1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-25 11:37:56 +00:00
freebsd/contrib/gcc/tree-flow-inline.h
2007-05-19 01:19:51 +00:00

1624 lines
40 KiB
C

/* Inline functions for tree-flow.h
Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#ifndef _TREE_FLOW_INLINE_H
#define _TREE_FLOW_INLINE_H 1
/* Inline functions for manipulating various data structures defined in
tree-flow.h. See tree-flow.h for documentation. */
/* Initialize the hashtable iterator HTI to point to hashtable TABLE */
static inline void *
first_htab_element (htab_iterator *hti, htab_t table)
{
hti->htab = table;
hti->slot = table->entries;
hti->limit = hti->slot + htab_size (table);
do
{
PTR x = *(hti->slot);
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
break;
} while (++(hti->slot) < hti->limit);
if (hti->slot < hti->limit)
return *(hti->slot);
return NULL;
}
/* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
or NULL if we have reached the end. */
static inline bool
end_htab_p (htab_iterator *hti)
{
if (hti->slot >= hti->limit)
return true;
return false;
}
/* Advance the hashtable iterator pointed to by HTI to the next element of the
hashtable. */
static inline void *
next_htab_element (htab_iterator *hti)
{
while (++(hti->slot) < hti->limit)
{
PTR x = *(hti->slot);
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
return x;
};
return NULL;
}
/* Initialize ITER to point to the first referenced variable in the
referenced_vars hashtable, and return that variable. */
static inline tree
first_referenced_var (referenced_var_iterator *iter)
{
struct int_tree_map *itm;
itm = (struct int_tree_map *) first_htab_element (&iter->hti,
referenced_vars);
if (!itm)
return NULL;
return itm->to;
}
/* Return true if we have hit the end of the referenced variables ITER is
iterating through. */
static inline bool
end_referenced_vars_p (referenced_var_iterator *iter)
{
return end_htab_p (&iter->hti);
}
/* Make ITER point to the next referenced_var in the referenced_var hashtable,
and return that variable. */
static inline tree
next_referenced_var (referenced_var_iterator *iter)
{
struct int_tree_map *itm;
itm = (struct int_tree_map *) next_htab_element (&iter->hti);
if (!itm)
return NULL;
return itm->to;
}
/* Fill up VEC with the variables in the referenced vars hashtable. */
static inline void
fill_referenced_var_vec (VEC (tree, heap) **vec)
{
referenced_var_iterator rvi;
tree var;
*vec = NULL;
FOR_EACH_REFERENCED_VAR (var, rvi)
VEC_safe_push (tree, heap, *vec, var);
}
/* Return the variable annotation for T, which must be a _DECL node.
Return NULL if the variable annotation doesn't already exist. */
static inline var_ann_t
var_ann (tree t)
{
gcc_assert (t);
gcc_assert (DECL_P (t));
gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
return (var_ann_t) t->common.ann;
}
/* Return the variable annotation for T, which must be a _DECL node.
Create the variable annotation if it doesn't exist. */
static inline var_ann_t
get_var_ann (tree var)
{
var_ann_t ann = var_ann (var);
return (ann) ? ann : create_var_ann (var);
}
/* Return the function annotation for T, which must be a FUNCTION_DECL node.
Return NULL if the function annotation doesn't already exist. */
static inline function_ann_t
function_ann (tree t)
{
gcc_assert (t);
gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN);
return (function_ann_t) t->common.ann;
}
/* Return the function annotation for T, which must be a FUNCTION_DECL node.
