mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-03 12:35:02 +00:00
78985e424a
Originally, I had adopted sparc64's name, pmap_clear_write(), for the function that is now pmap_remove_write(). However, this function is more like pmap_remove_all() than like pmap_clear_modify() or pmap_clear_reference(), hence, the name change. The higher-level rationale behind this change is described in src/sys/amd64/amd64/pmap.c revision 1.567. The short version is that I'm trying to clean up and fix our support for execute access. Reviewed by: marcel@ (ia64)
1628 lines
44 KiB
C
1628 lines
44 KiB
C
/*-
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 David Greenman
|
|
* All rights reserved.
|
|
* Copyright (c) 2005 Yahoo! Technologies Norway AS
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* The proverbial page-out daemon.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_vm.h"
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/swap_pager.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <machine/mutex.h>
|
|
|
|
/*
|
|
* System initialization
|
|
*/
|
|
|
|
/* the kernel process "vm_pageout"*/
|
|
static void vm_pageout(void);
|
|
static int vm_pageout_clean(vm_page_t);
|
|
static void vm_pageout_scan(int pass);
|
|
|
|
struct proc *pageproc;
|
|
|
|
static struct kproc_desc page_kp = {
|
|
"pagedaemon",
|
|
vm_pageout,
|
|
&pageproc
|
|
};
|
|
SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
/* the kernel process "vm_daemon"*/
|
|
static void vm_daemon(void);
|
|
static struct proc *vmproc;
|
|
|
|
static struct kproc_desc vm_kp = {
|
|
"vmdaemon",
|
|
vm_daemon,
|
|
&vmproc
|
|
};
|
|
SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
|
|
#endif
|
|
|
|
|
|
int vm_pages_needed; /* Event on which pageout daemon sleeps */
|
|
int vm_pageout_deficit; /* Estimated number of pages deficit */
|
|
int vm_pageout_pages_needed; /* flag saying that the pageout daemon needs pages */
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
static int vm_pageout_req_swapout; /* XXX */
|
|
static int vm_daemon_needed;
|
|
#endif
|
|
static int vm_max_launder = 32;
|
|
static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
|
|
static int vm_pageout_full_stats_interval = 0;
|
|
static int vm_pageout_algorithm=0;
|
|
static int defer_swap_pageouts=0;
|
|
static int disable_swap_pageouts=0;
|
|
|
|
#if defined(NO_SWAPPING)
|
|
static int vm_swap_enabled=0;
|
|
static int vm_swap_idle_enabled=0;
|
|
#else
|
|
static int vm_swap_enabled=1;
|
|
static int vm_swap_idle_enabled=0;
|
|
#endif
|
|
|
|
SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
|
|
CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, max_launder,
|
|
CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
|
|
CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
|
|
CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
|
|
CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
|
|
|
|
#if defined(NO_SWAPPING)
|
|
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
|
|
CTLFLAG_RD, &vm_swap_enabled, 0, "");
|
|
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
|
|
CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
|
|
#else
|
|
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
|
|
CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
|
|
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
|
|
CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
|
|
#endif
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
|
|
CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
|
|
CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
|
|
|
|
static int pageout_lock_miss;
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
|
|
CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
|
|
|
|
#define VM_PAGEOUT_PAGE_COUNT 16
|
|
int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
|
|
|
|
int vm_page_max_wired; /* XXX max # of wired pages system-wide */
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
static void vm_pageout_map_deactivate_pages(vm_map_t, long);
|
|
static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
|
|
static void vm_req_vmdaemon(void);
|
|
#endif
|
|
static void vm_pageout_page_stats(void);
|
|
|
|
/*
|
|
* vm_pageout_fallback_object_lock:
|
|
*
|
|
* Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
|
|
* known to have failed and page queue must be either PQ_ACTIVE or
|
|
* PQ_INACTIVE. To avoid lock order violation, unlock the page queues
|
|
* while locking the vm object. Use marker page to detect page queue
|
|
* changes and maintain notion of next page on page queue. Return
|
|
* TRUE if no changes were detected, FALSE otherwise. vm object is
|
|
* locked on return.
|
|
*
|
|
* This function depends on both the lock portion of struct vm_object
|
|
* and normal struct vm_page being type stable.
|
|
*/
|
|
static boolean_t
|
|
vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
|
|
{
|
|
struct vm_page marker;
|
|
boolean_t unchanged;
|
|
u_short queue;
|
|
vm_object_t object;
|
|
|
|
/*
|
|
* Initialize our marker
|
|
*/
|
|
bzero(&marker, sizeof(marker));
|
|
marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
|
|
marker.queue = m->queue;
|
|
marker.wire_count = 1;
|
|
|
|
queue = m->queue;
|
|
object = m->object;
|
|
|
|
TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
|
|
m, &marker, pageq);
|
|
vm_page_unlock_queues();
|
|
VM_OBJECT_LOCK(object);
|
|
vm_page_lock_queues();
|
|
|
|
/* Page queue might have changed. */
|
|
*next = TAILQ_NEXT(&marker, pageq);
|
|
unchanged = (m->queue == queue &&
|
|
m->object == object &&
|
|
&marker == TAILQ_NEXT(m, pageq));
|
|
TAILQ_REMOVE(&vm_page_queues[queue].pl,
|
|
&marker, pageq);
|
|
return (unchanged);
|
|
}
|
|
|
|
/*
|
|
* vm_pageout_clean:
|
|
*
|
|
* Clean the page and remove it from the laundry.
|
|
*
|
|
* We set the busy bit to cause potential page faults on this page to
|
|
* block. Note the careful timing, however, the busy bit isn't set till
|
|
* late and we cannot do anything that will mess with the page.
|
|
*/
|
|
static int
|
|
vm_pageout_clean(m)
|
|
vm_page_t m;
|
|
{
|
|
vm_object_t object;
|
|
vm_page_t mc[2*vm_pageout_page_count];
|
|
int pageout_count;
|
|
int ib, is, page_base;
|
|
vm_pindex_t pindex = m->pindex;
|
|
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
|
|
|
|
/*
|
|
* It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
|
|
* with the new swapper, but we could have serious problems paging
|
|
* out other object types if there is insufficient memory.
|
|
*
|
|
* Unfortunately, checking free memory here is far too late, so the
|
|
* check has been moved up a procedural level.
