1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-25 11:37:56 +00:00
freebsd/sys/dev/cxgbe/common/t4_hw.c
Gleb Smirnoff c3322cb91c Include necessary headers that now are available due to pollution
via if_var.h.

Sponsored by:	Netflix
Sponsored by:	Nginx, Inc.
2013-10-28 07:29:16 +00:00

5667 lines
170 KiB
C

/*-
* Copyright (c) 2012 Chelsio Communications, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/eventhandler.h>
#include "common.h"
#include "t4_regs.h"
#include "t4_regs_values.h"
#include "firmware/t4fw_interface.h"
#undef msleep
#define msleep(x) do { \
if (cold) \
DELAY((x) * 1000); \
else \
pause("t4hw", (x) * hz / 1000); \
} while (0)
/**
* t4_wait_op_done_val - wait until an operation is completed
* @adapter: the adapter performing the operation
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
* @valp: where to store the value of the register at completion time
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. If @valp is not NULL the value of the register
* at the time it indicated completion is stored there. Returns 0 if the
* operation completes and -EAGAIN otherwise.
*/
int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay, u32 *valp)
{
while (1) {
u32 val = t4_read_reg(adapter, reg);
if (!!(val & mask) == polarity) {
if (valp)
*valp = val;
return 0;
}
if (--attempts == 0)
return -EAGAIN;
if (delay)
udelay(delay);
}
}
/**
* t4_set_reg_field - set a register field to a value
* @adapter: the adapter to program
* @addr: the register address
* @mask: specifies the portion of the register to modify
* @val: the new value for the register field
*
* Sets a register field specified by the supplied mask to the
* given value.
*/
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
u32 val)
{
u32 v = t4_read_reg(adapter, addr) & ~mask;
t4_write_reg(adapter, addr, v | val);
(void) t4_read_reg(adapter, addr); /* flush */
}
/**
* t4_read_indirect - read indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect address
* @data_reg: register holding the value of the indirect register
* @vals: where the read register values are stored
* @nregs: how many indirect registers to read
* @start_idx: index of first indirect register to read
*
* Reads registers that are accessed indirectly through an address/data
* register pair.
*/
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, u32 *vals, unsigned int nregs,
unsigned int start_idx)
{
while (nregs--) {
t4_write_reg(adap, addr_reg, start_idx);
*vals++ = t4_read_reg(adap, data_reg);
start_idx++;
}
}
/**
* t4_write_indirect - write indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect addresses
* @data_reg: register holding the value for the indirect registers
* @vals: values to write
* @nregs: how many indirect registers to write
* @start_idx: address of first indirect register to write
*
* Writes a sequential block of registers that are accessed indirectly
* through an address/data register pair.
*/
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, const u32 *vals,
unsigned int nregs, unsigned int start_idx)
{
while (nregs--) {
t4_write_reg(adap, addr_reg, start_idx++);
t4_write_reg(adap, data_reg, *vals++);
}
}
/*
* Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
* mechanism. This guarantees that we get the real value even if we're
* operating within a Virtual Machine and the Hypervisor is trapping our
* Configuration Space accesses.
*/
u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
{
t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ,
F_ENABLE | F_LOCALCFG | V_FUNCTION(adap->pf) |
V_REGISTER(reg));
return t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
}
/*
* t4_report_fw_error - report firmware error
* @adap: the adapter
*
* The adapter firmware can indicate error conditions to the host.
* This routine prints out the reason for the firmware error (as
* reported by the firmware).
*/
static void t4_report_fw_error(struct adapter *adap)
{
static const char *reason[] = {
"Crash", /* PCIE_FW_EVAL_CRASH */
"During Device Preparation", /* PCIE_FW_EVAL_PREP */
"During Device Configuration", /* PCIE_FW_EVAL_CONF */
"During Device Initialization", /* PCIE_FW_EVAL_INIT */
"Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
"Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
"Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
"Reserved", /* reserved */
};
u32 pcie_fw;
pcie_fw = t4_read_reg(adap, A_PCIE_FW);
if (pcie_fw & F_PCIE_FW_ERR)
CH_ERR(adap, "Firmware reports adapter error: %s\n",
reason[G_PCIE_FW_EVAL(pcie_fw)]);
}
/*
* Get the reply to a mailbox command and store it in @rpl in big-endian order.
*/
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
u32 mbox_addr)
{
for ( ; nflit; nflit--, mbox_addr += 8)
*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}
/*
* Handle a FW assertion reported in a mailbox.
*/
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
struct fw_debug_cmd asrt;
get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
}
#define X_CIM_PF_NOACCESS 0xeeeeeeee
/**
* t4_wr_mbox_meat - send a command to FW through the given mailbox
* @adap: the adapter
* @mbox: index of the mailbox to use
* @cmd: the command to write
* @size: command length in bytes
* @rpl: where to optionally store the reply
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sends the given command to FW through the selected mailbox and waits
* for the FW to execute the command. If @rpl is not %NULL it is used to
* store the FW's reply to the command. The command and its optional
* reply are of the same length. Some FW commands like RESET and
* INITIALIZE can take a considerable amount of time to execute.
* @sleep_ok determines whether we may sleep while awaiting the response.
* If sleeping is allowed we use progressive backoff otherwise we spin.
*
* The return value is 0 on success or a negative errno on failure. A
* failure can happen either because we are not able to execute the
* command or FW executes it but signals an error. In the latter case
* the return value is the error code indicated by FW (negated).
*/
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
void *rpl, bool sleep_ok)
{
/*
* We delay in small increments at first in an effort to maintain
* responsiveness for simple, fast executing commands but then back
* off to larger delays to a maximum retry delay.
*/
static const int delay[] = {
1, 1, 3, 5, 10, 10, 20, 50, 100
};
u32 v;
u64 res;
int i, ms, delay_idx;
const __be64 *p = cmd;
u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
if ((size & 15) || size > MBOX_LEN)
return -EINVAL;
v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
if (v != X_MBOWNER_PL)
return v ? -EBUSY : -ETIMEDOUT;
for (i = 0; i < size; i += 8, p++)
t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
t4_read_reg(adap, ctl_reg); /* flush write */
delay_idx = 0;
ms = delay[0];
for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
if (sleep_ok) {
ms = delay[delay_idx]; /* last element may repeat */
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else
mdelay(ms);
v = t4_read_reg(adap, ctl_reg);
if (v == X_CIM_PF_NOACCESS)
continue;
if (G_MBOWNER(v) == X_MBOWNER_PL) {
if (!(v & F_MBMSGVALID)) {
t4_write_reg(adap, ctl_reg,
V_MBOWNER(X_MBOWNER_NONE));
continue;
}
res = t4_read_reg64(adap, data_reg);
if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
fw_asrt(adap, data_reg);
res = V_FW_CMD_RETVAL(EIO);
} else if (rpl)
get_mbox_rpl(adap, rpl, size / 8, data_reg);
t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
return -G_FW_CMD_RETVAL((int)res);
}
}
/*
* We timed out waiting for a reply to our mailbox command. Report
* the error and also check to see if the firmware reported any
* errors ...
*/
CH_ERR(adap, "command %#x in mailbox %d timed out\n",
*(const u8 *)cmd, mbox);
if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
t4_report_fw_error(adap);
return -ETIMEDOUT;
}
/**
* t4_mc_read - read from MC through backdoor accesses
* @adap: the adapter
* @idx: which MC to access
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from MC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
int i;
u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
if (is_t4(adap)) {
mc_bist_cmd_reg = A_MC_BIST_CMD;
mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
} else {
mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
idx);
mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
idx);
}
if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
return -EBUSY;
t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
F_START_BIST | V_BIST_CMD_GAP(1));
i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
if (i)
return i;
#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
for (i = 15; i >= 0; i--)
*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
if (ecc)
*ecc = t4_read_reg64(adap, MC_DATA(16));
#undef MC_DATA
return 0;
}
/**
* t4_edc_read - read from EDC through backdoor accesses
* @adap: the adapter
* @idx: which EDC to access
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from EDC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
int i;
u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
if (is_t4(adap)) {
edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
idx);
edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
idx);
} else {
/*
* These macro are missing in t4_regs.h file.
* Added temporarily for testing.
*/
#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
idx);
edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
idx);
#undef EDC_REG_T5
#undef EDC_STRIDE_T5
}
if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
return -EBUSY;
t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
t4_write_reg(adap, edc_bist_cmd_reg,
V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
if (i)
return i;
#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
for (i = 15; i >= 0; i--)
*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
if (ecc)
*ecc = t4_read_reg64(adap, EDC_DATA(16));
#undef EDC_DATA
return 0;
}
/**
* t4_mem_read - read EDC 0, EDC 1 or MC into buffer
* @adap: the adapter
* @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
* @addr: address within indicated memory type
* @len: amount of memory to read
* @buf: host memory buffer
*
* Reads an [almost] arbitrary memory region in the firmware: the
* firmware memory address, length and host buffer must be aligned on
* 32-bit boudaries. The memory is returned as a raw byte sequence from
* the firmware's memory. If this memory contains data structures which
* contain multi-byte integers, it's the callers responsibility to
* perform appropriate byte order conversions.
*/
int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
__be32 *buf)
{
u32 pos, start, end, offset;
int ret;
/*
* Argument sanity checks ...
*/
if ((addr & 0x3) || (len & 0x3))
return -EINVAL;
/*
* The underlaying EDC/MC read routines read 64 bytes at a time so we
* need to round down the start and round up the end. We'll start
* copying out of the first line at (addr - start) a word at a time.
*/
start = addr & ~(64-1);
end = (addr + len + 64-1) & ~(64-1);
offset = (addr - start)/sizeof(__be32);
for (pos = start; pos < end; pos += 64, offset = 0) {
__be32 data[16];
/*
* Read the chip's memory block and bail if there's an error.
*/
if ((mtype == MEM_MC) || (mtype == MEM_MC1))
ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
else
ret = t4_edc_read(adap, mtype, pos, data, NULL);
if (ret)
return ret;
/*
* Copy the data into the caller's memory buffer.
*/
while (offset < 16 && len > 0) {
*buf++ = data[offset++];
len -= sizeof(__be32);
}
}
return 0;
}
/*
* Partial EEPROM Vital Product Data structure. Includes only the ID and
* VPD-R header.
*/
struct t4_vpd_hdr {
u8 id_tag;
u8 id_len[2];
u8 id_data[ID_LEN];
u8 vpdr_tag;
u8 vpdr_len[2];
};
/*
* EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
*/
#define EEPROM_MAX_RD_POLL 40
#define EEPROM_MAX_WR_POLL 6
#define EEPROM_STAT_ADDR 0x7bfc
#define VPD_BASE 0x400
#define VPD_BASE_OLD 0
#define VPD_LEN 1024
#define VPD_INFO_FLD_HDR_SIZE 3
#define CHELSIO_VPD_UNIQUE_ID 0x82
/**
* t4_seeprom_read - read a serial EEPROM location
* @adapter: adapter to read
* @addr: EEPROM virtual address
* @data: where to store the read data
*
* Read a 32-bit word from a location in serial EEPROM using the card's PCI
* VPD capability. Note that this function must be called with a virtual
* address.
*/
int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
{
u16 val;
int attempts = EEPROM_MAX_RD_POLL;
unsigned int base = adapter->params.pci.vpd_cap_addr;
if (addr >= EEPROMVSIZE || (addr & 3))
return -EINVAL;
t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
do {
udelay(10);
t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
} while (!(val & PCI_VPD_ADDR_F) && --attempts);
if (!(val & PCI_VPD_ADDR_F)) {
CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
return -EIO;
}
t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
*data = le32_to_cpu(*data);
return 0;
}
/**
* t4_seeprom_write - write a serial EEPROM location
* @adapter: adapter to write
* @addr: virtual EEPROM address
* @data: value to write
*
* Write a 32-bit word to a location in serial EEPROM using the card's PCI
* VPD capability. Note that this function must be called with a virtual
* address.
*/
int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
{
u16 val;
int attempts = EEPROM_MAX_WR_POLL;
unsigned int base = adapter->params.pci.vpd_cap_addr;
if (addr >= EEPROMVSIZE || (addr & 3))
return -EINVAL;
t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
cpu_to_le32(data));
t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
(u16)addr | PCI_VPD_ADDR_F);
do {
msleep(1);
t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
} while ((val & PCI_VPD_ADDR_F) && --attempts);
if (val & PCI_VPD_ADDR_F) {
CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
return -EIO;
}
return 0;
}
/**
* t4_eeprom_ptov - translate a physical EEPROM address to virtual
* @phys_addr: the physical EEPROM address
* @fn: the PCI function number
* @sz: size of function-specific area
*
* Translate a physical EEPROM address to virtual. The first 1K is
* accessed through virtual addresses starting at 31K, the rest is
* accessed through virtual addresses starting at 0.
*
* The mapping is as follows:
* [0..1K) -> [31K..32K)
* [1K..1K+A) -> [ES-A..ES)
* [1K+A..ES) -> [0..ES-A-1K)
*
* where A = @fn * @sz, and ES = EEPROM size.
*/
int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
{
fn *= sz;
if (phys_addr < 1024)
return phys_addr + (31 << 10);
if (phys_addr < 1024 + fn)
return EEPROMSIZE - fn + phys_addr - 1024;
if (phys_addr < EEPROMSIZE)
return phys_addr - 1024 - fn;
return -EINVAL;
}
/**
* t4_seeprom_wp - enable/disable EEPROM write protection
* @adapter: the adapter
* @enable: whether to enable or disable write protection
*
* Enables or disables write protection on the serial EEPROM.
*/
int t4_seeprom_wp(struct adapter *adapter, int enable)
{
return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
}
/**
* get_vpd_keyword_val - Locates an information field keyword in the VPD
* @v: Pointer to buffered vpd data structure
* @kw: The keyword to search for
*
* Returns the value of the information field keyword or
* -ENOENT otherwise.
*/
static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
{
int i;
unsigned int offset , len;
const u8 *buf = &v->id_tag;
const u8 *vpdr_len = &v->vpdr_tag;
offset = sizeof(struct t4_vpd_hdr);
len = (u16)vpdr_len[1] + ((u16)vpdr_len[2] << 8);
if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
return -ENOENT;
}
for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
if(memcmp(buf + i , kw , 2) == 0){
i += VPD_INFO_FLD_HDR_SIZE;
return i;
}
i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
}
return -ENOENT;
}
/**
* get_vpd_params - read VPD parameters from VPD EEPROM
* @adapter: adapter to read
* @p: where to store the parameters
*
* Reads card parameters stored in VPD EEPROM.
*/
static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
int i, ret, addr;
int ec, sn, pn, na;
u8 vpd[VPD_LEN], csum;
const struct t4_vpd_hdr *v;
/*
* Card information normally starts at VPD_BASE but early cards had
* it at 0.