Create the function annotation if it doesn't exist. */
static inline function_ann_t
get_function_ann (tree var)
{
function_ann_t ann = function_ann (var);
gcc_assert (!var->common.ann || var->common.ann->common.type == FUNCTION_ANN);
return (ann) ? ann : create_function_ann (var);
}
/* Return the statement annotation for T, which must be a statement
node. Return NULL if the statement annotation doesn't exist. */
static inline stmt_ann_t
stmt_ann (tree t)
{
#ifdef ENABLE_CHECKING
gcc_assert (is_gimple_stmt (t));
#endif
gcc_assert (!t->common.ann || t->common.ann->common.type == STMT_ANN);
return (stmt_ann_t) t->common.ann;
}
/* Return the statement annotation for T, which must be a statement
node. Create the statement annotation if it doesn't exist. */
static inline stmt_ann_t
get_stmt_ann (tree stmt)
{
stmt_ann_t ann = stmt_ann (stmt);
return (ann) ? ann : create_stmt_ann (stmt);
}
/* Return the annotation type for annotation ANN. */
static inline enum tree_ann_type
ann_type (tree_ann_t ann)
{
return ann->common.type;
}
/* Return the basic block for statement T. */
static inline basic_block
bb_for_stmt (tree t)
{
stmt_ann_t ann;
if (TREE_CODE (t) == PHI_NODE)
return PHI_BB (t);
ann = stmt_ann (t);
return ann ? ann->bb : NULL;
}
/* Return the may_aliases varray for variable VAR, or NULL if it has
no may aliases. */
static inline VEC(tree, gc) *
may_aliases (tree var)
{
var_ann_t ann = var_ann (var);
return ann ? ann->may_aliases : NULL;
}
/* Return the line number for EXPR, or return -1 if we have no line
number information for it. */
static inline int
get_lineno (tree expr)
{
if (expr == NULL_TREE)
return -1;
if (TREE_CODE (expr) == COMPOUND_EXPR)
expr = TREE_OPERAND (expr, 0);
if (! EXPR_HAS_LOCATION (expr))
return -1;
return EXPR_LINENO (expr);
}
/* Return the file name for EXPR, or return "???" if we have no
filename information. */
static inline const char *
get_filename (tree expr)
{
const char *filename;
if (expr == NULL_TREE)
return "???";
if (TREE_CODE (expr) == COMPOUND_EXPR)
expr = TREE_OPERAND (expr, 0);
if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
return filename;
else
return "???";
}
/* Return true if T is a noreturn call. */
static inline bool
noreturn_call_p (tree t)
{
tree call = get_call_expr_in (t);
return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
}
/* Mark statement T as modified. */
static inline void
mark_stmt_modified (tree t)
{
stmt_ann_t ann;
if (TREE_CODE (t) == PHI_NODE)
return;
ann = stmt_ann (t);
if (ann == NULL)
ann = create_stmt_ann (t);
else if (noreturn_call_p (t))
VEC_safe_push (tree, gc, modified_noreturn_calls, t);
ann->modified = 1;
}
/* Mark statement T as modified, and update it. */
static inline void
update_stmt (tree t)
{
if (TREE_CODE (t) == PHI_NODE)
return;
mark_stmt_modified (t);
update_stmt_operands (t);
}
static inline void
update_stmt_if_modified (tree t)
{
if (stmt_modified_p (t))
update_stmt_operands (t);
}
/* Return true if T is marked as modified, false otherwise. */
static inline bool
stmt_modified_p (tree t)
{
stmt_ann_t ann = stmt_ann (t);
/* Note that if the statement doesn't yet have an annotation, we consider it
modified. This will force the next call to update_stmt_operands to scan
the statement. */
return ann ? ann->modified : true;
}
/* Delink an immediate_uses node from its chain. */
static inline void
delink_imm_use (ssa_use_operand_t *linknode)
{
/* Return if this node is not in a list. */
if (linknode->prev == NULL)
return;
linknode->prev->next = linknode->next;
linknode->next->prev = linknode->prev;
linknode->prev = NULL;
linknode->next = NULL;
}
/* Link ssa_imm_use node LINKNODE into the chain for LIST. */
static inline void
link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
{
/* Link the new node at the head of the list. If we are in the process of
traversing the list, we won't visit any new nodes added to it. */
linknode->prev = list;
linknode->next = list->next;
list->next->prev = linknode;
list->next = linknode;
}
/* Link ssa_imm_use node LINKNODE into the chain for DEF. */
static inline void
link_imm_use (ssa_use_operand_t *linknode, tree def)
{
ssa_use_operand_t *root;
if (!def || TREE_CODE (def) != SSA_NAME)
linknode->prev = NULL;
else
{
root = &(SSA_NAME_IMM_USE_NODE (def));
#ifdef ENABLE_CHECKING
if (linknode->use)
gcc_assert (*(linknode->use) == def);
#endif
link_imm_use_to_list (linknode, root);
}
}
/* Set the value of a use pointed to by USE to VAL. */
static inline void
set_ssa_use_from_ptr (use_operand_p use, tree val)
{
delink_imm_use (use);
*(use->use) = val;
link_imm_use (use, val);
}
/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
in STMT. */
static inline void
link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
{
if (stmt)