|
|
*/
|
|
|
|
/*
|
|
* Don't mess with the page if it's busy, held, or special
|
|
*/
|
|
if ((m->hold_count != 0) ||
|
|
((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
|
|
return 0;
|
|
}
|
|
|
|
mc[vm_pageout_page_count] = m;
|
|
pageout_count = 1;
|
|
page_base = vm_pageout_page_count;
|
|
ib = 1;
|
|
is = 1;
|
|
|
|
/*
|
|
* Scan object for clusterable pages.
|
|
*
|
|
* We can cluster ONLY if: ->> the page is NOT
|
|
* clean, wired, busy, held, or mapped into a
|
|
* buffer, and one of the following:
|
|
* 1) The page is inactive, or a seldom used
|
|
* active page.
|
|
* -or-
|
|
* 2) we force the issue.
|
|
*
|
|
* During heavy mmap/modification loads the pageout
|
|
* daemon can really fragment the underlying file
|
|
* due to flushing pages out of order and not trying
|
|
* align the clusters (which leave sporatic out-of-order
|
|
* holes). To solve this problem we do the reverse scan
|
|
* first and attempt to align our cluster, then do a
|
|
* forward scan if room remains.
|
|
*/
|
|
object = m->object;
|
|
more:
|
|
while (ib && pageout_count < vm_pageout_page_count) {
|
|
vm_page_t p;
|
|
|
|
if (ib > pindex) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
|
|
if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
vm_page_test_dirty(p);
|
|
if ((p->dirty & p->valid) == 0 ||
|
|
p->queue != PQ_INACTIVE ||
|
|
p->wire_count != 0 || /* may be held by buf cache */
|
|
p->hold_count != 0) { /* may be undergoing I/O */
|
|
ib = 0;
|
|
break;
|
|
}
|
|
mc[--page_base] = p;
|
|
++pageout_count;
|
|
++ib;
|
|
/*
|
|
* alignment boundry, stop here and switch directions. Do
|
|
* not clear ib.
|
|
*/
|
|
if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
|
|
break;
|
|
}
|
|
|
|
while (pageout_count < vm_pageout_page_count &&
|
|
pindex + is < object->size) {
|
|
vm_page_t p;
|
|
|
|
if ((p = vm_page_lookup(object, pindex + is)) == NULL)
|
|
break;
|
|
if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
|
|
break;
|
|
}
|
|
vm_page_test_dirty(p);
|
|
if ((p->dirty & p->valid) == 0 ||
|
|
p->queue != PQ_INACTIVE ||
|
|
p->wire_count != 0 || /* may be held by buf cache */
|
|
p->hold_count != 0) { /* may be undergoing I/O */
|
|
break;
|
|
}
|
|
mc[page_base + pageout_count] = p;
|
|
++pageout_count;
|
|
++is;
|
|
}
|
|
|
|
/*
|
|
* If we exhausted our forward scan, continue with the reverse scan
|
|
* when possible, even past a page boundry. This catches boundry
|
|
* conditions.
|
|
*/
|
|
if (ib && pageout_count < vm_pageout_page_count)
|
|
goto more;
|
|
|
|
/*
|
|
* we allow reads during pageouts...
|
|
*/
|
|
return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
|
|
}
|
|
|
|
/*
|
|
* vm_pageout_flush() - launder the given pages
|
|
*
|
|
* The given pages are laundered. Note that we setup for the start of
|
|
* I/O ( i.e. busy the page ), mark it read-only, and bump the object
|
|
* reference count all in here rather then in the parent. If we want
|
|
* the parent to do more sophisticated things we may have to change
|
|
* the ordering.
|
|
*/
|
|
int
|
|
vm_pageout_flush(vm_page_t *mc, int count, int flags)
|
|
{
|
|
vm_object_t object = mc[0]->object;
|
|
int pageout_status[count];
|
|
int numpagedout = 0;
|
|
int i;
|
|
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
/*
|
|
* Initiate I/O. Bump the vm_page_t->busy counter and
|
|
* mark the pages read-only.
|
|
*
|
|
* We do not have to fixup the clean/dirty bits here... we can
|
|
* allow the pager to do it after the I/O completes.
|
|
*
|
|
* NOTE! mc[i]->dirty may be partial or fragmented due to an
|
|
* edge case with file fragments.
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
|
|
("vm_pageout_flush: partially invalid page %p index %d/%d",
|
|
mc[i], i, count));
|
|
vm_page_io_start(mc[i]);
|
|
pmap_remove_write(mc[i]);
|
|
}
|
|
vm_page_unlock_queues();
|
|
vm_object_pip_add(object, count);
|
|
|
|
vm_pager_put_pages(object, mc, count,
|
|
(flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
|
|
pageout_status);
|
|
|
|
vm_page_lock_queues();
|
|
for (i = 0; i < count; i++) {
|
|
vm_page_t mt = mc[i];
|
|
|
|
KASSERT((mt->flags & PG_WRITEABLE) == 0,
|
|
("vm_pageout_flush: page %p is not write protected", mt));
|
|
switch (pageout_status[i]) {
|
|
case VM_PAGER_OK:
|
|
case VM_PAGER_PEND:
|
|
numpagedout++;
|
|
break;
|
|
case VM_PAGER_BAD:
|
|
/*
|
|
* Page outside of range of object. Right now we
|
|
* essentially lose the changes by pretending it
|
|
* worked.
|
|
*/
|
|
pmap_clear_modify(mt);
|
|
vm_page_undirty(mt);
|
|
break;
|
|
case VM_PAGER_ERROR:
|
|
case VM_PAGER_FAIL:
|
|
/*
|
|
* If page couldn't be paged out, then reactivate the
|
|
* page so it doesn't clog the inactive list. (We
|
|
* will try paging out it again later).
|
|
*/
|
|
vm_page_activate(mt);
|
|
break;
|
|
case VM_PAGER_AGAIN:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the operation is still going, leave the page busy to
|
|
* block all other accesses. Also, leave the paging in
|
|
* progress indicator set so that we don't attempt an object
|
|
* collapse.
