|
||
|
||
printf ("}\n\n");
|
||
}
|
||
|
||
/* Write routines to compute conflict cost for function units. Then write a
|
||
table describing the available function units. */
|
||
|
||
static void
|
||
write_function_unit_info ()
|
||
{
|
||
struct function_unit *unit;
|
||
int i;
|
||
|
||
/* Write out conflict routines for function units. Don't bother writing
|
||
one if there is only one issue delay value. */
|
||
|
||
for (unit = units; unit; unit = unit->next)
|
||
{
|
||
if (unit->needs_blockage_function)
|
||
write_complex_function (unit, "blockage", "block");
|
||
|
||
/* If the minimum and maximum conflict costs are the same, there
|
||
is only one value, so we don't need a function. */
|
||
if (! unit->needs_conflict_function)
|
||
{
|
||
unit->default_cost = make_numeric_value (unit->issue_delay.max);
|
||
continue;
|
||
}
|
||
|
||
/* The function first computes the case from the candidate insn. */
|
||
unit->default_cost = make_numeric_value (0);
|
||
write_complex_function (unit, "conflict_cost", "cost");
|
||
}
|
||
|
||
/* Now that all functions have been written, write the table describing
|
||
the function units. The name is included for documentation purposes
|
||
only. */
|
||
|
||
printf ("struct function_unit_desc function_units[] = {\n");
|
||
|
||
/* Write out the descriptions in numeric order, but don't force that order
|
||
on the list. Doing so increases the runtime of genattrtab.c. */
|
||
for (i = 0; i < num_units; i++)
|
||
{
|
||
for (unit = units; unit; unit = unit->next)
|
||
if (unit->num == i)
|
||
break;
|
||
|
||
printf (" {\"%s\", %d, %d, %d, %s, %d, %s_unit_ready_cost, ",
|
||
unit->name, 1 << unit->num, unit->multiplicity,
|
||
unit->simultaneity, XSTR (unit->default_cost, 0),
|
||
unit->issue_delay.max, unit->name);
|
||
|
||
if (unit->needs_conflict_function)
|
||
printf ("%s_unit_conflict_cost, ", unit->name);
|
||
else
|
||
printf ("0, ");
|
||
|
||
printf ("%d, ", unit->max_blockage);
|
||
|
||
if (unit->needs_range_function)
|
||
printf ("%s_unit_blockage_range, ", unit->name);
|
||
else
|
||
printf ("0, ");
|
||
|
||
if (unit->needs_blockage_function)
|
||
printf ("%s_unit_blockage", unit->name);
|
||
else
|
||
printf ("0");
|
||
|
||
printf ("}, \n");
|
||
}
|
||
|
||
printf ("};\n\n");
|
||
}
|
||
|
||
static void
|
||
write_complex_function (unit, name, connection)
|
||
struct function_unit *unit;
|
||
char *name, *connection;
|
||
{
|
||
struct attr_desc *case_attr, *attr;
|
||
struct attr_value *av, *common_av;
|
||
rtx value;
|
||
char *str;
|
||
int using_case;
|
||
int i;
|
||
|
||
printf ("static int\n");
|
||
printf ("%s_unit_%s (executing_insn, candidate_insn)\n",
|
||
unit->name, name);
|
||
printf (" rtx executing_insn;\n");
|
||
printf (" rtx candidate_insn;\n");
|
||
printf ("{\n");
|
||
printf (" rtx insn;\n");
|
||
printf (" int casenum;\n\n");
|
||
printf (" insn = executing_insn;\n");
|
||
printf (" switch (recog_memoized (insn))\n");
|
||
printf (" {\n");
|
||
|
||
/* Write the `switch' statement to get the case value. */
|
||
str = (char *) alloca (strlen (unit->name) + strlen (name) + strlen (connection) + 10);
|
||
sprintf (str, "*%s_cases", unit->name);
|
||
case_attr = find_attr (str, 0);
|
||
if (! case_attr) abort ();
|
||
common_av = find_most_used (case_attr);
|
||
|
||
for (av = case_attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (case_attr, av, 1,
|
||
"casenum =", ";", 4, unit->condexp);
|
||
|
||
write_attr_case (case_attr, common_av, 0,
|
||
"casenum =", ";", 4, unit->condexp);
|
||
printf (" }\n\n");