link_imm_use (linknode, def);
else
link_imm_use (linknode, NULL);
linknode->stmt = stmt;
}
/* Relink a new node in place of an old node in the list. */
static inline void
relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
{
/* The node one had better be in the same list. */
gcc_assert (*(old->use) == *(node->use));
node->prev = old->prev;
node->next = old->next;
if (old->prev)
{
old->prev->next = node;
old->next->prev = node;
/* Remove the old node from the list. */
old->prev = NULL;
}
}
/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
in STMT. */
static inline void
relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
{
if (stmt)
relink_imm_use (linknode, old);
else
link_imm_use (linknode, NULL);
linknode->stmt = stmt;
}
/* Return true is IMM has reached the end of the immediate use list. */
static inline bool
end_readonly_imm_use_p (imm_use_iterator *imm)
{
return (imm->imm_use == imm->end_p);
}
/* Initialize iterator IMM to process the list for VAR. */
static inline use_operand_p
first_readonly_imm_use (imm_use_iterator *imm, tree var)
{
gcc_assert (TREE_CODE (var) == SSA_NAME);
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
imm->imm_use = imm->end_p->next;
#ifdef ENABLE_CHECKING
imm->iter_node.next = imm->imm_use->next;
#endif
if (end_readonly_imm_use_p (imm))
return NULL_USE_OPERAND_P;
return imm->imm_use;
}
/* Bump IMM to the next use in the list. */
static inline use_operand_p
next_readonly_imm_use (imm_use_iterator *imm)
{
use_operand_p old = imm->imm_use;
#ifdef ENABLE_CHECKING
/* If this assertion fails, it indicates the 'next' pointer has changed
since we the last bump. This indicates that the list is being modified
via stmt changes, or SET_USE, or somesuch thing, and you need to be
using the SAFE version of the iterator. */
gcc_assert (imm->iter_node.next == old->next);
imm->iter_node.next = old->next->next;
#endif
imm->imm_use = old->next;
if (end_readonly_imm_use_p (imm))
return old;
return imm->imm_use;
}
/* Return true if VAR has no uses. */
static inline bool
has_zero_uses (tree var)
{
ssa_use_operand_t *ptr;
ptr = &(SSA_NAME_IMM_USE_NODE (var));
/* A single use means there is no items in the list. */
return (ptr == ptr->next);
}
/* Return true if VAR has a single use. */
static inline bool
has_single_use (tree var)
{
ssa_use_operand_t *ptr;
ptr = &(SSA_NAME_IMM_USE_NODE (var));
/* A single use means there is one item in the list. */
return (ptr != ptr->next && ptr == ptr->next->next);
}
/* If VAR has only a single immediate use, return true, and set USE_P and STMT
to the use pointer and stmt of occurrence. */
static inline bool
single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
{
ssa_use_operand_t *ptr;
ptr = &(SSA_NAME_IMM_USE_NODE (var));
if (ptr != ptr->next && ptr == ptr->next->next)
{
*use_p = ptr->next;
*stmt = ptr->next->stmt;
return true;
}
*use_p = NULL_USE_OPERAND_P;
*stmt = NULL_TREE;
return false;
}
/* Return the number of immediate uses of VAR. */
static inline unsigned int
num_imm_uses (tree var)
{
ssa_use_operand_t *ptr, *start;
unsigned int num;
start = &(SSA_NAME_IMM_USE_NODE (var));
num = 0;
for (ptr = start->next; ptr != start; ptr = ptr->next)
num++;
return num;
}
/* Return the tree pointer to by USE. */
static inline tree
get_use_from_ptr (use_operand_p use)
{
return *(use->use);
}
/* Return the tree pointer to by DEF. */
static inline tree
get_def_from_ptr (def_operand_p def)
{
return *def;
}
/* Return a def_operand_p pointer for the result of PHI. */
static inline def_operand_p
get_phi_result_ptr (tree phi)
{
return &(PHI_RESULT_TREE (phi));
}
/* Return a use_operand_p pointer for argument I of phinode PHI. */
static inline use_operand_p
get_phi_arg_def_ptr (tree phi, int i)
{
return &(PHI_ARG_IMM_USE_NODE (phi,i));
}
/* Return the bitmap of addresses taken by STMT, or NULL if it takes
no addresses. */
static inline bitmap
addresses_taken (tree stmt)
{
stmt_ann_t ann = stmt_ann (stmt);
return ann ? ann->addresses_taken : NULL;
}
/* Return the PHI nodes for basic block BB, or NULL if there are no
PHI nodes. */
static inline tree
phi_nodes (basic_block bb)
{
return bb->phi_nodes;
}
/* Set list of phi nodes of a basic block BB to L. */
static inline void
set_phi_nodes (basic_block bb, tree l)
{
tree phi;
bb->phi_nodes = l;
for (phi = l; phi; phi = PHI_CHAIN (phi))
set_bb_for_stmt (phi, bb);
}
/* Return the phi argument which contains the specified use. */
static inline int
phi_arg_index_from_use (use_operand_p use)
{
struct phi_arg_d *element, *root;
int index;
tree phi;
/* Since the use is the first thing in a PHI argument element, we can
calculate its index based on casting it to an argument, and performing
pointer arithmetic. */
phi = USE_STMT (use);
gcc_assert (TREE_CODE (phi) == PHI_NODE);
