1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-15 15:06:42 +00:00
freebsd/sys/amd64/vmm/vmm.c
Neel Natu 565bbb8698 Move the ioapic device model from userspace into vmm.ko. This is needed for
upcoming in-kernel device emulations like the HPET.

The ioctls VM_IOAPIC_ASSERT_IRQ and VM_IOAPIC_DEASSERT_IRQ are used to
manipulate the ioapic pin state.

Discussed with:	grehan@
Submitted by:	Tycho Nightingale (tycho.nightingale@pluribusnetworks.com)
2013-11-12 22:51:03 +00:00

1345 lines
28 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <machine/vm.h>
#include <machine/pcb.h>
#include <machine/smp.h>
#include <x86/apicreg.h>
#include <machine/vmparam.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include "vmm_ktr.h"
#include "vmm_host.h"
#include "vmm_mem.h"
#include "vmm_util.h"
#include "vioapic.h"
#include "vlapic.h"
#include "vmm_msr.h"
#include "vmm_ipi.h"
#include "vmm_stat.h"
#include "vmm_lapic.h"
#include "io/ppt.h"
#include "io/iommu.h"
struct vlapic;
struct vcpu {
int flags;
enum vcpu_state state;
struct mtx mtx;
int hostcpu; /* host cpuid this vcpu last ran on */
uint64_t guest_msrs[VMM_MSR_NUM];
struct vlapic *vlapic;
int vcpuid;
struct savefpu *guestfpu; /* guest fpu state */
void *stats;
struct vm_exit exitinfo;
enum x2apic_state x2apic_state;
int nmi_pending;
};
#define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
#define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
#define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
#define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
struct mem_seg {
vm_paddr_t gpa;
size_t len;
boolean_t wired;
vm_object_t object;
};
#define VM_MAX_MEMORY_SEGMENTS 2
struct vm {
void *cookie; /* processor-specific data */
void *iommu; /* iommu-specific data */
struct vioapic *vioapic; /* virtual ioapic */
struct vmspace *vmspace; /* guest's address space */
struct vcpu vcpu[VM_MAXCPU];
int num_mem_segs;
struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS];
char name[VM_MAX_NAMELEN];
/*
* Set of active vcpus.
* An active vcpu is one that has been started implicitly (BSP) or
* explicitly (AP) by sending it a startup ipi.
*/
cpuset_t active_cpus;
};
static int vmm_initialized;
static struct vmm_ops *ops;
#define VMM_INIT() (ops != NULL ? (*ops->init)() : 0)
#define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0)
#define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
#define VMRUN(vmi, vcpu, rip, pmap) \
(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap) : ENXIO)
#define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
#define VMSPACE_ALLOC(min, max) \
(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
#define VMSPACE_FREE(vmspace) \
(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
#define VMGETREG(vmi, vcpu, num, retval) \
(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
#define VMSETREG(vmi, vcpu, num, val) \
(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
#define VMGETDESC(vmi, vcpu, num, desc) \
(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
#define VMSETDESC(vmi, vcpu, num, desc) \
(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
#define VMINJECT(vmi, vcpu, type, vec, ec, ecv) \
(ops != NULL ? (*ops->vminject)(vmi, vcpu, type, vec, ec, ecv) : ENXIO)
#define VMGETCAP(vmi, vcpu, num, retval) \
(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
#define VMSETCAP(vmi, vcpu, num, val) \
(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
#define fpu_start_emulating() load_cr0(rcr0() | CR0_TS)
