1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-14 10:09:48 +00:00
freebsd/usr.sbin/ppp/bundle.c
Brian Somers f2f5156f21 Add "iface name" and "iface description" commands.
PR:		151400
Submitted by:	Aragon Gouveia - aragon at phat dot za dot net with minor fixes
MFC after:	3 weeks
2011-02-07 11:18:18 +00:00

2020 lines
56 KiB
C

/*-
* Copyright (c) 1998 Brian Somers <brian@Awfulhak.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/if.h>
#include <net/if_tun.h> /* For TUNS* ioctls */
#include <net/route.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <sys/un.h>
#include <errno.h>
#include <fcntl.h>
#ifdef __OpenBSD__
#include <util.h>
#else
#include <libutil.h>
#endif
#include <paths.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <termios.h>
#include <unistd.h>
#include "layer.h"
#include "defs.h"
#include "command.h"
#include "mbuf.h"
#include "log.h"
#include "id.h"
#include "timer.h"
#include "fsm.h"
#include "iplist.h"
#include "lqr.h"
#include "hdlc.h"
#include "throughput.h"
#include "slcompress.h"
#include "ncpaddr.h"
#include "ip.h"
#include "ipcp.h"
#include "filter.h"
#include "descriptor.h"
#include "route.h"
#include "lcp.h"
#include "ccp.h"
#include "link.h"
#include "mp.h"
#ifndef NORADIUS
#include "radius.h"
#endif
#include "ipv6cp.h"
#include "ncp.h"
#include "bundle.h"
#include "async.h"
#include "physical.h"
#include "auth.h"
#include "proto.h"
#include "chap.h"
#include "tun.h"
#include "prompt.h"
#include "chat.h"
#include "cbcp.h"
#include "datalink.h"
#include "iface.h"
#include "server.h"
#include "probe.h"
#ifndef NODES
#include "mppe.h"
#endif
#define SCATTER_SEGMENTS 7 /* version, datalink, name, physical,
throughput, throughput, device */
#define SEND_MAXFD 3 /* Max file descriptors passed through
the local domain socket */
static int bundle_RemainingIdleTime(struct bundle *);
static const char * const PhaseNames[] = {
"Dead", "Establish", "Authenticate", "Network", "Terminate"
};
const char *
bundle_PhaseName(struct bundle *bundle)
{
return bundle->phase <= PHASE_TERMINATE ?
PhaseNames[bundle->phase] : "unknown";
}
void
bundle_NewPhase(struct bundle *bundle, u_int new)
{
if (new == bundle->phase)
return;
if (new <= PHASE_TERMINATE)
log_Printf(LogPHASE, "bundle: %s\n", PhaseNames[new]);
switch (new) {
case PHASE_DEAD:
bundle->phase = new;
#ifndef NODES
MPPE_MasterKeyValid = 0;
#endif
log_DisplayPrompts();
break;
case PHASE_ESTABLISH:
bundle->phase = new;
break;
case PHASE_AUTHENTICATE:
bundle->phase = new;
log_DisplayPrompts();
break;
case PHASE_NETWORK:
if (ncp_fsmStart(&bundle->ncp, bundle)) {
bundle->phase = new;
log_DisplayPrompts();
} else {
log_Printf(LogPHASE, "bundle: All NCPs are disabled\n");
bundle_Close(bundle, NULL, CLOSE_STAYDOWN);
}
break;
case PHASE_TERMINATE:
bundle->phase = new;
mp_Down(&bundle->ncp.mp);
log_DisplayPrompts();
break;
}
}
static void
bundle_LayerStart(void *v __unused, struct fsm *fp __unused)
{
/* The given FSM is about to start up ! */
}
void
bundle_Notify(struct bundle *bundle, char c)
{
if (bundle->notify.fd != -1) {
int ret;
ret = write(bundle->notify.fd, &c, 1);
if (c != EX_REDIAL && c != EX_RECONNECT) {
if (ret == 1)
log_Printf(LogCHAT, "Parent notified of %s\n",
c == EX_NORMAL ? "success" : "failure");
else
log_Printf(LogERROR, "Failed to notify parent of success\n");
close(bundle->notify.fd);
bundle->notify.fd = -1;
} else if (ret == 1)
log_Printf(LogCHAT, "Parent notified of %s\n", ex_desc(c));
else
log_Printf(LogERROR, "Failed to notify parent of %s\n", ex_desc(c));
}
}
static void
bundle_ClearQueues(void *v)
{
struct bundle *bundle = (struct bundle *)v;
struct datalink *dl;
log_Printf(LogPHASE, "Clearing choked output queue\n");
timer_Stop(&bundle->choked.timer);
/*
* Emergency time:
*
* We've had a full queue for PACKET_DEL_SECS seconds without being
* able to get rid of any of the packets. We've probably given up
* on the redials at this point, and the queued data has almost
* definitely been timed out by the layer above. As this is preventing
* us from reading the TUN_NAME device (we don't want to buffer stuff
* indefinitely), we may as well nuke this data and start with a clean
* slate !
*
* Unfortunately, this has the side effect of shafting any compression
* dictionaries in use (causing the relevant RESET_REQ/RESET_ACK).
*/
ncp_DeleteQueues(&bundle->ncp);
for (dl = bundle->links; dl; dl = dl->next)
physical_DeleteQueue(dl->physical);
}
static void
bundle_LinkAdded(struct bundle *bundle, struct datalink *dl)
{
bundle->phys_type.all |= dl->physical->type;
if (dl->state == DATALINK_OPEN)
bundle->phys_type.open |= dl->physical->type;
#ifndef NORADIUS
if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL))
!= bundle->phys_type.open && bundle->session.timer.state == TIMER_STOPPED)
if (bundle->radius.sessiontime)
bundle_StartSessionTimer(bundle, 0);
#endif
if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL))
!= bundle->phys_type.open && bundle->idle.timer.state == TIMER_STOPPED)
/* We may need to start our idle timer */
bundle_StartIdleTimer(bundle, 0);
}
void
bundle_LinksRemoved(struct bundle *bundle)
{
struct datalink *dl;
bundle->phys_type.all = bundle->phys_type.open = 0;
for (dl = bundle->links; dl; dl = dl->next)
bundle_LinkAdded(bundle, dl);
bundle_CalculateBandwidth(bundle);
mp_CheckAutoloadTimer(&bundle->ncp.mp);
if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL))
== bundle->phys_type.open) {
#ifndef NORADIUS
if (bundle->radius.sessiontime)
bundle_StopSessionTimer(bundle);
#endif
bundle_StopIdleTimer(bundle);
}
}
static void
bundle_LayerUp(void *v, struct fsm *fp)
{
/*
* The given fsm is now up
* If it's an LCP, adjust our phys_mode.open value and check the
* autoload timer.
* If it's the first NCP, calculate our bandwidth
* If it's the first NCP, set our ``upat'' time
* If it's the first NCP, start the idle timer.
* If it's an NCP, tell our -background parent to go away.