|
|
*/
|
|
if (pageout_status[i] != VM_PAGER_PEND) {
|
|
vm_object_pip_wakeup(object);
|
|
vm_page_io_finish(mt);
|
|
if (vm_page_count_severe())
|
|
vm_page_try_to_cache(mt);
|
|
}
|
|
}
|
|
return numpagedout;
|
|
}
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
/*
|
|
* vm_pageout_object_deactivate_pages
|
|
*
|
|
* deactivate enough pages to satisfy the inactive target
|
|
* requirements or if vm_page_proc_limit is set, then
|
|
* deactivate all of the pages in the object and its
|
|
* backing_objects.
|
|
*
|
|
* The object and map must be locked.
|
|
*/
|
|
static void
|
|
vm_pageout_object_deactivate_pages(pmap, first_object, desired)
|
|
pmap_t pmap;
|
|
vm_object_t first_object;
|
|
long desired;
|
|
{
|
|
vm_object_t backing_object, object;
|
|
vm_page_t p, next;
|
|
int actcount, rcount, remove_mode;
|
|
|
|
VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
|
|
if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
|
|
return;
|
|
for (object = first_object;; object = backing_object) {
|
|
if (pmap_resident_count(pmap) <= desired)
|
|
goto unlock_return;
|
|
if (object->paging_in_progress)
|
|
goto unlock_return;
|
|
|
|
remove_mode = 0;
|
|
if (object->shadow_count > 1)
|
|
remove_mode = 1;
|
|
/*
|
|
* scan the objects entire memory queue
|
|
*/
|
|
rcount = object->resident_page_count;
|
|
p = TAILQ_FIRST(&object->memq);
|
|
vm_page_lock_queues();
|
|
while (p && (rcount-- > 0)) {
|
|
if (pmap_resident_count(pmap) <= desired) {
|
|
vm_page_unlock_queues();
|
|
goto unlock_return;
|
|
}
|
|
next = TAILQ_NEXT(p, listq);
|
|
cnt.v_pdpages++;
|
|
if (p->wire_count != 0 ||
|
|
p->hold_count != 0 ||
|
|
p->busy != 0 ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) ||
|
|
!pmap_page_exists_quick(pmap, p)) {
|
|
p = next;
|
|
continue;
|
|
}
|
|
actcount = pmap_ts_referenced(p);
|
|
if (actcount) {
|
|
vm_page_flag_set(p, PG_REFERENCED);
|
|
} else if (p->flags & PG_REFERENCED) {
|
|
actcount = 1;
|
|
}
|
|
if ((p->queue != PQ_ACTIVE) &&
|
|
(p->flags & PG_REFERENCED)) {
|
|
vm_page_activate(p);
|
|
p->act_count += actcount;
|
|
vm_page_flag_clear(p, PG_REFERENCED);
|
|
} else if (p->queue == PQ_ACTIVE) {
|
|
if ((p->flags & PG_REFERENCED) == 0) {
|
|
p->act_count -= min(p->act_count, ACT_DECLINE);
|
|
if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
|
|
pmap_remove_all(p);
|
|
vm_page_deactivate(p);
|
|
} else {
|
|
vm_pageq_requeue(p);
|
|
}
|
|
} else {
|
|
vm_page_activate(p);
|
|
vm_page_flag_clear(p, PG_REFERENCED);
|
|
if (p->act_count < (ACT_MAX - ACT_ADVANCE))
|
|
p->act_count += ACT_ADVANCE;
|
|
vm_pageq_requeue(p);
|
|
}
|
|
} else if (p->queue == PQ_INACTIVE) {
|
|
pmap_remove_all(p);
|
|
}
|
|
p = next;
|
|
}
|
|
vm_page_unlock_queues();
|
|
if ((backing_object = object->backing_object) == NULL)
|
|
goto unlock_return;
|
|
VM_OBJECT_LOCK(backing_object);
|
|
if (object != first_object)
|
|
VM_OBJECT_UNLOCK(object);
|
|
}
|
|
unlock_return:
|
|
if (object != first_object)
|
|
VM_OBJECT_UNLOCK(object);
|
|
}
|
|
|
|
/*
|
|
* deactivate some number of pages in a map, try to do it fairly, but
|
|
* that is really hard to do.
|
|
*/
|
|
static void
|
|
vm_pageout_map_deactivate_pages(map, desired)
|
|
vm_map_t map;
|
|
long desired;
|
|
{
|
|
vm_map_entry_t tmpe;
|
|
vm_object_t obj, bigobj;
|
|
int nothingwired;
|
|
|
|
if (!vm_map_trylock(map))
|
|
return;
|
|
|
|
bigobj = NULL;
|
|
nothingwired = TRUE;
|
|
|
|
/*
|
|
* first, search out the biggest object, and try to free pages from
|
|
* that.
|
|
*/
|
|
tmpe = map->header.next;
|
|
while (tmpe != &map->header) {
|
|
if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
|
|
obj = tmpe->object.vm_object;
|
|
if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
|
|
if (obj->shadow_count <= 1 &&
|
|
(bigobj == NULL ||
|
|
bigobj->resident_page_count < obj->resident_page_count)) {
|
|
if (bigobj != NULL)
|
|
VM_OBJECT_UNLOCK(bigobj);
|
|
bigobj = obj;
|
|
} else
|
|
VM_OBJECT_UNLOCK(obj);
|
|
}
|
|
}
|
|
if (tmpe->wired_count > 0)
|
|
nothingwired = FALSE;
|
|
tmpe = tmpe->next;
|
|
}
|
|
|
|
if (bigobj != NULL) {
|
|
vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
|
|
VM_OBJECT_UNLOCK(bigobj);
|
|
}
|
|
/*
|
|
* Next, hunt around for other pages to deactivate. We actually
|
|
* do this search sort of wrong -- .text first is not the best idea.
|
|
*/
|
|
tmpe = map->header.next;
|
|
while (tmpe != &map->header) {
|
|
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
|
|
break;
|
|
if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
|
|
obj = tmpe->object.vm_object;
|
|
if (obj != NULL) {
|
|
VM_OBJECT_LOCK(obj);
|
|
vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
|
|
VM_OBJECT_UNLOCK(obj);
|
|
}
|
|
}
|
|
tmpe = tmpe->next;
|
|
}
|
|
|
|
/*
|
|
* Remove all mappings if a process is swapped out, this will free page
|
|
* table pages.