#define fpu_stop_emulating() clts()
static MALLOC_DEFINE(M_VM, "vm", "vm");
CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */
/* statistics */
static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
static void
vcpu_cleanup(struct vcpu *vcpu)
{
vlapic_cleanup(vcpu->vlapic);
vmm_stat_free(vcpu->stats);
fpu_save_area_free(vcpu->guestfpu);
}
static void
vcpu_init(struct vm *vm, uint32_t vcpu_id)
{
struct vcpu *vcpu;
vcpu = &vm->vcpu[vcpu_id];
vcpu_lock_init(vcpu);
vcpu->hostcpu = NOCPU;
vcpu->vcpuid = vcpu_id;
vcpu->vlapic = vlapic_init(vm, vcpu_id);
vm_set_x2apic_state(vm, vcpu_id, X2APIC_ENABLED);
vcpu->guestfpu = fpu_save_area_alloc();
fpu_save_area_reset(vcpu->guestfpu);
vcpu->stats = vmm_stat_alloc();
}
struct vm_exit *
vm_exitinfo(struct vm *vm, int cpuid)
{
struct vcpu *vcpu;
if (cpuid < 0 || cpuid >= VM_MAXCPU)
panic("vm_exitinfo: invalid cpuid %d", cpuid);
vcpu = &vm->vcpu[cpuid];
return (&vcpu->exitinfo);
}
static int
vmm_init(void)
{
int error;
vmm_host_state_init();
vmm_ipi_init();
error = vmm_mem_init();
if (error)
return (error);
if (vmm_is_intel())
ops = &vmm_ops_intel;
else if (vmm_is_amd())
ops = &vmm_ops_amd;
else
return (ENXIO);
vmm_msr_init();
return (VMM_INIT());
}
static int
vmm_handler(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
vmmdev_init();
iommu_init();
error = vmm_init();
if (error == 0)
vmm_initialized = 1;
break;
case MOD_UNLOAD:
error = vmmdev_cleanup();
if (error == 0) {
iommu_cleanup();
vmm_ipi_cleanup();
error = VMM_CLEANUP();
/*
* Something bad happened - prevent new
* VMs from being created
*/
if (error)
vmm_initialized = 0;
}
break;
default:
error = 0;
break;
}
return (error);
}
static moduledata_t vmm_kmod = {
"vmm",
vmm_handler,
NULL
};
/*
* vmm initialization has the following dependencies:
*
* - iommu initialization must happen after the pci passthru driver has had
* a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
*
* - VT-x initialization requires smp_rendezvous() and therefore must happen
* after SMP is fully functional (after SI_SUB_SMP).
*/
DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
MODULE_VERSION(vmm, 1);
SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
int
vm_create(const char *name, struct vm **retvm)
{
int i;
struct vm *vm;
struct vmspace *vmspace;
const int BSP = 0;
/*
* If vmm.ko could not be successfully initialized then don't attempt
* to create the virtual machine.
*/
if (!vmm_initialized)
return (ENXIO);
if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
return (EINVAL);
vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
if (vmspace == NULL)
return (ENOMEM);
vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
strcpy(vm->name, name);
vm->cookie = VMINIT(vm, vmspace_pmap(vmspace));
vm->vioapic = vioapic_init(vm);
for (i = 0; i < VM_MAXCPU; i++) {
vcpu_init(vm, i);
guest_msrs_init(vm, i);
}
vm_activate_cpu(vm, BSP);
vm->vmspace = vmspace;
*retvm = vm;
return (0);
}
static void
vm_free_mem_seg(struct vm *vm, struct mem_seg *seg)
{
if (seg->object != NULL)
vmm_mem_free(vm->vmspace, seg->gpa, seg->len);
bzero(seg, sizeof(*seg));
}
void
vm_destroy(struct vm *vm)
{
int i;
ppt_unassign_all(vm);
if (vm->iommu != NULL)
iommu_destroy_domain(vm->iommu);
for (i = 0; i < vm->num_mem_segs; i++)
vm_free_mem_seg(vm, &vm->mem_segs[i]);
vm->num_mem_segs = 0;
for (i = 0; i < VM_MAXCPU; i++)
vcpu_cleanup(&vm->vcpu[i]);
vioapic_cleanup(vm->vioapic);
VMSPACE_FREE(vm->vmspace);
VMCLEANUP(vm->cookie);
free(vm, M_VM);
}
const char *
vm_name(struct vm *vm)