* If it's the first NCP, start the autoload timer
*/
struct bundle *bundle = (struct bundle *)v;
if (fp->proto == PROTO_LCP) {
struct physical *p = link2physical(fp->link);
bundle_LinkAdded(bundle, p->dl);
mp_CheckAutoloadTimer(&bundle->ncp.mp);
} else if (isncp(fp->proto)) {
if (ncp_LayersOpen(&fp->bundle->ncp) == 1) {
bundle_CalculateBandwidth(fp->bundle);
time(&bundle->upat);
#ifndef NORADIUS
if (bundle->radius.sessiontime)
bundle_StartSessionTimer(bundle, 0);
#endif
bundle_StartIdleTimer(bundle, 0);
mp_CheckAutoloadTimer(&fp->bundle->ncp.mp);
}
bundle_Notify(bundle, EX_NORMAL);
} else if (fp->proto == PROTO_CCP)
bundle_CalculateBandwidth(fp->bundle); /* Against ccp_MTUOverhead */
}
static void
bundle_LayerDown(void *v, struct fsm *fp)
{
/*
* The given FSM has been told to come down.
* If it's our last NCP, stop the idle timer.
* If it's our last NCP, clear our ``upat'' value.
* If it's our last NCP, stop the autoload timer
* If it's an LCP, adjust our phys_type.open value and any timers.
* If it's an LCP and we're in multilink mode, adjust our tun
* If it's the last LCP, down all NCPs
* speed and make sure our minimum sequence number is adjusted.
*/
struct bundle *bundle = (struct bundle *)v;
if (isncp(fp->proto)) {
if (ncp_LayersOpen(&fp->bundle->ncp) == 0) {
#ifndef NORADIUS
if (bundle->radius.sessiontime)
bundle_StopSessionTimer(bundle);
#endif
bundle_StopIdleTimer(bundle);
bundle->upat = 0;
mp_StopAutoloadTimer(&bundle->ncp.mp);
}
} else if (fp->proto == PROTO_LCP) {
struct datalink *dl;
struct datalink *lost;
int others_active;
bundle_LinksRemoved(bundle); /* adjust timers & phys_type values */
lost = NULL;
others_active = 0;
for (dl = bundle->links; dl; dl = dl->next) {
if (fp == &dl->physical->link.lcp.fsm)
lost = dl;
else if (dl->state != DATALINK_CLOSED && dl->state != DATALINK_HANGUP)
others_active++;
}
if (bundle->ncp.mp.active) {
bundle_CalculateBandwidth(bundle);
if (lost)
mp_LinkLost(&bundle->ncp.mp, lost);
else
log_Printf(LogALERT, "Oops, lost an unrecognised datalink (%s) !\n",
fp->link->name);
}
if (!others_active) {
/* Down the NCPs. We don't expect to get fsm_Close()d ourself ! */
ncp2initial(&bundle->ncp);
mp_Down(&bundle->ncp.mp);
}
}
}
static void
bundle_LayerFinish(void *v, struct fsm *fp)
{
/* The given fsm is now down (fp cannot be NULL)
*
* If it's the last NCP, fsm_Close all LCPs
* If it's the last NCP, bring any MP layer down
*/
struct bundle *bundle = (struct bundle *)v;
struct datalink *dl;
if (isncp(fp->proto) && !ncp_LayersUnfinished(&bundle->ncp)) {
if (bundle_Phase(bundle) != PHASE_DEAD)
bundle_NewPhase(bundle, PHASE_TERMINATE);
for (dl = bundle->links; dl; dl = dl->next)
if (dl->state == DATALINK_OPEN)
datalink_Close(dl, CLOSE_STAYDOWN);
fsm2initial(fp);
mp_Down(&bundle->ncp.mp);
}
}
void
bundle_Close(struct bundle *bundle, const char *name, int how)
{
/*
* Please close the given datalink.
* If name == NULL or name is the last datalink, fsm_Close all NCPs
* (except our MP)
* If it isn't the last datalink, just Close that datalink.
*/
struct datalink *dl, *this_dl;
int others_active;
others_active = 0;
this_dl = NULL;
for (dl = bundle->links; dl; dl = dl->next) {
if (name && !strcasecmp(name, dl->name))
this_dl = dl;
if (name == NULL || this_dl == dl) {
switch (how) {
case CLOSE_LCP:
datalink_DontHangup(dl);
break;
case CLOSE_STAYDOWN:
datalink_StayDown(dl);
break;
}
} else if (dl->state != DATALINK_CLOSED && dl->state != DATALINK_HANGUP)
others_active++;
}
if (name && this_dl == NULL) {
log_Printf(LogWARN, "%s: Invalid datalink name\n", name);
return;
}
if (!others_active) {
#ifndef NORADIUS
if (bundle->radius.sessiontime)
bundle_StopSessionTimer(bundle);
#endif
bundle_StopIdleTimer(bundle);
if (ncp_LayersUnfinished(&bundle->ncp))
ncp_Close(&bundle->ncp);
else {
ncp2initial(&bundle->ncp);
mp_Down(&bundle->ncp.mp);
for (dl = bundle->links; dl; dl = dl->next)
datalink_Close(dl, how);
}
} else if (this_dl && this_dl->state != DATALINK_CLOSED &&
this_dl->state != DATALINK_HANGUP)
datalink_Close(this_dl, how);
}
void
bundle_Down(struct bundle *bundle, int how)
{
struct datalink *dl;
for (dl = bundle->links; dl; dl = dl->next)
datalink_Down(dl, how);
}
static int
bundle_UpdateSet(struct fdescriptor *d, fd_set *r, fd_set *w, fd_set *e, int *n)
{
struct bundle *bundle = descriptor2bundle(d);
struct datalink *dl;
int result, nlinks;
u_short ifqueue;
size_t queued;
result = 0;
/* If there are aren't many packets queued, look for some more. */
for (nlinks = 0, dl = bundle->links; dl; dl = dl->next)
nlinks++;
if (nlinks) {
queued = r ? ncp_FillPhysicalQueues(&bundle->ncp, bundle) :
ncp_QueueLen(&bundle->ncp);
if (r && (bundle->phase == PHASE_NETWORK ||
bundle->phys_type.all & PHYS_AUTO)) {
/* enough surplus so that we can tell if we're getting swamped */
ifqueue = nlinks > bundle->cfg.ifqueue ? nlinks : bundle->cfg.ifqueue;
if (queued < ifqueue) {
/* Not enough - select() for more */
if (bundle->choked.timer.state == TIMER_RUNNING)
timer_Stop(&bundle->choked.timer); /* Not needed any more */
FD_SET(bundle->dev.fd, r);
if (*n < bundle->dev.fd + 1)
*n = bundle->dev.fd + 1;
log_Printf(LogTIMER, "%s: fdset(r) %d\n", TUN_NAME, bundle->dev.fd);
result++;
} else if (bundle->choked.timer.state == TIMER_STOPPED) {
bundle->choked.timer.func = bundle_ClearQueues;
bundle->choked.timer.name = "output choke";
bundle->choked.timer.load = bundle->cfg.choked.timeout * SECTICKS;
bundle->choked.timer.arg = bundle;
timer_Start(&bundle->choked.timer);
}
}
}
#ifndef NORADIUS
result += descriptor_UpdateSet(&bundle->radius.desc, r, w, e, n);
#endif
/* Which links need a select() ? */
for (dl = bundle->links; dl; dl = dl->next)
result += descriptor_UpdateSet(&dl->desc, r, w, e, n);
/*
* This *MUST* be called after the datalink UpdateSet()s as it
* might be ``holding'' one of the datalinks (death-row) and
* wants to be able to de-select() it from the descriptor set.