|
|
*/
|
|
if (desired == 0 && nothingwired) {
|
|
pmap_remove(vm_map_pmap(map), vm_map_min(map),
|
|
vm_map_max(map));
|
|
}
|
|
vm_map_unlock(map);
|
|
}
|
|
#endif /* !defined(NO_SWAPPING) */
|
|
|
|
/*
|
|
* vm_pageout_scan does the dirty work for the pageout daemon.
|
|
*/
|
|
static void
|
|
vm_pageout_scan(int pass)
|
|
{
|
|
vm_page_t m, next;
|
|
struct vm_page marker;
|
|
int page_shortage, maxscan, pcount;
|
|
int addl_page_shortage, addl_page_shortage_init;
|
|
struct proc *p, *bigproc;
|
|
struct thread *td;
|
|
vm_offset_t size, bigsize;
|
|
vm_object_t object;
|
|
int actcount, cache_cur, cache_first_failure;
|
|
static int cache_last_free;
|
|
int vnodes_skipped = 0;
|
|
int maxlaunder;
|
|
|
|
mtx_lock(&Giant);
|
|
/*
|
|
* Decrease registered cache sizes.
|
|
*/
|
|
EVENTHANDLER_INVOKE(vm_lowmem, 0);
|
|
/*
|
|
* We do this explicitly after the caches have been drained above.
|
|
*/
|
|
uma_reclaim();
|
|
|
|
addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
|
|
|
|
/*
|
|
* Calculate the number of pages we want to either free or move
|
|
* to the cache.
|
|
*/
|
|
page_shortage = vm_paging_target() + addl_page_shortage_init;
|
|
|
|
/*
|
|
* Initialize our marker
|
|
*/
|
|
bzero(&marker, sizeof(marker));
|
|
marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
|
|
marker.queue = PQ_INACTIVE;
|
|
marker.wire_count = 1;
|
|
|
|
/*
|
|
* Start scanning the inactive queue for pages we can move to the
|
|
* cache or free. The scan will stop when the target is reached or
|
|
* we have scanned the entire inactive queue. Note that m->act_count
|
|
* is not used to form decisions for the inactive queue, only for the
|
|
* active queue.
|
|
*
|
|
* maxlaunder limits the number of dirty pages we flush per scan.
|
|
* For most systems a smaller value (16 or 32) is more robust under
|
|
* extreme memory and disk pressure because any unnecessary writes
|
|
* to disk can result in extreme performance degredation. However,
|
|
* systems with excessive dirty pages (especially when MAP_NOSYNC is
|
|
* used) will die horribly with limited laundering. If the pageout
|
|
* daemon cannot clean enough pages in the first pass, we let it go
|
|
* all out in succeeding passes.
|
|
*/
|
|
if ((maxlaunder = vm_max_launder) <= 1)
|
|
maxlaunder = 1;
|
|
if (pass)
|
|
maxlaunder = 10000;
|
|
vm_page_lock_queues();
|
|
rescan0:
|
|
addl_page_shortage = addl_page_shortage_init;
|
|
maxscan = cnt.v_inactive_count;
|
|
|
|
for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
|
|
m != NULL && maxscan-- > 0 && page_shortage > 0;
|
|
m = next) {
|
|
|
|
cnt.v_pdpages++;
|
|
|
|
if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
|
|
goto rescan0;
|
|
}
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
object = m->object;
|
|
|
|
/*
|
|
* skip marker pages
|
|
*/
|
|
if (m->flags & PG_MARKER)
|
|
continue;
|
|
|
|
/*
|
|
* A held page may be undergoing I/O, so skip it.
|
|
*/
|
|
if (m->hold_count) {
|
|
vm_pageq_requeue(m);
|
|
addl_page_shortage++;
|
|
continue;
|
|
}
|
|
/*
|
|
* Don't mess with busy pages, keep in the front of the
|
|
* queue, most likely are being paged out.
|
|
*/
|
|
if (!VM_OBJECT_TRYLOCK(object) &&
|
|
(!vm_pageout_fallback_object_lock(m, &next) ||
|
|
m->hold_count != 0)) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
addl_page_shortage++;
|
|
continue;
|
|
}
|
|
if (m->busy || (m->flags & PG_BUSY)) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
addl_page_shortage++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the object is not being used, we ignore previous
|
|
* references.
|
|
*/
|
|
if (object->ref_count == 0) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
pmap_clear_reference(m);
|
|
|
|
/*
|
|
* Otherwise, if the page has been referenced while in the
|
|
* inactive queue, we bump the "activation count" upwards,
|
|
* making it less likely that the page will be added back to
|
|
* the inactive queue prematurely again. Here we check the
|
|
* page tables (or emulated bits, if any), given the upper
|
|
* level VM system not knowing anything about existing
|
|
* references.
|
|
*/
|
|
} else if (((m->flags & PG_REFERENCED) == 0) &&
|
|
(actcount = pmap_ts_referenced(m))) {
|
|
vm_page_activate(m);
|
|
VM_OBJECT_UNLOCK(object);
|
|
m->act_count += (actcount + ACT_ADVANCE);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the upper level VM system knows about any page
|
|
* references, we activate the page. We also set the
|
|
* "activation count" higher than normal so that we will less
|
|
* likely place pages back onto the inactive queue again.
|
|
*/
|
|
if ((m->flags & PG_REFERENCED) != 0) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
actcount = pmap_ts_referenced(m);
|
|
vm_page_activate(m);
|
|
VM_OBJECT_UNLOCK(object);
|
|
m->act_count += (actcount + ACT_ADVANCE + 1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the upper level VM system doesn't know anything about
|
|
* the page being dirty, we have to check for it again. As
|
|
* far as the VM code knows, any partially dirty pages are
|
|
* fully dirty.
|
|
*/
|
|
if (m->dirty == 0 && !pmap_is_modified(m)) {
|
|
/*
|
|
* Avoid a race condition: Unless write access is
|
|
* removed from the page, another processor could
|
|
* modify it before all access is removed by the call
|
|
* to vm_page_cache() below. If vm_page_cache() finds
|
|
* that the page has been modified when it removes all
|
|
* access, it panics because it cannot cache dirty
|
|
* pages. In principle, we could eliminate just write
|
|
* access here rather than all access. In the expected
|
|
* case, when there are no last instant modifications
|
|
* to the page, removing all access will be cheaper
|
|
* overall.