{
return (vm->name);
}
int
vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
vm_object_t obj;
if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
return (ENOMEM);
else
return (0);
}
int
vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
{
vmm_mmio_free(vm->vmspace, gpa, len);
return (0);
}
boolean_t
vm_mem_allocated(struct vm *vm, vm_paddr_t gpa)
{
int i;
vm_paddr_t gpabase, gpalimit;
for (i = 0; i < vm->num_mem_segs; i++) {
gpabase = vm->mem_segs[i].gpa;
gpalimit = gpabase + vm->mem_segs[i].len;
if (gpa >= gpabase && gpa < gpalimit)
return (TRUE); /* 'gpa' is regular memory */
}
if (ppt_is_mmio(vm, gpa))
return (TRUE); /* 'gpa' is pci passthru mmio */
return (FALSE);
}
int
vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len)
{
int available, allocated;
struct mem_seg *seg;
vm_object_t object;
vm_paddr_t g;
if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0)
return (EINVAL);
available = allocated = 0;
g = gpa;
while (g < gpa + len) {
if (vm_mem_allocated(vm, g))
allocated++;
else
available++;
g += PAGE_SIZE;
}
/*
* If there are some allocated and some available pages in the address
* range then it is an error.
*/
if (allocated && available)
return (EINVAL);
/*
* If the entire address range being requested has already been
* allocated then there isn't anything more to do.
*/
if (allocated && available == 0)
return (0);
if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS)
return (E2BIG);
seg = &vm->mem_segs[vm->num_mem_segs];
if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL)
return (ENOMEM);
seg->gpa = gpa;
seg->len = len;
seg->object = object;
seg->wired = FALSE;
vm->num_mem_segs++;
return (0);
}
static void
vm_gpa_unwire(struct vm *vm)
{
int i, rv;
struct mem_seg *seg;
for (i = 0; i < vm->num_mem_segs; i++) {
seg = &vm->mem_segs[i];
if (!seg->wired)
continue;
rv = vm_map_unwire(&vm->vmspace->vm_map,
seg->gpa, seg->gpa + seg->len,
VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment "
"%#lx/%ld could not be unwired: %d",
vm_name(vm), seg->gpa, seg->len, rv));
seg->wired = FALSE;
}
}
static int
vm_gpa_wire(struct vm *vm)
{
int i, rv;
struct mem_seg *seg;
for (i = 0; i < vm->num_mem_segs; i++) {
seg = &vm->mem_segs[i];
if (seg->wired)
continue;
/* XXX rlimits? */
rv = vm_map_wire(&vm->vmspace->vm_map,
seg->gpa, seg->gpa + seg->len,
VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
if (rv != KERN_SUCCESS)
break;
seg->wired = TRUE;
}
if (i < vm->num_mem_segs) {
/*
* Undo the wiring before returning an error.
*/
vm_gpa_unwire(vm);
return (EAGAIN);
}
return (0);
}
static void
vm_iommu_modify(struct vm *vm, boolean_t map)
{
int i, sz;
vm_paddr_t gpa, hpa;
struct mem_seg *seg;
void *vp, *cookie, *host_domain;
sz = PAGE_SIZE;
host_domain = iommu_host_domain();
for (i = 0; i < vm->num_mem_segs; i++) {
seg = &vm->mem_segs[i];
KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired",
vm_name(vm), seg->gpa, seg->len));
gpa = seg->gpa;
while (gpa < seg->gpa + seg->len) {
vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE,
&cookie);
KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
vm_name(vm), gpa));
vm_gpa_release(cookie);
hpa = DMAP_TO_PHYS((uintptr_t)vp);
if (map) {
iommu_create_mapping(vm->iommu, gpa, hpa, sz);
iommu_remove_mapping(host_domain, hpa, sz);
} else {
iommu_remove_mapping(vm->iommu, gpa, sz);
iommu_create_mapping(host_domain, hpa, hpa, sz);
}
gpa += PAGE_SIZE;
}
}
/*
* Invalidate the cached translations associated with the domain
* from which pages were removed.