*/
result += descriptor_UpdateSet(&bundle->ncp.mp.server.desc, r, w, e, n);
return result;
}
static int
bundle_IsSet(struct fdescriptor *d, const fd_set *fdset)
{
struct bundle *bundle = descriptor2bundle(d);
struct datalink *dl;
for (dl = bundle->links; dl; dl = dl->next)
if (descriptor_IsSet(&dl->desc, fdset))
return 1;
#ifndef NORADIUS
if (descriptor_IsSet(&bundle->radius.desc, fdset))
return 1;
#endif
if (descriptor_IsSet(&bundle->ncp.mp.server.desc, fdset))
return 1;
return FD_ISSET(bundle->dev.fd, fdset);
}
static void
bundle_DescriptorRead(struct fdescriptor *d __unused, struct bundle *bundle,
const fd_set *fdset)
{
struct datalink *dl;
unsigned secs;
u_int32_t af;
if (descriptor_IsSet(&bundle->ncp.mp.server.desc, fdset))
descriptor_Read(&bundle->ncp.mp.server.desc, bundle, fdset);
for (dl = bundle->links; dl; dl = dl->next)
if (descriptor_IsSet(&dl->desc, fdset))
descriptor_Read(&dl->desc, bundle, fdset);
#ifndef NORADIUS
if (descriptor_IsSet(&bundle->radius.desc, fdset))
descriptor_Read(&bundle->radius.desc, bundle, fdset);
#endif
if (FD_ISSET(bundle->dev.fd, fdset)) {
struct tun_data tun;
int n, pri;
u_char *data;
size_t sz;
if (bundle->dev.header) {
data = (u_char *)&tun;
sz = sizeof tun;
} else {
data = tun.data;
sz = sizeof tun.data;
}
/* something to read from tun */
n = read(bundle->dev.fd, data, sz);
if (n < 0) {
log_Printf(LogWARN, "%s: read: %s\n", bundle->dev.Name, strerror(errno));
return;
}
if (bundle->dev.header) {
n -= sz - sizeof tun.data;
if (n <= 0) {
log_Printf(LogERROR, "%s: read: Got only %d bytes of data !\n",
bundle->dev.Name, n);
return;
}
af = ntohl(tun.header.family);
#ifndef NOINET6
if (af != AF_INET && af != AF_INET6)
#else
if (af != AF_INET)
#endif
/* XXX: Should be maintaining drop/family counts ! */
return;
} else
af = AF_INET;
if (af == AF_INET && ((struct ip *)tun.data)->ip_dst.s_addr ==
bundle->ncp.ipcp.my_ip.s_addr) {
/* we've been asked to send something addressed *to* us :( */
if (Enabled(bundle, OPT_LOOPBACK)) {
pri = PacketCheck(bundle, af, tun.data, n, &bundle->filter.in,
NULL, NULL);
if (pri >= 0) {
n += sz - sizeof tun.data;
write(bundle->dev.fd, data, n);
log_Printf(LogDEBUG, "Looped back packet addressed to myself\n");
}
return;
} else
log_Printf(LogDEBUG, "Oops - forwarding packet addressed to myself\n");
}
/*
* Process on-demand dialup. Output packets are queued within the tunnel
* device until the appropriate NCP is opened.
*/
if (bundle_Phase(bundle) == PHASE_DEAD) {
/*
* Note, we must be in AUTO mode :-/ otherwise our interface should
* *not* be UP and we can't receive data
*/
pri = PacketCheck(bundle, af, tun.data, n, &bundle->filter.dial,
NULL, NULL);
if (pri >= 0)
bundle_Open(bundle, NULL, PHYS_AUTO, 0);
else
/*
* Drop the packet. If we were to queue it, we'd just end up with
* a pile of timed-out data in our output queue by the time we get
* around to actually dialing. We'd also prematurely reach the
* threshold at which we stop select()ing to read() the tun
* device - breaking auto-dial.
*/
return;
}
secs = 0;
pri = PacketCheck(bundle, af, tun.data, n, &bundle->filter.out,
NULL, &secs);
if (pri >= 0) {
/* Prepend the number of seconds timeout given in the filter */
tun.header.timeout = secs;
ncp_Enqueue(&bundle->ncp, af, pri, (char *)&tun, n + sizeof tun.header);
}
}
}
static int
bundle_DescriptorWrite(struct fdescriptor *d __unused, struct bundle *bundle,
const fd_set *fdset)
{
struct datalink *dl;
int result = 0;
/* This is not actually necessary as struct mpserver doesn't Write() */
if (descriptor_IsSet(&bundle->ncp.mp.server.desc, fdset))
if (descriptor_Write(&bundle->ncp.mp.server.desc, bundle, fdset) == 1)
result++;
for (dl = bundle->links; dl; dl = dl->next)
if (descriptor_IsSet(&dl->desc, fdset))
switch (descriptor_Write(&dl->desc, bundle, fdset)) {
case -1:
datalink_ComeDown(dl, CLOSE_NORMAL);
break;
case 1:
result++;
}
return result;
}
void
bundle_LockTun(struct bundle *bundle)
{
FILE *lockfile;
char pidfile[PATH_MAX];
snprintf(pidfile, sizeof pidfile, "%stun%d.pid", _PATH_VARRUN, bundle->unit);
lockfile = ID0fopen(pidfile, "w");
if (lockfile != NULL) {
fprintf(lockfile, "%d\n", (int)getpid());
fclose(lockfile);
}
#ifndef RELEASE_CRUNCH
else
log_Printf(LogERROR, "Warning: Can't create %s: %s\n",
pidfile, strerror(errno));
#endif
}
static void
bundle_UnlockTun(struct bundle *bundle)
{
char pidfile[PATH_MAX];
snprintf(pidfile, sizeof pidfile, "%stun%d.pid", _PATH_VARRUN, bundle->unit);
ID0unlink(pidfile);
}
struct bundle *
bundle_Create(const char *prefix, int type, int unit)
{
static struct bundle bundle; /* there can be only one */
int enoentcount, err, minunit, maxunit;
const char *ifname;
#if defined(__FreeBSD__) && !defined(NOKLDLOAD)
int kldtried;
#endif
#if defined(TUNSIFMODE) || defined(TUNSLMODE) || defined(TUNSIFHEAD)
int iff;
#endif
if (bundle.iface != NULL) { /* Already allocated ! */
log_Printf(LogALERT, "bundle_Create: There's only one BUNDLE !\n");
return NULL;
}
if (unit == -1) {
minunit = 0;
maxunit = -1;
} else {
minunit = unit;
maxunit = unit + 1;
}
err = ENOENT;
enoentcount = 0;
#if defined(__FreeBSD__) && !defined(NOKLDLOAD)
kldtried = 0;
#endif
for (bundle.unit = minunit; bundle.unit != maxunit; bundle.unit++) {
snprintf(bundle.dev.Name, sizeof bundle.dev.Name, "%s%d",
prefix, bundle.unit);
bundle.dev.fd = ID0open(bundle.dev.Name, O_RDWR);
if (bundle.dev.fd >= 0)
break;
else if (errno == ENXIO || errno == ENOENT) {
#if defined(__FreeBSD__) && !defined(NOKLDLOAD)
if (bundle.unit == minunit && !kldtried++) {
/*
* Attempt to load the tunnel interface KLD if it isn't loaded
* already.