element = (struct phi_arg_d *)use;
root = &(PHI_ARG_ELT (phi, 0));
index = element - root;
#ifdef ENABLE_CHECKING
/* Make sure the calculation doesn't have any leftover bytes. If it does,
then imm_use is likely not the first element in phi_arg_d. */
gcc_assert (
(((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
#endif
return index;
}
/* Mark VAR as used, so that it'll be preserved during rtl expansion. */
static inline void
set_is_used (tree var)
{
var_ann_t ann = get_var_ann (var);
ann->used = 1;
}
/* ----------------------------------------------------------------------- */
/* Return true if T is an executable statement. */
static inline bool
is_exec_stmt (tree t)
{
return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
}
/* Return true if this stmt can be the target of a control transfer stmt such
as a goto. */
static inline bool
is_label_stmt (tree t)
{
if (t)
switch (TREE_CODE (t))
{
case LABEL_DECL:
case LABEL_EXPR:
case CASE_LABEL_EXPR:
return true;
default:
return false;
}
return false;
}
/* PHI nodes should contain only ssa_names and invariants. A test
for ssa_name is definitely simpler; don't let invalid contents
slip in in the meantime. */
static inline bool
phi_ssa_name_p (tree t)
{
if (TREE_CODE (t) == SSA_NAME)
return true;
#ifdef ENABLE_CHECKING
gcc_assert (is_gimple_min_invariant (t));
#endif
return false;
}
/* ----------------------------------------------------------------------- */
/* Return a block_stmt_iterator that points to beginning of basic
block BB. */
static inline block_stmt_iterator
bsi_start (basic_block bb)
{
block_stmt_iterator bsi;
if (bb->stmt_list)
bsi.tsi = tsi_start (bb->stmt_list);
else
{
gcc_assert (bb->index < NUM_FIXED_BLOCKS);
bsi.tsi.ptr = NULL;
bsi.tsi.container = NULL;
}
bsi.bb = bb;
return bsi;
}
/* Return a block statement iterator that points to the first non-label
statement in block BB. */
static inline block_stmt_iterator
bsi_after_labels (basic_block bb)
{
block_stmt_iterator bsi = bsi_start (bb);
while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
bsi_next (&bsi);
return bsi;
}
/* Return a block statement iterator that points to the end of basic
block BB. */
static inline block_stmt_iterator
bsi_last (basic_block bb)
{
block_stmt_iterator bsi;
if (bb->stmt_list)
bsi.tsi = tsi_last (bb->stmt_list);
else
{
gcc_assert (bb->index < NUM_FIXED_BLOCKS);
bsi.tsi.ptr = NULL;
bsi.tsi.container = NULL;
}
bsi.bb = bb;
return bsi;
}
/* Return true if block statement iterator I has reached the end of
the basic block. */
static inline bool
bsi_end_p (block_stmt_iterator i)
{
return tsi_end_p (i.tsi);
}
/* Modify block statement iterator I so that it is at the next
statement in the basic block. */
static inline void
bsi_next (block_stmt_iterator *i)
{
tsi_next (&i->tsi);
}
/* Modify block statement iterator I so that it is at the previous
statement in the basic block. */
static inline void
bsi_prev (block_stmt_iterator *i)
{
tsi_prev (&i->tsi);
}
/* Return the statement that block statement iterator I is currently
at. */
static inline tree
bsi_stmt (block_stmt_iterator i)
{
return tsi_stmt (i.tsi);
}
/* Return a pointer to the statement that block statement iterator I
is currently at. */
static inline tree *
bsi_stmt_ptr (block_stmt_iterator i)
{
return tsi_stmt_ptr (i.tsi);
}
/* Returns the loop of the statement STMT. */
static inline struct loop *
loop_containing_stmt (tree stmt)
{
basic_block bb = bb_for_stmt (stmt);
if (!bb)
return NULL;
return bb->loop_father;
}
/* Return true if VAR is a clobbered by function calls. */
static inline bool
is_call_clobbered (tree var)
{
if (!MTAG_P (var))
return DECL_CALL_CLOBBERED (var);
else
return bitmap_bit_p (call_clobbered_vars, DECL_UID (var));
}
/* Mark variable VAR as being clobbered by function calls. */
static inline void
mark_call_clobbered (tree var, unsigned int escape_type)
{
var_ann (var)->escape_mask |= escape_type;
if (!MTAG_P (var))
DECL_CALL_CLOBBERED (var) = true;
bitmap_set_bit (call_clobbered_vars, DECL_UID (var));
}
/* Clear the call-clobbered attribute from variable VAR. */
static inline void
clear_call_clobbered (tree var)
{
var_ann_t ann = var_ann (var);
ann->escape_mask = 0;
if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
MTAG_GLOBAL (var) = 0;
if (!MTAG_P (var))
DECL_CALL_CLOBBERED (var) = false;
bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
}
/* Mark variable VAR as being non-addressable. */
static inline void
mark_non_addressable (tree var)
{
if (!MTAG_P (var))
DECL_CALL_CLOBBERED (var) = false;
bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
TREE_ADDRESSABLE (var) = 0;
}
/* Return the common annotation for T. Return NULL if the annotation
doesn't already exist. */
static inline tree_ann_common_t
tree_common_ann (tree t)