*/
if (map)
iommu_invalidate_tlb(host_domain);
else
iommu_invalidate_tlb(vm->iommu);
}
#define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE)
#define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE)
int
vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
{
int error;
error = ppt_unassign_device(vm, bus, slot, func);
if (error)
return (error);
if (ppt_num_devices(vm) == 0) {
vm_iommu_unmap(vm);
vm_gpa_unwire(vm);
}
return (0);
}
int
vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
{
int error;
vm_paddr_t maxaddr;
/*
* Virtual machines with pci passthru devices get special treatment:
* - the guest physical memory is wired
* - the iommu is programmed to do the 'gpa' to 'hpa' translation
*
* We need to do this before the first pci passthru device is attached.
*/
if (ppt_num_devices(vm) == 0) {
KASSERT(vm->iommu == NULL,
("vm_assign_pptdev: iommu must be NULL"));
maxaddr = vmm_mem_maxaddr();
vm->iommu = iommu_create_domain(maxaddr);
error = vm_gpa_wire(vm);
if (error)
return (error);
vm_iommu_map(vm);
}
error = ppt_assign_device(vm, bus, slot, func);
return (error);
}
void *
vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
void **cookie)
{
int count, pageoff;
vm_page_t m;
pageoff = gpa & PAGE_MASK;
if (len > PAGE_SIZE - pageoff)
panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
if (count == 1) {
*cookie = m;
return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
} else {
*cookie = NULL;
return (NULL);
}
}
void
vm_gpa_release(void *cookie)
{
vm_page_t m = cookie;
vm_page_lock(m);
vm_page_unhold(m);
vm_page_unlock(m);
}
int
vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase,
struct vm_memory_segment *seg)
{
int i;
for (i = 0; i < vm->num_mem_segs; i++) {
if (gpabase == vm->mem_segs[i].gpa) {
seg->gpa = vm->mem_segs[i].gpa;
seg->len = vm->mem_segs[i].len;
seg->wired = vm->mem_segs[i].wired;
return (0);
}
}
return (-1);
}
int
vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len,
vm_offset_t *offset, struct vm_object **object)
{
int i;
size_t seg_len;
vm_paddr_t seg_gpa;
vm_object_t seg_obj;
for (i = 0; i < vm->num_mem_segs; i++) {
if ((seg_obj = vm->mem_segs[i].object) == NULL)
continue;
seg_gpa = vm->mem_segs[i].gpa;
seg_len = vm->mem_segs[i].len;
if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) {
*offset = gpa - seg_gpa;
*object = seg_obj;
vm_object_reference(seg_obj);
return (0);
}
}
return (EINVAL);
}
int
vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (reg >= VM_REG_LAST)
return (EINVAL);
return (VMGETREG(vm->cookie, vcpu, reg, retval));
}
int
vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (reg >= VM_REG_LAST)
return (EINVAL);
return (VMSETREG(vm->cookie, vcpu, reg, val));
}
static boolean_t
is_descriptor_table(int reg)
{
switch (reg) {
case VM_REG_GUEST_IDTR:
case VM_REG_GUEST_GDTR:
return (TRUE);
default:
return (FALSE);
}
}
static boolean_t
is_segment_register(int reg)
{
switch (reg) {
case VM_REG_GUEST_ES:
case VM_REG_GUEST_CS:
case VM_REG_GUEST_SS:
case VM_REG_GUEST_DS:
case VM_REG_GUEST_FS:
case VM_REG_GUEST_GS:
case VM_REG_GUEST_TR:
case VM_REG_GUEST_LDTR:
return (TRUE);
default:
return (FALSE);
}
}
int
vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
struct seg_desc *desc)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (!is_segment_register(reg) && !is_descriptor_table(reg))
return (EINVAL);
return (VMGETDESC(vm->cookie, vcpu, reg, desc));
}
int
vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
struct seg_desc *desc)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (!is_segment_register(reg) && !is_descriptor_table(reg))
return (EINVAL);
return (VMSETDESC(vm->cookie, vcpu, reg, desc));
}
static void
restore_guest_fpustate(struct vcpu *vcpu)
{
/* flush host state to the pcb */
fpuexit(curthread);
/* restore guest FPU state */
fpu_stop_emulating();
fpurestore(vcpu->guestfpu);
/*
* The FPU is now "dirty" with the guest's state so turn on emulation
* to trap any access to the FPU by the host.