*/
if (loadmodules(LOAD_VERBOSLY, "if_tun", NULL))
bundle.unit--;
continue;
}
#endif
if (errno != ENOENT || ++enoentcount > 2) {
err = errno;
break;
}
} else
err = errno;
}
if (bundle.dev.fd < 0) {
if (unit == -1)
log_Printf(LogWARN, "No available tunnel devices found (%s)\n",
strerror(err));
else
log_Printf(LogWARN, "%s%d: %s\n", prefix, unit, strerror(err));
return NULL;
}
log_SetTun(bundle.unit, NULL);
ifname = strrchr(bundle.dev.Name, '/');
if (ifname == NULL)
ifname = bundle.dev.Name;
else
ifname++;
bundle.iface = iface_Create(ifname);
if (bundle.iface == NULL) {
close(bundle.dev.fd);
return NULL;
}
#ifdef TUNSIFMODE
/* Make sure we're POINTOPOINT & IFF_MULTICAST */
iff = IFF_POINTOPOINT | IFF_MULTICAST;
if (ID0ioctl(bundle.dev.fd, TUNSIFMODE, &iff) < 0)
log_Printf(LogERROR, "bundle_Create: ioctl(TUNSIFMODE): %s\n",
strerror(errno));
#endif
#ifdef TUNSLMODE
/* Make sure we're not prepending sockaddrs */
iff = 0;
if (ID0ioctl(bundle.dev.fd, TUNSLMODE, &iff) < 0)
log_Printf(LogERROR, "bundle_Create: ioctl(TUNSLMODE): %s\n",
strerror(errno));
#endif
#ifdef TUNSIFHEAD
/* We want the address family please ! */
iff = 1;
if (ID0ioctl(bundle.dev.fd, TUNSIFHEAD, &iff) < 0) {
log_Printf(LogERROR, "bundle_Create: ioctl(TUNSIFHEAD): %s\n",
strerror(errno));
bundle.dev.header = 0;
} else
bundle.dev.header = 1;
#else
#ifdef __OpenBSD__
/* Always present for OpenBSD */
bundle.dev.header = 1;
#else
/*
* If TUNSIFHEAD isn't available and we're not OpenBSD, assume
* everything's AF_INET (hopefully the tun device won't pass us
* anything else !).
*/
bundle.dev.header = 0;
#endif
#endif
log_Printf(LogPHASE, "Using interface: %s\n", ifname);
bundle.bandwidth = 0;
bundle.routing_seq = 0;
bundle.phase = PHASE_DEAD;
bundle.CleaningUp = 0;
bundle.NatEnabled = 0;
bundle.fsm.LayerStart = bundle_LayerStart;
bundle.fsm.LayerUp = bundle_LayerUp;
bundle.fsm.LayerDown = bundle_LayerDown;
bundle.fsm.LayerFinish = bundle_LayerFinish;
bundle.fsm.object = &bundle;
bundle.cfg.idle.timeout = NCP_IDLE_TIMEOUT;
bundle.cfg.idle.min_timeout = 0;
*bundle.cfg.auth.name = '\0';
*bundle.cfg.auth.key = '\0';
bundle.cfg.optmask = (1ull << OPT_IDCHECK) | (1ull << OPT_LOOPBACK) |
(1ull << OPT_SROUTES) | (1ull << OPT_TCPMSSFIXUP) |
(1ull << OPT_THROUGHPUT) | (1ull << OPT_UTMP) |
(1ull << OPT_NAS_IP_ADDRESS) |
(1ull << OPT_NAS_IDENTIFIER);
#ifndef NOINET6
opt_enable(&bundle, OPT_IPCP);
if (probe.ipv6_available)
opt_enable(&bundle, OPT_IPV6CP);
#endif
*bundle.cfg.label = '\0';
bundle.cfg.ifqueue = DEF_IFQUEUE;
bundle.cfg.choked.timeout = CHOKED_TIMEOUT;
bundle.phys_type.all = type;
bundle.phys_type.open = 0;
bundle.upat = 0;
bundle.links = datalink_Create("deflink", &bundle, type);
if (bundle.links == NULL) {
log_Printf(LogALERT, "Cannot create data link: %s\n", strerror(errno));
iface_Free(bundle.iface);
bundle.iface = NULL;
close(bundle.dev.fd);
return NULL;
}
bundle.desc.type = BUNDLE_DESCRIPTOR;
bundle.desc.UpdateSet = bundle_UpdateSet;
bundle.desc.IsSet = bundle_IsSet;
bundle.desc.Read = bundle_DescriptorRead;
bundle.desc.Write = bundle_DescriptorWrite;
ncp_Init(&bundle.ncp, &bundle);
memset(&bundle.filter, '\0', sizeof bundle.filter);
bundle.filter.in.fragok = bundle.filter.in.logok = 1;
bundle.filter.in.name = "IN";
bundle.filter.out.fragok = bundle.filter.out.logok = 1;
bundle.filter.out.name = "OUT";
bundle.filter.dial.name = "DIAL";
bundle.filter.dial.logok = 1;
bundle.filter.alive.name = "ALIVE";
bundle.filter.alive.logok = 1;
{
int i;
for (i = 0; i < MAXFILTERS; i++) {
bundle.filter.in.rule[i].f_action = A_NONE;
bundle.filter.out.rule[i].f_action = A_NONE;
bundle.filter.dial.rule[i].f_action = A_NONE;
bundle.filter.alive.rule[i].f_action = A_NONE;
}
}
memset(&bundle.idle.timer, '\0', sizeof bundle.idle.timer);
bundle.idle.done = 0;
bundle.notify.fd = -1;
memset(&bundle.choked.timer, '\0', sizeof bundle.choked.timer);
#ifndef NORADIUS
radius_Init(&bundle.radius);
#endif
/* Clean out any leftover crud */
iface_Clear(bundle.iface, &bundle.ncp, 0, IFACE_CLEAR_ALL);
bundle_LockTun(&bundle);
return &bundle;
}
static void
bundle_DownInterface(struct bundle *bundle)
{
route_IfDelete(bundle, 1);
iface_ClearFlags(bundle->iface->name, IFF_UP);
}
void
bundle_Destroy(struct bundle *bundle)
{
struct datalink *dl;
/*
* Clean up the interface. We don't really need to do the timer_Stop()s,
* mp_Down(), iface_Clear() and bundle_DownInterface() unless we're getting
* out under exceptional conditions such as a descriptor exception.