*/
ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
for (i = 0; i < sizeof(vpd); i += 4) {
ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
if (ret)
return ret;
}
v = (const struct t4_vpd_hdr *)vpd;
#define FIND_VPD_KW(var,name) do { \
var = get_vpd_keyword_val(v , name); \
if (var < 0) { \
CH_ERR(adapter, "missing VPD keyword " name "\n"); \
return -EINVAL; \
} \
} while (0)
FIND_VPD_KW(i, "RV");
for (csum = 0; i >= 0; i--)
csum += vpd[i];
if (csum) {
CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum);
return -EINVAL;
}
FIND_VPD_KW(ec, "EC");
FIND_VPD_KW(sn, "SN");
FIND_VPD_KW(pn, "PN");
FIND_VPD_KW(na, "NA");
#undef FIND_VPD_KW
memcpy(p->id, v->id_data, ID_LEN);
strstrip(p->id);
memcpy(p->ec, vpd + ec, EC_LEN);
strstrip(p->ec);
i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
strstrip(p->sn);
i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->pn, vpd + pn, min(i, PN_LEN));
strstrip((char *)p->pn);
i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
strstrip((char *)p->na);
return 0;
}
/* serial flash and firmware constants and flash config file constants */
enum {
SF_ATTEMPTS = 10, /* max retries for SF operations */
/* flash command opcodes */
SF_PROG_PAGE = 2, /* program page */
SF_WR_DISABLE = 4, /* disable writes */
SF_RD_STATUS = 5, /* read status register */
SF_WR_ENABLE = 6, /* enable writes */
SF_RD_DATA_FAST = 0xb, /* read flash */
SF_RD_ID = 0x9f, /* read ID */
SF_ERASE_SECTOR = 0xd8, /* erase sector */
};
/**
* sf1_read - read data from the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to read
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @valp: where to store the read data
*
* Reads up to 4 bytes of data from the serial flash. The location of
* the read needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
int lock, u32 *valp)
{
int ret;
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
return -EBUSY;
t4_write_reg(adapter, A_SF_OP,
V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
if (!ret)
*valp = t4_read_reg(adapter, A_SF_DATA);
return ret;
}
/**
* sf1_write - write data to the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to write
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @val: value to write
*
* Writes up to 4 bytes of data to the serial flash. The location of
* the write needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
int lock, u32 val)
{
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
return -EBUSY;
t4_write_reg(adapter, A_SF_DATA, val);
t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
}
/**
* flash_wait_op - wait for a flash operation to complete
* @adapter: the adapter
* @attempts: max number of polls of the status register
* @delay: delay between polls in ms
*
* Wait for a flash operation to complete by polling the status register.
*/
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
int ret;
u32 status;
while (1) {
if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
(ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
return ret;
if (!(status & 1))
return 0;
if (--attempts == 0)
return -EAGAIN;
if (delay)
msleep(delay);
}
}
/**
* t4_read_flash - read words from serial flash
* @adapter: the adapter
* @addr: the start address for the read
* @nwords: how many 32-bit words to read
* @data: where to store the read data
* @byte_oriented: whether to store data as bytes or as words
*
* Read the specified number of 32-bit words from the serial flash.
* If @byte_oriented is set the read data is stored as a byte array
* (i.e., big-endian), otherwise as 32-bit words in the platform's
* natural endianess.
*/
int t4_read_flash(struct adapter *adapter, unsigned int addr,
unsigned int nwords, u32 *data, int byte_oriented)
{
int ret;
if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
return -EINVAL;
addr = swab32(addr) | SF_RD_DATA_FAST;
if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
(ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
return ret;
for ( ; nwords; nwords--, data++) {
ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
if (nwords == 1)
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
if (ret)
return ret;
if (byte_oriented)
*data = htonl(*data);
}
return 0;
}
/**
* t4_write_flash - write up to a page of data to the serial flash
* @adapter: the adapter
* @addr: the start address to write
* @n: length of data to write in bytes
* @data: the data to write
* @byte_oriented: whether to store data as bytes or as words
*
* Writes up to a page of data (256 bytes) to the serial flash starting
* at the given address. All the data must be written to the same page.
* If @byte_oriented is set the write data is stored as byte stream
* (i.e. matches what on disk), otherwise in big-endian.
*/
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
unsigned int n, const u8 *data, int byte_oriented)
{
int ret;
u32 buf[SF_PAGE_SIZE / 4];
unsigned int i, c, left, val, offset = addr & 0xff;
if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
return -EINVAL;
val = swab32(addr) | SF_PROG_PAGE;
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
goto unlock;
for (left = n; left; left -= c) {
c = min(left, 4U);
for (val = 0, i = 0; i < c; ++i)
val = (val << 8) + *data++;
if (!byte_oriented)
val = htonl(val);
ret = sf1_write(adapter, c, c != left, 1, val);
if (ret)
goto unlock;
}
ret = flash_wait_op(adapter, 8, 1);
if (ret)
goto unlock;
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
/* Read the page to verify the write succeeded */
ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
byte_oriented);
if (ret)
return ret;
if (memcmp(data - n, (u8 *)buf + offset, n)) {
CH_ERR(adapter, "failed to correctly write the flash page "
"at %#x\n", addr);
return -EIO;
}
return 0;
unlock:
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
return ret;
}
/**
* t4_get_fw_version - read the firmware version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the FW version from flash.
*/
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter,
FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1,
vers, 0);
}
/**
* t4_get_tp_version - read the TP microcode version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the TP microcode version from flash.
*/
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr,
tp_microcode_ver),
1, vers, 0);
}
/**
* t4_check_fw_version - check if the FW is compatible with this driver
* @adapter: the adapter
*
* Checks if an adapter's FW is compatible with the driver. Returns 0
* if there's exact match, a negative error if the version could not be
* read or there's a major version mismatch, and a positive value if the
* expected major version is found but there's a minor version mismatch.
*/
int t4_check_fw_version(struct adapter *adapter)
{
int ret, major, minor, micro;
int exp_major, exp_minor, exp_micro;
ret = t4_get_fw_version(adapter, &adapter->params.fw_vers);
if (!ret)
ret = t4_get_tp_version(adapter, &adapter->params.tp_vers);
if (ret)
return ret;
major = G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers);
minor = G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers);
micro = G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers);
switch (chip_id(adapter)) {
case CHELSIO_T4:
exp_major = T4FW_VERSION_MAJOR;
exp_minor = T4FW_VERSION_MINOR;
exp_micro = T4FW_VERSION_MICRO;
break;
case CHELSIO_T5:
exp_major = T5FW_VERSION_MAJOR;
exp_minor = T5FW_VERSION_MINOR;
exp_micro = T5FW_VERSION_MICRO;
break;
default:
CH_ERR(adapter, "Unsupported chip type, %x\n",
chip_id(adapter));
return -EINVAL;
}
if (major != exp_major) { /* major mismatch - fail */
CH_ERR(adapter, "card FW has major version %u, driver wants "
"%u\n", major, exp_major);
return -EINVAL;
}
if (minor == exp_minor && micro == exp_micro)
return 0; /* perfect match */
/* Minor/micro version mismatch. Report it but often it's OK. */
return 1;
}
/**
* t4_flash_erase_sectors - erase a range of flash sectors
* @adapter: the adapter
* @start: the first sector to erase
* @end: the last sector to erase
*
* Erases the sectors in the given inclusive range.
*/
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
int ret = 0;
while (start <= end) {
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 0, 1,
SF_ERASE_SECTOR | (start << 8))) != 0 ||
(ret = flash_wait_op(adapter, 14, 500)) != 0) {
CH_ERR(adapter, "erase of flash sector %d failed, "
"error %d\n", start, ret);
break;
}
start++;
}
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
return ret;
}
/**
* t4_flash_cfg_addr - return the address of the flash configuration file
* @adapter: the adapter
*
* Return the address within the flash where the Firmware Configuration
* File is stored, or an error if the device FLASH is too small to contain
* a Firmware Configuration File.
*/
int t4_flash_cfg_addr(struct adapter *adapter)
{
/*
* If the device FLASH isn't large enough to hold a Firmware
* Configuration File, return an error.
*/
if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
return -ENOSPC;
return FLASH_CFG_START;
}
/**
* t4_load_cfg - download config file
* @adap: the adapter
* @cfg_data: the cfg text file to write
* @size: text file size
*
* Write the supplied config text file to the card's serial flash.
*/
int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
{
int ret, i, n, cfg_addr;
unsigned int addr;
unsigned int flash_cfg_start_sec;
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
cfg_addr = t4_flash_cfg_addr(adap);
if (cfg_addr < 0)
return cfg_addr;
addr = cfg_addr;
flash_cfg_start_sec = addr / SF_SEC_SIZE;
if (size > FLASH_CFG_MAX_SIZE) {
CH_ERR(adap, "cfg file too large, max is %u bytes\n",
FLASH_CFG_MAX_SIZE);
return -EFBIG;
}
i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
sf_sec_size);
ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
flash_cfg_start_sec + i - 1);
/*
* If size == 0 then we're simply erasing the FLASH sectors associated
* with the on-adapter Firmware Configuration File.
*/
if (ret || size == 0)
goto out;
/* this will write to the flash up to SF_PAGE_SIZE at a time */
for (i = 0; i< size; i+= SF_PAGE_SIZE) {
if ( (size - i) < SF_PAGE_SIZE)
n = size - i;
else
n = SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, n, cfg_data, 1);
if (ret)
goto out;
addr += SF_PAGE_SIZE;
cfg_data += SF_PAGE_SIZE;
}
out:
if (ret)
CH_ERR(adap, "config file %s failed %d\n",
(size == 0 ? "clear" : "download"), ret);
return ret;
}
/**
* t4_load_fw - download firmware
* @adap: the adapter
* @fw_data: the firmware image to write
* @size: image size
*
* Write the supplied firmware image to the card's serial flash.
*/
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
u32 csum;
int ret, addr;
unsigned int i;
u8 first_page[SF_PAGE_SIZE];
const u32 *p = (const u32 *)fw_data;
const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
unsigned int fw_start_sec;
unsigned int fw_start;
unsigned int fw_size;
if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
fw_start = FLASH_FWBOOTSTRAP_START;
fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
} else {
fw_start_sec = FLASH_FW_START_SEC;
fw_start = FLASH_FW_START;
fw_size = FLASH_FW_MAX_SIZE;
}
if (!size) {
CH_ERR(adap, "FW image has no data\n");
return -EINVAL;
}
if (size & 511) {
CH_ERR(adap, "FW image size not multiple of 512 bytes\n");
return -EINVAL;
}
if (ntohs(hdr->len512) * 512 != size) {
CH_ERR(adap, "FW image size differs from size in FW header\n");
return -EINVAL;
}
if (size > fw_size) {
CH_ERR(adap, "FW image too large, max is %u bytes\n", fw_size);
return -EFBIG;
}
if ((is_t4(adap) && hdr->chip != FW_HDR_CHIP_T4) ||
(is_t5(adap) && hdr->chip != FW_HDR_CHIP_T5)) {
CH_ERR(adap,
"FW image (%d) is not suitable for this adapter (%d)\n",
hdr->chip, chip_id(adap));
return -EINVAL;
}
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += ntohl(p[i]);
if (csum != 0xffffffff) {
CH_ERR(adap, "corrupted firmware image, checksum %#x\n",
csum);
return -EINVAL;
}
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
if (ret)
goto out;
/*
* We write the correct version at the end so the driver can see a bad
* version if the FW write fails. Start by writing a copy of the
* first page with a bad version.
*/
memcpy(first_page, fw_data, SF_PAGE_SIZE);
((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
if (ret)
goto out;
addr = fw_start;
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
addr += SF_PAGE_SIZE;
fw_data += SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
if (ret)
goto out;
}
ret = t4_write_flash(adap,
fw_start + offsetof(struct fw_hdr, fw_ver),
sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
out:
if (ret)
CH_ERR(adap, "firmware download failed, error %d\n", ret);
return ret;
}
/* BIOS boot headers */
typedef struct pci_expansion_rom_header {
u8 signature[2]; /* ROM Signature. Should be 0xaa55 */
u8 reserved[22]; /* Reserved per processor Architecture data */
u8 pcir_offset[2]; /* Offset to PCI Data Structure */
} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
/* Legacy PCI Expansion ROM Header */
typedef struct legacy_pci_expansion_rom_header {
u8 signature[2]; /* ROM Signature. Should be 0xaa55 */
u8 size512; /* Current Image Size in units of 512 bytes */
u8 initentry_point[4];
u8 cksum; /* Checksum computed on the entire Image */
u8 reserved[16]; /* Reserved */
u8 pcir_offset[2]; /* Offset to PCI Data Struture */
} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
/* EFI PCI Expansion ROM Header */
typedef struct efi_pci_expansion_rom_header {
u8 signature[2]; // ROM signature. The value 0xaa55
u8 initialization_size[2]; /* Units 512. Includes this header */
u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
u8 efi_subsystem[2]; /* Subsystem value for EFI image header */
u8 efi_machine_type[2]; /* Machine type from EFI image header */
u8 compression_type[2]; /* Compression type. */
/*
* Compression type definition
* 0x0: uncompressed
* 0x1: Compressed
* 0x2-0xFFFF: Reserved
*/
u8 reserved[8]; /* Reserved */
u8 efi_image_header_offset[2]; /* Offset to EFI Image */
u8 pcir_offset[2]; /* Offset to PCI Data Structure */
} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
/* PCI Data Structure Format */
typedef struct pcir_data_structure { /* PCI Data Structure */
u8 signature[4]; /* Signature. The string "PCIR" */
u8 vendor_id[2]; /* Vendor Identification */
u8 device_id[2]; /* Device Identification */
u8 vital_product[2]; /* Pointer to Vital Product Data */
u8 length[2]; /* PCIR Data Structure Length */
u8 revision; /* PCIR Data Structure Revision */
u8 class_code[3]; /* Class Code */
u8 image_length[2]; /* Image Length. Multiple of 512B */
u8 code_revision[2]; /* Revision Level of Code/Data */
u8 code_type; /* Code Type. */
/*
* PCI Expansion ROM Code Types
* 0x00: Intel IA-32, PC-AT compatible. Legacy
* 0x01: Open Firmware standard for PCI. FCODE
* 0x02: Hewlett-Packard PA RISC. HP reserved
* 0x03: EFI Image. EFI
* 0x04-0xFF: Reserved.
*/
u8 indicator; /* Indicator. Identifies the last image in the ROM */
u8 reserved[2]; /* Reserved */
} pcir_data_t; /* PCI__DATA_STRUCTURE */
/* BOOT constants */
enum {
BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */
BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */
BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */
VENDOR_ID = 0x1425, /* Vendor ID */
PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
};
/*
* modify_device_id - Modifies the device ID of the Boot BIOS image
* @adatper: the device ID to write.
* @boot_data: the boot image to modify.
*
* Write the supplied device ID to the boot BIOS image.
*/
static void modify_device_id(int device_id, u8 *boot_data)
{
legacy_pci_exp_rom_header_t *header;
pcir_data_t *pcir_header;
u32 cur_header = 0;
/*
* Loop through all chained images and change the device ID's
*/
while (1) {
header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
pcir_header = (pcir_data_t *) &boot_data[cur_header +
le16_to_cpu(*(u16*)header->pcir_offset)];
/*
* Only modify the Device ID if code type is Legacy or HP.
* 0x00: Okay to modify
* 0x01: FCODE. Do not be modify
* 0x03: Okay to modify
* 0x04-0xFF: Do not modify
*/
if (pcir_header->code_type == 0x00) {
u8 csum = 0;
int i;
/*
* Modify Device ID to match current adatper
*/
*(u16*) pcir_header->device_id = device_id;
/*
* Set checksum temporarily to 0.
* We will recalculate it later.
*/
header->cksum = 0x0;
/*
* Calculate and update checksum
*/
for (i = 0; i < (header->size512 * 512); i++)
csum += (u8)boot_data[cur_header + i];
/*
* Invert summed value to create the checksum
* Writing new checksum value directly to the boot data
*/
boot_data[cur_header + 7] = -csum;
} else if (pcir_header->code_type == 0x03) {
/*
* Modify Device ID to match current adatper
*/
*(u16*) pcir_header->device_id = device_id;
}
/*
* Check indicator element to identify if this is the last
* image in the ROM.
*/
if (pcir_header->indicator & 0x80)
break;
/*
* Move header pointer up to the next image in the ROM.
*/
cur_header += header->size512 * 512;
}
}
/*
* t4_load_boot - download boot flash
* @adapter: the adapter
* @boot_data: the boot image to write
* @boot_addr: offset in flash to write boot_data
* @size: image size
*
* Write the supplied boot image to the card's serial flash.
