1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-17 15:27:36 +00:00
freebsd/contrib/ofed/libmlx4/qp.c
Hans Petter Selasky d6b92ffa99 OFED user-space import and update for use with Linux-4.9 compatible RDMA
kernel APIs.

List of sources used:

1) rdma-core was cloned from "https://github.com/linux-rdma/rdma-core.git"
Top commit d65138ef93af30b3ea249f3a84aa6a24ba7f8a75

2) OpenSM was cloned from git://git.openfabrics.org/~halr/opensm.git
Top commit 85f841cf209f791c89a075048a907020e924528d

3) libibmad was cloned from "git://git.openfabrics.org/~iraweiny/libibmad.git"
Tag 1.3.13 with some additional patches from Mellanox.

4) infiniband-diags was cloned from "git://git.openfabrics.org/~iraweiny/infiniband-diags.git"
Tag 1.6.7 with some additional patches from Mellanox.

Added the required Makefiles for building and installing.

Sponsored by:	Mellanox Technologies
2017-08-02 16:00:30 +00:00

777 lines
20 KiB
C

/*
* Copyright (c) 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2005 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2007 Cisco, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <config.h>
#include <stdlib.h>
#include <pthread.h>
#include <string.h>
#include <errno.h>
#include "mlx4.h"
#include "doorbell.h"
#include "wqe.h"
static const uint32_t mlx4_ib_opcode[] = {
[IBV_WR_SEND] = MLX4_OPCODE_SEND,
[IBV_WR_SEND_WITH_IMM] = MLX4_OPCODE_SEND_IMM,
[IBV_WR_RDMA_WRITE] = MLX4_OPCODE_RDMA_WRITE,
[IBV_WR_RDMA_WRITE_WITH_IMM] = MLX4_OPCODE_RDMA_WRITE_IMM,
[IBV_WR_RDMA_READ] = MLX4_OPCODE_RDMA_READ,
[IBV_WR_ATOMIC_CMP_AND_SWP] = MLX4_OPCODE_ATOMIC_CS,
[IBV_WR_ATOMIC_FETCH_AND_ADD] = MLX4_OPCODE_ATOMIC_FA,
[IBV_WR_LOCAL_INV] = MLX4_OPCODE_LOCAL_INVAL,
[IBV_WR_BIND_MW] = MLX4_OPCODE_BIND_MW,
[IBV_WR_SEND_WITH_INV] = MLX4_OPCODE_SEND_INVAL,
};
static void *get_recv_wqe(struct mlx4_qp *qp, int n)
{
return qp->buf.buf + qp->rq.offset + (n << qp->rq.wqe_shift);
}
static void *get_send_wqe(struct mlx4_qp *qp, int n)
{
return qp->buf.buf + qp->sq.offset + (n << qp->sq.wqe_shift);
}
/*
* Stamp a SQ WQE so that it is invalid if prefetched by marking the
* first four bytes of every 64 byte chunk with 0xffffffff, except for
* the very first chunk of the WQE.