*/
timer_Stop(&bundle->idle.timer);
timer_Stop(&bundle->choked.timer);
mp_Down(&bundle->ncp.mp);
iface_Clear(bundle->iface, &bundle->ncp, 0, IFACE_CLEAR_ALL);
bundle_DownInterface(bundle);
#ifndef NORADIUS
/* Tell the radius server the bad news */
radius_Destroy(&bundle->radius);
#endif
/* Again, these are all DATALINK_CLOSED unless we're abending */
dl = bundle->links;
while (dl)
dl = datalink_Destroy(dl);
ncp_Destroy(&bundle->ncp);
close(bundle->dev.fd);
bundle_UnlockTun(bundle);
/* In case we never made PHASE_NETWORK */
bundle_Notify(bundle, EX_ERRDEAD);
iface_Destroy(bundle->iface);
bundle->iface = NULL;
}
void
bundle_LinkClosed(struct bundle *bundle, struct datalink *dl)
{
/*
* Our datalink has closed.
* CleanDatalinks() (called from DoLoop()) will remove closed
* BACKGROUND, FOREGROUND and DIRECT links.
* If it's the last data link, enter phase DEAD.
*
* NOTE: dl may not be in our list (bundle_SendDatalink()) !
*/
struct datalink *odl;
int other_links;
log_SetTtyCommandMode(dl);
other_links = 0;
for (odl = bundle->links; odl; odl = odl->next)
if (odl != dl && odl->state != DATALINK_CLOSED)
other_links++;
if (!other_links) {
if (dl->physical->type != PHYS_AUTO) /* Not in -auto mode */
bundle_DownInterface(bundle);
ncp2initial(&bundle->ncp);
mp_Down(&bundle->ncp.mp);
bundle_NewPhase(bundle, PHASE_DEAD);
#ifndef NORADIUS
if (bundle->radius.sessiontime)
bundle_StopSessionTimer(bundle);
#endif
bundle_StopIdleTimer(bundle);
}
}
void
bundle_Open(struct bundle *bundle, const char *name, int mask, int force)
{
/*
* Please open the given datalink, or all if name == NULL
*/
struct datalink *dl;
for (dl = bundle->links; dl; dl = dl->next)
if (name == NULL || !strcasecmp(dl->name, name)) {
if ((mask & dl->physical->type) &&
(dl->state == DATALINK_CLOSED ||
(force && dl->state == DATALINK_OPENING &&
dl->dial.timer.state == TIMER_RUNNING) ||
dl->state == DATALINK_READY)) {
timer_Stop(&dl->dial.timer); /* We're finished with this */
datalink_Up(dl, 1, 1);
if (mask & PHYS_AUTO)
break; /* Only one AUTO link at a time */
}
if (name != NULL)
break;
}
}
struct datalink *
bundle2datalink(struct bundle *bundle, const char *name)
{
struct datalink *dl;
if (name != NULL) {
for (dl = bundle->links; dl; dl = dl->next)
if (!strcasecmp(dl->name, name))
return dl;
} else if (bundle->links && !bundle->links->next)
return bundle->links;
return NULL;
}
int
bundle_ShowLinks(struct cmdargs const *arg)
{
struct datalink *dl;
struct pppThroughput *t;
unsigned long long octets;
int secs;
for (dl = arg->bundle->links; dl; dl = dl->next) {
octets = MAX(dl->physical->link.stats.total.in.OctetsPerSecond,
dl->physical->link.stats.total.out.OctetsPerSecond);
prompt_Printf(arg->prompt, "Name: %s [%s, %s]",
dl->name, mode2Nam(dl->physical->type), datalink_State(dl));
if (dl->physical->link.stats.total.rolling && dl->state == DATALINK_OPEN)
prompt_Printf(arg->prompt, " bandwidth %d, %llu bps (%llu bytes/sec)",
dl->mp.bandwidth ? dl->mp.bandwidth :
physical_GetSpeed(dl->physical),
octets * 8, octets);
prompt_Printf(arg->prompt, "\n");
}
t = &arg->bundle->ncp.mp.link.stats.total;
octets = MAX(t->in.OctetsPerSecond, t->out.OctetsPerSecond);
secs = t->downtime ? 0 : throughput_uptime(t);
if (secs > t->SamplePeriod)
secs = t->SamplePeriod;
if (secs)
prompt_Printf(arg->prompt, "Currently averaging %llu bps (%llu bytes/sec)"
" over the last %d secs\n", octets * 8, octets, secs);
return 0;
}
static const char *
optval(struct bundle *bundle, int opt)
{
return Enabled(bundle, opt) ? "enabled" : "disabled";
}
int
bundle_ShowStatus(struct cmdargs const *arg)
{
int remaining;
prompt_Printf(arg->prompt, "Phase %s\n", bundle_PhaseName(arg->bundle));
prompt_Printf(arg->prompt, " Device: %s\n", arg->bundle->dev.Name);
prompt_Printf(arg->prompt, " Interface: %s @ %lubps",
arg->bundle->iface->name, arg->bundle->bandwidth);
if (arg->bundle->upat) {
int secs = bundle_Uptime(arg->bundle);
prompt_Printf(arg->prompt, ", up time %d:%02d:%02d", secs / 3600,
(secs / 60) % 60, secs % 60);
}
prompt_Printf(arg->prompt, "\n Queued: %lu of %u\n",
(unsigned long)ncp_QueueLen(&arg->bundle->ncp),
arg->bundle->cfg.ifqueue);
prompt_Printf(arg->prompt, "\nDefaults:\n");
prompt_Printf(arg->prompt, " Label: %s\n",
arg->bundle->cfg.label);
prompt_Printf(arg->prompt, " Auth name: %s\n",
arg->bundle->cfg.auth.name);
prompt_Printf(arg->prompt, " Diagnostic socket: ");
if (*server.cfg.sockname != '\0') {
prompt_Printf(arg->prompt, "%s", server.cfg.sockname);
if (server.cfg.mask != (mode_t)-1)
prompt_Printf(arg->prompt, ", mask 0%03o", (int)server.cfg.mask);
prompt_Printf(arg->prompt, "%s\n", server.fd == -1 ? " (not open)" : "");
} else if (server.cfg.port != 0)
prompt_Printf(arg->prompt, "TCP port %d%s\n", server.cfg.port,
server.fd == -1 ? " (not open)" : "");
else
prompt_Printf(arg->prompt, "none\n");
prompt_Printf(arg->prompt, " Choked Timer: %us\n",
arg->bundle->cfg.choked.timeout);
#ifndef NORADIUS
radius_Show(&arg->bundle->radius, arg->prompt);
#endif
prompt_Printf(arg->prompt, " Idle Timer: ");
if (arg->bundle->cfg.idle.timeout) {
prompt_Printf(arg->prompt, "%us", arg->bundle->cfg.idle.timeout);
if (arg->bundle->cfg.idle.min_timeout)
prompt_Printf(arg->prompt, ", min %us",
arg->bundle->cfg.idle.min_timeout);
remaining = bundle_RemainingIdleTime(arg->bundle);
if (remaining != -1)
prompt_Printf(arg->prompt, " (%ds remaining)", remaining);
prompt_Printf(arg->prompt, "\n");
} else
prompt_Printf(arg->prompt, "disabled\n");
prompt_Printf(arg->prompt, " Filter Decap: %-20.20s",
optval(arg->bundle, OPT_FILTERDECAP));
prompt_Printf(arg->prompt, " ID check: %s\n",
optval(arg->bundle, OPT_IDCHECK));
prompt_Printf(arg->prompt, " Iface-Alias: %-20.20s",
optval(arg->bundle, OPT_IFACEALIAS));
#ifndef NOINET6
prompt_Printf(arg->prompt, " IPCP: %s\n",
optval(arg->bundle, OPT_IPCP));
prompt_Printf(arg->prompt, " IPV6CP: %-20.20s",
optval(arg->bundle, OPT_IPV6CP));
#endif
prompt_Printf(arg->prompt, " Keep-Session: %s\n",
optval(arg->bundle, OPT_KEEPSESSION));