* The boot image has the following sections: a 28-byte header and the
* boot image.
*/
int t4_load_boot(struct adapter *adap, u8 *boot_data,
unsigned int boot_addr, unsigned int size)
{
pci_exp_rom_header_t *header;
int pcir_offset ;
pcir_data_t *pcir_header;
int ret, addr;
uint16_t device_id;
unsigned int i;
unsigned int boot_sector = boot_addr * 1024;
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
/*
* Make sure the boot image does not encroach on the firmware region
*/
if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
CH_ERR(adap, "boot image encroaching on firmware region\n");
return -EFBIG;
}
/*
* Number of sectors spanned
*/
i = DIV_ROUND_UP(size ? size : FLASH_BOOTCFG_MAX_SIZE,
sf_sec_size);
ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
(boot_sector >> 16) + i - 1);
/*
* If size == 0 then we're simply erasing the FLASH sectors associated
* with the on-adapter option ROM file
*/
if (ret || (size == 0))
goto out;
/* Get boot header */
header = (pci_exp_rom_header_t *)boot_data;
pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
/* PCIR Data Structure */
pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
/*
* Perform some primitive sanity testing to avoid accidentally
* writing garbage over the boot sectors. We ought to check for
* more but it's not worth it for now ...
*/
if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
CH_ERR(adap, "boot image too small/large\n");
return -EFBIG;
}
/*
* Check BOOT ROM header signature
*/
if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
CH_ERR(adap, "Boot image missing signature\n");
return -EINVAL;
}
/*
* Check PCI header signature
*/
if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
CH_ERR(adap, "PCI header missing signature\n");
return -EINVAL;
}
/*
* Check Vendor ID matches Chelsio ID
*/
if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
CH_ERR(adap, "Vendor ID missing signature\n");
return -EINVAL;
}
/*
* Retrieve adapter's device ID
*/
t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
/* Want to deal with PF 0 so I strip off PF 4 indicator */
device_id = (device_id & 0xff) | 0x4000;
/*
* Check PCIE Device ID
*/
if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
/*
* Change the device ID in the Boot BIOS image to match
* the Device ID of the current adapter.
*/
modify_device_id(device_id, boot_data);
}
/*
* Skip over the first SF_PAGE_SIZE worth of data and write it after
* we finish copying the rest of the boot image. This will ensure
* that the BIOS boot header will only be written if the boot image
* was written in full.
*/
addr = boot_sector;
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
addr += SF_PAGE_SIZE;
boot_data += SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
if (ret)
goto out;
}
ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, boot_data, 0);
out:
if (ret)
CH_ERR(adap, "boot image download failed, error %d\n", ret);
return ret;
}
/**
* t4_read_cimq_cfg - read CIM queue configuration
* @adap: the adapter
* @base: holds the queue base addresses in bytes
* @size: holds the queue sizes in bytes
* @thres: holds the queue full thresholds in bytes
*
* Returns the current configuration of the CIM queues, starting with
* the IBQs, then the OBQs.
*/
void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
{
unsigned int i, v;
int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
for (i = 0; i < CIM_NUM_IBQ; i++) {
t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
V_QUENUMSELECT(i));
v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
}
for (i = 0; i < cim_num_obq; i++) {
t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
V_QUENUMSELECT(i));
v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
}
}
/**
* t4_read_cim_ibq - read the contents of a CIM inbound queue
* @adap: the adapter
* @qid: the queue index
* @data: where to store the queue contents
* @n: capacity of @data in 32-bit words
*
* Reads the contents of the selected CIM queue starting at address 0 up
* to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
* error and the number of 32-bit words actually read on success.
*/
int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
int i, err;
unsigned int addr;
const unsigned int nwords = CIM_IBQ_SIZE * 4;
if (qid > 5 || (n & 3))
return -EINVAL;
addr = qid * nwords;
if (n > nwords)
n = nwords;
for (i = 0; i < n; i++, addr++) {
t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
F_IBQDBGEN);
/*
* It might take 3-10ms before the IBQ debug read access is
* allowed. Wait for 1 Sec with a delay of 1 usec.
*/
err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
1000000, 1);
if (err)
return err;
*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
}
t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
return i;
}
/**
* t4_read_cim_obq - read the contents of a CIM outbound queue
* @adap: the adapter
* @qid: the queue index
* @data: where to store the queue contents
* @n: capacity of @data in 32-bit words
*
* Reads the contents of the selected CIM queue starting at address 0 up
* to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
* error and the number of 32-bit words actually read on success.
*/
int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
int i, err;
unsigned int addr, v, nwords;
int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
if (qid >= cim_num_obq || (n & 3))
return -EINVAL;
t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
V_QUENUMSELECT(qid));
v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */
nwords = G_CIMQSIZE(v) * 64; /* same */
if (n > nwords)
n = nwords;
for (i = 0; i < n; i++, addr++) {
t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
F_OBQDBGEN);
err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
2, 1);
if (err)
return err;
*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
}
t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
return i;
}
enum {
CIM_QCTL_BASE = 0,
CIM_CTL_BASE = 0x2000,
CIM_PBT_ADDR_BASE = 0x2800,
CIM_PBT_LRF_BASE = 0x3000,
CIM_PBT_DATA_BASE = 0x3800
};
/**
* t4_cim_read - read a block from CIM internal address space
* @adap: the adapter
* @addr: the start address within the CIM address space
* @n: number of words to read
* @valp: where to store the result
*
* Reads a block of 4-byte words from the CIM intenal address space.
*/
int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
unsigned int *valp)
{
int ret = 0;
if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
return -EBUSY;
for ( ; !ret && n--; addr += 4) {
t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
0, 5, 2);
if (!ret)
*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
}
return ret;
}
/**
* t4_cim_write - write a block into CIM internal address space
* @adap: the adapter
* @addr: the start address within the CIM address space
* @n: number of words to write
* @valp: set of values to write
*
* Writes a block of 4-byte words into the CIM intenal address space.
*/
int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
const unsigned int *valp)
{
int ret = 0;
if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
return -EBUSY;
for ( ; !ret && n--; addr += 4) {
t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
0, 5, 2);
}
return ret;
}
static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val)
{
return t4_cim_write(adap, addr, 1, &val);
}
/**
* t4_cim_ctl_read - read a block from CIM control region
* @adap: the adapter
* @addr: the start address within the CIM control region
* @n: number of words to read
* @valp: where to store the result
*
* Reads a block of 4-byte words from the CIM control region.
*/
int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
unsigned int *valp)
{
return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
}
/**
* t4_cim_read_la - read CIM LA capture buffer
* @adap: the adapter
* @la_buf: where to store the LA data
* @wrptr: the HW write pointer within the capture buffer
*
* Reads the contents of the CIM LA buffer with the most recent entry at
* the end of the returned data and with the entry at @wrptr first.
* We try to leave the LA in the running state we find it in.
*/
int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
{
int i, ret;
unsigned int cfg, val, idx;
ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
if (ret)
return ret;
if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */
ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
if (ret)
return ret;
}
ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
if (ret)
goto restart;
idx = G_UPDBGLAWRPTR(val);
if (wrptr)
*wrptr = idx;
for (i = 0; i < adap->params.cim_la_size; i++) {
ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
if (ret)
break;
ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
if (ret)
break;
if (val & F_UPDBGLARDEN) {
ret = -ETIMEDOUT;
break;
}
ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
if (ret)
break;
idx = (idx + 1) & M_UPDBGLARDPTR;
}
restart:
if (cfg & F_UPDBGLAEN) {
int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
cfg & ~F_UPDBGLARDEN);
if (!ret)
ret = r;
}
return ret;
}
void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
unsigned int *pif_req_wrptr,
unsigned int *pif_rsp_wrptr)
{
int i, j;
u32 cfg, val, req, rsp;
cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
if (cfg & F_LADBGEN)
t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
val = t4_read_reg(adap, A_CIM_DEBUGSTS);
req = G_POLADBGWRPTR(val);
rsp = G_PILADBGWRPTR(val);
if (pif_req_wrptr)
*pif_req_wrptr = req;
if (pif_rsp_wrptr)
*pif_rsp_wrptr = rsp;
for (i = 0; i < CIM_PIFLA_SIZE; i++) {
for (j = 0; j < 6; j++) {
t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
V_PILADBGRDPTR(rsp));
*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
req++;
rsp++;
}
req = (req + 2) & M_POLADBGRDPTR;
rsp = (rsp + 2) & M_PILADBGRDPTR;
}
t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
}
void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
{
u32 cfg;
int i, j, idx;
cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
if (cfg & F_LADBGEN)
t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
for (i = 0; i < CIM_MALA_SIZE; i++) {
for (j = 0; j < 5; j++) {
idx = 8 * i + j;
t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
V_PILADBGRDPTR(idx));
*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
}
}
t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
}
/**
* t4_tp_read_la - read TP LA capture buffer
* @adap: the adapter
* @la_buf: where to store the LA data
* @wrptr: the HW write pointer within the capture buffer
*
* Reads the contents of the TP LA buffer with the most recent entry at
* the end of the returned data and with the entry at @wrptr first.
* We leave the LA in the running state we find it in.
*/
void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
{
bool last_incomplete;
unsigned int i, cfg, val, idx;
cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
if (cfg & F_DBGLAENABLE) /* freeze LA */
t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
idx = G_DBGLAWPTR(val);
last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
if (last_incomplete)
idx = (idx + 1) & M_DBGLARPTR;
if (wrptr)
*wrptr = idx;
val &= 0xffff;
val &= ~V_DBGLARPTR(M_DBGLARPTR);
val |= adap->params.tp.la_mask;
for (i = 0; i < TPLA_SIZE; i++) {
t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
idx = (idx + 1) & M_DBGLARPTR;
}
/* Wipe out last entry if it isn't valid */
if (last_incomplete)
la_buf[TPLA_SIZE - 1] = ~0ULL;
if (cfg & F_DBGLAENABLE) /* restore running state */
t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
cfg | adap->params.tp.la_mask);
}
void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
{
unsigned int i, j;
for (i = 0; i < 8; i++) {
u32 *p = la_buf + i;
t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
}
}
#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
/**
* t4_link_start - apply link configuration to MAC/PHY
* @phy: the PHY to setup
* @mac: the MAC to setup
* @lc: the requested link configuration
*
* Set up a port's MAC and PHY according to a desired link configuration.
* - If the PHY can auto-negotiate first decide what to advertise, then
* enable/disable auto-negotiation as desired, and reset.
* - If the PHY does not auto-negotiate just reset it.
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
* otherwise do it later based on the outcome of auto-negotiation.
*/
int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
struct link_config *lc)
{
struct fw_port_cmd c;
unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
lc->link_ok = 0;
if (lc->requested_fc & PAUSE_RX)
fc |= FW_PORT_CAP_FC_RX;
if (lc->requested_fc & PAUSE_TX)
fc |= FW_PORT_CAP_FC_TX;
memset(&c, 0, sizeof(c));
c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
FW_LEN16(c));
if (!(lc->supported & FW_PORT_CAP_ANEG)) {
c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
} else if (lc->autoneg == AUTONEG_DISABLE) {
c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
} else
c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_restart_aneg - restart autonegotiation
* @adap: the adapter
* @mbox: mbox to use for the FW command
* @port: the port id
*
* Restarts autonegotiation for the selected port.
*/
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
struct fw_port_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
FW_LEN16(c));
c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
struct intr_info {
unsigned int mask; /* bits to check in interrupt status */
const char *msg; /* message to print or NULL */
short stat_idx; /* stat counter to increment or -1 */
unsigned short fatal; /* whether the condition reported is fatal */
};
/**
* t4_handle_intr_status - table driven interrupt handler
* @adapter: the adapter that generated the interrupt
* @reg: the interrupt status register to process
* @acts: table of interrupt actions
*
* A table driven interrupt handler that applies a set of masks to an
* interrupt status word and performs the corresponding actions if the
* interrupts described by the mask have occured. The actions include
* optionally emitting a warning or alert message. The table is terminated
* by an entry specifying mask 0. Returns the number of fatal interrupt
* conditions.
*/
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
const struct intr_info *acts)
{
int fatal = 0;
unsigned int mask = 0;
unsigned int status = t4_read_reg(adapter, reg);
for ( ; acts->mask; ++acts) {
if (!(status & acts->mask))
continue;
if (acts->fatal) {
fatal++;
CH_ALERT(adapter, "%s (0x%x)\n",
acts->msg, status & acts->mask);
} else if (acts->msg)
CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n",
acts->msg, status & acts->mask);
mask |= acts->mask;
}
status &= mask;
if (status) /* clear processed interrupts */
t4_write_reg(adapter, reg, status);
return fatal;
}
/*
* Interrupt handler for the PCIE module.
*/
static void pcie_intr_handler(struct adapter *adapter)
{
static struct intr_info sysbus_intr_info[] = {
{ F_RNPP, "RXNP array parity error", -1, 1 },
{ F_RPCP, "RXPC array parity error", -1, 1 },
{ F_RCIP, "RXCIF array parity error", -1, 1 },
{ F_RCCP, "Rx completions control array parity error", -1, 1 },
{ F_RFTP, "RXFT array parity error", -1, 1 },
{ 0 }
};
static struct intr_info pcie_port_intr_info[] = {
{ F_TPCP, "TXPC array parity error", -1, 1 },
{ F_TNPP, "TXNP array parity error", -1, 1 },
{ F_TFTP, "TXFT array parity error", -1, 1 },
{ F_TCAP, "TXCA array parity error", -1, 1 },
{ F_TCIP, "TXCIF array parity error", -1, 1 },
{ F_RCAP, "RXCA array parity error", -1, 1 },
{ F_OTDD, "outbound request TLP discarded", -1, 1 },
{ F_RDPE, "Rx data parity error", -1, 1 },
{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
{ 0 }
};
static struct intr_info pcie_intr_info[] = {
{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
{ F_FIDPERR, "PCI FID parity error", -1, 1 },
{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
0 },
{ 0 }
};
static struct intr_info t5_pcie_intr_info[] = {
{ F_MSTGRPPERR, "Master Response Read Queue parity error",
-1, 1 },
{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
-1, 1 },
{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
-1, 1 },
{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
{ F_DREQWRPERR, "PCI DMA channel write request parity error",
-1, 1 },
{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
{ F_FIDPERR, "PCI FID parity error", -1, 1 },
{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
-1, 1 },
{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
-1, 1 },
{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
{ F_READRSPERR, "Outbound read error", -1,
0 },
{ 0 }
};
int fat;
fat = t4_handle_intr_status(adapter,
A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
sysbus_intr_info) +
t4_handle_intr_status(adapter,
A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
pcie_port_intr_info) +
t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
is_t4(adapter) ?
pcie_intr_info : t5_pcie_intr_info);
if (fat)
t4_fatal_err(adapter);
}
/*
* TP interrupt handler.
*/
static void tp_intr_handler(struct adapter *adapter)
{
static struct intr_info tp_intr_info[] = {
{ 0x3fffffff, "TP parity error", -1, 1 },
{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
t4_fatal_err(adapter);
}
/*
* SGE interrupt handler.