*/
static void stamp_send_wqe(struct mlx4_qp *qp, int n)
{
uint32_t *wqe = get_send_wqe(qp, n);
int i;
int ds = (((struct mlx4_wqe_ctrl_seg *)wqe)->fence_size & 0x3f) << 2;
for (i = 16; i < ds; i += 16)
wqe[i] = 0xffffffff;
}
void mlx4_init_qp_indices(struct mlx4_qp *qp)
{
qp->sq.head = 0;
qp->sq.tail = 0;
qp->rq.head = 0;
qp->rq.tail = 0;
}
void mlx4_qp_init_sq_ownership(struct mlx4_qp *qp)
{
struct mlx4_wqe_ctrl_seg *ctrl;
int i;
for (i = 0; i < qp->sq.wqe_cnt; ++i) {
ctrl = get_send_wqe(qp, i);
ctrl->owner_opcode = htobe32(1 << 31);
ctrl->fence_size = 1 << (qp->sq.wqe_shift - 4);
stamp_send_wqe(qp, i);
}
}
static int wq_overflow(struct mlx4_wq *wq, int nreq, struct mlx4_cq *cq)
{
unsigned cur;
cur = wq->head - wq->tail;
if (cur + nreq < wq->max_post)
return 0;
pthread_spin_lock(&cq->lock);
cur = wq->head - wq->tail;
pthread_spin_unlock(&cq->lock);
return cur + nreq >= wq->max_post;
}
static void set_bind_seg(struct mlx4_wqe_bind_seg *bseg, struct ibv_send_wr *wr)
{
int acc = wr->bind_mw.bind_info.mw_access_flags;
bseg->flags1 = 0;
if (acc & IBV_ACCESS_REMOTE_ATOMIC)
bseg->flags1 |= htobe32(MLX4_WQE_MW_ATOMIC);
if (acc & IBV_ACCESS_REMOTE_WRITE)
bseg->flags1 |= htobe32(MLX4_WQE_MW_REMOTE_WRITE);
if (acc & IBV_ACCESS_REMOTE_READ)
bseg->flags1 |= htobe32(MLX4_WQE_MW_REMOTE_READ);
bseg->flags2 = 0;
if (((struct ibv_mw *)(wr->bind_mw.mw))->type == IBV_MW_TYPE_2)
bseg->flags2 |= htobe32(MLX4_WQE_BIND_TYPE_2);
if (acc & IBV_ACCESS_ZERO_BASED)
bseg->flags2 |= htobe32(MLX4_WQE_BIND_ZERO_BASED);
bseg->new_rkey = htobe32(wr->bind_mw.rkey);
bseg->lkey = htobe32(wr->bind_mw.bind_info.mr->lkey);
bseg->addr = htobe64((uint64_t) wr->bind_mw.bind_info.addr);
bseg->length = htobe64(wr->bind_mw.bind_info.length);
}
static inline void set_local_inv_seg(struct mlx4_wqe_local_inval_seg *iseg,
uint32_t rkey)
{
iseg->mem_key = htobe32(rkey);
iseg->reserved1 = 0;
iseg->reserved2 = 0;
iseg->reserved3[0] = 0;
iseg->reserved3[1] = 0;
}
static inline void set_raddr_seg(struct mlx4_wqe_raddr_seg *rseg,
uint64_t remote_addr, uint32_t rkey)
{
rseg->raddr = htobe64(remote_addr);
rseg->rkey = htobe32(rkey);
rseg->reserved = 0;
}
static void set_atomic_seg(struct mlx4_wqe_atomic_seg *aseg, struct ibv_send_wr *wr)
{
if (wr->opcode == IBV_WR_ATOMIC_CMP_AND_SWP) {
aseg->swap_add = htobe64(wr->wr.atomic.swap);
aseg->compare = htobe64(wr->wr.atomic.compare_add);
} else {
aseg->swap_add = htobe64(wr->wr.atomic.compare_add);
aseg->compare = 0;
}
}
static void set_datagram_seg(struct mlx4_wqe_datagram_seg *dseg,
struct ibv_send_wr *wr)
{
memcpy(dseg->av, &to_mah(wr->wr.ud.ah)->av, sizeof (struct mlx4_av));
dseg->dqpn = htobe32(wr->wr.ud.remote_qpn);
dseg->qkey = htobe32(wr->wr.ud.remote_qkey);
dseg->vlan = htobe16(to_mah(wr->wr.ud.ah)->vlan);
memcpy(dseg->mac, to_mah(wr->wr.ud.ah)->mac, 6);
}
static void __set_data_seg(struct mlx4_wqe_data_seg *dseg, struct ibv_sge *sg)
{
dseg->byte_count = htobe32(sg->length);
dseg->lkey = htobe32(sg->lkey);
dseg->addr = htobe64(sg->addr);
}
static void set_data_seg(struct mlx4_wqe_data_seg *dseg, struct ibv_sge *sg)
{
dseg->lkey = htobe32(sg->lkey);
dseg->addr = htobe64(sg->addr);
/*
* Need a barrier here before writing the byte_count field to
* make sure that all the data is visible before the
* byte_count field is set. Otherwise, if the segment begins
* a new cacheline, the HCA prefetcher could grab the 64-byte
* chunk and get a valid (!= * 0xffffffff) byte count but
* stale data, and end up sending the wrong data.