|
||
|
||
/* Now write an outer switch statement on each case. Then write
|
||
the tests on the executing function within each. */
|
||
printf (" insn = candidate_insn;\n");
|
||
printf (" switch (casenum)\n");
|
||
printf (" {\n");
|
||
|
||
for (i = 0; i < unit->num_opclasses; i++)
|
||
{
|
||
/* Ensure using this case. */
|
||
using_case = 0;
|
||
for (av = case_attr->first_value; av; av = av->next)
|
||
if (av->num_insns
|
||
&& contained_in_p (make_numeric_value (i), av->value))
|
||
using_case = 1;
|
||
|
||
if (! using_case)
|
||
continue;
|
||
|
||
printf (" case %d:\n", i);
|
||
sprintf (str, "*%s_%s_%d", unit->name, connection, i);
|
||
attr = find_attr (str, 0);
|
||
if (! attr) abort ();
|
||
|
||
/* If single value, just write it. */
|
||
value = find_single_value (attr);
|
||
if (value)
|
||
write_attr_set (attr, 6, value, "return", ";\n", true_rtx, -2, -2);
|
||
else
|
||
{
|
||
common_av = find_most_used (attr);
|
||
printf (" switch (recog_memoized (insn))\n");
|
||
printf ("\t{\n");
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (attr, av, 1,
|
||
"return", ";", 8, unit->condexp);
|
||
|
||
write_attr_case (attr, common_av, 0,
|
||
"return", ";", 8, unit->condexp);
|
||
printf (" }\n\n");
|
||
}
|
||
}
|
||
|
||
printf (" }\n}\n\n");
|
||
}
|
||
|
||
/* This page contains miscellaneous utility routines. */
|
||
|
||
/* Given a string, return the number of comma-separated elements in it.
|
||
Return 0 for the null string. */
|
||
|
||
static int
|
||
n_comma_elts (s)
|
||
char *s;
|
||
{
|
||
int n;
|
||
|
||
if (*s == '\0')
|
||
return 0;
|
||
|
||
for (n = 1; *s; s++)
|
||
if (*s == ',')
|
||
n++;
|
||
|
||
return n;
|
||
}
|
||
|
||
/* Given a pointer to a (char *), return a malloc'ed string containing the
|
||
next comma-separated element. Advance the pointer to after the string
|
||
scanned, or the end-of-string. Return NULL if at end of string. */
|
||
|
||
static char *
|
||
next_comma_elt (pstr)
|
||
char **pstr;
|
||
{
|
||
char *out_str;
|
||
char *p;
|
||
|
||
if (**pstr == '\0')
|
||
return NULL;
|
||
|
||
/* Find end of string to compute length. */
|
||
for (p = *pstr; *p != ',' && *p != '\0'; p++)
|
||
;
|
||
|
||
out_str = attr_string (*pstr, p - *pstr);
|
||
*pstr = p;
|
||
|
||
if (**pstr == ',')
|
||
(*pstr)++;
|
||
|
||
return out_str;
|
||
}
|
||
|
||
/* Return a `struct attr_desc' pointer for a given named attribute. If CREATE
|
||
is non-zero, build a new attribute, if one does not exist. */
|
||
|
||
static struct attr_desc *
|
||
find_attr (name, create)
|
||
char *name;
|
||
int create;
|
||
{
|
||
struct attr_desc *attr;
|
||
int index;
|
||
|
||
/* Before we resort to using `strcmp', see if the string address matches
|
||
anywhere. In most cases, it should have been canonicalized to do so. */
|
||
if (name == alternative_name)
|
||
return NULL;
|
||
|
||
index = name[0] & (MAX_ATTRS_INDEX - 1);
|
||
for (attr = attrs[index]; attr; attr = attr->next)
|
||
if (name == attr->name)
|
||
return attr;
|
||
|
||
/* Otherwise, do it the slow way. */
|
||
for (attr = attrs[index]; attr; attr = attr->next)
|
||
if (name[0] == attr->name[0] && ! strcmp (name, attr->name))
|
||
return attr;
|
||
|
||
if (! create)
|
||
return NULL;
|
||
|
||
attr = (struct attr_desc *) oballoc (sizeof (struct attr_desc));
|
||
attr->name = attr_string (name, strlen (name));
|
||
attr->first_value = attr->default_val = NULL;
|
||
attr->is_numeric = attr->negative_ok = attr->is_const = attr->is_special = 0;
|
||
attr->next = attrs[index];
|
||
attrs[index] = attr;