*/
static void sge_intr_handler(struct adapter *adapter)
{
u64 v;
u32 err;
static struct intr_info sge_intr_info[] = {
{ F_ERR_CPL_EXCEED_IQE_SIZE,
"SGE received CPL exceeding IQE size", -1, 1 },
{ F_ERR_INVALID_CIDX_INC,
"SGE GTS CIDX increment too large", -1, 0 },
{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
{ F_ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
"SGE IQID > 1023 received CPL for FL", -1, 0 },
{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
0 },
{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
0 },
{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
0 },
{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
0 },
{ F_ERR_ING_CTXT_PRIO,
"SGE too many priority ingress contexts", -1, 0 },
{ F_ERR_EGR_CTXT_PRIO,
"SGE too many priority egress contexts", -1, 0 },
{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
{ 0 }
};
v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
if (v) {
CH_ALERT(adapter, "SGE parity error (%#llx)\n",
(unsigned long long)v);
t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
}
v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
if (err & F_ERROR_QID_VALID) {
CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
if (err & F_UNCAPTURED_ERROR)
CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
F_UNCAPTURED_ERROR);
}
if (v != 0)
t4_fatal_err(adapter);
}
#define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
#define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
/*
* CIM interrupt handler.
*/
static void cim_intr_handler(struct adapter *adapter)
{
static struct intr_info cim_intr_info[] = {
{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
{ 0 }
};
static struct intr_info cim_upintr_info[] = {
{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
{ F_ILLWRINT, "CIM illegal write", -1, 1 },
{ F_ILLRDINT, "CIM illegal read", -1, 1 },
{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
{ 0 }
};
int fat;
if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
t4_report_fw_error(adapter);
fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
cim_intr_info) +
t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
cim_upintr_info);
if (fat)
t4_fatal_err(adapter);
}
/*
* ULP RX interrupt handler.
*/
static void ulprx_intr_handler(struct adapter *adapter)
{
static struct intr_info ulprx_intr_info[] = {
{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
{ 0x7fffff, "ULPRX parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
t4_fatal_err(adapter);
}
/*
* ULP TX interrupt handler.
*/
static void ulptx_intr_handler(struct adapter *adapter)
{
static struct intr_info ulptx_intr_info[] = {
{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
0 },
{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
0 },
{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
0 },
{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
0 },
{ 0xfffffff, "ULPTX parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
t4_fatal_err(adapter);
}
/*
* PM TX interrupt handler.
*/
static void pmtx_intr_handler(struct adapter *adapter)
{
static struct intr_info pmtx_intr_info[] = {
{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
{ 0xffffff0, "PMTX framing error", -1, 1 },
{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
1 },
{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
{ 0 }
};
if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
t4_fatal_err(adapter);
}
/*
* PM RX interrupt handler.
*/
static void pmrx_intr_handler(struct adapter *adapter)
{
static struct intr_info pmrx_intr_info[] = {
{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
{ 0x3ffff0, "PMRX framing error", -1, 1 },
{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
1 },
{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
{ 0 }
};
if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
t4_fatal_err(adapter);
}
/*
* CPL switch interrupt handler.
*/
static void cplsw_intr_handler(struct adapter *adapter)
{
static struct intr_info cplsw_intr_info[] = {
{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
t4_fatal_err(adapter);
}
/*
* LE interrupt handler.
*/
static void le_intr_handler(struct adapter *adap)
{
static struct intr_info le_intr_info[] = {
{ F_LIPMISS, "LE LIP miss", -1, 0 },
{ F_LIP0, "LE 0 LIP error", -1, 0 },
{ F_PARITYERR, "LE parity error", -1, 1 },
{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE, le_intr_info))
t4_fatal_err(adap);
}
/*
* MPS interrupt handler.
*/
static void mps_intr_handler(struct adapter *adapter)
{
static struct intr_info mps_rx_intr_info[] = {
{ 0xffffff, "MPS Rx parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_tx_intr_info[] = {
{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
-1, 1 },
{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
-1, 1 },
{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
{ F_FRMERR, "MPS Tx framing error", -1, 1 },
{ 0 }
};
static struct intr_info mps_trc_intr_info[] = {
{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
1 },
{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_stat_sram_intr_info[] = {
{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_stat_tx_intr_info[] = {
{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_stat_rx_intr_info[] = {
{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
{ 0 }
};
static struct intr_info mps_cls_intr_info[] = {
{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
{ 0 }
};
int fat;
fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
mps_rx_intr_info) +
t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
mps_tx_intr_info) +
t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
mps_trc_intr_info) +
t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
mps_stat_sram_intr_info) +
t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
mps_stat_tx_intr_info) +
t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
mps_stat_rx_intr_info) +
t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
mps_cls_intr_info);
t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
t4_read_reg(adapter, A_MPS_INT_CAUSE); /* flush */
if (fat)
t4_fatal_err(adapter);
}
#define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | F_ECC_UE_INT_CAUSE)
/*
* EDC/MC interrupt handler.
*/
static void mem_intr_handler(struct adapter *adapter, int idx)
{
static const char name[3][5] = { "EDC0", "EDC1", "MC" };
unsigned int addr, cnt_addr, v;
if (idx <= MEM_EDC1) {
addr = EDC_REG(A_EDC_INT_CAUSE, idx);
cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
} else {
if (is_t4(adapter)) {
addr = A_MC_INT_CAUSE;
cnt_addr = A_MC_ECC_STATUS;
} else {
addr = A_MC_P_INT_CAUSE;
cnt_addr = A_MC_P_ECC_STATUS;
}
}
v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
if (v & F_PERR_INT_CAUSE)
CH_ALERT(adapter, "%s FIFO parity error\n", name[idx]);
if (v & F_ECC_CE_INT_CAUSE) {
u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
CH_WARN_RATELIMIT(adapter,
"%u %s correctable ECC data error%s\n",
cnt, name[idx], cnt > 1 ? "s" : "");
}
if (v & F_ECC_UE_INT_CAUSE)
CH_ALERT(adapter, "%s uncorrectable ECC data error\n",
name[idx]);
t4_write_reg(adapter, addr, v);
if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
t4_fatal_err(adapter);
}
/*
* MA interrupt handler.
*/
static void ma_intr_handler(struct adapter *adapter)
{
u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
if (status & F_MEM_PERR_INT_CAUSE)
CH_ALERT(adapter, "MA parity error, parity status %#x\n",
t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS));
if (status & F_MEM_WRAP_INT_CAUSE) {
v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
CH_ALERT(adapter, "MA address wrap-around error by client %u to"
" address %#x\n", G_MEM_WRAP_CLIENT_NUM(v),
G_MEM_WRAP_ADDRESS(v) << 4);
}
t4_write_reg(adapter, A_MA_INT_CAUSE, status);
t4_fatal_err(adapter);
}
/*
* SMB interrupt handler.
*/
static void smb_intr_handler(struct adapter *adap)
{
static struct intr_info smb_intr_info[] = {
{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
t4_fatal_err(adap);
}
/*
* NC-SI interrupt handler.
*/
static void ncsi_intr_handler(struct adapter *adap)
{
static struct intr_info ncsi_intr_info[] = {
{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
t4_fatal_err(adap);
}
/*
* XGMAC interrupt handler.
*/
static void xgmac_intr_handler(struct adapter *adap, int port)
{
u32 v, int_cause_reg;
if (is_t4(adap))
int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
else
int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
v = t4_read_reg(adap, int_cause_reg);
v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
if (!v)
return;
if (v & F_TXFIFO_PRTY_ERR)
CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n", port);
if (v & F_RXFIFO_PRTY_ERR)
CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n", port);
t4_write_reg(adap, int_cause_reg, v);
t4_fatal_err(adap);
}
/*
* PL interrupt handler.
*/
static void pl_intr_handler(struct adapter *adap)
{
static struct intr_info pl_intr_info[] = {
{ F_FATALPERR, "Fatal parity error", -1, 1 },
{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
{ 0 }
};
static struct intr_info t5_pl_intr_info[] = {
{ F_PL_BUSPERR, "PL bus parity error", -1, 1 },
{ F_FATALPERR, "Fatal parity error", -1, 1 },
{ 0 }
};
if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
is_t4(adap) ? pl_intr_info : t5_pl_intr_info))
t4_fatal_err(adap);
}
#define PF_INTR_MASK (F_PFSW | F_PFCIM)
#define GLBL_INTR_MASK (F_CIM | F_MPS | F_PL | F_PCIE | F_MC | F_EDC0 | \
F_EDC1 | F_LE | F_TP | F_MA | F_PM_TX | F_PM_RX | F_ULP_RX | \
F_CPL_SWITCH | F_SGE | F_ULP_TX)
/**
* t4_slow_intr_handler - control path interrupt handler
* @adapter: the adapter
*
* T4 interrupt handler for non-data global interrupt events, e.g., errors.
* The designation 'slow' is because it involves register reads, while
* data interrupts typically don't involve any MMIOs.
*/
int t4_slow_intr_handler(struct adapter *adapter)
{
u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
if (!(cause & GLBL_INTR_MASK))
return 0;
if (cause & F_CIM)
cim_intr_handler(adapter);
if (cause & F_MPS)
mps_intr_handler(adapter);
if (cause & F_NCSI)
ncsi_intr_handler(adapter);
if (cause & F_PL)
pl_intr_handler(adapter);
if (cause & F_SMB)
smb_intr_handler(adapter);
if (cause & F_XGMAC0)
xgmac_intr_handler(adapter, 0);
if (cause & F_XGMAC1)
xgmac_intr_handler(adapter, 1);
if (cause & F_XGMAC_KR0)
xgmac_intr_handler(adapter, 2);
if (cause & F_XGMAC_KR1)
xgmac_intr_handler(adapter, 3);
if (cause & F_PCIE)
pcie_intr_handler(adapter);
if (cause & F_MC)
mem_intr_handler(adapter, MEM_MC);
if (cause & F_EDC0)
mem_intr_handler(adapter, MEM_EDC0);
if (cause & F_EDC1)
mem_intr_handler(adapter, MEM_EDC1);
if (cause & F_LE)
le_intr_handler(adapter);
if (cause & F_TP)
tp_intr_handler(adapter);
if (cause & F_MA)
ma_intr_handler(adapter);
if (cause & F_PM_TX)
pmtx_intr_handler(adapter);
if (cause & F_PM_RX)
pmrx_intr_handler(adapter);
if (cause & F_ULP_RX)
ulprx_intr_handler(adapter);
if (cause & F_CPL_SWITCH)
cplsw_intr_handler(adapter);
if (cause & F_SGE)
sge_intr_handler(adapter);
if (cause & F_ULP_TX)
ulptx_intr_handler(adapter);
/* Clear the interrupts just processed for which we are the master. */
t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
(void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
return 1;
}
/**
* t4_intr_enable - enable interrupts
* @adapter: the adapter whose interrupts should be enabled
*
* Enable PF-specific interrupts for the calling function and the top-level
* interrupt concentrator for global interrupts. Interrupts are already
* enabled at each module, here we just enable the roots of the interrupt
* hierarchies.
*
* Note: this function should be called only when the driver manages
* non PF-specific interrupts from the various HW modules. Only one PCI
* function at a time should be doing this.
*/
void t4_intr_enable(struct adapter *adapter)
{
u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
F_ERR_DROPPED_DB | F_ERR_DATA_CPL_ON_HIGH_QID1 |
F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
F_ERR_EGR_CTXT_PRIO | F_INGRESS_SIZE_ERR |
F_EGRESS_SIZE_ERR);
t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
}
/**
* t4_intr_disable - disable interrupts
* @adapter: the adapter whose interrupts should be disabled
*
* Disable interrupts. We only disable the top-level interrupt
* concentrators. The caller must be a PCI function managing global
* interrupts.
*/
void t4_intr_disable(struct adapter *adapter)
{
u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
}
/**
* t4_intr_clear - clear all interrupts
* @adapter: the adapter whose interrupts should be cleared
*
* Clears all interrupts. The caller must be a PCI function managing
* global interrupts.
*/
void t4_intr_clear(struct adapter *adapter)
{
static const unsigned int cause_reg[] = {
A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS, A_MA_INT_CAUSE,
A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
A_TP_INT_CAUSE,
A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
A_MPS_RX_PERR_INT_CAUSE,
A_CPL_INTR_CAUSE,
MYPF_REG(A_PL_PF_INT_CAUSE),
A_PL_PL_INT_CAUSE,
A_LE_DB_INT_CAUSE,
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
t4_write_reg(adapter, cause_reg[i], 0xffffffff);
t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
A_MC_P_INT_CAUSE, 0xffffffff);
t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
(void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
}
/**
* hash_mac_addr - return the hash value of a MAC address
* @addr: the 48-bit Ethernet MAC address
*
* Hashes a MAC address according to the hash function used by HW inexact
* (hash) address matching.
*/
static int hash_mac_addr(const u8 *addr)
{
u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
a ^= b;
a ^= (a >> 12);
a ^= (a >> 6);
return a & 0x3f;
}
/**
* t4_config_rss_range - configure a portion of the RSS mapping table
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @viid: virtual interface whose RSS subtable is to be written
* @start: start entry in the table to write
* @n: how many table entries to write
* @rspq: values for the "response queue" (Ingress Queue) lookup table
* @nrspq: number of values in @rspq
*
* Programs the selected part of the VI's RSS mapping table with the
* provided values. If @nrspq < @n the supplied values are used repeatedly
* until the full table range is populated.
*
* The caller must ensure the values in @rspq are in the range allowed for
* @viid.
*/
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
int start, int n, const u16 *rspq, unsigned int nrspq)
{
int ret;
const u16 *rsp = rspq;
const u16 *rsp_end = rspq + nrspq;
struct fw_rss_ind_tbl_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_RSS_IND_TBL_CMD_VIID(viid));
cmd.retval_len16 = htonl(FW_LEN16(cmd));
/*
* Each firmware RSS command can accommodate up to 32 RSS Ingress
* Queue Identifiers. These Ingress Queue IDs are packed three to
* a 32-bit word as 10-bit values with the upper remaining 2 bits
* reserved.
*/
while (n > 0) {
int nq = min(n, 32);
int nq_packed = 0;
__be32 *qp = &cmd.iq0_to_iq2;
/*
* Set up the firmware RSS command header to send the next
* "nq" Ingress Queue IDs to the firmware.
*/
cmd.niqid = htons(nq);
cmd.startidx = htons(start);
/*
* "nq" more done for the start of the next loop.
*/
start += nq;
n -= nq;
/*
* While there are still Ingress Queue IDs to stuff into the
* current firmware RSS command, retrieve them from the
* Ingress Queue ID array and insert them into the command.
*/
while (nq > 0) {
/*
* Grab up to the next 3 Ingress Queue IDs (wrapping
* around the Ingress Queue ID array if necessary) and
* insert them into the firmware RSS command at the
* current 3-tuple position within the commad.
*/
u16 qbuf[3];
u16 *qbp = qbuf;
int nqbuf = min(3, nq);
nq -= nqbuf;
qbuf[0] = qbuf[1] = qbuf[2] = 0;
while (nqbuf && nq_packed < 32) {
nqbuf--;
nq_packed++;
*qbp++ = *rsp++;
if (rsp >= rsp_end)
rsp = rspq;
}
*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
}
/*
* Send this portion of the RRS table update to the firmware;
* bail out on any errors.
*/
ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
if (ret)
return ret;
}
return 0;
}
/**
* t4_config_glbl_rss - configure the global RSS mode
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @mode: global RSS mode
* @flags: mode-specific flags
*
* Sets the global RSS mode.
*/
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
unsigned int flags)
{
struct fw_rss_glb_config_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_write = htonl(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
c.retval_len16 = htonl(FW_LEN16(c));
if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
c.u.manual.mode_pkd = htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
c.u.basicvirtual.mode_pkd =
htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
} else
return -EINVAL;
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}
/**
* t4_config_vi_rss - configure per VI RSS settings
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @viid: the VI id
* @flags: RSS flags
* @defq: id of the default RSS queue for the VI.
*
* Configures VI-specific RSS properties.