*/
udma_to_device_barrier();
if (likely(sg->length))
dseg->byte_count = htobe32(sg->length);
else
dseg->byte_count = htobe32(0x80000000);
}
int mlx4_post_send(struct ibv_qp *ibqp, struct ibv_send_wr *wr,
struct ibv_send_wr **bad_wr)
{
struct mlx4_context *ctx;
struct mlx4_qp *qp = to_mqp(ibqp);
void *wqe;
struct mlx4_wqe_ctrl_seg *ctrl = NULL;
int ind;
int nreq;
int inl = 0;
int ret = 0;
int size = 0;
int i;
pthread_spin_lock(&qp->sq.lock);
/* XXX check that state is OK to post send */
ind = qp->sq.head;
for (nreq = 0; wr; ++nreq, wr = wr->next) {
if (wq_overflow(&qp->sq, nreq, to_mcq(ibqp->send_cq))) {
ret = ENOMEM;
*bad_wr = wr;
goto out;
}
if (wr->num_sge > qp->sq.max_gs) {
ret = ENOMEM;
*bad_wr = wr;
goto out;
}
if (wr->opcode >= sizeof mlx4_ib_opcode / sizeof mlx4_ib_opcode[0]) {
ret = EINVAL;
*bad_wr = wr;
goto out;
}
ctrl = wqe = get_send_wqe(qp, ind & (qp->sq.wqe_cnt - 1));
qp->sq.wrid[ind & (qp->sq.wqe_cnt - 1)] = wr->wr_id;
ctrl->srcrb_flags =
(wr->send_flags & IBV_SEND_SIGNALED ?
htobe32(MLX4_WQE_CTRL_CQ_UPDATE) : 0) |
(wr->send_flags & IBV_SEND_SOLICITED ?
htobe32(MLX4_WQE_CTRL_SOLICIT) : 0) |
qp->sq_signal_bits;
if (wr->opcode == IBV_WR_SEND_WITH_IMM ||
wr->opcode == IBV_WR_RDMA_WRITE_WITH_IMM)
ctrl->imm = wr->imm_data;
else
ctrl->imm = 0;
wqe += sizeof *ctrl;
size = sizeof *ctrl / 16;
switch (ibqp->qp_type) {
case IBV_QPT_XRC_SEND:
ctrl->srcrb_flags |= MLX4_REMOTE_SRQN_FLAGS(wr);
/* fall through */
case IBV_QPT_RC:
case IBV_QPT_UC:
switch (wr->opcode) {
case IBV_WR_ATOMIC_CMP_AND_SWP:
case IBV_WR_ATOMIC_FETCH_AND_ADD:
set_raddr_seg(wqe, wr->wr.atomic.remote_addr,
wr->wr.atomic.rkey);
wqe += sizeof (struct mlx4_wqe_raddr_seg);
set_atomic_seg(wqe, wr);
wqe += sizeof (struct mlx4_wqe_atomic_seg);
size += (sizeof (struct mlx4_wqe_raddr_seg) +
sizeof (struct mlx4_wqe_atomic_seg)) / 16;
break;
case IBV_WR_RDMA_READ:
inl = 1;
/* fall through */
case IBV_WR_RDMA_WRITE:
case IBV_WR_RDMA_WRITE_WITH_IMM:
if (!wr->num_sge)
inl = 1;
set_raddr_seg(wqe, wr->wr.rdma.remote_addr,
wr->wr.rdma.rkey);
wqe += sizeof (struct mlx4_wqe_raddr_seg);
size += sizeof (struct mlx4_wqe_raddr_seg) / 16;
break;
case IBV_WR_LOCAL_INV:
ctrl->srcrb_flags |=
htobe32(MLX4_WQE_CTRL_STRONG_ORDER);
set_local_inv_seg(wqe, wr->imm_data);
wqe += sizeof
(struct mlx4_wqe_local_inval_seg);
size += sizeof
(struct mlx4_wqe_local_inval_seg) / 16;
break;