{
return &t->common.ann->common;
}
/* Return a common annotation for T. Create the constant annotation if it
doesn't exist. */
static inline tree_ann_common_t
get_tree_common_ann (tree t)
{
tree_ann_common_t ann = tree_common_ann (t);
return (ann) ? ann : create_tree_common_ann (t);
}
/* ----------------------------------------------------------------------- */
/* The following set of routines are used to iterator over various type of
SSA operands. */
/* Return true if PTR is finished iterating. */
static inline bool
op_iter_done (ssa_op_iter *ptr)
{
return ptr->done;
}
/* Get the next iterator use value for PTR. */
static inline use_operand_p
op_iter_next_use (ssa_op_iter *ptr)
{
use_operand_p use_p;
#ifdef ENABLE_CHECKING
gcc_assert (ptr->iter_type == ssa_op_iter_use);
#endif
if (ptr->uses)
{
use_p = USE_OP_PTR (ptr->uses);
ptr->uses = ptr->uses->next;
return use_p;
}
if (ptr->vuses)
{
use_p = VUSE_OP_PTR (ptr->vuses);
ptr->vuses = ptr->vuses->next;
return use_p;
}
if (ptr->mayuses)
{
use_p = MAYDEF_OP_PTR (ptr->mayuses);
ptr->mayuses = ptr->mayuses->next;
return use_p;
}
if (ptr->mustkills)
{
use_p = MUSTDEF_KILL_PTR (ptr->mustkills);
ptr->mustkills = ptr->mustkills->next;
return use_p;
}
if (ptr->phi_i < ptr->num_phi)
{
return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
}
ptr->done = true;
return NULL_USE_OPERAND_P;
}
/* Get the next iterator def value for PTR. */
static inline def_operand_p
op_iter_next_def (ssa_op_iter *ptr)
{
def_operand_p def_p;
#ifdef ENABLE_CHECKING
gcc_assert (ptr->iter_type == ssa_op_iter_def);
#endif
if (ptr->defs)
{
def_p = DEF_OP_PTR (ptr->defs);
ptr->defs = ptr->defs->next;
return def_p;
}
if (ptr->mustdefs)
{
def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs);
ptr->mustdefs = ptr->mustdefs->next;
return def_p;
}
if (ptr->maydefs)
{
def_p = MAYDEF_RESULT_PTR (ptr->maydefs);
ptr->maydefs = ptr->maydefs->next;
return def_p;
}
ptr->done = true;
return NULL_DEF_OPERAND_P;
}
/* Get the next iterator tree value for PTR. */
static inline tree
op_iter_next_tree (ssa_op_iter *ptr)
{
tree val;
#ifdef ENABLE_CHECKING
gcc_assert (ptr->iter_type == ssa_op_iter_tree);
#endif
if (ptr->uses)
{
val = USE_OP (ptr->uses);
ptr->uses = ptr->uses->next;
return val;
}
if (ptr->vuses)
{
val = VUSE_OP (ptr->vuses);
ptr->vuses = ptr->vuses->next;
return val;
}
if (ptr->mayuses)
{
val = MAYDEF_OP (ptr->mayuses);
ptr->mayuses = ptr->mayuses->next;
return val;
}
if (ptr->mustkills)
{
val = MUSTDEF_KILL (ptr->mustkills);
ptr->mustkills = ptr->mustkills->next;
return val;
}
if (ptr->defs)
{
val = DEF_OP (ptr->defs);
ptr->defs = ptr->defs->next;
return val;
}
if (ptr->mustdefs)
{
val = MUSTDEF_RESULT (ptr->mustdefs);
ptr->mustdefs = ptr->mustdefs->next;
return val;
}
if (ptr->maydefs)
{
val = MAYDEF_RESULT (ptr->maydefs);
ptr->maydefs = ptr->maydefs->next;
return val;
}
ptr->done = true;
return NULL_TREE;
}
/* This functions clears the iterator PTR, and marks it done. This is normally
used to prevent warnings in the compile about might be uninitialized
components. */
static inline void
clear_and_done_ssa_iter (ssa_op_iter *ptr)
{
ptr->defs = NULL;
ptr->uses = NULL;
ptr->vuses = NULL;
ptr->maydefs = NULL;
ptr->mayuses = NULL;
ptr->mustdefs = NULL;
ptr->mustkills = NULL;
ptr->iter_type = ssa_op_iter_none;
ptr->phi_i = 0;
ptr->num_phi = 0;
ptr->phi_stmt = NULL_TREE;
ptr->done = true;
}
/* Initialize the iterator PTR to the virtual defs in STMT. */
static inline void
op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
{
#ifdef ENABLE_CHECKING
gcc_assert (stmt_ann (stmt));
#endif
ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL;
ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL;
ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL;
ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL;
ptr->done = false;
ptr->phi_i = 0;
ptr->num_phi = 0;
ptr->phi_stmt = NULL_TREE;
}
/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
the first use. */
static inline use_operand_p
op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
{
gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
op_iter_init (ptr, stmt, flags);
ptr->iter_type = ssa_op_iter_use;
return op_iter_next_use (ptr);
}
/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
the first def. */
static inline def_operand_p
op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
{
gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0);
op_iter_init (ptr, stmt, flags);
ptr->iter_type = ssa_op_iter_def;
return op_iter_next_def (ptr);
}
/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
the first operand as a tree. */
static inline tree
op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
{
op_iter_init (ptr, stmt, flags);
ptr->iter_type = ssa_op_iter_tree;