*/
int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
unsigned int flags, unsigned int defq)
{
struct fw_rss_vi_config_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
c.retval_len16 = htonl(FW_LEN16(c));
c.u.basicvirtual.defaultq_to_udpen = htonl(flags |
V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}
/* Read an RSS table row */
static int rd_rss_row(struct adapter *adap, int row, u32 *val)
{
t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5, 0, val);
}
/**
* t4_read_rss - read the contents of the RSS mapping table
* @adapter: the adapter
* @map: holds the contents of the RSS mapping table
*
* Reads the contents of the RSS hash->queue mapping table.
*/
int t4_read_rss(struct adapter *adapter, u16 *map)
{
u32 val;
int i, ret;
for (i = 0; i < RSS_NENTRIES / 2; ++i) {
ret = rd_rss_row(adapter, i, &val);
if (ret)
return ret;
*map++ = G_LKPTBLQUEUE0(val);
*map++ = G_LKPTBLQUEUE1(val);
}
return 0;
}
/**
* t4_read_rss_key - read the global RSS key
* @adap: the adapter
* @key: 10-entry array holding the 320-bit RSS key
*
* Reads the global 320-bit RSS key.
*/
void t4_read_rss_key(struct adapter *adap, u32 *key)
{
t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
A_TP_RSS_SECRET_KEY0);
}
/**
* t4_write_rss_key - program one of the RSS keys
* @adap: the adapter
* @key: 10-entry array holding the 320-bit RSS key
* @idx: which RSS key to write
*
* Writes one of the RSS keys with the given 320-bit value. If @idx is
* 0..15 the corresponding entry in the RSS key table is written,
* otherwise the global RSS key is written.
*/
void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
{
t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
A_TP_RSS_SECRET_KEY0);
if (idx >= 0 && idx < 16)
t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
V_KEYWRADDR(idx) | F_KEYWREN);
}
/**
* t4_read_rss_pf_config - read PF RSS Configuration Table
* @adapter: the adapter
* @index: the entry in the PF RSS table to read
* @valp: where to store the returned value
*
* Reads the PF RSS Configuration Table at the specified index and returns
* the value found there.
*/
void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp)
{
t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
valp, 1, A_TP_RSS_PF0_CONFIG + index);
}
/**
* t4_write_rss_pf_config - write PF RSS Configuration Table
* @adapter: the adapter
* @index: the entry in the VF RSS table to read
* @val: the value to store
*
* Writes the PF RSS Configuration Table at the specified index with the
* specified value.
*/
void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val)
{
t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&val, 1, A_TP_RSS_PF0_CONFIG + index);
}
/**
* t4_read_rss_vf_config - read VF RSS Configuration Table
* @adapter: the adapter
* @index: the entry in the VF RSS table to read
* @vfl: where to store the returned VFL
* @vfh: where to store the returned VFH
*
* Reads the VF RSS Configuration Table at the specified index and returns
* the (VFL, VFH) values found there.
*/
void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
u32 *vfl, u32 *vfh)
{
u32 vrt;
/*
* Request that the index'th VF Table values be read into VFL/VFH.
*/
vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
vrt &= ~(F_VFRDRG | V_VFWRADDR(M_VFWRADDR) | F_VFWREN | F_KEYWREN);
vrt |= V_VFWRADDR(index) | F_VFRDEN;
t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
/*
* Grab the VFL/VFH values ...
*/
t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
vfl, 1, A_TP_RSS_VFL_CONFIG);
t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
vfh, 1, A_TP_RSS_VFH_CONFIG);
}
/**
* t4_write_rss_vf_config - write VF RSS Configuration Table
*
* @adapter: the adapter
* @index: the entry in the VF RSS table to write
* @vfl: the VFL to store
* @vfh: the VFH to store
*
* Writes the VF RSS Configuration Table at the specified index with the
* specified (VFL, VFH) values.
*/
void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
u32 vfl, u32 vfh)
{
u32 vrt;
/*
* Load up VFL/VFH with the values to be written ...
*/
t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&vfl, 1, A_TP_RSS_VFL_CONFIG);
t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&vfh, 1, A_TP_RSS_VFH_CONFIG);
/*
* Write the VFL/VFH into the VF Table at index'th location.
*/
vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
vrt &= ~(F_VFRDRG | F_VFRDEN | V_VFWRADDR(M_VFWRADDR) | F_KEYWREN);
vrt |= V_VFWRADDR(index) | F_VFWREN;
t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
}
/**
* t4_read_rss_pf_map - read PF RSS Map
* @adapter: the adapter
*
* Reads the PF RSS Map register and returns its value.
*/
u32 t4_read_rss_pf_map(struct adapter *adapter)
{
u32 pfmap;
t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&pfmap, 1, A_TP_RSS_PF_MAP);
return pfmap;
}
/**
* t4_write_rss_pf_map - write PF RSS Map
* @adapter: the adapter
* @pfmap: PF RSS Map value
*
* Writes the specified value to the PF RSS Map register.
*/
void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
{
t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&pfmap, 1, A_TP_RSS_PF_MAP);
}
/**
* t4_read_rss_pf_mask - read PF RSS Mask
* @adapter: the adapter
*
* Reads the PF RSS Mask register and returns its value.
*/
u32 t4_read_rss_pf_mask(struct adapter *adapter)
{
u32 pfmask;
t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&pfmask, 1, A_TP_RSS_PF_MSK);
return pfmask;
}
/**
* t4_write_rss_pf_mask - write PF RSS Mask
* @adapter: the adapter
* @pfmask: PF RSS Mask value
*
* Writes the specified value to the PF RSS Mask register.
*/
void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
{
t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&pfmask, 1, A_TP_RSS_PF_MSK);
}
/**
* t4_set_filter_mode - configure the optional components of filter tuples
* @adap: the adapter
* @mode_map: a bitmap selcting which optional filter components to enable
*
* Sets the filter mode by selecting the optional components to enable
* in filter tuples. Returns 0 on success and a negative error if the
* requested mode needs more bits than are available for optional
* components.
*/
int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
{
static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
int i, nbits = 0;
for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
if (mode_map & (1 << i))
nbits += width[i];
if (nbits > FILTER_OPT_LEN)
return -EINVAL;
t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map, 1,
A_TP_VLAN_PRI_MAP);
return 0;
}
/**
* t4_tp_get_tcp_stats - read TP's TCP MIB counters
* @adap: the adapter
* @v4: holds the TCP/IP counter values
* @v6: holds the TCP/IPv6 counter values
*
* Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
* Either @v4 or @v6 may be %NULL to skip the corresponding stats.
*/
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
struct tp_tcp_stats *v6)
{
u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
#define STAT(x) val[STAT_IDX(x)]
#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
if (v4) {
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
v4->tcpOutRsts = STAT(OUT_RST);
v4->tcpInSegs = STAT64(IN_SEG);
v4->tcpOutSegs = STAT64(OUT_SEG);
v4->tcpRetransSegs = STAT64(RXT_SEG);
}
if (v6) {
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
v6->tcpOutRsts = STAT(OUT_RST);
v6->tcpInSegs = STAT64(IN_SEG);
v6->tcpOutSegs = STAT64(OUT_SEG);
v6->tcpRetransSegs = STAT64(RXT_SEG);
}
#undef STAT64
#undef STAT
#undef STAT_IDX
}
/**
* t4_tp_get_err_stats - read TP's error MIB counters
* @adap: the adapter
* @st: holds the counter values
*
* Returns the values of TP's error counters.
*/
void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
{
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->macInErrs,
12, A_TP_MIB_MAC_IN_ERR_0);
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlCongDrops,
8, A_TP_MIB_TNL_CNG_DROP_0);
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlTxDrops,
4, A_TP_MIB_TNL_DROP_0);
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofldVlanDrops,
4, A_TP_MIB_OFD_VLN_DROP_0);
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp6InErrs,
4, A_TP_MIB_TCP_V6IN_ERR_0);
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->ofldNoNeigh,
2, A_TP_MIB_OFD_ARP_DROP);
}
/**
* t4_tp_get_proxy_stats - read TP's proxy MIB counters
* @adap: the adapter
* @st: holds the counter values
*
* Returns the values of TP's proxy counters.
*/
void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
{
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
4, A_TP_MIB_TNL_LPBK_0);
}
/**
* t4_tp_get_cpl_stats - read TP's CPL MIB counters
* @adap: the adapter
* @st: holds the counter values
*
* Returns the values of TP's CPL counters.
*/
void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
{
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
8, A_TP_MIB_CPL_IN_REQ_0);
}
/**
* t4_tp_get_rdma_stats - read TP's RDMA MIB counters
* @adap: the adapter
* @st: holds the counter values
*
* Returns the values of TP's RDMA counters.
*/
void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
{
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_mod,
2, A_TP_MIB_RQE_DFR_MOD);
}
/**
* t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
* @adap: the adapter
* @idx: the port index
* @st: holds the counter values
*
* Returns the values of TP's FCoE counters for the selected port.
*/
void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
struct tp_fcoe_stats *st)
{
u32 val[2];
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDDP,
1, A_TP_MIB_FCOE_DDP_0 + idx);
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDrop,
1, A_TP_MIB_FCOE_DROP_0 + idx);
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
st->octetsDDP = ((u64)val[0] << 32) | val[1];
}
/**
* t4_get_usm_stats - read TP's non-TCP DDP MIB counters
* @adap: the adapter
* @st: holds the counter values
*
* Returns the values of TP's counters for non-TCP directly-placed packets.
*/
void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
{
u32 val[4];
t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
A_TP_MIB_USM_PKTS);
st->frames = val[0];
st->drops = val[1];
st->octets = ((u64)val[2] << 32) | val[3];
}
/**
* t4_read_mtu_tbl - returns the values in the HW path MTU table
* @adap: the adapter
* @mtus: where to store the MTU values
* @mtu_log: where to store the MTU base-2 log (may be %NULL)
*
* Reads the HW path MTU table.
*/
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
u32 v;
int i;
for (i = 0; i < NMTUS; ++i) {
t4_write_reg(adap, A_TP_MTU_TABLE,
V_MTUINDEX(0xff) | V_MTUVALUE(i));
v = t4_read_reg(adap, A_TP_MTU_TABLE);
mtus[i] = G_MTUVALUE(v);
if (mtu_log)
mtu_log[i] = G_MTUWIDTH(v);
}
}
/**
* t4_read_cong_tbl - reads the congestion control table
* @adap: the adapter
* @incr: where to store the alpha values
*
* Reads the additive increments programmed into the HW congestion
* control table.
*/
void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
{
unsigned int mtu, w;
for (mtu = 0; mtu < NMTUS; ++mtu)
for (w = 0; w < NCCTRL_WIN; ++w) {
t4_write_reg(adap, A_TP_CCTRL_TABLE,
V_ROWINDEX(0xffff) | (mtu << 5) | w);
incr[mtu][w] = (u16)t4_read_reg(adap,
A_TP_CCTRL_TABLE) & 0x1fff;
}
}
/**
* t4_read_pace_tbl - read the pace table
* @adap: the adapter
* @pace_vals: holds the returned values
*
* Returns the values of TP's pace table in microseconds.
*/
void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
{
unsigned int i, v;
for (i = 0; i < NTX_SCHED; i++) {
t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
v = t4_read_reg(adap, A_TP_PACE_TABLE);
pace_vals[i] = dack_ticks_to_usec(adap, v);
}
}
/**
* t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
* @adap: the adapter
* @addr: the indirect TP register address
* @mask: specifies the field within the register to modify
* @val: new value for the field
*
* Sets a field of an indirect TP register to the given value.
*/
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
unsigned int mask, unsigned int val)
{
t4_write_reg(adap, A_TP_PIO_ADDR, addr);
val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
t4_write_reg(adap, A_TP_PIO_DATA, val);
}
/**
* init_cong_ctrl - initialize congestion control parameters
* @a: the alpha values for congestion control
* @b: the beta values for congestion control
*
* Initialize the congestion control parameters.
*/
static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
{
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
a[9] = 2;
a[10] = 3;
a[11] = 4;
a[12] = 5;
a[13] = 6;
a[14] = 7;
a[15] = 8;
a[16] = 9;
a[17] = 10;
a[18] = 14;
a[19] = 17;
a[20] = 21;
a[21] = 25;
a[22] = 30;
a[23] = 35;
a[24] = 45;
a[25] = 60;
a[26] = 80;
a[27] = 100;
a[28] = 200;
a[29] = 300;
a[30] = 400;
a[31] = 500;
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
b[9] = b[10] = 1;
b[11] = b[12] = 2;
b[13] = b[14] = b[15] = b[16] = 3;
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
b[28] = b[29] = 6;
b[30] = b[31] = 7;
}
/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U
/**
* t4_load_mtus - write the MTU and congestion control HW tables
* @adap: the adapter
* @mtus: the values for the MTU table
* @alpha: the values for the congestion control alpha parameter
* @beta: the values for the congestion control beta parameter
*
* Write the HW MTU table with the supplied MTUs and the high-speed
* congestion control table with the supplied alpha, beta, and MTUs.
* We write the two tables together because the additive increments
* depend on the MTUs.
*/
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
const unsigned short *alpha, const unsigned short *beta)
{
static const unsigned int avg_pkts[NCCTRL_WIN] = {
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
28672, 40960, 57344, 81920, 114688, 163840, 229376
};
unsigned int i, w;
for (i = 0; i < NMTUS; ++i) {
unsigned int mtu = mtus[i];
unsigned int log2 = fls(mtu);
if (!(mtu & ((1 << log2) >> 2))) /* round */
log2--;
t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
for (w = 0; w < NCCTRL_WIN; ++w) {
unsigned int inc;
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
CC_MIN_INCR);
t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
(w << 16) | (beta[w] << 13) | inc);
}
}
}
/**
* t4_set_pace_tbl - set the pace table
* @adap: the adapter
* @pace_vals: the pace values in microseconds
* @start: index of the first entry in the HW pace table to set
* @n: how many entries to set
*
* Sets (a subset of the) HW pace table.
*/
int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
unsigned int start, unsigned int n)
{
unsigned int vals[NTX_SCHED], i;
unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
if (n > NTX_SCHED)
return -ERANGE;
/* convert values from us to dack ticks, rounding to closest value */
for (i = 0; i < n; i++, pace_vals++) {
vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
if (vals[i] > 0x7ff)
return -ERANGE;
if (*pace_vals && vals[i] == 0)
return -ERANGE;
}
for (i = 0; i < n; i++, start++)
t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
return 0;
}
/**
* t4_set_sched_bps - set the bit rate for a HW traffic scheduler
* @adap: the adapter
* @kbps: target rate in Kbps
* @sched: the scheduler index
*
* Configure a Tx HW scheduler for the target rate.
*/
int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
{
unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
unsigned int clk = adap->params.vpd.cclk * 1000;
unsigned int selected_cpt = 0, selected_bpt = 0;
if (kbps > 0) {
kbps *= 125; /* -> bytes */
for (cpt = 1; cpt <= 255; cpt++) {
tps = clk / cpt;
bpt = (kbps + tps / 2) / tps;
if (bpt > 0 && bpt <= 255) {
v = bpt * tps;
delta = v >= kbps ? v - kbps : kbps - v;
if (delta < mindelta) {
mindelta = delta;
selected_cpt = cpt;
selected_bpt = bpt;
}
} else if (selected_cpt)
break;
}
if (!selected_cpt)
return -EINVAL;
}
t4_write_reg(adap, A_TP_TM_PIO_ADDR,
A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
if (sched & 1)
v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
else
v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
return 0;
}
/**
* t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
* @adap: the adapter
* @sched: the scheduler index
* @ipg: the interpacket delay in tenths of nanoseconds
*
* Set the interpacket delay for a HW packet rate scheduler.