*/
fpu_start_emulating();
}
static void
save_guest_fpustate(struct vcpu *vcpu)
{
if ((rcr0() & CR0_TS) == 0)
panic("fpu emulation not enabled in host!");
/* save guest FPU state */
fpu_stop_emulating();
fpusave(vcpu->guestfpu);
fpu_start_emulating();
}
static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
static int
vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
{
int error;
vcpu_assert_locked(vcpu);
/*
* The following state transitions are allowed:
* IDLE -> FROZEN -> IDLE
* FROZEN -> RUNNING -> FROZEN
* FROZEN -> SLEEPING -> FROZEN
*/
switch (vcpu->state) {
case VCPU_IDLE:
case VCPU_RUNNING:
case VCPU_SLEEPING:
error = (newstate != VCPU_FROZEN);
break;
case VCPU_FROZEN:
error = (newstate == VCPU_FROZEN);
break;
default:
error = 1;
break;
}
if (error == 0)
vcpu->state = newstate;
else
error = EBUSY;
return (error);
}
static void
vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
{
int error;
if ((error = vcpu_set_state(vm, vcpuid, newstate)) != 0)
panic("Error %d setting state to %d\n", error, newstate);
}
static void
vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
{
int error;
if ((error = vcpu_set_state_locked(vcpu, newstate)) != 0)
panic("Error %d setting state to %d", error, newstate);
}
/*
* Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
*/
static int
vm_handle_hlt(struct vm *vm, int vcpuid, boolean_t *retu)
{
struct vcpu *vcpu;
int sleepticks, t;
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
/*
* Figure out the number of host ticks until the next apic
* timer interrupt in the guest.
*/
sleepticks = lapic_timer_tick(vm, vcpuid);
/*
* If the guest local apic timer is disabled then sleep for
* a long time but not forever.
*/
if (sleepticks < 0)
sleepticks = hz;
/*
* Do a final check for pending NMI or interrupts before
* really putting this thread to sleep.
*
* These interrupts could have happened any time after we
* returned from VMRUN() and before we grabbed the vcpu lock.
*/
if (!vm_nmi_pending(vm, vcpuid) && lapic_pending_intr(vm, vcpuid) < 0) {
if (sleepticks <= 0)
panic("invalid sleepticks %d", sleepticks);
t = ticks;
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
msleep_spin(vcpu, &vcpu->mtx, "vmidle", sleepticks);
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
}
vcpu_unlock(vcpu);
return (0);
}
static int
vm_handle_paging(struct vm *vm, int vcpuid, boolean_t *retu)
{
int rv, ftype;
struct vm_map *map;
struct vcpu *vcpu;
struct vm_exit *vme;
vcpu = &vm->vcpu[vcpuid];
vme = &vcpu->exitinfo;
ftype = vme->u.paging.fault_type;
KASSERT(ftype == VM_PROT_READ ||
ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
("vm_handle_paging: invalid fault_type %d", ftype));
if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
vme->u.paging.gpa, ftype);
if (rv == 0)
goto done;
}
map = &vm->vmspace->vm_map;
rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
"ftype = %d", rv, vme->u.paging.gpa, ftype);
if (rv != KERN_SUCCESS)
return (EFAULT);
done:
/* restart execution at the faulting instruction */
vme->inst_length = 0;
return (0);
}
static int
vm_handle_inst_emul(struct vm *vm, int vcpuid, boolean_t *retu)
{
struct vie *vie;
struct vcpu *vcpu;
struct vm_exit *vme;
int error, inst_length;
uint64_t rip, gla, gpa, cr3;
mem_region_read_t mread;
mem_region_write_t mwrite;
vcpu = &vm->vcpu[vcpuid];
vme = &vcpu->exitinfo;
rip = vme->rip;
inst_length = vme->inst_length;
gla = vme->u.inst_emul.gla;
gpa = vme->u.inst_emul.gpa;
cr3 = vme->u.inst_emul.cr3;
vie = &vme->u.inst_emul.vie;
vie_init(vie);
/* Fetch, decode and emulate the faulting instruction */
if (vmm_fetch_instruction(vm, vcpuid, rip, inst_length, cr3, vie) != 0)
return (EFAULT);
if (vmm_decode_instruction(vm, vcpuid, gla, vie) != 0)
return (EFAULT);
/* return to userland unless this is a local apic access */