return op_iter_next_tree (ptr);
}
/* Get the next iterator mustdef value for PTR, returning the mustdef values in
KILL and DEF. */
static inline void
op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def,
ssa_op_iter *ptr)
{
#ifdef ENABLE_CHECKING
gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef);
#endif
if (ptr->mayuses)
{
*def = MAYDEF_RESULT_PTR (ptr->mayuses);
*use = MAYDEF_OP_PTR (ptr->mayuses);
ptr->mayuses = ptr->mayuses->next;
return;
}
if (ptr->mustkills)
{
*def = MUSTDEF_RESULT_PTR (ptr->mustkills);
*use = MUSTDEF_KILL_PTR (ptr->mustkills);
ptr->mustkills = ptr->mustkills->next;
return;
}
*def = NULL_DEF_OPERAND_P;
*use = NULL_USE_OPERAND_P;
ptr->done = true;
return;
}
/* Initialize iterator PTR to the operands in STMT. Return the first operands
in USE and DEF. */
static inline void
op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
def_operand_p *def)
{
gcc_assert (TREE_CODE (stmt) != PHI_NODE);
op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
ptr->iter_type = ssa_op_iter_maymustdef;
op_iter_next_maymustdef (use, def, ptr);
}
/* Initialize iterator PTR to the operands in STMT. Return the first operands
in KILL and DEF. */
static inline void
op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
def_operand_p *def)
{
gcc_assert (TREE_CODE (stmt) != PHI_NODE);
op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL);
ptr->iter_type = ssa_op_iter_maymustdef;
op_iter_next_maymustdef (kill, def, ptr);
}
/* Initialize iterator PTR to the operands in STMT. Return the first operands
in KILL and DEF. */
static inline void
op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
use_operand_p *kill, def_operand_p *def)
{
gcc_assert (TREE_CODE (stmt) != PHI_NODE);
op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE);
ptr->iter_type = ssa_op_iter_maymustdef;
op_iter_next_maymustdef (kill, def, ptr);
}
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
return NULL. */
static inline tree
single_ssa_tree_operand (tree stmt, int flags)
{
tree var;
ssa_op_iter iter;
var = op_iter_init_tree (&iter, stmt, flags);
if (op_iter_done (&iter))
return NULL_TREE;
op_iter_next_tree (&iter);
if (op_iter_done (&iter))
return var;
return NULL_TREE;
}
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
return NULL. */
static inline use_operand_p
single_ssa_use_operand (tree stmt, int flags)
{
use_operand_p var;
ssa_op_iter iter;
var = op_iter_init_use (&iter, stmt, flags);
if (op_iter_done (&iter))
return NULL_USE_OPERAND_P;
op_iter_next_use (&iter);
if (op_iter_done (&iter))
return var;
return NULL_USE_OPERAND_P;
}
/* If there is a single operand in STMT matching FLAGS, return it. Otherwise
return NULL. */
static inline def_operand_p
single_ssa_def_operand (tree stmt, int flags)
{
def_operand_p var;
ssa_op_iter iter;
var = op_iter_init_def (&iter, stmt, flags);
if (op_iter_done (&iter))
return NULL_DEF_OPERAND_P;
op_iter_next_def (&iter);
if (op_iter_done (&iter))
return var;
return NULL_DEF_OPERAND_P;
}
/* Return true if there are zero operands in STMT matching the type
given in FLAGS. */
static inline bool
zero_ssa_operands (tree stmt, int flags)
{
ssa_op_iter iter;
op_iter_init_tree (&iter, stmt, flags);
return op_iter_done (&iter);
}
/* Return the number of operands matching FLAGS in STMT. */
static inline int
num_ssa_operands (tree stmt, int flags)
{
ssa_op_iter iter;
tree t;
int num = 0;
FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
num++;
return num;
}
/* Delink all immediate_use information for STMT. */
static inline void
delink_stmt_imm_use (tree stmt)
{
ssa_op_iter iter;
use_operand_p use_p;
if (ssa_operands_active ())
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
(SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
delink_imm_use (use_p);
}
/* This routine will compare all the operands matching FLAGS in STMT1 to those
in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
static inline bool
compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
{
ssa_op_iter iter1, iter2;
tree op1 = NULL_TREE;
tree op2 = NULL_TREE;
bool look1, look2;
if (stmt1 == stmt2)
return true;
look1 = stmt1 && stmt_ann (stmt1);
look2 = stmt2 && stmt_ann (stmt2);
if (look1)
{
op1 = op_iter_init_tree (&iter1, stmt1, flags);
if (!look2)
return op_iter_done (&iter1);
}
else
clear_and_done_ssa_iter (&iter1);
if (look2)
{
op2 = op_iter_init_tree (&iter2, stmt2, flags);
if (!look1)
return op_iter_done (&iter2);
}
else
clear_and_done_ssa_iter (&iter2);
while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
{
if (op1 != op2)
return false;
op1 = op_iter_next_tree (&iter1);
op2 = op_iter_next_tree (&iter2);
}
return (op_iter_done (&iter1) && op_iter_done (&iter2));
}
/* If there is a single DEF in the PHI node which matches FLAG, return it.