prompt_Printf(arg->prompt, " Loopback: %-20.20s",
optval(arg->bundle, OPT_LOOPBACK));
prompt_Printf(arg->prompt, " PasswdAuth: %s\n",
optval(arg->bundle, OPT_PASSWDAUTH));
prompt_Printf(arg->prompt, " Proxy: %-20.20s",
optval(arg->bundle, OPT_PROXY));
prompt_Printf(arg->prompt, " Proxyall: %s\n",
optval(arg->bundle, OPT_PROXYALL));
prompt_Printf(arg->prompt, " Sticky Routes: %-20.20s",
optval(arg->bundle, OPT_SROUTES));
prompt_Printf(arg->prompt, " TCPMSS Fixup: %s\n",
optval(arg->bundle, OPT_TCPMSSFIXUP));
prompt_Printf(arg->prompt, " Throughput: %-20.20s",
optval(arg->bundle, OPT_THROUGHPUT));
prompt_Printf(arg->prompt, " Utmp Logging: %s\n",
optval(arg->bundle, OPT_UTMP));
prompt_Printf(arg->prompt, " NAS-IP-Address: %-20.20s",
optval(arg->bundle, OPT_NAS_IP_ADDRESS));
prompt_Printf(arg->prompt, " NAS-Identifier: %s\n",
optval(arg->bundle, OPT_NAS_IDENTIFIER));
return 0;
}
static void
bundle_IdleTimeout(void *v)
{
struct bundle *bundle = (struct bundle *)v;
log_Printf(LogPHASE, "Idle timer expired\n");
bundle_StopIdleTimer(bundle);
bundle_Close(bundle, NULL, CLOSE_STAYDOWN);
}
/*
* Start Idle timer. If timeout is reached, we call bundle_Close() to
* close LCP and link.
*/
void
bundle_StartIdleTimer(struct bundle *bundle, unsigned secs)
{
timer_Stop(&bundle->idle.timer);
if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL)) !=
bundle->phys_type.open && bundle->cfg.idle.timeout) {
time_t now = time(NULL);
if (secs == 0)
secs = bundle->cfg.idle.timeout;
/* We want at least `secs' */
if (bundle->cfg.idle.min_timeout > secs && bundle->upat) {
unsigned up = now - bundle->upat;
if (bundle->cfg.idle.min_timeout > up &&
bundle->cfg.idle.min_timeout - up > (long long)secs)
/* Only increase from the current `remaining' value */
secs = bundle->cfg.idle.min_timeout - up;
}
bundle->idle.timer.func = bundle_IdleTimeout;
bundle->idle.timer.name = "idle";
bundle->idle.timer.load = secs * SECTICKS;
bundle->idle.timer.arg = bundle;
timer_Start(&bundle->idle.timer);
bundle->idle.done = now + secs;
}
}
void
bundle_SetIdleTimer(struct bundle *bundle, unsigned timeout,
unsigned min_timeout)
{
bundle->cfg.idle.timeout = timeout;
bundle->cfg.idle.min_timeout = min_timeout;
if (ncp_LayersOpen(&bundle->ncp))
bundle_StartIdleTimer(bundle, 0);
}
void
bundle_StopIdleTimer(struct bundle *bundle)
{
timer_Stop(&bundle->idle.timer);
bundle->idle.done = 0;
}
static int
bundle_RemainingIdleTime(struct bundle *bundle)
{
if (bundle->idle.done)
return bundle->idle.done - time(NULL);
return -1;
}
#ifndef NORADIUS
static void
bundle_SessionTimeout(void *v)
{
struct bundle *bundle = (struct bundle *)v;
log_Printf(LogPHASE, "Session-Timeout timer expired\n");
bundle_StopSessionTimer(bundle);
bundle_Close(bundle, NULL, CLOSE_STAYDOWN);
}
void
bundle_StartSessionTimer(struct bundle *bundle, unsigned secs)
{
timer_Stop(&bundle->session.timer);
if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL)) !=
bundle->phys_type.open && bundle->radius.sessiontime) {
time_t now = time(NULL);
if (secs == 0)
secs = bundle->radius.sessiontime;
bundle->session.timer.func = bundle_SessionTimeout;
bundle->session.timer.name = "session";
bundle->session.timer.load = secs * SECTICKS;
bundle->session.timer.arg = bundle;
timer_Start(&bundle->session.timer);
bundle->session.done = now + secs;
}
}
void
bundle_StopSessionTimer(struct bundle *bundle)
{
timer_Stop(&bundle->session.timer);
bundle->session.done = 0;
}
#endif
int
bundle_IsDead(struct bundle *bundle)
{
return !bundle->links || (bundle->phase == PHASE_DEAD && bundle->CleaningUp);
}
static struct datalink *
bundle_DatalinkLinkout(struct bundle *bundle, struct datalink *dl)
{
struct datalink **dlp;
for (dlp = &bundle->links; *dlp; dlp = &(*dlp)->next)
if (*dlp == dl) {
*dlp = dl->next;
dl->next = NULL;
bundle_LinksRemoved(bundle);
return dl;
}
return NULL;
}
static void
bundle_DatalinkLinkin(struct bundle *bundle, struct datalink *dl)
{
struct datalink **dlp = &bundle->links;
while (*dlp)
dlp = &(*dlp)->next;
*dlp = dl;
dl->next = NULL;
bundle_LinkAdded(bundle, dl);
mp_CheckAutoloadTimer(&bundle->ncp.mp);
}
void
bundle_CleanDatalinks(struct bundle *bundle)
{
struct datalink **dlp = &bundle->links;
int found = 0;
while (*dlp)
if ((*dlp)->state == DATALINK_CLOSED &&
(*dlp)->physical->type &
(PHYS_DIRECT|PHYS_BACKGROUND|PHYS_FOREGROUND)) {
*dlp = datalink_Destroy(*dlp);
found++;
} else
dlp = &(*dlp)->next;
if (found)
bundle_LinksRemoved(bundle);
}
int
bundle_DatalinkClone(struct bundle *bundle, struct datalink *dl,
const char *name)
{
if (bundle2datalink(bundle, name)) {
log_Printf(LogWARN, "Clone: %s: name already exists\n", name);
return 0;
}
bundle_DatalinkLinkin(bundle, datalink_Clone(dl, name));
return 1;
}
void
bundle_DatalinkRemove(struct bundle *bundle, struct datalink *dl)
{
dl = bundle_DatalinkLinkout(bundle, dl);
if (dl)
datalink_Destroy(dl);
}
void
bundle_SetLabel(struct bundle *bundle, const char *label)
{
if (label)
strncpy(bundle->cfg.label, label, sizeof bundle->cfg.label - 1);
else
*bundle->cfg.label = '\0';
}
const char *
bundle_GetLabel(struct bundle *bundle)
{
return *bundle->cfg.label ? bundle->cfg.label : NULL;
}
int
bundle_LinkSize()
{
struct iovec iov[SCATTER_SEGMENTS];
int niov, expect, f;
iov[0].iov_len = strlen(Version) + 1;
iov[0].iov_base = NULL;
niov = 1;
if (datalink2iov(NULL, iov, &niov, SCATTER_SEGMENTS, NULL, NULL) == -1) {
log_Printf(LogERROR, "Cannot determine space required for link\n");
return 0;
}
for (f = expect = 0; f < niov; f++)
expect += iov[f].iov_len;
return expect;
}
void
bundle_ReceiveDatalink(struct bundle *bundle, int s)
{
char cmsgbuf[sizeof(struct cmsghdr) + sizeof(int) * SEND_MAXFD];
int niov, expect, f, *fd, nfd, onfd;
ssize_t got;
struct iovec iov[SCATTER_SEGMENTS];
struct cmsghdr *cmsg;
struct msghdr msg;
struct datalink *dl;
pid_t pid;
log_Printf(LogPHASE, "Receiving datalink\n");
/*
* Create our scatter/gather array - passing NULL gets the space
* allocation requirement rather than actually flattening the
* structures.