if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
mread = lapic_mmio_read;
mwrite = lapic_mmio_write;
} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
mread = vioapic_mmio_read;
mwrite = vioapic_mmio_write;
} else {
*retu = TRUE;
return (0);
}
error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, mread, mwrite, 0);
/* return to userland to spin up the AP */
if (error == 0 && vme->exitcode == VM_EXITCODE_SPINUP_AP)
*retu = TRUE;
return (error);
}
int
vm_run(struct vm *vm, struct vm_run *vmrun)
{
int error, vcpuid;
struct vcpu *vcpu;
struct pcb *pcb;
uint64_t tscval, rip;
struct vm_exit *vme;
boolean_t retu;
pmap_t pmap;
vcpuid = vmrun->cpuid;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
pmap = vmspace_pmap(vm->vmspace);
vcpu = &vm->vcpu[vcpuid];
vme = &vcpu->exitinfo;
rip = vmrun->rip;
restart:
critical_enter();
KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
("vm_run: absurd pm_active"));
tscval = rdtsc();
pcb = PCPU_GET(curpcb);
set_pcb_flags(pcb, PCB_FULL_IRET);
restore_guest_msrs(vm, vcpuid);
restore_guest_fpustate(vcpu);
vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
vcpu->hostcpu = curcpu;
error = VMRUN(vm->cookie, vcpuid, rip, pmap);
vcpu->hostcpu = NOCPU;
vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
save_guest_fpustate(vcpu);
restore_host_msrs(vm, vcpuid);
vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
critical_exit();
if (error == 0) {
retu = FALSE;
switch (vme->exitcode) {
case VM_EXITCODE_HLT:
error = vm_handle_hlt(vm, vcpuid, &retu);
break;
case VM_EXITCODE_PAGING:
error = vm_handle_paging(vm, vcpuid, &retu);
break;
case VM_EXITCODE_INST_EMUL:
error = vm_handle_inst_emul(vm, vcpuid, &retu);
break;
default:
retu = TRUE; /* handled in userland */
break;
}
}
if (error == 0 && retu == FALSE) {
rip = vme->rip + vme->inst_length;
goto restart;
}
/* copy the exit information */
bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
return (error);
}
int
vm_inject_event(struct vm *vm, int vcpuid, int type,
int vector, uint32_t code, int code_valid)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if ((type > VM_EVENT_NONE && type < VM_EVENT_MAX) == 0)
return (EINVAL);
if (vector < 0 || vector > 255)
return (EINVAL);
return (VMINJECT(vm->cookie, vcpuid, type, vector, code, code_valid));
}
static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
int
vm_inject_nmi(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
vcpu = &vm->vcpu[vcpuid];
vcpu->nmi_pending = 1;
vm_interrupt_hostcpu(vm, vcpuid);
return (0);
}
int
vm_nmi_pending(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
return (vcpu->nmi_pending);
}
void
vm_nmi_clear(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
if (vcpu->nmi_pending == 0)
panic("vm_nmi_clear: inconsistent nmi_pending state");
vcpu->nmi_pending = 0;
vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
}
int
vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (type < 0 || type >= VM_CAP_MAX)
return (EINVAL);
return (VMGETCAP(vm->cookie, vcpu, type, retval));
}
int
vm_set_capability(struct vm *vm, int vcpu, int type, int val)
{
if (vcpu < 0 || vcpu >= VM_MAXCPU)
return (EINVAL);
if (type < 0 || type >= VM_CAP_MAX)
return (EINVAL);
return (VMSETCAP(vm->cookie, vcpu, type, val));
}
uint64_t *
vm_guest_msrs(struct vm *vm, int cpu)
{
return (vm->vcpu[cpu].guest_msrs);
}
struct vlapic *
vm_lapic(struct vm *vm, int cpu)
{
return (vm->vcpu[cpu].vlapic);
}
struct vioapic *
vm_ioapic(struct vm *vm)
{
return (vm->vioapic);
}
boolean_t
vmm_is_pptdev(int bus, int slot, int func)
{
int found, i, n;
int b, s, f;
char *val, *cp, *cp2;
/*
* XXX
* The length of an environment variable is limited to 128 bytes which
* puts an upper limit on the number of passthru devices that may be
* specified using a single environment variable.