case IBV_WR_BIND_MW:
ctrl->srcrb_flags |=
htobe32(MLX4_WQE_CTRL_STRONG_ORDER);
set_bind_seg(wqe, wr);
wqe += sizeof
(struct mlx4_wqe_bind_seg);
size += sizeof
(struct mlx4_wqe_bind_seg) / 16;
break;
case IBV_WR_SEND_WITH_INV:
ctrl->imm = htobe32(wr->imm_data);
break;
default:
/* No extra segments required for sends */
break;
}
break;
case IBV_QPT_UD:
set_datagram_seg(wqe, wr);
wqe += sizeof (struct mlx4_wqe_datagram_seg);
size += sizeof (struct mlx4_wqe_datagram_seg) / 16;
if (wr->send_flags & IBV_SEND_IP_CSUM) {
if (!(qp->qp_cap_cache & MLX4_CSUM_SUPPORT_UD_OVER_IB)) {
ret = EINVAL;
*bad_wr = wr;
goto out;
}
ctrl->srcrb_flags |= htobe32(MLX4_WQE_CTRL_IP_HDR_CSUM |
MLX4_WQE_CTRL_TCP_UDP_CSUM);
}
break;
case IBV_QPT_RAW_PACKET:
/* For raw eth, the MLX4_WQE_CTRL_SOLICIT flag is used
* to indicate that no icrc should be calculated */
ctrl->srcrb_flags |= htobe32(MLX4_WQE_CTRL_SOLICIT);
if (wr->send_flags & IBV_SEND_IP_CSUM) {
if (!(qp->qp_cap_cache & MLX4_CSUM_SUPPORT_RAW_OVER_ETH)) {
ret = EINVAL;
*bad_wr = wr;
goto out;
}
ctrl->srcrb_flags |= htobe32(MLX4_WQE_CTRL_IP_HDR_CSUM |
MLX4_WQE_CTRL_TCP_UDP_CSUM);
}
break;
default:
break;
}
if (wr->send_flags & IBV_SEND_INLINE && wr->num_sge) {
struct mlx4_wqe_inline_seg *seg;
void *addr;
int len, seg_len;
int num_seg;
int off, to_copy;
inl = 0;
seg = wqe;
wqe += sizeof *seg;
off = ((uintptr_t) wqe) & (MLX4_INLINE_ALIGN - 1);
num_seg = 0;
seg_len = 0;
for (i = 0; i < wr->num_sge; ++i) {
addr = (void *) (uintptr_t) wr->sg_list[i].addr;
len = wr->sg_list[i].length;
inl += len;
if (inl > qp->max_inline_data) {
inl = 0;
ret = ENOMEM;
*bad_wr = wr;
goto out;
}
while (len >= MLX4_INLINE_ALIGN - off) {
to_copy = MLX4_INLINE_ALIGN - off;
memcpy(wqe, addr, to_copy);
len -= to_copy;
wqe += to_copy;
addr += to_copy;
seg_len += to_copy;
udma_to_device_barrier(); /* see comment below */
seg->byte_count = htobe32(MLX4_INLINE_SEG | seg_len);
seg_len = 0;
seg = wqe;
wqe += sizeof *seg;
off = sizeof *seg;
++num_seg;
}
memcpy(wqe, addr, len);
wqe += len;
seg_len += len;
off += len;
}
if (seg_len) {
++num_seg;
/*
* Need a barrier here to make sure
* all the data is visible before the
* byte_count field is set. Otherwise
* the HCA prefetcher could grab the
* 64-byte chunk with this inline
* segment and get a valid (!=
* 0xffffffff) byte count but stale
* data, and end up sending the wrong
* data.