*/
iov[0].iov_len = strlen(Version) + 1;
iov[0].iov_base = NULL;
niov = 1;
if (datalink2iov(NULL, iov, &niov, SCATTER_SEGMENTS, NULL, NULL) == -1) {
log_Printf(LogERROR, "Cannot determine space required for link\n");
return;
}
/* Allocate the scatter/gather array for recvmsg() */
for (f = expect = 0; f < niov; f++) {
if ((iov[f].iov_base = malloc(iov[f].iov_len)) == NULL) {
log_Printf(LogERROR, "Cannot allocate space to receive link\n");
return;
}
if (f)
expect += iov[f].iov_len;
}
/* Set up our message */
cmsg = (struct cmsghdr *)cmsgbuf;
cmsg->cmsg_len = sizeof cmsgbuf;
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = 0;
memset(&msg, '\0', sizeof msg);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = iov;
msg.msg_iovlen = 1; /* Only send the version at the first pass */
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof cmsgbuf;
log_Printf(LogDEBUG, "Expecting %u scatter/gather bytes\n",
(unsigned)iov[0].iov_len);
if ((got = recvmsg(s, &msg, MSG_WAITALL)) != (ssize_t)iov[0].iov_len) {
if (got == -1)
log_Printf(LogERROR, "Failed recvmsg: %s\n", strerror(errno));
else
log_Printf(LogERROR, "Failed recvmsg: Got %zd, not %u\n",
got, (unsigned)iov[0].iov_len);
while (niov--)
free(iov[niov].iov_base);
return;
}
if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) {
log_Printf(LogERROR, "Recvmsg: no descriptors received !\n");
while (niov--)
free(iov[niov].iov_base);
return;
}
fd = (int *)CMSG_DATA(cmsg);
nfd = ((caddr_t)cmsg + cmsg->cmsg_len - (caddr_t)fd) / sizeof(int);
if (nfd < 2) {
log_Printf(LogERROR, "Recvmsg: %d descriptor%s received (too few) !\n",
nfd, nfd == 1 ? "" : "s");
while (nfd--)
close(fd[nfd]);
while (niov--)
free(iov[niov].iov_base);
return;
}
/*
* We've successfully received two or more open file descriptors
* through our socket, plus a version string. Make sure it's the
* correct version, and drop the connection if it's not.
*/
if (strncmp(Version, iov[0].iov_base, iov[0].iov_len)) {
log_Printf(LogWARN, "Cannot receive datalink, incorrect version"
" (\"%.*s\", not \"%s\")\n", (int)iov[0].iov_len,
(char *)iov[0].iov_base, Version);
while (nfd--)
close(fd[nfd]);
while (niov--)
free(iov[niov].iov_base);
return;
}
/*
* Everything looks good. Send the other side our process id so that
* they can transfer lock ownership, and wait for them to send the
* actual link data.
*/
pid = getpid();
if ((got = write(fd[1], &pid, sizeof pid)) != sizeof pid) {
if (got == -1)
log_Printf(LogERROR, "Failed write: %s\n", strerror(errno));
else
log_Printf(LogERROR, "Failed write: Got %zd, not %d\n", got,
(int)(sizeof pid));
while (nfd--)
close(fd[nfd]);
while (niov--)
free(iov[niov].iov_base);
return;
}
if ((got = readv(fd[1], iov + 1, niov - 1)) != expect) {
if (got == -1)
log_Printf(LogERROR, "Failed write: %s\n", strerror(errno));
else
log_Printf(LogERROR, "Failed write: Got %zd, not %d\n", got, expect);
while (nfd--)
close(fd[nfd]);
while (niov--)
free(iov[niov].iov_base);
return;
}
close(fd[1]);
onfd = nfd; /* We've got this many in our array */
nfd -= 2; /* Don't include p->fd and our reply descriptor */
niov = 1; /* Skip the version id */
dl = iov2datalink(bundle, iov, &niov, sizeof iov / sizeof *iov, fd[0],
fd + 2, &nfd);
if (dl) {
if (nfd) {
log_Printf(LogERROR, "bundle_ReceiveDatalink: Failed to handle %d "
"auxiliary file descriptors (%d remain)\n", onfd, nfd);
datalink_Destroy(dl);
while (nfd--)
close(fd[onfd--]);
close(fd[0]);
} else {
bundle_DatalinkLinkin(bundle, dl);
datalink_AuthOk(dl);
bundle_CalculateBandwidth(dl->bundle);
}
} else {
while (nfd--)
close(fd[onfd--]);
close(fd[0]);
close(fd[1]);
}
free(iov[0].iov_base);
}
void
bundle_SendDatalink(struct datalink *dl, int s, struct sockaddr_un *sun)
{
char cmsgbuf[CMSG_SPACE(sizeof(int) * SEND_MAXFD)];
const char *constlock;
char *lock;
struct cmsghdr *cmsg;
struct msghdr msg;
struct iovec iov[SCATTER_SEGMENTS];
int niov, f, expect, newsid, fd[SEND_MAXFD], nfd, reply[2];
ssize_t got;
pid_t newpid;
log_Printf(LogPHASE, "Transmitting datalink %s\n", dl->name);
/* Record the base device name for a lock transfer later */
constlock = physical_LockedDevice(dl->physical);
if (constlock) {
lock = alloca(strlen(constlock) + 1);
strcpy(lock, constlock);
} else
lock = NULL;
bundle_LinkClosed(dl->bundle, dl);
bundle_DatalinkLinkout(dl->bundle, dl);
/* Build our scatter/gather array */
iov[0].iov_len = strlen(Version) + 1;
iov[0].iov_base = strdup(Version);
niov = 1;
nfd = 0;
fd[0] = datalink2iov(dl, iov, &niov, SCATTER_SEGMENTS, fd + 2, &nfd);
if (fd[0] != -1 && socketpair(AF_UNIX, SOCK_STREAM, PF_UNSPEC, reply) != -1) {
/*
* fd[1] is used to get the peer process id back, then to confirm that
* we've transferred any device locks to that process id.