|
||
|
||
return attr;
|
||
}
|
||
|
||
/* Create internal attribute with the given default value. */
|
||
|
||
static void
|
||
make_internal_attr (name, value, special)
|
||
char *name;
|
||
rtx value;
|
||
int special;
|
||
{
|
||
struct attr_desc *attr;
|
||
|
||
attr = find_attr (name, 1);
|
||
if (attr->default_val)
|
||
abort ();
|
||
|
||
attr->is_numeric = 1;
|
||
attr->is_const = 0;
|
||
attr->is_special = (special & 1) != 0;
|
||
attr->negative_ok = (special & 2) != 0;
|
||
attr->unsigned_p = (special & 4) != 0;
|
||
attr->default_val = get_attr_value (value, attr, -2);
|
||
}
|
||
|
||
/* Find the most used value of an attribute. */
|
||
|
||
static struct attr_value *
|
||
find_most_used (attr)
|
||
struct attr_desc *attr;
|
||
{
|
||
struct attr_value *av;
|
||
struct attr_value *most_used;
|
||
int nuses;
|
||
|
||
most_used = NULL;
|
||
nuses = -1;
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av->num_insns > nuses)
|
||
nuses = av->num_insns, most_used = av;
|
||
|
||
return most_used;
|
||
}
|
||
|
||
/* If an attribute only has a single value used, return it. Otherwise
|
||
return NULL. */
|
||
|
||
static rtx
|
||
find_single_value (attr)
|
||
struct attr_desc *attr;
|
||
{
|
||
struct attr_value *av;
|
||
rtx unique_value;
|
||
|
||
unique_value = NULL;
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av->num_insns)
|
||
{
|
||
if (unique_value)
|
||
return NULL;
|
||
else
|
||
unique_value = av->value;
|
||
}
|
||
|
||
return unique_value;
|
||
}
|
||
|
||
/* Return (attr_value "n") */
|
||
|
||
static rtx
|
||
make_numeric_value (n)
|
||
int n;
|
||
{
|
||
static rtx int_values[20];
|
||
rtx exp;
|
||
char *p;
|
||
|
||
if (n < 0)
|
||
abort ();
|
||
|
||
if (n < 20 && int_values[n])
|
||
return int_values[n];
|
||
|
||
p = attr_printf (MAX_DIGITS, "%d", n);
|
||
exp = attr_rtx (CONST_STRING, p);
|
||
|
||
if (n < 20)
|
||
int_values[n] = exp;
|
||
|
||
return exp;
|
||
}
|
||
|
||
static void
|
||
extend_range (range, min, max)
|
||
struct range *range;
|
||
int min;
|
||
int max;
|
||
{
|
||
if (range->min > min) range->min = min;
|
||
if (range->max < max) range->max = max;
|
||
}
|
||
|
||
char *
|
||
xrealloc (ptr, size)
|
||
char *ptr;
|
||
unsigned size;
|
||
{
|
||
char *result = (char *) realloc (ptr, size);
|
||
if (!result)
|
||
fatal ("virtual memory exhausted");
|
||
return result;
|
||
}
|
||
|
||
char *
|
||
xmalloc (size)
|
||
unsigned size;
|
||
{
|
||
register char *val = (char *) malloc (size);
|
||
|
||
if (val == 0)
|
||
fatal ("virtual memory exhausted");
|
||
return val;
|
||
}
|
||
|
||
static rtx
|
||
copy_rtx_unchanging (orig)
|
||
register rtx orig;
|
||
{
|
||
#if 0
|
||
register rtx copy;
|
||
register RTX_CODE code;
|
||
#endif
|
||
|
||
if (RTX_UNCHANGING_P (orig) || MEM_IN_STRUCT_P (orig))
|
||
return orig;
|
||
|
||
MEM_IN_STRUCT_P (orig) = 1;
|
||
return orig;
|
||
|
||
#if 0
|
||
code = GET_CODE (orig);
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
return orig;
|
||
}
|
||
|
||
copy = rtx_alloc (code);
|
||
PUT_MODE (copy, GET_MODE (orig));
|
||
RTX_UNCHANGING_P (copy) = 1;
|
||
|
||
bcopy ((char *) &XEXP (orig, 0), (char *) &XEXP (copy, 0),
|
||
GET_RTX_LENGTH (GET_CODE (copy)) * sizeof (rtx));
|
||
return copy;
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
fatal (s, a1, a2)
|
||
char *s;
|
||
{
|
||
fprintf (stderr, "genattrtab: ");
|
||
fprintf (stderr, s, a1, a2);
|
||
fprintf (stderr, "\n");
|
||
exit (FATAL_EXIT_CODE);
|
||
}
|
||
|
||
/* More 'friendly' abort that prints the line and file.