|
|
*/
|
|
if ((m->flags & PG_WRITEABLE) != 0)
|
|
pmap_remove_all(m);
|
|
} else {
|
|
vm_page_dirty(m);
|
|
}
|
|
|
|
if (m->valid == 0) {
|
|
/*
|
|
* Invalid pages can be easily freed
|
|
*/
|
|
vm_page_free(m);
|
|
cnt.v_dfree++;
|
|
--page_shortage;
|
|
} else if (m->dirty == 0) {
|
|
/*
|
|
* Clean pages can be placed onto the cache queue.
|
|
* This effectively frees them.
|
|
*/
|
|
vm_page_cache(m);
|
|
--page_shortage;
|
|
} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
|
|
/*
|
|
* Dirty pages need to be paged out, but flushing
|
|
* a page is extremely expensive verses freeing
|
|
* a clean page. Rather then artificially limiting
|
|
* the number of pages we can flush, we instead give
|
|
* dirty pages extra priority on the inactive queue
|
|
* by forcing them to be cycled through the queue
|
|
* twice before being flushed, after which the
|
|
* (now clean) page will cycle through once more
|
|
* before being freed. This significantly extends
|
|
* the thrash point for a heavily loaded machine.
|
|
*/
|
|
vm_page_flag_set(m, PG_WINATCFLS);
|
|
vm_pageq_requeue(m);
|
|
} else if (maxlaunder > 0) {
|
|
/*
|
|
* We always want to try to flush some dirty pages if
|
|
* we encounter them, to keep the system stable.
|
|
* Normally this number is small, but under extreme
|
|
* pressure where there are insufficient clean pages
|
|
* on the inactive queue, we may have to go all out.
|
|
*/
|
|
int swap_pageouts_ok;
|
|
struct vnode *vp = NULL;
|
|
struct mount *mp;
|
|
|
|
if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
|
|
swap_pageouts_ok = 1;
|
|
} else {
|
|
swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
|
|
swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
|
|
vm_page_count_min());
|
|
|
|
}
|
|
|
|
/*
|
|
* We don't bother paging objects that are "dead".
|
|
* Those objects are in a "rundown" state.
|
|
*/
|
|
if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
vm_pageq_requeue(m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Following operations may unlock
|
|
* vm_page_queue_mtx, invalidating the 'next'
|
|
* pointer. To prevent an inordinate number
|
|
* of restarts we use our marker to remember
|
|
* our place.
|
|
*
|
|
*/
|
|
TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
|
|
m, &marker, pageq);
|
|
/*
|
|
* The object is already known NOT to be dead. It
|
|
* is possible for the vget() to block the whole
|
|
* pageout daemon, but the new low-memory handling
|
|
* code should prevent it.
|
|
*
|
|
* The previous code skipped locked vnodes and, worse,
|
|
* reordered pages in the queue. This results in
|
|
* completely non-deterministic operation and, on a
|
|
* busy system, can lead to extremely non-optimal
|
|
* pageouts. For example, it can cause clean pages
|
|
* to be freed and dirty pages to be moved to the end
|
|
* of the queue. Since dirty pages are also moved to
|
|
* the end of the queue once-cleaned, this gives
|
|
* way too large a weighting to defering the freeing
|
|
* of dirty pages.
|
|
*
|
|
* We can't wait forever for the vnode lock, we might
|
|
* deadlock due to a vn_read() getting stuck in
|
|
* vm_wait while holding this vnode. We skip the
|
|
* vnode if we can't get it in a reasonable amount
|
|
* of time.
|
|
*/
|
|
if (object->type == OBJT_VNODE) {
|
|
vp = object->handle;
|
|
mp = NULL;
|
|
if (vp->v_type == VREG &&
|
|
vn_start_write(vp, &mp, V_NOWAIT) != 0) {
|
|
++pageout_lock_miss;
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
vp = NULL;
|
|
goto unlock_and_continue;
|
|
}
|
|
vm_page_unlock_queues();
|
|
VI_LOCK(vp);
|
|
VM_OBJECT_UNLOCK(object);
|
|
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
|
|
LK_TIMELOCK, curthread)) {
|
|
VM_OBJECT_LOCK(object);
|
|
vm_page_lock_queues();
|
|
++pageout_lock_miss;
|
|
vn_finished_write(mp);
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
vp = NULL;
|
|
goto unlock_and_continue;
|
|
}
|
|
VM_OBJECT_LOCK(object);
|
|
vm_page_lock_queues();
|
|
/*
|
|
* The page might have been moved to another
|
|
* queue during potential blocking in vget()
|
|
* above. The page might have been freed and
|
|
* reused for another vnode. The object might
|
|
* have been reused for another vnode.
|
|
*/
|
|
if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
|
|
m->object != object ||
|
|
object->handle != vp ||
|
|
TAILQ_NEXT(m, pageq) != &marker) {
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
goto unlock_and_continue;
|
|
}
|
|
|
|
/*
|
|
* The page may have been busied during the
|
|
* blocking in vput(); We don't move the
|
|
* page back onto the end of the queue so that
|
|
* statistics are more correct if we don't.
|
|
*/
|
|
if (m->busy || (m->flags & PG_BUSY)) {
|
|
goto unlock_and_continue;
|
|
}
|
|
|
|
/*
|
|
* If the page has become held it might
|
|
* be undergoing I/O, so skip it
|
|
*/
|
|
if (m->hold_count) {
|
|
vm_pageq_requeue(m);
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
goto unlock_and_continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a page is dirty, then it is either being washed
|
|
* (but not yet cleaned) or it is still in the
|
|
* laundry. If it is still in the laundry, then we
|
|
* start the cleaning operation.
|
|
*
|
|
* decrement page_shortage on success to account for
|
|
* the (future) cleaned page. Otherwise we could wind
|
|
* up laundering or cleaning too many pages.
|
|
*/
|
|
if (vm_pageout_clean(m) != 0) {
|
|
--page_shortage;
|
|
--maxlaunder;
|
|
}
|
|
unlock_and_continue:
|
|
VM_OBJECT_UNLOCK(object);
|
|
if (vp) {
|
|
vm_page_unlock_queues();
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
vm_page_lock_queues();
|
|
}
|
|
next = TAILQ_NEXT(&marker, pageq);
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
|
|
&marker, pageq);
|
|
continue;
|
|
}
|
|
VM_OBJECT_UNLOCK(object);
|
|
}
|
|
|
|
/*
|
|
* Compute the number of pages we want to try to move from the
|
|
* active queue to the inactive queue.