*
* Work around this by scanning multiple environment variable
* names instead of a single one - yuck!
*/
const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
found = 0;
for (i = 0; names[i] != NULL && !found; i++) {
cp = val = getenv(names[i]);
while (cp != NULL && *cp != '\0') {
if ((cp2 = strchr(cp, ' ')) != NULL)
*cp2 = '\0';
n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
if (n == 3 && bus == b && slot == s && func == f) {
found = 1;
break;
}
if (cp2 != NULL)
*cp2++ = ' ';
cp = cp2;
}
freeenv(val);
}
return (found);
}
void *
vm_iommu_domain(struct vm *vm)
{
return (vm->iommu);
}
int
vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
{
int error;
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
error = vcpu_set_state_locked(vcpu, newstate);
vcpu_unlock(vcpu);
return (error);
}
enum vcpu_state
vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
{
struct vcpu *vcpu;
enum vcpu_state state;
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
state = vcpu->state;
if (hostcpu != NULL)
*hostcpu = vcpu->hostcpu;
vcpu_unlock(vcpu);
return (state);
}
void
vm_activate_cpu(struct vm *vm, int vcpuid)
{
if (vcpuid >= 0 && vcpuid < VM_MAXCPU)
CPU_SET(vcpuid, &vm->active_cpus);
}
cpuset_t
vm_active_cpus(struct vm *vm)
{
return (vm->active_cpus);
}
void *
vcpu_stats(struct vm *vm, int vcpuid)
{
return (vm->vcpu[vcpuid].stats);
}
int
vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
*state = vm->vcpu[vcpuid].x2apic_state;
return (0);
}
int
vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
{
if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
return (EINVAL);
if (state >= X2APIC_STATE_LAST)
return (EINVAL);
vm->vcpu[vcpuid].x2apic_state = state;
vlapic_set_x2apic_state(vm, vcpuid, state);
return (0);
}
void
vm_interrupt_hostcpu(struct vm *vm, int vcpuid)
{
int hostcpu;
struct vcpu *vcpu;
vcpu = &vm->vcpu[vcpuid];
vcpu_lock(vcpu);
hostcpu = vcpu->hostcpu;
if (hostcpu == NOCPU) {
if (vcpu->state == VCPU_SLEEPING)
wakeup_one(vcpu);
} else {
if (vcpu->state != VCPU_RUNNING)
panic("invalid vcpu state %d", vcpu->state);
if (hostcpu != curcpu)
ipi_cpu(hostcpu, vmm_ipinum);
}
vcpu_unlock(vcpu);
}
struct vmspace *
vm_get_vmspace(struct vm *vm)
{
return (vm->vmspace);
}
int
vm_apicid2vcpuid(struct vm *vm, int apicid)
{
/*
* XXX apic id is assumed to be numerically identical to vcpu id
*/
return (apicid);
}