*/
int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
{
unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
/* convert ipg to nearest number of core clocks */
ipg *= core_ticks_per_usec(adap);
ipg = (ipg + 5000) / 10000;
if (ipg > M_TXTIMERSEPQ0)
return -EINVAL;
t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
if (sched & 1)
v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
else
v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
t4_read_reg(adap, A_TP_TM_PIO_DATA);
return 0;
}
/**
* t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
* @adap: the adapter
* @sched: the scheduler index
* @kbps: the byte rate in Kbps
* @ipg: the interpacket delay in tenths of nanoseconds
*
* Return the current configuration of a HW Tx scheduler.
*/
void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
unsigned int *ipg)
{
unsigned int v, addr, bpt, cpt;
if (kbps) {
addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
if (sched & 1)
v >>= 16;
bpt = (v >> 8) & 0xff;
cpt = v & 0xff;
if (!cpt)
*kbps = 0; /* scheduler disabled */
else {
v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
*kbps = (v * bpt) / 125;
}
}
if (ipg) {
addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
if (sched & 1)
v >>= 16;
v &= 0xffff;
*ipg = (10000 * v) / core_ticks_per_usec(adap);
}
}
/*
* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
* clocks. The formula is
*
* bytes/s = bytes256 * 256 * ClkFreq / 4096
*
* which is equivalent to
*
* bytes/s = 62.5 * bytes256 * ClkFreq_ms
*/
static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
{
u64 v = bytes256 * adap->params.vpd.cclk;
return v * 62 + v / 2;
}
/**
* t4_get_chan_txrate - get the current per channel Tx rates
* @adap: the adapter
* @nic_rate: rates for NIC traffic
* @ofld_rate: rates for offloaded traffic
*
* Return the current Tx rates in bytes/s for NIC and offloaded traffic
* for each channel.
*/
void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
{
u32 v;
v = t4_read_reg(adap, A_TP_TX_TRATE);
nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
v = t4_read_reg(adap, A_TP_TX_ORATE);
ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
}
/**
* t4_set_trace_filter - configure one of the tracing filters
* @adap: the adapter
* @tp: the desired trace filter parameters
* @idx: which filter to configure
* @enable: whether to enable or disable the filter
*
* Configures one of the tracing filters available in HW. If @tp is %NULL
* it indicates that the filter is already written in the register and it
* just needs to be enabled or disabled.
*/
int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
int idx, int enable)
{
int i, ofst = idx * 4;
u32 data_reg, mask_reg, cfg;
u32 multitrc = F_TRCMULTIFILTER;
u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
if (idx < 0 || idx >= NTRACE)
return -EINVAL;
if (tp == NULL || !enable) {
t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
enable ? en : 0);
return 0;
}
/*
* TODO - After T4 data book is updated, specify the exact
* section below.
*
* See T4 data book - MPS section for a complete description
* of the below if..else handling of A_MPS_TRC_CFG register
* value.
*/
cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
if (cfg & F_TRCMULTIFILTER) {
/*
* If multiple tracers are enabled, then maximum
* capture size is 2.5KB (FIFO size of a single channel)
* minus 2 flits for CPL_TRACE_PKT header.
*/
if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
return -EINVAL;
} else {
/*
* If multiple tracers are disabled, to avoid deadlocks
* maximum packet capture size of 9600 bytes is recommended.
* Also in this mode, only trace0 can be enabled and running.
*/
multitrc = 0;
if (tp->snap_len > 9600 || idx)
return -EINVAL;
}
if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
tp->min_len > M_TFMINPKTSIZE)
return -EINVAL;
/* stop the tracer we'll be changing */
t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
t4_write_reg(adap, data_reg, tp->data[i]);
t4_write_reg(adap, mask_reg, ~tp->mask[i]);
}
t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
V_TFCAPTUREMAX(tp->snap_len) |
V_TFMINPKTSIZE(tp->min_len));
t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
(is_t4(adap) ?
V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
return 0;
}
/**
* t4_get_trace_filter - query one of the tracing filters
* @adap: the adapter
* @tp: the current trace filter parameters
* @idx: which trace filter to query
* @enabled: non-zero if the filter is enabled
*
* Returns the current settings of one of the HW tracing filters.
*/
void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
int *enabled)
{
u32 ctla, ctlb;
int i, ofst = idx * 4;
u32 data_reg, mask_reg;
ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
if (is_t4(adap)) {
*enabled = !!(ctla & F_TFEN);
tp->port = G_TFPORT(ctla);
tp->invert = !!(ctla & F_TFINVERTMATCH);
} else {
*enabled = !!(ctla & F_T5_TFEN);
tp->port = G_T5_TFPORT(ctla);
tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
}
tp->snap_len = G_TFCAPTUREMAX(ctlb);
tp->min_len = G_TFMINPKTSIZE(ctlb);
tp->skip_ofst = G_TFOFFSET(ctla);
tp->skip_len = G_TFLENGTH(ctla);
ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
tp->mask[i] = ~t4_read_reg(adap, mask_reg);
tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
}
}
/**
* t4_pmtx_get_stats - returns the HW stats from PMTX
* @adap: the adapter
* @cnt: where to store the count statistics
* @cycles: where to store the cycle statistics
*
* Returns performance statistics from PMTX.
*/
void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
int i;
u32 data[2];
for (i = 0; i < PM_NSTATS; i++) {
t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
if (is_t4(adap))
cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
else {
t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
A_PM_TX_DBG_DATA, data, 2,
A_PM_TX_DBG_STAT_MSB);
cycles[i] = (((u64)data[0] << 32) | data[1]);
}
}
}
/**
* t4_pmrx_get_stats - returns the HW stats from PMRX
* @adap: the adapter
* @cnt: where to store the count statistics
* @cycles: where to store the cycle statistics
*
* Returns performance statistics from PMRX.
*/
void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
int i;
u32 data[2];
for (i = 0; i < PM_NSTATS; i++) {
t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
if (is_t4(adap))
cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
else {
t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
A_PM_RX_DBG_DATA, data, 2,
A_PM_RX_DBG_STAT_MSB);
cycles[i] = (((u64)data[0] << 32) | data[1]);
}
}
}
/**
* get_mps_bg_map - return the buffer groups associated with a port
* @adap: the adapter
* @idx: the port index
*
* Returns a bitmap indicating which MPS buffer groups are associated
* with the given port. Bit i is set if buffer group i is used by the
* port.
*/
static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
{
u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
if (n == 0)
return idx == 0 ? 0xf : 0;
if (n == 1)
return idx < 2 ? (3 << (2 * idx)) : 0;
return 1 << idx;
}
/**
* t4_get_port_stats_offset - collect port stats relative to a previous
* snapshot
* @adap: The adapter
* @idx: The port
* @stats: Current stats to fill
* @offset: Previous stats snapshot
*/
void t4_get_port_stats_offset(struct adapter *adap, int idx,
struct port_stats *stats,
struct port_stats *offset)
{
u64 *s, *o;
int i;
t4_get_port_stats(adap, idx, stats);
for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
i < (sizeof(struct port_stats)/sizeof(u64)) ;
i++, s++, o++)
*s -= *o;
}
/**
* t4_get_port_stats - collect port statistics
* @adap: the adapter
* @idx: the port index
* @p: the stats structure to fill
*
* Collect statistics related to the given port from HW.
*/
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
u32 bgmap = get_mps_bg_map(adap, idx);
#define GET_STAT(name) \
t4_read_reg64(adap, \
(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
p->tx_pause = GET_STAT(TX_PORT_PAUSE);
p->tx_octets = GET_STAT(TX_PORT_BYTES);
p->tx_frames = GET_STAT(TX_PORT_FRAMES);
p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
p->tx_frames_64 = GET_STAT(TX_PORT_64B);
p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
p->tx_drop = GET_STAT(TX_PORT_DROP);
p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
p->rx_pause = GET_STAT(RX_PORT_PAUSE);
p->rx_octets = GET_STAT(RX_PORT_BYTES);
p->rx_frames = GET_STAT(RX_PORT_FRAMES);
p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
p->rx_frames_64 = GET_STAT(RX_PORT_64B);
p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
#undef GET_STAT
#undef GET_STAT_COM
}
/**
* t4_clr_port_stats - clear port statistics
* @adap: the adapter
* @idx: the port index
*
* Clear HW statistics for the given port.
*/
void t4_clr_port_stats(struct adapter *adap, int idx)
{
unsigned int i;
u32 bgmap = get_mps_bg_map(adap, idx);
u32 port_base_addr;
if (is_t4(adap))
port_base_addr = PORT_BASE(idx);
else
port_base_addr = T5_PORT_BASE(idx);
for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
t4_write_reg(adap, port_base_addr + i, 0);
for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
t4_write_reg(adap, port_base_addr + i, 0);
for (i = 0; i < 4; i++)
if (bgmap & (1 << i)) {
t4_write_reg(adap,
A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
t4_write_reg(adap,
A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
}
}
/**
* t4_get_lb_stats - collect loopback port statistics
* @adap: the adapter
* @idx: the loopback port index
* @p: the stats structure to fill
*
* Return HW statistics for the given loopback port.
*/
void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
{
u32 bgmap = get_mps_bg_map(adap, idx);
#define GET_STAT(name) \
t4_read_reg64(adap, \
(is_t4(adap) ? \
PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
p->octets = GET_STAT(BYTES);
p->frames = GET_STAT(FRAMES);
p->bcast_frames = GET_STAT(BCAST);
p->mcast_frames = GET_STAT(MCAST);
p->ucast_frames = GET_STAT(UCAST);
p->error_frames = GET_STAT(ERROR);
p->frames_64 = GET_STAT(64B);
p->frames_65_127 = GET_STAT(65B_127B);
p->frames_128_255 = GET_STAT(128B_255B);
p->frames_256_511 = GET_STAT(256B_511B);
p->frames_512_1023 = GET_STAT(512B_1023B);
p->frames_1024_1518 = GET_STAT(1024B_1518B);
p->frames_1519_max = GET_STAT(1519B_MAX);
p->drop = GET_STAT(DROP_FRAMES);
p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
#undef GET_STAT
#undef GET_STAT_COM
}
/**
* t4_wol_magic_enable - enable/disable magic packet WoL
* @adap: the adapter
* @port: the physical port index
* @addr: MAC address expected in magic packets, %NULL to disable
*
* Enables/disables magic packet wake-on-LAN for the selected port.
*/
void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
const u8 *addr)
{
u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
if (is_t4(adap)) {
mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
} else {
mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
}
if (addr) {
t4_write_reg(adap, mag_id_reg_l,
(addr[2] << 24) | (addr[3] << 16) |
(addr[4] << 8) | addr[5]);
t4_write_reg(adap, mag_id_reg_h,
(addr[0] << 8) | addr[1]);
}
t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
V_MAGICEN(addr != NULL));
}
/**
* t4_wol_pat_enable - enable/disable pattern-based WoL
* @adap: the adapter
* @port: the physical port index
* @map: bitmap of which HW pattern filters to set
* @mask0: byte mask for bytes 0-63 of a packet
* @mask1: byte mask for bytes 64-127 of a packet
* @crc: Ethernet CRC for selected bytes
* @enable: enable/disable switch
*
* Sets the pattern filters indicated in @map to mask out the bytes
* specified in @mask0/@mask1 in received packets and compare the CRC of
* the resulting packet against @crc. If @enable is %true pattern-based
* WoL is enabled, otherwise disabled.
*/
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
u64 mask0, u64 mask1, unsigned int crc, bool enable)
{
int i;
u32 port_cfg_reg;
if (is_t4(adap))
port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
else
port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
if (!enable) {
t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
return 0;
}
if (map > 0xff)
return -EINVAL;
#define EPIO_REG(name) \
(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
t4_write_reg(adap, EPIO_REG(DATA2), mask1);
t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
if (!(map & 1))
continue;
/* write byte masks */
t4_write_reg(adap, EPIO_REG(DATA0), mask0);
t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
return -ETIMEDOUT;
/* write CRC */
t4_write_reg(adap, EPIO_REG(DATA0), crc);
t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
return -ETIMEDOUT;
}
#undef EPIO_REG
t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
return 0;
}
/**
* t4_mk_filtdelwr - create a delete filter WR
* @ftid: the filter ID
* @wr: the filter work request to populate
* @qid: ingress queue to receive the delete notification
*
* Creates a filter work request to delete the supplied filter. If @qid is
* negative the delete notification is suppressed.
*/
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
{
memset(wr, 0, sizeof(*wr));
wr->op_pkd = htonl(V_FW_WR_OP(FW_FILTER_WR));
wr->len16_pkd = htonl(V_FW_WR_LEN16(sizeof(*wr) / 16));
wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
V_FW_FILTER_WR_NOREPLY(qid < 0));
wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
if (qid >= 0)
wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
}
#define INIT_CMD(var, cmd, rd_wr) do { \
(var).op_to_write = htonl(V_FW_CMD_OP(FW_##cmd##_CMD) | \
F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
(var).retval_len16 = htonl(FW_LEN16(var)); \
} while (0)
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val)
{
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.addrval.addr = htonl(addr);
c.u.addrval.val = htonl(val);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_i2c_rd - read a byte from an i2c addressable device
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @port_id: the port id
* @dev_addr: the i2c device address
* @offset: the byte offset to read from
* @valp: where to store the value
*/
int t4_i2c_rd(struct adapter *adap, unsigned int mbox, unsigned int port_id,
u8 dev_addr, u8 offset, u8 *valp)
{
int ret;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_READ |
V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_I2C));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.i2c_deprecated.pid_pkd = V_FW_LDST_CMD_PID(port_id);
c.u.i2c_deprecated.base = dev_addr;
c.u.i2c_deprecated.boffset = offset;
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
*valp = c.u.i2c_deprecated.data;
return ret;
}
/**
* t4_mdio_rd - read a PHY register through MDIO
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @phy_addr: the PHY address
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
* @reg: the register to read
* @valp: where to store the value
*
* Issues a FW command through the given mailbox to read a PHY register.
*/
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
unsigned int mmd, unsigned int reg, unsigned int *valp)
{
int ret;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
V_FW_LDST_CMD_MMD(mmd));
c.u.mdio.raddr = htons(reg);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
*valp = ntohs(c.u.mdio.rval);
return ret;
}
/**
* t4_mdio_wr - write a PHY register through MDIO
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @phy_addr: the PHY address
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
* @reg: the register to write
* @valp: value to write
*
* Issues a FW command through the given mailbox to write a PHY register.
*/
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
unsigned int mmd, unsigned int reg, unsigned int val)
{
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
V_FW_LDST_CMD_MMD(mmd));
c.u.mdio.raddr = htons(reg);
c.u.mdio.rval = htons(val);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_sge_ctxt_flush - flush the SGE context cache
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a FW command through the given mailbox to flush the
* SGE context cache.
*/
int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
{
int ret;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_READ |
V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.idctxt.msg_ctxtflush = htonl(F_FW_LDST_CMD_CTXTFLUSH);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
return ret;
}
/**
* t4_sge_ctxt_rd - read an SGE context through FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @cid: the context id
* @ctype: the context type
* @data: where to store the context data
*
* Issues a FW command through the given mailbox to read an SGE context.
*/
int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
enum ctxt_type ctype, u32 *data)
{
int ret;
struct fw_ldst_cmd c;
if (ctype == CTXT_EGRESS)
ret = FW_LDST_ADDRSPC_SGE_EGRC;
else if (ctype == CTXT_INGRESS)
ret = FW_LDST_ADDRSPC_SGE_INGC;
else if (ctype == CTXT_FLM)
ret = FW_LDST_ADDRSPC_SGE_FLMC;
else
ret = FW_LDST_ADDRSPC_SGE_CONMC;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret));
c.cycles_to_len16 = htonl(FW_LEN16(c));
c.u.idctxt.physid = htonl(cid);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0) {
data[0] = ntohl(c.u.idctxt.ctxt_data0);
data[1] = ntohl(c.u.idctxt.ctxt_data1);
data[2] = ntohl(c.u.idctxt.ctxt_data2);
data[3] = ntohl(c.u.idctxt.ctxt_data3);
data[4] = ntohl(c.u.idctxt.ctxt_data4);
data[5] = ntohl(c.u.idctxt.ctxt_data5);
}
return ret;
}
/**
* t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
* @adap: the adapter
* @cid: the context id
* @ctype: the context type
* @data: where to store the context data
*
* Reads an SGE context directly, bypassing FW. This is only for
* debugging when FW is unavailable.