|
|
*/
|
|
page_shortage = vm_paging_target() +
|
|
cnt.v_inactive_target - cnt.v_inactive_count;
|
|
page_shortage += addl_page_shortage;
|
|
|
|
/*
|
|
* Scan the active queue for things we can deactivate. We nominally
|
|
* track the per-page activity counter and use it to locate
|
|
* deactivation candidates.
|
|
*/
|
|
pcount = cnt.v_active_count;
|
|
m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
|
|
|
|
while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
|
|
|
|
KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
|
|
("vm_pageout_scan: page %p isn't active", m));
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
object = m->object;
|
|
if ((m->flags & PG_MARKER) != 0) {
|
|
m = next;
|
|
continue;
|
|
}
|
|
if (!VM_OBJECT_TRYLOCK(object) &&
|
|
!vm_pageout_fallback_object_lock(m, &next)) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
m = next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Don't deactivate pages that are busy.
|
|
*/
|
|
if ((m->busy != 0) ||
|
|
(m->flags & PG_BUSY) ||
|
|
(m->hold_count != 0)) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
vm_pageq_requeue(m);
|
|
m = next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The count for pagedaemon pages is done after checking the
|
|
* page for eligibility...
|
|
*/
|
|
cnt.v_pdpages++;
|
|
|
|
/*
|
|
* Check to see "how much" the page has been used.
|
|
*/
|
|
actcount = 0;
|
|
if (object->ref_count != 0) {
|
|
if (m->flags & PG_REFERENCED) {
|
|
actcount += 1;
|
|
}
|
|
actcount += pmap_ts_referenced(m);
|
|
if (actcount) {
|
|
m->act_count += ACT_ADVANCE + actcount;
|
|
if (m->act_count > ACT_MAX)
|
|
m->act_count = ACT_MAX;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since we have "tested" this bit, we need to clear it now.
|
|
*/
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
|
|
/*
|
|
* Only if an object is currently being used, do we use the
|
|
* page activation count stats.
|
|
*/
|
|
if (actcount && (object->ref_count != 0)) {
|
|
vm_pageq_requeue(m);
|
|
} else {
|
|
m->act_count -= min(m->act_count, ACT_DECLINE);
|
|
if (vm_pageout_algorithm ||
|
|
object->ref_count == 0 ||
|
|
m->act_count == 0) {
|
|
page_shortage--;
|
|
if (object->ref_count == 0) {
|
|
pmap_remove_all(m);
|
|
if (m->dirty == 0)
|
|
vm_page_cache(m);
|
|
else
|
|
vm_page_deactivate(m);
|
|
} else {
|
|
vm_page_deactivate(m);
|
|
}
|
|
} else {
|
|
vm_pageq_requeue(m);
|
|
}
|
|
}
|
|
VM_OBJECT_UNLOCK(object);
|
|
m = next;
|
|
}
|
|
|
|
/*
|
|
* We try to maintain some *really* free pages, this allows interrupt
|
|
* code to be guaranteed space. Since both cache and free queues
|
|
* are considered basically 'free', moving pages from cache to free
|
|
* does not effect other calculations.
|
|
*/
|
|
cache_cur = cache_last_free;
|
|
cache_first_failure = -1;
|
|
while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
|
|
(cache_cur + PQ_PRIME2) & PQ_COLORMASK) != cache_first_failure) {
|
|
TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
|
|
pageq) {
|
|
KASSERT(m->dirty == 0,
|
|
("Found dirty cache page %p", m));
|
|
KASSERT(!pmap_page_is_mapped(m),
|
|
("Found mapped cache page %p", m));
|
|
KASSERT((m->flags & PG_UNMANAGED) == 0,
|
|
("Found unmanaged cache page %p", m));
|
|
KASSERT(m->wire_count == 0,
|
|
("Found wired cache page %p", m));
|
|
if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
|
|
m->object)) {
|
|
KASSERT((m->flags & PG_BUSY) == 0 &&
|
|
m->busy == 0, ("Found busy cache page %p",
|
|
m));
|
|
vm_page_free(m);
|
|
VM_OBJECT_UNLOCK(object);
|
|
cnt.v_dfree++;
|
|
cache_last_free = cache_cur;
|
|
cache_first_failure = -1;
|
|
break;
|
|
}
|
|
}
|
|
if (m == NULL && cache_first_failure == -1)
|
|
cache_first_failure = cache_cur;
|
|
}
|
|
vm_page_unlock_queues();
|
|
#if !defined(NO_SWAPPING)
|
|
/*
|
|
* Idle process swapout -- run once per second.
|
|
*/
|
|
if (vm_swap_idle_enabled) {
|
|
static long lsec;
|
|
if (time_second != lsec) {
|
|
vm_pageout_req_swapout |= VM_SWAP_IDLE;
|
|
vm_req_vmdaemon();
|
|
lsec = time_second;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we didn't get enough free pages, and we have skipped a vnode
|
|
* in a writeable object, wakeup the sync daemon. And kick swapout
|
|
* if we did not get enough free pages.
|
|
*/
|
|
if (vm_paging_target() > 0) {
|
|
if (vnodes_skipped && vm_page_count_min())
|
|
(void) speedup_syncer();
|
|
#if !defined(NO_SWAPPING)
|
|
if (vm_swap_enabled && vm_page_count_target()) {
|
|
vm_req_vmdaemon();
|
|
vm_pageout_req_swapout |= VM_SWAP_NORMAL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If we are critically low on one of RAM or swap and low on
|
|
* the other, kill the largest process. However, we avoid
|
|
* doing this on the first pass in order to give ourselves a
|
|
* chance to flush out dirty vnode-backed pages and to allow
|
|
* active pages to be moved to the inactive queue and reclaimed.
|
|
*
|
|
* We keep the process bigproc locked once we find it to keep anyone
|
|
* from messing with it; however, there is a possibility of
|
|
* deadlock if process B is bigproc and one of it's child processes
|
|
* attempts to propagate a signal to B while we are waiting for A's
|
|
* lock while walking this list. To avoid this, we don't block on
|
|
* the process lock but just skip a process if it is already locked.