Otherwise return NULL_DEF_OPERAND_P. */
static inline tree
single_phi_def (tree stmt, int flags)
{
tree def = PHI_RESULT (stmt);
if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
return def;
if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
return def;
return NULL_TREE;
}
/* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
static inline use_operand_p
op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
{
tree phi_def = PHI_RESULT (phi);
int comp;
clear_and_done_ssa_iter (ptr);
ptr->done = false;
gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
/* If the PHI node doesn't the operand type we care about, we're done. */
if ((flags & comp) == 0)
{
ptr->done = true;
return NULL_USE_OPERAND_P;
}
ptr->phi_stmt = phi;
ptr->num_phi = PHI_NUM_ARGS (phi);
ptr->iter_type = ssa_op_iter_use;
return op_iter_next_use (ptr);
}
/* Start an iterator for a PHI definition. */
static inline def_operand_p
op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
{
tree phi_def = PHI_RESULT (phi);
int comp;
clear_and_done_ssa_iter (ptr);
ptr->done = false;
gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
/* If the PHI node doesn't the operand type we care about, we're done. */
if ((flags & comp) == 0)
{
ptr->done = true;
return NULL_USE_OPERAND_P;
}
ptr->iter_type = ssa_op_iter_def;
/* The first call to op_iter_next_def will terminate the iterator since
all the fields are NULL. Simply return the result here as the first and
therefore only result. */
return PHI_RESULT_PTR (phi);
}
/* Return true is IMM has reached the end of the immediate use stmt list. */
static inline bool
end_imm_use_stmt_p (imm_use_iterator *imm)
{
return (imm->imm_use == imm->end_p);
}
/* Finished the traverse of an immediate use stmt list IMM by removing the
placeholder node from the list. */
static inline void
end_imm_use_stmt_traverse (imm_use_iterator *imm)
{
delink_imm_use (&(imm->iter_node));
}
/* Immediate use traversal of uses within a stmt require that all the
uses on a stmt be sequentially listed. This routine is used to build up
this sequential list by adding USE_P to the end of the current list
currently delimited by HEAD and LAST_P. The new LAST_P value is
returned. */
static inline use_operand_p
move_use_after_head (use_operand_p use_p, use_operand_p head,
use_operand_p last_p)
{
gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
/* Skip head when we find it. */
if (use_p != head)
{
/* If use_p is already linked in after last_p, continue. */
if (last_p->next == use_p)
last_p = use_p;
else
{
/* Delink from current location, and link in at last_p. */
delink_imm_use (use_p);
link_imm_use_to_list (use_p, last_p);
last_p = use_p;
}
}
return last_p;
}
/* This routine will relink all uses with the same stmt as HEAD into the list
immediately following HEAD for iterator IMM. */
static inline void
link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
{
use_operand_p use_p;
use_operand_p last_p = head;
tree head_stmt = USE_STMT (head);
tree use = USE_FROM_PTR (head);
ssa_op_iter op_iter;
int flag;
/* Only look at virtual or real uses, depending on the type of HEAD. */
flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
if (TREE_CODE (head_stmt) == PHI_NODE)
{
FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
if (USE_FROM_PTR (use_p) == use)
last_p = move_use_after_head (use_p, head, last_p);
}
else
{
FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
if (USE_FROM_PTR (use_p) == use)
last_p = move_use_after_head (use_p, head, last_p);
}
/* LInk iter node in after last_p. */
if (imm->iter_node.prev != NULL)
delink_imm_use (&imm->iter_node);
link_imm_use_to_list (&(imm->iter_node), last_p);
}
/* Initialize IMM to traverse over uses of VAR. Return the first statement. */
static inline tree
first_imm_use_stmt (imm_use_iterator *imm, tree var)
{
gcc_assert (TREE_CODE (var) == SSA_NAME);
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
imm->imm_use = imm->end_p->next;
imm->next_imm_name = NULL_USE_OPERAND_P;
/* iter_node is used as a marker within the immediate use list to indicate
where the end of the current stmt's uses are. Initialize it to NULL
stmt and use, which indicates a marker node. */
imm->iter_node.prev = NULL_USE_OPERAND_P;
imm->iter_node.next = NULL_USE_OPERAND_P;
imm->iter_node.stmt = NULL_TREE;
imm->iter_node.use = NULL_USE_OPERAND_P;
if (end_imm_use_stmt_p (imm))
return NULL_TREE;
link_use_stmts_after (imm->imm_use, imm);
return USE_STMT (imm->imm_use);
}
/* Bump IMM to the next stmt which has a use of var. */