|
||
config.h can #define abort fancy_abort if you like that sort of thing. */
|
||
|
||
void
|
||
fancy_abort ()
|
||
{
|
||
fatal ("Internal gcc abort.");
|
||
}
|
||
|
||
/* Determine if an insn has a constant number of delay slots, i.e., the
|
||
number of delay slots is not a function of the length of the insn. */
|
||
|
||
void
|
||
write_const_num_delay_slots ()
|
||
{
|
||
struct attr_desc *attr = find_attr ("*num_delay_slots", 0);
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
int i;
|
||
|
||
if (attr)
|
||
{
|
||
printf ("int\nconst_num_delay_slots (insn)\n");
|
||
printf (" rtx insn;\n");
|
||
printf ("{\n");
|
||
printf (" switch (recog_memoized (insn))\n");
|
||
printf (" {\n");
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
{
|
||
length_used = 0;
|
||
walk_attr_value (av->value);
|
||
if (length_used)
|
||
{
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
if (ie->insn_code != -1)
|
||
printf (" case %d:\n", ie->insn_code);
|
||
printf (" return 0;\n");
|
||
}
|
||
}
|
||
|
||
printf (" default:\n");
|
||
printf (" return 1;\n");
|
||
printf (" }\n}\n");
|
||
}
|
||
}
|
||
|
||
|
||
int
|
||
main (argc, argv)
|
||
int argc;
|
||
char **argv;
|
||
{
|
||
rtx desc;
|
||
FILE *infile;
|
||
register int c;
|
||
struct attr_desc *attr;
|
||
struct insn_def *id;
|
||
rtx tem;
|
||
int i;
|
||
|
||
#ifdef RLIMIT_STACK
|
||
/* Get rid of any avoidable limit on stack size. */
|
||
{
|
||
struct rlimit rlim;
|
||
|
||
/* Set the stack limit huge so that alloca does not fail. */
|
||
getrlimit (RLIMIT_STACK, &rlim);
|
||
rlim.rlim_cur = rlim.rlim_max;
|
||
setrlimit (RLIMIT_STACK, &rlim);
|
||
}
|
||
#endif /* RLIMIT_STACK defined */
|
||
|
||
obstack_init (rtl_obstack);
|
||
obstack_init (hash_obstack);
|
||
obstack_init (temp_obstack);
|
||
|
||
if (argc <= 1)
|
||
fatal ("No input file name.");
|
||
|
||
infile = fopen (argv[1], "r");
|
||
if (infile == 0)
|
||
{
|
||
perror (argv[1]);
|
||
exit (FATAL_EXIT_CODE);
|
||
}
|
||
|
||
init_rtl ();
|
||
|
||
/* Set up true and false rtx's */
|
||
true_rtx = rtx_alloc (CONST_INT);
|
||
XWINT (true_rtx, 0) = 1;
|
||
false_rtx = rtx_alloc (CONST_INT);
|
||
XWINT (false_rtx, 0) = 0;
|
||
RTX_UNCHANGING_P (true_rtx) = RTX_UNCHANGING_P (false_rtx) = 1;
|
||
RTX_INTEGRATED_P (true_rtx) = RTX_INTEGRATED_P (false_rtx) = 1;
|
||
|
||
alternative_name = attr_string ("alternative", strlen ("alternative"));
|
||
|
||
printf ("/* Generated automatically by the program `genattrtab'\n\
|
||
from the machine description file `md'. */\n\n");
|
||
|
||
/* Read the machine description. */
|
||
|
||
while (1)
|
||
{
|
||
c = read_skip_spaces (infile);
|
||
if (c == EOF)
|
||
break;
|
||
ungetc (c, infile);
|
||
|
||
desc = read_rtx (infile);
|
||
if (GET_CODE (desc) == DEFINE_INSN
|
||
|| GET_CODE (desc) == DEFINE_PEEPHOLE
|
||
|| GET_CODE (desc) == DEFINE_ASM_ATTRIBUTES)
|
||
gen_insn (desc);
|
||
|
||
else if (GET_CODE (desc) == DEFINE_EXPAND)
|
||
insn_code_number++, insn_index_number++;
|
||
|
||
else if (GET_CODE (desc) == DEFINE_SPLIT)
|
||
insn_code_number++, insn_index_number++;
|
||
|
||
else if (GET_CODE (desc) == DEFINE_ATTR)
|
||
{
|
||
gen_attr (desc);
|
||
insn_index_number++;
|
||
}
|
||
|
||
else if (GET_CODE (desc) == DEFINE_DELAY)