|
|
*/
|
|
if (pass != 0 &&
|
|
((swap_pager_avail < 64 && vm_page_count_min()) ||
|
|
(swap_pager_full && vm_paging_target() > 0))) {
|
|
bigproc = NULL;
|
|
bigsize = 0;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
int breakout;
|
|
|
|
if (PROC_TRYLOCK(p) == 0)
|
|
continue;
|
|
/*
|
|
* If this is a system or protected process, skip it.
|
|
*/
|
|
if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
|
|
(p->p_flag & P_PROTECTED) ||
|
|
((p->p_pid < 48) && (swap_pager_avail != 0))) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
/*
|
|
* If the process is in a non-running type state,
|
|
* don't touch it. Check all the threads individually.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
breakout = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (!TD_ON_RUNQ(td) &&
|
|
!TD_IS_RUNNING(td) &&
|
|
!TD_IS_SLEEPING(td)) {
|
|
breakout = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (breakout) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
/*
|
|
* get the process size
|
|
*/
|
|
if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
size = vmspace_swap_count(p->p_vmspace);
|
|
vm_map_unlock_read(&p->p_vmspace->vm_map);
|
|
size += vmspace_resident_count(p->p_vmspace);
|
|
/*
|
|
* if the this process is bigger than the biggest one
|
|
* remember it.
|
|
*/
|
|
if (size > bigsize) {
|
|
if (bigproc != NULL)
|
|
PROC_UNLOCK(bigproc);
|
|
bigproc = p;
|
|
bigsize = size;
|
|
} else
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
if (bigproc != NULL) {
|
|
killproc(bigproc, "out of swap space");
|
|
mtx_lock_spin(&sched_lock);
|
|
sched_nice(bigproc, PRIO_MIN);
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(bigproc);
|
|
wakeup(&cnt.v_free_count);
|
|
}
|
|
}
|
|
mtx_unlock(&Giant);
|
|
}
|
|
|
|
/*
|
|
* This routine tries to maintain the pseudo LRU active queue,
|
|
* so that during long periods of time where there is no paging,
|
|
* that some statistic accumulation still occurs. This code
|
|
* helps the situation where paging just starts to occur.
|
|
*/
|
|
static void
|
|
vm_pageout_page_stats()
|
|
{
|
|
vm_object_t object;
|
|
vm_page_t m,next;
|
|
int pcount,tpcount; /* Number of pages to check */
|
|
static int fullintervalcount = 0;
|
|
int page_shortage;
|
|
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
page_shortage =
|
|
(cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
|
|
(cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
|
|
|
|
if (page_shortage <= 0)
|
|
return;
|
|
|
|
pcount = cnt.v_active_count;
|
|
fullintervalcount += vm_pageout_stats_interval;
|
|
if (fullintervalcount < vm_pageout_full_stats_interval) {
|
|
tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
|
|
if (pcount > tpcount)
|
|
pcount = tpcount;
|
|
} else {
|
|
fullintervalcount = 0;
|
|
}
|
|
|
|
m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
|
|
while ((m != NULL) && (pcount-- > 0)) {
|
|
int actcount;
|
|
|
|
KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
|
|
("vm_pageout_page_stats: page %p isn't active", m));
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
object = m->object;
|
|
|
|
if ((m->flags & PG_MARKER) != 0) {
|
|
m = next;
|
|
continue;
|
|
}
|
|
if (!VM_OBJECT_TRYLOCK(object) &&
|
|
!vm_pageout_fallback_object_lock(m, &next)) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
m = next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Don't deactivate pages that are busy.
|
|
*/
|
|
if ((m->busy != 0) ||
|
|
(m->flags & PG_BUSY) ||
|
|
(m->hold_count != 0)) {
|
|
VM_OBJECT_UNLOCK(object);
|
|
vm_pageq_requeue(m);
|
|
m = next;
|
|
continue;
|
|
}
|
|
|
|
actcount = 0;
|
|
if (m->flags & PG_REFERENCED) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
actcount += 1;
|
|
}
|
|
|
|
actcount += pmap_ts_referenced(m);
|
|
if (actcount) {
|
|
m->act_count += ACT_ADVANCE + actcount;
|
|
if (m->act_count > ACT_MAX)
|
|
m->act_count = ACT_MAX;
|
|
vm_pageq_requeue(m);
|
|
} else {
|
|
if (m->act_count == 0) {
|
|
/*
|
|
* We turn off page access, so that we have
|
|
* more accurate RSS stats. We don't do this
|
|
* in the normal page deactivation when the
|
|
* system is loaded VM wise, because the
|
|
* cost of the large number of page protect
|
|
* operations would be higher than the value
|
|
* of doing the operation.
|
|
*/
|
|
pmap_remove_all(m);
|
|
vm_page_deactivate(m);
|
|
} else {
|
|
m->act_count -= min(m->act_count, ACT_DECLINE);
|
|
vm_pageq_requeue(m);
|
|
}
|
|
}
|
|
VM_OBJECT_UNLOCK(object);
|
|
m = next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_pageout is the high level pageout daemon.
|
|
*/
|
|
static void
|
|
vm_pageout()
|
|
{
|
|
int error, pass;
|
|
|
|
/*
|
|
* Initialize some paging parameters.
|
|
*/
|
|
cnt.v_interrupt_free_min = 2;
|
|
if (cnt.v_page_count < 2000)
|
|
vm_pageout_page_count = 8;
|
|
|
|
/*
|
|
* v_free_reserved needs to include enough for the largest
|
|
* swap pager structures plus enough for any pv_entry structs
|
|
* when paging.
|
|
*/
|
|
if (cnt.v_page_count > 1024)
|
|
cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
|
|
else
|
|
cnt.v_free_min = 4;
|
|
cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
|
|
cnt.v_interrupt_free_min;
|
|
cnt.v_free_reserved = vm_pageout_page_count +
|
|
cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_NUMCOLORS;
|
|
cnt.v_free_severe = cnt.v_free_min / 2;
|
|
cnt.v_free_min += cnt.v_free_reserved;
|
|
cnt.v_free_severe += cnt.v_free_reserved;
|
|
|
|
/*
|
|
* v_free_target and v_cache_min control pageout hysteresis. Note
|
|
* that these are more a measure of the VM cache queue hysteresis
|
|
* then the VM free queue. Specifically, v_free_target is the
|
|
* high water mark (free+cache pages).