static inline tree
next_imm_use_stmt (imm_use_iterator *imm)
{
imm->imm_use = imm->iter_node.next;
if (end_imm_use_stmt_p (imm))
{
if (imm->iter_node.prev != NULL)
delink_imm_use (&imm->iter_node);
return NULL_TREE;
}
link_use_stmts_after (imm->imm_use, imm);
return USE_STMT (imm->imm_use);
}
/* This routine will return the first use on the stmt IMM currently refers
to. */
static inline use_operand_p
first_imm_use_on_stmt (imm_use_iterator *imm)
{
imm->next_imm_name = imm->imm_use->next;
return imm->imm_use;
}
/* Return TRUE if the last use on the stmt IMM refers to has been visited. */
static inline bool
end_imm_use_on_stmt_p (imm_use_iterator *imm)
{
return (imm->imm_use == &(imm->iter_node));
}
/* Bump to the next use on the stmt IMM refers to, return NULL if done. */
static inline use_operand_p
next_imm_use_on_stmt (imm_use_iterator *imm)
{
imm->imm_use = imm->next_imm_name;
if (end_imm_use_on_stmt_p (imm))
return NULL_USE_OPERAND_P;
else
{
imm->next_imm_name = imm->imm_use->next;
return imm->imm_use;
}
}
/* Return true if VAR cannot be modified by the program. */
static inline bool
unmodifiable_var_p (tree var)
{
if (TREE_CODE (var) == SSA_NAME)
var = SSA_NAME_VAR (var);
if (MTAG_P (var))
return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
}
/* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
static inline bool
array_ref_contains_indirect_ref (tree ref)
{
gcc_assert (TREE_CODE (ref) == ARRAY_REF);
do {
ref = TREE_OPERAND (ref, 0);
} while (handled_component_p (ref));
return TREE_CODE (ref) == INDIRECT_REF;
}
/* Return true if REF, a handled component reference, has an ARRAY_REF
somewhere in it. */
static inline bool
ref_contains_array_ref (tree ref)
{
gcc_assert (handled_component_p (ref));
do {
if (TREE_CODE (ref) == ARRAY_REF)
return true;
ref = TREE_OPERAND (ref, 0);
} while (handled_component_p (ref));
return false;
}
/* Given a variable VAR, lookup and return a pointer to the list of
subvariables for it. */
static inline subvar_t *
lookup_subvars_for_var (tree var)
{
var_ann_t ann = var_ann (var);
gcc_assert (ann);
return &ann->subvars;
}
/* Given a variable VAR, return a linked list of subvariables for VAR, or
NULL, if there are no subvariables. */
static inline subvar_t
get_subvars_for_var (tree var)
{
subvar_t subvars;
gcc_assert (SSA_VAR_P (var));
if (TREE_CODE (var) == SSA_NAME)
subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
else
subvars = *(lookup_subvars_for_var (var));
return subvars;
}
/* Return the subvariable of VAR at offset OFFSET. */
static inline tree
get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
{
subvar_t sv;
for (sv = get_subvars_for_var (var); sv; sv = sv->next)
if (SFT_OFFSET (sv->var) == offset)
return sv->var;
return NULL_TREE;
}
/* Return true if V is a tree that we can have subvars for.
Normally, this is any aggregate type. Also complex
types which are not gimple registers can have subvars. */
static inline bool
var_can_have_subvars (tree v)
{
/* Volatile variables should never have subvars. */
if (TREE_THIS_VOLATILE (v))
return false;
/* Non decls or memory tags can never have subvars. */
if (!DECL_P (v) || MTAG_P (v))
return false;
/* Aggregates can have subvars. */
if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
return true;
/* Complex types variables which are not also a gimple register can
have subvars. */
if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
&& !DECL_COMPLEX_GIMPLE_REG_P (v))
return true;
return false;
}
/* Return true if OFFSET and SIZE define a range that overlaps with some
portion of the range of SV, a subvar. If there was an exact overlap,
*EXACT will be set to true upon return. */
static inline bool
overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
tree sv, bool *exact)
{
/* There are three possible cases of overlap.
1. We can have an exact overlap, like so:
|offset, offset + size |
|sv->offset, sv->offset + sv->size |
2. We can have offset starting after sv->offset, like so:
|offset, offset + size |
|sv->offset, sv->offset + sv->size |
3. We can have offset starting before sv->offset, like so:
|offset, offset + size |
|sv->offset, sv->offset + sv->size|
*/
if (exact)
*exact = false;
if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
{
if (exact)
*exact = true;
return true;
}
else if (offset >= SFT_OFFSET (sv)
&& offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
{
return true;
}
else if (offset < SFT_OFFSET (sv)
&& (size > SFT_OFFSET (sv) - offset))
{
return true;
}
return false;
}
#endif /* _TREE_FLOW_INLINE_H */