*/
udma_to_device_barrier();
seg->byte_count = htobe32(MLX4_INLINE_SEG | seg_len);
}
size += (inl + num_seg * sizeof * seg + 15) / 16;
} else {
struct mlx4_wqe_data_seg *seg = wqe;
for (i = wr->num_sge - 1; i >= 0 ; --i)
set_data_seg(seg + i, wr->sg_list + i);
size += wr->num_sge * (sizeof *seg / 16);
}
ctrl->fence_size = (wr->send_flags & IBV_SEND_FENCE ?
MLX4_WQE_CTRL_FENCE : 0) | size;
/*
* Make sure descriptor is fully written before
* setting ownership bit (because HW can start
* executing as soon as we do).
*/
udma_to_device_barrier();
ctrl->owner_opcode = htobe32(mlx4_ib_opcode[wr->opcode]) |
(ind & qp->sq.wqe_cnt ? htobe32(1 << 31) : 0);
/*
* We can improve latency by not stamping the last
* send queue WQE until after ringing the doorbell, so
* only stamp here if there are still more WQEs to post.
*/
if (wr->next)
stamp_send_wqe(qp, (ind + qp->sq_spare_wqes) &
(qp->sq.wqe_cnt - 1));
++ind;
}
out:
ctx = to_mctx(ibqp->context);
if (nreq == 1 && inl && size > 1 && size <= ctx->bf_buf_size / 16) {
ctrl->owner_opcode |= htobe32((qp->sq.head & 0xffff) << 8);
ctrl->bf_qpn |= qp->doorbell_qpn;
++qp->sq.head;
/*
* Make sure that descriptor is written to memory
* before writing to BlueFlame page.
*/
mmio_wc_spinlock(&ctx->bf_lock);
mlx4_bf_copy(ctx->bf_page + ctx->bf_offset, (unsigned long *) ctrl,
align(size * 16, 64));
/* Flush before toggling bf_offset to be latency oriented */
mmio_flush_writes();
ctx->bf_offset ^= ctx->bf_buf_size;
pthread_spin_unlock(&ctx->bf_lock);
} else if (nreq) {
qp->sq.head += nreq;
/*
* Make sure that descriptors are written before
* doorbell record.
*/
udma_to_device_barrier();
mmio_writel((unsigned long)(ctx->uar + MLX4_SEND_DOORBELL),
qp->doorbell_qpn);
}
if (nreq)
stamp_send_wqe(qp, (ind + qp->sq_spare_wqes - 1) &
(qp->sq.wqe_cnt - 1));
pthread_spin_unlock(&qp->sq.lock);
return ret;
}
int mlx4_post_recv(struct ibv_qp *ibqp, struct ibv_recv_wr *wr,
struct ibv_recv_wr **bad_wr)
{
struct mlx4_qp *qp = to_mqp(ibqp);
struct mlx4_wqe_data_seg *scat;
int ret = 0;
int nreq;
int ind;
int i;
pthread_spin_lock(&qp->rq.lock);
/* XXX check that state is OK to post receive */
ind = qp->rq.head & (qp->rq.wqe_cnt - 1);
for (nreq = 0; wr; ++nreq, wr = wr->next) {
if (wq_overflow(&qp->rq, nreq, to_mcq(ibqp->recv_cq))) {
ret = ENOMEM;
*bad_wr = wr;
goto out;
}
if (wr->num_sge > qp->rq.max_gs) {
ret = ENOMEM;
*bad_wr = wr;
goto out;
}
scat = get_recv_wqe(qp, ind);
for (i = 0; i < wr->num_sge; ++i)
__set_data_seg(scat + i, wr->sg_list + i);
if (i < qp->rq.max_gs) {
scat[i].byte_count = 0;
scat[i].lkey = htobe32(MLX4_INVALID_LKEY);
scat[i].addr = 0;
}
qp->rq.wrid[ind] = wr->wr_id;
ind = (ind + 1) & (qp->rq.wqe_cnt - 1);
}
out:
if (nreq) {
qp->rq.head += nreq;
/*
* Make sure that descriptors are written before
* doorbell record.