|
||
{
|
||
gen_delay (desc);
|
||
insn_index_number++;
|
||
}
|
||
|
||
else if (GET_CODE (desc) == DEFINE_FUNCTION_UNIT)
|
||
{
|
||
gen_unit (desc);
|
||
insn_index_number++;
|
||
}
|
||
}
|
||
|
||
/* If we didn't have a DEFINE_ASM_ATTRIBUTES, make a null one. */
|
||
if (! got_define_asm_attributes)
|
||
{
|
||
tem = rtx_alloc (DEFINE_ASM_ATTRIBUTES);
|
||
XVEC (tem, 0) = rtvec_alloc (0);
|
||
gen_insn (tem);
|
||
}
|
||
|
||
/* Expand DEFINE_DELAY information into new attribute. */
|
||
if (num_delays)
|
||
expand_delays ();
|
||
|
||
/* Expand DEFINE_FUNCTION_UNIT information into new attributes. */
|
||
if (num_units)
|
||
expand_units ();
|
||
|
||
printf ("#include \"config.h\"\n");
|
||
printf ("#include \"rtl.h\"\n");
|
||
printf ("#include \"insn-config.h\"\n");
|
||
printf ("#include \"recog.h\"\n");
|
||
printf ("#include \"regs.h\"\n");
|
||
printf ("#include \"real.h\"\n");
|
||
printf ("#include \"output.h\"\n");
|
||
printf ("#include \"insn-attr.h\"\n");
|
||
printf ("\n");
|
||
printf ("#define operands recog_operand\n\n");
|
||
|
||
/* Make `insn_alternatives'. */
|
||
insn_alternatives = (int *) oballoc (insn_code_number * sizeof (int));
|
||
for (id = defs; id; id = id->next)
|
||
if (id->insn_code >= 0)
|
||
insn_alternatives[id->insn_code] = (1 << id->num_alternatives) - 1;
|
||
|
||
/* Make `insn_n_alternatives'. */
|
||
insn_n_alternatives = (int *) oballoc (insn_code_number * sizeof (int));
|
||
for (id = defs; id; id = id->next)
|
||
if (id->insn_code >= 0)
|
||
insn_n_alternatives[id->insn_code] = id->num_alternatives;
|
||
|
||
/* Prepare to write out attribute subroutines by checking everything stored
|
||
away and building the attribute cases. */
|
||
|
||
check_defs ();
|
||
for (i = 0; i < MAX_ATTRS_INDEX; i++)
|
||
for (attr = attrs[i]; attr; attr = attr->next)
|
||
{
|
||
attr->default_val->value
|
||
= check_attr_value (attr->default_val->value, attr);
|
||
fill_attr (attr);
|
||
}
|
||
|
||
/* Construct extra attributes for `length'. */
|
||
make_length_attrs ();
|
||
|
||
/* Perform any possible optimizations to speed up compilation. */
|
||
optimize_attrs ();
|
||
|
||
/* Now write out all the `gen_attr_...' routines. Do these before the
|
||
special routines (specifically before write_function_unit_info), so
|
||
that they get defined before they are used. */
|
||
|
||
for (i = 0; i < MAX_ATTRS_INDEX; i++)
|
||
for (attr = attrs[i]; attr; attr = attr->next)
|
||
{
|
||
if (! attr->is_special)
|
||
write_attr_get (attr);
|
||
}
|
||
|
||
/* Write out delay eligibility information, if DEFINE_DELAY present.
|
||
(The function to compute the number of delay slots will be written
|
||
below.) */
|
||
if (num_delays)
|
||
{
|
||
write_eligible_delay ("delay");
|
||
if (have_annul_true)
|
||
write_eligible_delay ("annul_true");
|
||
if (have_annul_false)
|
||
write_eligible_delay ("annul_false");
|
||
}
|
||
|
||
/* Write out information about function units. */
|
||
if (num_units)
|
||
write_function_unit_info ();
|
||
|
||
/* Write out constant delay slot info */
|
||
write_const_num_delay_slots ();
|
||
|
||
fflush (stdout);
|
||
exit (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
|
||
/* NOTREACHED */
|
||
return 0;
|
||
}
|