*/
int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
u32 *data)
{
int i, ret;
t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
if (!ret)
for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
*data++ = t4_read_reg(adap, i);
return ret;
}
/**
* t4_fw_hello - establish communication with FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @evt_mbox: mailbox to receive async FW events
* @master: specifies the caller's willingness to be the device master
* @state: returns the current device state (if non-NULL)
*
* Issues a command to establish communication with FW. Returns either
* an error (negative integer) or the mailbox of the Master PF.
*/
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
enum dev_master master, enum dev_state *state)
{
int ret;
struct fw_hello_cmd c;
u32 v;
unsigned int master_mbox;
int retries = FW_CMD_HELLO_RETRIES;
retry:
memset(&c, 0, sizeof(c));
INIT_CMD(c, HELLO, WRITE);
c.err_to_clearinit = htonl(
V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
M_FW_HELLO_CMD_MBMASTER) |
V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
F_FW_HELLO_CMD_CLEARINIT);
/*
* Issue the HELLO command to the firmware. If it's not successful
* but indicates that we got a "busy" or "timeout" condition, retry
* the HELLO until we exhaust our retry limit. If we do exceed our
* retry limit, check to see if the firmware left us any error
* information and report that if so ...
*/
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret != FW_SUCCESS) {
if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
goto retry;
if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
t4_report_fw_error(adap);
return ret;
}
v = ntohl(c.err_to_clearinit);
master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
if (state) {
if (v & F_FW_HELLO_CMD_ERR)
*state = DEV_STATE_ERR;
else if (v & F_FW_HELLO_CMD_INIT)
*state = DEV_STATE_INIT;
else
*state = DEV_STATE_UNINIT;
}
/*
* If we're not the Master PF then we need to wait around for the
* Master PF Driver to finish setting up the adapter.
*
* Note that we also do this wait if we're a non-Master-capable PF and
* there is no current Master PF; a Master PF may show up momentarily
* and we wouldn't want to fail pointlessly. (This can happen when an
* OS loads lots of different drivers rapidly at the same time). In
* this case, the Master PF returned by the firmware will be
* M_PCIE_FW_MASTER so the test below will work ...
*/
if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
master_mbox != mbox) {
int waiting = FW_CMD_HELLO_TIMEOUT;
/*
* Wait for the firmware to either indicate an error or
* initialized state. If we see either of these we bail out
* and report the issue to the caller. If we exhaust the
* "hello timeout" and we haven't exhausted our retries, try
* again. Otherwise bail with a timeout error.
*/
for (;;) {
u32 pcie_fw;
msleep(50);
waiting -= 50;
/*
* If neither Error nor Initialialized are indicated
* by the firmware keep waiting till we exhaust our
* timeout ... and then retry if we haven't exhausted
* our retries ...
*/
pcie_fw = t4_read_reg(adap, A_PCIE_FW);
if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
if (waiting <= 0) {
if (retries-- > 0)
goto retry;
return -ETIMEDOUT;
}
continue;
}
/*
* We either have an Error or Initialized condition
* report errors preferentially.
*/
if (state) {
if (pcie_fw & F_PCIE_FW_ERR)
*state = DEV_STATE_ERR;
else if (pcie_fw & F_PCIE_FW_INIT)
*state = DEV_STATE_INIT;
}
/*
* If we arrived before a Master PF was selected and
* there's not a valid Master PF, grab its identity
* for our caller.
*/
if (master_mbox == M_PCIE_FW_MASTER &&
(pcie_fw & F_PCIE_FW_MASTER_VLD))
master_mbox = G_PCIE_FW_MASTER(pcie_fw);
break;
}
}
return master_mbox;
}
/**
* t4_fw_bye - end communication with FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to terminate communication with FW.
*/
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
struct fw_bye_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, BYE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_fw_reset - issue a reset to FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @reset: specifies the type of reset to perform
*
* Issues a reset command of the specified type to FW.
*/
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
struct fw_reset_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, RESET, WRITE);
c.val = htonl(reset);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_fw_halt - issue a reset/halt to FW and put uP into RESET
* @adap: the adapter
* @mbox: mailbox to use for the FW RESET command (if desired)
* @force: force uP into RESET even if FW RESET command fails
*
* Issues a RESET command to firmware (if desired) with a HALT indication
* and then puts the microprocessor into RESET state. The RESET command
* will only be issued if a legitimate mailbox is provided (mbox <=
* M_PCIE_FW_MASTER).
*
* This is generally used in order for the host to safely manipulate the
* adapter without fear of conflicting with whatever the firmware might
* be doing. The only way out of this state is to RESTART the firmware
* ...
*/
int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
{
int ret = 0;
/*
* If a legitimate mailbox is provided, issue a RESET command
* with a HALT indication.
*/
if (mbox <= M_PCIE_FW_MASTER) {
struct fw_reset_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, RESET, WRITE);
c.val = htonl(F_PIORST | F_PIORSTMODE);
c.halt_pkd = htonl(F_FW_RESET_CMD_HALT);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/*
* Normally we won't complete the operation if the firmware RESET
* command fails but if our caller insists we'll go ahead and put the
* uP into RESET. This can be useful if the firmware is hung or even
* missing ... We'll have to take the risk of putting the uP into
* RESET without the cooperation of firmware in that case.
*
* We also force the firmware's HALT flag to be on in case we bypassed
* the firmware RESET command above or we're dealing with old firmware
* which doesn't have the HALT capability. This will serve as a flag
* for the incoming firmware to know that it's coming out of a HALT
* rather than a RESET ... if it's new enough to understand that ...
*/
if (ret == 0 || force) {
t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT);
}
/*
* And we always return the result of the firmware RESET command
* even when we force the uP into RESET ...
*/
return ret;
}
/**
* t4_fw_restart - restart the firmware by taking the uP out of RESET
* @adap: the adapter
* @reset: if we want to do a RESET to restart things
*
* Restart firmware previously halted by t4_fw_halt(). On successful
* return the previous PF Master remains as the new PF Master and there
* is no need to issue a new HELLO command, etc.
*
* We do this in two ways:
*
* 1. If we're dealing with newer firmware we'll simply want to take
* the chip's microprocessor out of RESET. This will cause the
* firmware to start up from its start vector. And then we'll loop
* until the firmware indicates it's started again (PCIE_FW.HALT
* reset to 0) or we timeout.
*
* 2. If we're dealing with older firmware then we'll need to RESET
* the chip since older firmware won't recognize the PCIE_FW.HALT
* flag and automatically RESET itself on startup.
*/
int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
{
if (reset) {
/*
* Since we're directing the RESET instead of the firmware
* doing it automatically, we need to clear the PCIE_FW.HALT
* bit.
*/
t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
/*
* If we've been given a valid mailbox, first try to get the
* firmware to do the RESET. If that works, great and we can
* return success. Otherwise, if we haven't been given a
* valid mailbox or the RESET command failed, fall back to
* hitting the chip with a hammer.
*/
if (mbox <= M_PCIE_FW_MASTER) {
t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
msleep(100);
if (t4_fw_reset(adap, mbox,
F_PIORST | F_PIORSTMODE) == 0)
return 0;
}
t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
msleep(2000);
} else {
int ms;
t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
return FW_SUCCESS;
msleep(100);
ms += 100;
}
return -ETIMEDOUT;
}
return 0;
}
/**
* t4_fw_upgrade - perform all of the steps necessary to upgrade FW
* @adap: the adapter
* @mbox: mailbox to use for the FW RESET command (if desired)
* @fw_data: the firmware image to write
* @size: image size
* @force: force upgrade even if firmware doesn't cooperate
*
* Perform all of the steps necessary for upgrading an adapter's
* firmware image. Normally this requires the cooperation of the
* existing firmware in order to halt all existing activities
* but if an invalid mailbox token is passed in we skip that step
* (though we'll still put the adapter microprocessor into RESET in
* that case).
*
* On successful return the new firmware will have been loaded and
* the adapter will have been fully RESET losing all previous setup
* state. On unsuccessful return the adapter may be completely hosed ...
* positive errno indicates that the adapter is ~probably~ intact, a
* negative errno indicates that things are looking bad ...
*/
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
const u8 *fw_data, unsigned int size, int force)
{
const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
unsigned int bootstrap = ntohl(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
int reset, ret;
if (!bootstrap) {
ret = t4_fw_halt(adap, mbox, force);
if (ret < 0 && !force)
return ret;
}
ret = t4_load_fw(adap, fw_data, size);
if (ret < 0 || bootstrap)
return ret;
/*
* Older versions of the firmware don't understand the new
* PCIE_FW.HALT flag and so won't know to perform a RESET when they
* restart. So for newly loaded older firmware we'll have to do the
* RESET for it so it starts up on a clean slate. We can tell if
* the newly loaded firmware will handle this right by checking
* its header flags to see if it advertises the capability.
*/
reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
return t4_fw_restart(adap, mbox, reset);
}
/**
* t4_fw_initialize - ask FW to initialize the device
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to FW to partially initialize the device. This
* performs initialization that generally doesn't depend on user input.
*/
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
{
struct fw_initialize_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, INITIALIZE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_query_params - query FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
*
* Reads the value of FW or device parameters. Up to 7 parameters can be
* queried at once.
*/
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
u32 *val)
{
int i, ret;
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) |
V_FW_PARAMS_CMD_VFN(vf));
c.retval_len16 = htonl(FW_LEN16(c));
for (i = 0; i < nparams; i++, p += 2, params++)
*p = htonl(*params);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
*val++ = ntohl(*p);
return ret;
}
/**
* t4_set_params - sets FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
*
* Sets the value of FW or device parameters. Up to 7 parameters can be
* specified at once.
*/
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
const u32 *val)
{
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) |
V_FW_PARAMS_CMD_VFN(vf));
c.retval_len16 = htonl(FW_LEN16(c));
while (nparams--) {
*p++ = htonl(*params);
params++;
*p++ = htonl(*val);
val++;
}
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_cfg_pfvf - configure PF/VF resource limits
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF being configured
* @vf: the VF being configured
* @txq: the max number of egress queues
* @txq_eth_ctrl: the max number of egress Ethernet or control queues
* @rxqi: the max number of interrupt-capable ingress queues
* @rxq: the max number of interruptless ingress queues
* @tc: the PCI traffic class
* @vi: the max number of virtual interfaces
* @cmask: the channel access rights mask for the PF/VF
* @pmask: the port access rights mask for the PF/VF
* @nexact: the maximum number of exact MPS filters
* @rcaps: read capabilities
* @wxcaps: write/execute capabilities
*
* Configures resource limits and capabilities for a physical or virtual
* function.
*/
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
unsigned int rxqi, unsigned int rxq, unsigned int tc,
unsigned int vi, unsigned int cmask, unsigned int pmask,
unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
struct fw_pfvf_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
V_FW_PFVF_CMD_VFN(vf));
c.retval_len16 = htonl(FW_LEN16(c));
c.niqflint_niq = htonl(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
V_FW_PFVF_CMD_NIQ(rxq));
c.type_to_neq = htonl(V_FW_PFVF_CMD_CMASK(cmask) |
V_FW_PFVF_CMD_PMASK(pmask) |
V_FW_PFVF_CMD_NEQ(txq));
c.tc_to_nexactf = htonl(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) |
V_FW_PFVF_CMD_NEXACTF(nexact));
c.r_caps_to_nethctrl = htonl(V_FW_PFVF_CMD_R_CAPS(rcaps) |
V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_alloc_vi_func - allocate a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @port: physical port associated with the VI
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @nmac: number of MAC addresses needed (1 to 5)
* @mac: the MAC addresses of the VI
* @rss_size: size of RSS table slice associated with this VI
* @portfunc: which Port Application Function MAC Address is desired
* @idstype: Intrusion Detection Type
*
* Allocates a virtual interface for the given physical port. If @mac is
* not %NULL it contains the MAC addresses of the VI as assigned by FW.
* @mac should be large enough to hold @nmac Ethernet addresses, they are
* stored consecutively so the space needed is @nmac * 6 bytes.
* Returns a negative error number or the non-negative VI id.
*/
int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
unsigned int port, unsigned int pf, unsigned int vf,
unsigned int nmac, u8 *mac, unsigned int *rss_size,
unsigned int portfunc, unsigned int idstype)
{
int ret;
struct fw_vi_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC |
V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
c.alloc_to_len16 = htonl(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
c.type_to_viid = htons(V_FW_VI_CMD_TYPE(idstype) |
V_FW_VI_CMD_FUNC(portfunc));
c.portid_pkd = V_FW_VI_CMD_PORTID(port);
c.nmac = nmac - 1;
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret)
return ret;
if (mac) {
memcpy(mac, c.mac, sizeof(c.mac));
switch (nmac) {
case 5:
memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
case 4:
memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
case 3:
memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
case 2:
memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
}
}
if (rss_size)
*rss_size = G_FW_VI_CMD_RSSSIZE(ntohs(c.norss_rsssize));
return G_FW_VI_CMD_VIID(htons(c.type_to_viid));
}
/**
* t4_alloc_vi - allocate an [Ethernet Function] virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @port: physical port associated with the VI
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @nmac: number of MAC addresses needed (1 to 5)
* @mac: the MAC addresses of the VI
* @rss_size: size of RSS table slice associated with this VI
*
* backwards compatible and convieniance routine to allocate a Virtual
* Interface with a Ethernet Port Application Function and Intrustion
* Detection System disabled.
*/
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
unsigned int *rss_size)
{
return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
FW_VI_FUNC_ETH, 0);
}
/**
* t4_free_vi - free a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @viid: virtual interface identifiler
*
* Free a previously allocated virtual interface.
*/
int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int viid)
{
struct fw_vi_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_EXEC |
V_FW_VI_CMD_PFN(pf) |
V_FW_VI_CMD_VFN(vf));
c.alloc_to_len16 = htonl(F_FW_VI_CMD_FREE | FW_LEN16(c));
c.type_to_viid = htons(V_FW_VI_CMD_VIID(viid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
}
/**
* t4_set_rxmode - set Rx properties of a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @mtu: the new MTU or -1
* @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
* @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
* @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
* @vlanex: 1 to enable HVLAN extraction, 0 to disable it, -1 no change
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sets Rx properties of a virtual interface.
*/
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
int mtu, int promisc, int all_multi, int bcast, int vlanex,
bool sleep_ok)
{
struct fw_vi_rxmode_cmd c;
/* convert to FW values */
if (mtu < 0)
mtu = M_FW_VI_RXMODE_CMD_MTU;
if (promisc < 0)
promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
if (all_multi < 0)
all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
if (bcast < 0)
bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
if (vlanex < 0)
vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid));
c.retval_len16 = htonl(FW_LEN16(c));
c.mtu_to_vlanexen = htonl(V_FW_VI_RXMODE_CMD_MTU(mtu) |
V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}
/**
* t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @free: if true any existing filters for this VI id are first removed
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
* @addr: the MAC address(es)
* @idx: where to store the index of each allocated filter
* @hash: pointer to hash address filter bitmap
* @sleep_ok: call is allowed to sleep
*
* Allocates an exact-match filter for each of the supplied addresses and
* sets it to the corresponding address. If @idx is not %NULL it should
* have at least @naddr entries, each of which will be set to the index of
* the filter allocated for the corresponding MAC address. If a filter
* could not be allocated for an address its index is set to 0xffff.