*/
udma_to_device_barrier();
*qp->db = htobe32(qp->rq.head & 0xffff);
}
pthread_spin_unlock(&qp->rq.lock);
return ret;
}
static int num_inline_segs(int data, enum ibv_qp_type type)
{
/*
* Inline data segments are not allowed to cross 64 byte
* boundaries. For UD QPs, the data segments always start
* aligned to 64 bytes (16 byte control segment + 48 byte
* datagram segment); for other QPs, there will be a 16 byte
* control segment and possibly a 16 byte remote address
* segment, so in the worst case there will be only 32 bytes
* available for the first data segment.
*/
if (type == IBV_QPT_UD)
data += (sizeof (struct mlx4_wqe_ctrl_seg) +
sizeof (struct mlx4_wqe_datagram_seg)) %
MLX4_INLINE_ALIGN;
else
data += (sizeof (struct mlx4_wqe_ctrl_seg) +
sizeof (struct mlx4_wqe_raddr_seg)) %
MLX4_INLINE_ALIGN;
return (data + MLX4_INLINE_ALIGN - sizeof (struct mlx4_wqe_inline_seg) - 1) /
(MLX4_INLINE_ALIGN - sizeof (struct mlx4_wqe_inline_seg));
}
void mlx4_calc_sq_wqe_size(struct ibv_qp_cap *cap, enum ibv_qp_type type,
struct mlx4_qp *qp)
{
int size;
int max_sq_sge;
max_sq_sge = align(cap->max_inline_data +
num_inline_segs(cap->max_inline_data, type) *
sizeof (struct mlx4_wqe_inline_seg),
sizeof (struct mlx4_wqe_data_seg)) /
sizeof (struct mlx4_wqe_data_seg);
if (max_sq_sge < cap->max_send_sge)
max_sq_sge = cap->max_send_sge;
size = max_sq_sge * sizeof (struct mlx4_wqe_data_seg);
switch (type) {
case IBV_QPT_UD:
size += sizeof (struct mlx4_wqe_datagram_seg);
break;
case IBV_QPT_UC:
size += sizeof (struct mlx4_wqe_raddr_seg);
break;
case IBV_QPT_XRC_SEND:
case IBV_QPT_RC:
size += sizeof (struct mlx4_wqe_raddr_seg);
/*
* An atomic op will require an atomic segment, a
* remote address segment and one scatter entry.
*/
if (size < (sizeof (struct mlx4_wqe_atomic_seg) +
sizeof (struct mlx4_wqe_raddr_seg) +
sizeof (struct mlx4_wqe_data_seg)))
size = (sizeof (struct mlx4_wqe_atomic_seg) +
sizeof (struct mlx4_wqe_raddr_seg) +
sizeof (struct mlx4_wqe_data_seg));
break;
default:
break;
}
/* Make sure that we have enough space for a bind request */
if (size < sizeof (struct mlx4_wqe_bind_seg))
size = sizeof (struct mlx4_wqe_bind_seg);
size += sizeof (struct mlx4_wqe_ctrl_seg);
for (qp->sq.wqe_shift = 6; 1 << qp->sq.wqe_shift < size;
qp->sq.wqe_shift++)
; /* nothing */
}
int mlx4_alloc_qp_buf(struct ibv_context *context, struct ibv_qp_cap *cap,
enum ibv_qp_type type, struct mlx4_qp *qp)
{
qp->rq.max_gs = cap->max_recv_sge;
if (qp->sq.wqe_cnt) {
qp->sq.wrid = malloc(qp->sq.wqe_cnt * sizeof (uint64_t));
if (!qp->sq.wrid)
return -1;
}
if (qp->rq.wqe_cnt) {
qp->rq.wrid = malloc(qp->rq.wqe_cnt * sizeof (uint64_t));