|
|
*
|
|
* v_free_reserved + v_cache_min (mostly means v_cache_min) is the
|
|
* low water mark, while v_free_min is the stop. v_cache_min must
|
|
* be big enough to handle memory needs while the pageout daemon
|
|
* is signalled and run to free more pages.
|
|
*/
|
|
if (cnt.v_free_count > 6144)
|
|
cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
|
|
else
|
|
cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
|
|
|
|
if (cnt.v_free_count > 2048) {
|
|
cnt.v_cache_min = cnt.v_free_target;
|
|
cnt.v_cache_max = 2 * cnt.v_cache_min;
|
|
cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
|
|
} else {
|
|
cnt.v_cache_min = 0;
|
|
cnt.v_cache_max = 0;
|
|
cnt.v_inactive_target = cnt.v_free_count / 4;
|
|
}
|
|
if (cnt.v_inactive_target > cnt.v_free_count / 3)
|
|
cnt.v_inactive_target = cnt.v_free_count / 3;
|
|
|
|
/* XXX does not really belong here */
|
|
if (vm_page_max_wired == 0)
|
|
vm_page_max_wired = cnt.v_free_count / 3;
|
|
|
|
if (vm_pageout_stats_max == 0)
|
|
vm_pageout_stats_max = cnt.v_free_target;
|
|
|
|
/*
|
|
* Set interval in seconds for stats scan.
|
|
*/
|
|
if (vm_pageout_stats_interval == 0)
|
|
vm_pageout_stats_interval = 5;
|
|
if (vm_pageout_full_stats_interval == 0)
|
|
vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
|
|
|
|
swap_pager_swap_init();
|
|
pass = 0;
|
|
/*
|
|
* The pageout daemon is never done, so loop forever.
|
|
*/
|
|
while (TRUE) {
|
|
vm_page_lock_queues();
|
|
/*
|
|
* If we have enough free memory, wakeup waiters. Do
|
|
* not clear vm_pages_needed until we reach our target,
|
|
* otherwise we may be woken up over and over again and
|
|
* waste a lot of cpu.
|
|
*/
|
|
if (vm_pages_needed && !vm_page_count_min()) {
|
|
if (!vm_paging_needed())
|
|
vm_pages_needed = 0;
|
|
wakeup(&cnt.v_free_count);
|
|
}
|
|
if (vm_pages_needed) {
|
|
/*
|
|
* Still not done, take a second pass without waiting
|
|
* (unlimited dirty cleaning), otherwise sleep a bit
|
|
* and try again.
|
|
*/
|
|
++pass;
|
|
if (pass > 1)
|
|
msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
|
|
"psleep", hz/2);
|
|
} else {
|
|
/*
|
|
* Good enough, sleep & handle stats. Prime the pass
|
|
* for the next run.
|
|
*/
|
|
if (pass > 1)
|
|
pass = 1;
|
|
else
|
|
pass = 0;
|
|
error = msleep(&vm_pages_needed, &vm_page_queue_mtx, PVM,
|
|
"psleep", vm_pageout_stats_interval * hz);
|
|
if (error && !vm_pages_needed) {
|
|
pass = 0;
|
|
vm_pageout_page_stats();
|
|
vm_page_unlock_queues();
|
|
continue;
|
|
}
|
|
}
|
|
if (vm_pages_needed)
|
|
cnt.v_pdwakeups++;
|
|
vm_page_unlock_queues();
|
|
vm_pageout_scan(pass);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unless the page queue lock is held by the caller, this function
|
|
* should be regarded as advisory. Specifically, the caller should
|
|
* not msleep() on &cnt.v_free_count following this function unless
|
|
* the page queue lock is held until the msleep() is performed.
|
|
*/
|
|
void
|
|
pagedaemon_wakeup()
|
|
{
|
|
|
|
if (!vm_pages_needed && curthread->td_proc != pageproc) {
|
|
vm_pages_needed = 1;
|
|
wakeup(&vm_pages_needed);
|
|
}
|
|
}
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
static void
|
|
vm_req_vmdaemon()
|
|
{
|
|
static int lastrun = 0;
|
|
|
|
if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
|
|
wakeup(&vm_daemon_needed);
|
|
lastrun = ticks;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vm_daemon()
|
|
{
|
|
struct rlimit rsslim;
|
|
struct proc *p;
|
|
struct thread *td;
|
|
int breakout;
|
|
|
|
mtx_lock(&Giant);
|
|
while (TRUE) {
|
|
tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
|
|
if (vm_pageout_req_swapout) {
|
|
swapout_procs(vm_pageout_req_swapout);
|
|
vm_pageout_req_swapout = 0;
|
|
}
|
|
/*
|
|
* scan the processes for exceeding their rlimits or if
|
|
* process is swapped out -- deactivate pages
|
|
*/
|
|
sx_slock(&allproc_lock);
|
|
LIST_FOREACH(p, &allproc, p_list) {
|
|
vm_pindex_t limit, size;
|
|
|
|
/*
|
|
* if this is a system process or if we have already
|
|
* looked at this process, skip it.
|
|
*/
|
|
PROC_LOCK(p);
|
|
if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
/*
|
|
* if the process is in a non-running type state,
|
|
* don't touch it.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
breakout = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (!TD_ON_RUNQ(td) &&
|
|
!TD_IS_RUNNING(td) &&
|
|
!TD_IS_SLEEPING(td)) {
|
|
breakout = 1;
|
|
break;
|
|
}
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
if (breakout) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
/*
|
|
* get a limit
|
|
*/
|
|
lim_rlimit(p, RLIMIT_RSS, &rsslim);
|
|
limit = OFF_TO_IDX(
|
|
qmin(rsslim.rlim_cur, rsslim.rlim_max));
|
|
|
|
/*
|
|
* let processes that are swapped out really be
|
|
* swapped out set the limit to nothing (will force a
|
|
* swap-out.)
|
|
*/
|
|
if ((p->p_sflag & PS_INMEM) == 0)
|
|
limit = 0; /* XXX */
|
|
PROC_UNLOCK(p);
|
|
|
|
size = vmspace_resident_count(p->p_vmspace);
|
|
if (limit >= 0 && size >= limit) {
|
|
vm_pageout_map_deactivate_pages(
|
|
&p->p_vmspace->vm_map, limit);
|
|
}
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
}
|
|
}
|
|
#endif /* !defined(NO_SWAPPING) */
|