* If @hash is not %NULL addresses that fail to allocate an exact filter
* are hashed and update the hash filter bitmap pointed at by @hash.
*
* Returns a negative error number or the number of filters allocated.
*/
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
unsigned int viid, bool free, unsigned int naddr,
const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
int offset, ret = 0;
struct fw_vi_mac_cmd c;
unsigned int nfilters = 0;
unsigned int max_naddr = is_t4(adap) ?
NUM_MPS_CLS_SRAM_L_INSTANCES :
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
unsigned int rem = naddr;
if (naddr > max_naddr)
return -EINVAL;
for (offset = 0; offset < naddr ; /**/) {
unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
? rem
: ARRAY_SIZE(c.u.exact));
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[fw_naddr]), 16);
struct fw_vi_mac_exact *p;
int i;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE |
V_FW_CMD_EXEC(free) |
V_FW_VI_MAC_CMD_VIID(viid));
c.freemacs_to_len16 = htonl(V_FW_VI_MAC_CMD_FREEMACS(free) |
V_FW_CMD_LEN16(len16));
for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
p->valid_to_idx = htons(
F_FW_VI_MAC_CMD_VALID |
V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
}
/*
* It's okay if we run out of space in our MAC address arena.
* Some of the addresses we submit may get stored so we need
* to run through the reply to see what the results were ...
*/
ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
if (ret && ret != -FW_ENOMEM)
break;
for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
u16 index = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
if (idx)
idx[offset+i] = (index >= max_naddr
? 0xffff
: index);
if (index < max_naddr)
nfilters++;
else if (hash)
*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
}
free = false;
offset += fw_naddr;
rem -= fw_naddr;
}
if (ret == 0 || ret == -FW_ENOMEM)
ret = nfilters;
return ret;
}
/**
* t4_change_mac - modifies the exact-match filter for a MAC address
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @idx: index of existing filter for old value of MAC address, or -1
* @addr: the new MAC address value
* @persist: whether a new MAC allocation should be persistent
* @add_smt: if true also add the address to the HW SMT
*
* Modifies an exact-match filter and sets it to the new MAC address if
* @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the
* latter case the address is added persistently if @persist is %true.
*
* Note that in general it is not possible to modify the value of a given
* filter so the generic way to modify an address filter is to free the one
* being used by the old address value and allocate a new filter for the
* new address value.
*
* Returns a negative error number or the index of the filter with the new
* MAC value. Note that this index may differ from @idx.
*/
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
int idx, const u8 *addr, bool persist, bool add_smt)
{
int ret, mode;
struct fw_vi_mac_cmd c;
struct fw_vi_mac_exact *p = c.u.exact;
unsigned int max_mac_addr = is_t4(adap) ?
NUM_MPS_CLS_SRAM_L_INSTANCES :
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
if (idx < 0) /* new allocation */
idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid));
c.freemacs_to_len16 = htonl(V_FW_CMD_LEN16(1));
p->valid_to_idx = htons(F_FW_VI_MAC_CMD_VALID |
V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
V_FW_VI_MAC_CMD_IDX(idx));
memcpy(p->macaddr, addr, sizeof(p->macaddr));
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0) {
ret = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
if (ret >= max_mac_addr)
ret = -ENOMEM;
}
return ret;
}
/**
* t4_set_addr_hash - program the MAC inexact-match hash filter
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @ucast: whether the hash filter should also match unicast addresses
* @vec: the value to be written to the hash filter
* @sleep_ok: call is allowed to sleep
*
* Sets the 64-bit inexact-match hash filter for a virtual interface.
*/
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
bool ucast, u64 vec, bool sleep_ok)
{
struct fw_vi_mac_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid));
c.freemacs_to_len16 = htonl(F_FW_VI_MAC_CMD_HASHVECEN |
V_FW_VI_MAC_CMD_HASHUNIEN(ucast) |
V_FW_CMD_LEN16(1));
c.u.hash.hashvec = cpu_to_be64(vec);
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}
/**
* t4_enable_vi - enable/disable a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @rx_en: 1=enable Rx, 0=disable Rx
* @tx_en: 1=enable Tx, 0=disable Tx
*
* Enables/disables a virtual interface.
*/
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
bool rx_en, bool tx_en)
{
struct fw_vi_enable_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
c.ien_to_len16 = htonl(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
V_FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_identify_port - identify a VI's port by blinking its LED
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @nblinks: how many times to blink LED at 2.5 Hz
*
* Identifies a VI's port by blinking its LED.
*/
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
unsigned int nblinks)
{
struct fw_vi_enable_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
c.ien_to_len16 = htonl(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
c.blinkdur = htons(nblinks);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_iq_start_stop - enable/disable an ingress queue and its FLs
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @start: %true to enable the queues, %false to disable them
* @pf: the PF owning the queues
* @vf: the VF owning the queues
* @iqid: ingress queue id
* @fl0id: FL0 queue id or 0xffff if no attached FL0
* @fl1id: FL1 queue id or 0xffff if no attached FL1
*
* Starts or stops an ingress queue and its associated FLs, if any.
*/
int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
unsigned int pf, unsigned int vf, unsigned int iqid,
unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
V_FW_IQ_CMD_VFN(vf));
c.alloc_to_len16 = htonl(V_FW_IQ_CMD_IQSTART(start) |
V_FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
c.iqid = htons(iqid);
c.fl0id = htons(fl0id);
c.fl1id = htons(fl1id);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_iq_free - free an ingress queue and its FLs
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queues
* @vf: the VF owning the queues
* @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
* @iqid: ingress queue id
* @fl0id: FL0 queue id or 0xffff if no attached FL0
* @fl1id: FL1 queue id or 0xffff if no attached FL1
*
* Frees an ingress queue and its associated FLs, if any.
*/
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int iqtype, unsigned int iqid,
unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
V_FW_IQ_CMD_VFN(vf));
c.alloc_to_len16 = htonl(F_FW_IQ_CMD_FREE | FW_LEN16(c));
c.type_to_iqandstindex = htonl(V_FW_IQ_CMD_TYPE(iqtype));
c.iqid = htons(iqid);
c.fl0id = htons(fl0id);
c.fl1id = htons(fl1id);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_eth_eq_free - free an Ethernet egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees an Ethernet egress queue.
*/
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_eth_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) |
V_FW_EQ_ETH_CMD_VFN(vf));
c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
c.eqid_pkd = htonl(V_FW_EQ_ETH_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_ctrl_eq_free - free a control egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees a control egress queue.
*/
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_ctrl_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) |
V_FW_EQ_CTRL_CMD_VFN(vf));
c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_ofld_eq_free - free an offload egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees a control egress queue.
*/
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_ofld_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) |
V_FW_EQ_OFLD_CMD_VFN(vf));
c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
c.eqid_pkd = htonl(V_FW_EQ_OFLD_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_handle_fw_rpl - process a FW reply message
* @adap: the adapter
* @rpl: start of the FW message
*
* Processes a FW message, such as link state change messages.
*/
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
u8 opcode = *(const u8 *)rpl;
const struct fw_port_cmd *p = (const void *)rpl;
unsigned int action = G_FW_PORT_CMD_ACTION(ntohl(p->action_to_len16));
if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
/* link/module state change message */
int speed = 0, fc = 0, i;
int chan = G_FW_PORT_CMD_PORTID(ntohl(p->op_to_portid));
struct port_info *pi = NULL;
struct link_config *lc;
u32 stat = ntohl(p->u.info.lstatus_to_modtype);
int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
if (stat & F_FW_PORT_CMD_RXPAUSE)
fc |= PAUSE_RX;
if (stat & F_FW_PORT_CMD_TXPAUSE)
fc |= PAUSE_TX;
if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
speed = SPEED_100;
else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
speed = SPEED_1000;
else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
speed = SPEED_10000;
else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
speed = SPEED_40000;
for_each_port(adap, i) {
pi = adap2pinfo(adap, i);
if (pi->tx_chan == chan)
break;
}
lc = &pi->link_cfg;
if (link_ok != lc->link_ok || speed != lc->speed ||
fc != lc->fc) { /* something changed */
int reason;
if (!link_ok && lc->link_ok)
reason = G_FW_PORT_CMD_LINKDNRC(stat);
else
reason = -1;
lc->link_ok = link_ok;
lc->speed = speed;
lc->fc = fc;
lc->supported = ntohs(p->u.info.pcap);
t4_os_link_changed(adap, i, link_ok, reason);
}
if (mod != pi->mod_type) {
pi->mod_type = mod;
t4_os_portmod_changed(adap, i);
}
} else {
CH_WARN_RATELIMIT(adap,
"Unknown firmware reply 0x%x (0x%x)\n", opcode, action);
return -EINVAL;
}
return 0;
}
/**
* get_pci_mode - determine a card's PCI mode
* @adapter: the adapter
* @p: where to store the PCI settings
*
* Determines a card's PCI mode and associated parameters, such as speed
* and width.
*/
static void __devinit get_pci_mode(struct adapter *adapter,
struct pci_params *p)
{
u16 val;
u32 pcie_cap;
pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
if (pcie_cap) {
t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
p->speed = val & PCI_EXP_LNKSTA_CLS;
p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
}
}
/**
* init_link_config - initialize a link's SW state
* @lc: structure holding the link state
* @caps: link capabilities
*
* Initializes the SW state maintained for each link, including the link's
* capabilities and default speed/flow-control/autonegotiation settings.
*/
static void __devinit init_link_config(struct link_config *lc,
unsigned int caps)
{
lc->supported = caps;
lc->requested_speed = 0;
lc->speed = 0;
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
if (lc->supported & FW_PORT_CAP_ANEG) {
lc->advertising = lc->supported & ADVERT_MASK;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->advertising = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
static int __devinit get_flash_params(struct adapter *adapter)
{
int ret;
u32 info = 0;
ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
if (!ret)
ret = sf1_read(adapter, 3, 0, 1, &info);
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
if (ret < 0)
return ret;
if ((info & 0xff) != 0x20) /* not a Numonix flash */
return -EINVAL;
info >>= 16; /* log2 of size */
if (info >= 0x14 && info < 0x18)
adapter->params.sf_nsec = 1 << (info - 16);
else if (info == 0x18)
adapter->params.sf_nsec = 64;
else
return -EINVAL;
adapter->params.sf_size = 1 << info;
return 0;
}
static void __devinit set_pcie_completion_timeout(struct adapter *adapter,
u8 range)
{
u16 val;
u32 pcie_cap;
pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
if (pcie_cap) {
t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
val &= 0xfff0;
val |= range ;
t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
}
}
/**
* t4_prep_adapter - prepare SW and HW for operation
* @adapter: the adapter
* @reset: if true perform a HW reset
*
* Initialize adapter SW state for the various HW modules, set initial
* values for some adapter tunables, take PHYs out of reset, and
* initialize the MDIO interface.
*/
int __devinit t4_prep_adapter(struct adapter *adapter)
{
int ret;
uint16_t device_id;
uint32_t pl_rev;
get_pci_mode(adapter, &adapter->params.pci);
pl_rev = t4_read_reg(adapter, A_PL_REV);
adapter->params.chipid = G_CHIPID(pl_rev);
adapter->params.rev = G_REV(pl_rev);
if (adapter->params.chipid == 0) {
/* T4 did not have chipid in PL_REV (T5 onwards do) */
adapter->params.chipid = CHELSIO_T4;
/* T4A1 chip is not supported */
if (adapter->params.rev == 1) {
CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
return -EINVAL;
}
}
adapter->params.pci.vpd_cap_addr =
t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
ret = get_flash_params(adapter);
if (ret < 0)
return ret;
ret = get_vpd_params(adapter, &adapter->params.vpd);
if (ret < 0)
return ret;
/* Cards with real ASICs have the chipid in the PCIe device id */
t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
if (device_id >> 12 == adapter->params.chipid)
adapter->params.cim_la_size = CIMLA_SIZE;
else {
/* FPGA */
adapter->params.fpga = 1;
adapter->params.cim_la_size = 2 * CIMLA_SIZE;
}
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
/*
* Default port and clock for debugging in case we can't reach FW.
*/
adapter->params.nports = 1;
adapter->params.portvec = 1;
adapter->params.vpd.cclk = 50000;
/* Set pci completion timeout value to 4 seconds. */
set_pcie_completion_timeout(adapter, 0xd);
return 0;
}
/**
* t4_init_tp_params - initialize adap->params.tp
* @adap: the adapter
*
* Initialize various fields of the adapter's TP Parameters structure.
*/
int __devinit t4_init_tp_params(struct adapter *adap)
{
int chan;
u32 v;
v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
adap->params.tp.tre = G_TIMERRESOLUTION(v);
adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
for (chan = 0; chan < NCHAN; chan++)
adap->params.tp.tx_modq[chan] = chan;
/*
* Cache the adapter's Compressed Filter Mode and global Incress
* Configuration.
*/
t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&adap->params.tp.vlan_pri_map, 1,
A_TP_VLAN_PRI_MAP);
t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
&adap->params.tp.ingress_config, 1,
A_TP_INGRESS_CONFIG);
/*
* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
* shift positions of several elements of the Compressed Filter Tuple
* for this adapter which we need frequently ...
*/
adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
adap->params.tp.protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
/*
* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
* represents the presense of an Outer VLAN instead of a VNIC ID.
*/
if ((adap->params.tp.ingress_config & F_VNIC) == 0)
adap->params.tp.vnic_shift = -1;
return 0;
}
/**
* t4_filter_field_shift - calculate filter field shift
* @adap: the adapter
* @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
*
* Return the shift position of a filter field within the Compressed
* Filter Tuple. The filter field is specified via its selection bit
* within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
*/
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
{
unsigned int filter_mode = adap->params.tp.vlan_pri_map;
unsigned int sel;
int field_shift;
if ((filter_mode & filter_sel) == 0)
return -1;
for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
switch (filter_mode & sel) {
case F_FCOE: field_shift += W_FT_FCOE; break;
case F_PORT: field_shift += W_FT_PORT; break;
case F_VNIC_ID: field_shift += W_FT_VNIC_ID; break;
case F_VLAN: field_shift += W_FT_VLAN; break;
case F_TOS: field_shift += W_FT_TOS; break;
case F_PROTOCOL: field_shift += W_FT_PROTOCOL; break;
case F_ETHERTYPE: field_shift += W_FT_ETHERTYPE; break;
case F_MACMATCH: field_shift += W_FT_MACMATCH; break;
case F_MPSHITTYPE: field_shift += W_FT_MPSHITTYPE; break;
case F_FRAGMENTATION: field_shift += W_FT_FRAGMENTATION; break;
}
}
return field_shift;
}
int __devinit t4_port_init(struct port_info *p, int mbox, int pf, int vf)
{
u8 addr[6];
int ret, i, j;
struct fw_port_cmd c;
unsigned int rss_size;
adapter_t *adap = p->adapter;
memset(&c, 0, sizeof(c));
for (i = 0, j = -1; i <= p->port_id; i++) {
do {
j++;
} while ((adap->params.portvec & (1 << j)) == 0);
}
c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ |
V_FW_PORT_CMD_PORTID(j));
c.action_to_len16 = htonl(
V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
FW_LEN16(c));
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret)
return ret;
ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
if (ret < 0)
return ret;
p->viid = ret;
p->tx_chan = j;
p->lport = j;
p->rss_size = rss_size;
t4_os_set_hw_addr(adap, p->port_id, addr);
ret = ntohl(c.u.info.lstatus_to_modtype);
p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
G_FW_PORT_CMD_MDIOADDR(ret) : -1;
p->port_type = G_FW_PORT_CMD_PTYPE(ret);
p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
return 0;
}