if (!qp->rq.wrid) {
free(qp->sq.wrid);
return -1;
}
}
for (qp->rq.wqe_shift = 4;
1 << qp->rq.wqe_shift < qp->rq.max_gs * sizeof (struct mlx4_wqe_data_seg);
qp->rq.wqe_shift++)
; /* nothing */
qp->buf_size = (qp->rq.wqe_cnt << qp->rq.wqe_shift) +
(qp->sq.wqe_cnt << qp->sq.wqe_shift);
if (qp->rq.wqe_shift > qp->sq.wqe_shift) {
qp->rq.offset = 0;
qp->sq.offset = qp->rq.wqe_cnt << qp->rq.wqe_shift;
} else {
qp->rq.offset = qp->sq.wqe_cnt << qp->sq.wqe_shift;
qp->sq.offset = 0;
}
if (qp->buf_size) {
if (mlx4_alloc_buf(&qp->buf,
align(qp->buf_size, to_mdev(context->device)->page_size),
to_mdev(context->device)->page_size)) {
free(qp->sq.wrid);
free(qp->rq.wrid);
return -1;
}
memset(qp->buf.buf, 0, qp->buf_size);
} else {
qp->buf.buf = NULL;
}
return 0;
}
void mlx4_set_sq_sizes(struct mlx4_qp *qp, struct ibv_qp_cap *cap,
enum ibv_qp_type type)
{
int wqe_size;
wqe_size = (1 << qp->sq.wqe_shift) - sizeof (struct mlx4_wqe_ctrl_seg);
switch (type) {
case IBV_QPT_UD:
wqe_size -= sizeof (struct mlx4_wqe_datagram_seg);
break;
case IBV_QPT_XRC_SEND:
case IBV_QPT_UC:
case IBV_QPT_RC:
wqe_size -= sizeof (struct mlx4_wqe_raddr_seg);
break;
default:
break;
}
qp->sq.max_gs = wqe_size / sizeof (struct mlx4_wqe_data_seg);
cap->max_send_sge = qp->sq.max_gs;
qp->sq.max_post = qp->sq.wqe_cnt - qp->sq_spare_wqes;
cap->max_send_wr = qp->sq.max_post;
/*
* Inline data segments can't cross a 64 byte boundary. So
* subtract off one segment header for each 64-byte chunk,
* taking into account the fact that wqe_size will be 32 mod
* 64 for non-UD QPs.
*/
qp->max_inline_data = wqe_size -
sizeof (struct mlx4_wqe_inline_seg) *
(align(wqe_size, MLX4_INLINE_ALIGN) / MLX4_INLINE_ALIGN);
cap->max_inline_data = qp->max_inline_data;
}
struct mlx4_qp *mlx4_find_qp(struct mlx4_context *ctx, uint32_t qpn)
{
int tind = (qpn & (ctx->num_qps - 1)) >> ctx->qp_table_shift;
if (ctx->qp_table[tind].refcnt)
return ctx->qp_table[tind].table[qpn & ctx->qp_table_mask];
else
return NULL;
}
int mlx4_store_qp(struct mlx4_context *ctx, uint32_t qpn, struct mlx4_qp *qp)
{
int tind = (qpn & (ctx->num_qps - 1)) >> ctx->qp_table_shift;
if (!ctx->qp_table[tind].refcnt) {
ctx->qp_table[tind].table = calloc(ctx->qp_table_mask + 1,
sizeof (struct mlx4_qp *));
if (!ctx->qp_table[tind].table)
return -1;
}
++ctx->qp_table[tind].refcnt;
ctx->qp_table[tind].table[qpn & ctx->qp_table_mask] = qp;
return 0;
}
void mlx4_clear_qp(struct mlx4_context *ctx, uint32_t qpn)
{
int tind = (qpn & (ctx->num_qps - 1)) >> ctx->qp_table_shift;
if (!--ctx->qp_table[tind].refcnt)
free(ctx->qp_table[tind].table);
else
ctx->qp_table[tind].table[qpn & ctx->qp_table_mask] = NULL;
}