*/
fd[1] = reply[1];
nfd += 2; /* Include fd[0] and fd[1] */
memset(&msg, '\0', sizeof msg);
msg.msg_name = NULL;
msg.msg_namelen = 0;
/*
* Only send the version to start... We used to send the whole lot, but
* this caused problems with our RECVBUF size as a single link is about
* 22k ! This way, we should bump into no limits.
*/
msg.msg_iovlen = 1;
msg.msg_iov = iov;
msg.msg_control = cmsgbuf;
msg.msg_controllen = CMSG_SPACE(sizeof(int) * nfd);
msg.msg_flags = 0;
cmsg = (struct cmsghdr *)cmsgbuf;
cmsg->cmsg_len = msg.msg_controllen;
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
for (f = 0; f < nfd; f++)
*((int *)CMSG_DATA(cmsg) + f) = fd[f];
for (f = 1, expect = 0; f < niov; f++)
expect += iov[f].iov_len;
if (setsockopt(reply[0], SOL_SOCKET, SO_SNDBUF, &expect, sizeof(int)) == -1)
log_Printf(LogERROR, "setsockopt(SO_RCVBUF, %d): %s\n", expect,
strerror(errno));
if (setsockopt(reply[1], SOL_SOCKET, SO_RCVBUF, &expect, sizeof(int)) == -1)
log_Printf(LogERROR, "setsockopt(SO_RCVBUF, %d): %s\n", expect,
strerror(errno));
log_Printf(LogDEBUG, "Sending %d descriptor%s and %u bytes in scatter"
"/gather array\n", nfd, nfd == 1 ? "" : "s",
(unsigned)iov[0].iov_len);
if ((got = sendmsg(s, &msg, 0)) == -1)
log_Printf(LogERROR, "Failed sendmsg: %s: %s\n",
sun->sun_path, strerror(errno));
else if (got != (ssize_t)iov[0].iov_len)
log_Printf(LogERROR, "%s: Failed initial sendmsg: Only sent %zd of %u\n",
sun->sun_path, got, (unsigned)iov[0].iov_len);
else {
/* We must get the ACK before closing the descriptor ! */
int res;
if ((got = read(reply[0], &newpid, sizeof newpid)) == sizeof newpid) {
log_Printf(LogDEBUG, "Received confirmation from pid %ld\n",
(long)newpid);
if (lock && (res = ID0uu_lock_txfr(lock, newpid)) != UU_LOCK_OK)
log_Printf(LogERROR, "uu_lock_txfr: %s\n", uu_lockerr(res));
log_Printf(LogDEBUG, "Transmitting link (%d bytes)\n", expect);
if ((got = writev(reply[0], iov + 1, niov - 1)) != expect) {
if (got == -1)
log_Printf(LogERROR, "%s: Failed writev: %s\n",
sun->sun_path, strerror(errno));
else
log_Printf(LogERROR, "%s: Failed writev: Wrote %zd of %d\n",
sun->sun_path, got, expect);
}
} else if (got == -1)
log_Printf(LogERROR, "%s: Failed socketpair read: %s\n",
sun->sun_path, strerror(errno));
else
log_Printf(LogERROR, "%s: Failed socketpair read: Got %zd of %d\n",
sun->sun_path, got, (int)(sizeof newpid));
}
close(reply[0]);
close(reply[1]);
newsid = Enabled(dl->bundle, OPT_KEEPSESSION) ||
tcgetpgrp(fd[0]) == getpgrp();
while (nfd)
close(fd[--nfd]);
if (newsid)
bundle_setsid(dl->bundle, got != -1);
}
close(s);
while (niov--)
free(iov[niov].iov_base);
}
int
bundle_RenameDatalink(struct bundle *bundle, struct datalink *ndl,
const char *name)
{
struct datalink *dl;
if (!strcasecmp(ndl->name, name))
return 1;
for (dl = bundle->links; dl; dl = dl->next)
if (!strcasecmp(dl->name, name))
return 0;
datalink_Rename(ndl, name);
return 1;
}
int
bundle_SetMode(struct bundle *bundle, struct datalink *dl, int mode)
{
int omode;
omode = dl->physical->type;
if (omode == mode)
return 1;
if (mode == PHYS_AUTO && !(bundle->phys_type.all & PHYS_AUTO))
/* First auto link */
if (bundle->ncp.ipcp.peer_ip.s_addr == INADDR_ANY) {
log_Printf(LogWARN, "You must `set ifaddr' or `open' before"
" changing mode to %s\n", mode2Nam(mode));
return 0;
}
if (!datalink_SetMode(dl, mode))
return 0;
if (mode == PHYS_AUTO && !(bundle->phys_type.all & PHYS_AUTO) &&
bundle->phase != PHASE_NETWORK)
/* First auto link, we need an interface */
ipcp_InterfaceUp(&bundle->ncp.ipcp);
/* Regenerate phys_type and adjust idle timer */
bundle_LinksRemoved(bundle);
return 1;
}
void
bundle_setsid(struct bundle *bundle, int holdsession)
{
/*
* Lose the current session. This means getting rid of our pid
* too so that the tty device will really go away, and any getty
* etc will be allowed to restart.
*/
pid_t pid, orig;
int fds[2];
char done;
struct datalink *dl;
if (!holdsession && bundle_IsDead(bundle)) {
/*
* No need to lose our session after all... we're going away anyway
*
* We should really stop the timer and pause if holdsession is set and
* the bundle's dead, but that leaves other resources lying about :-(
*/
return;
}
orig = getpid();
if (pipe(fds) == -1) {
log_Printf(LogERROR, "pipe: %s\n", strerror(errno));
return;
}
switch ((pid = fork())) {
case -1:
log_Printf(LogERROR, "fork: %s\n", strerror(errno));
close(fds[0]);
close(fds[1]);
return;
case 0:
close(fds[1]);
read(fds[0], &done, 1); /* uu_locks are mine ! */
close(fds[0]);
if (pipe(fds) == -1) {
log_Printf(LogERROR, "pipe(2): %s\n", strerror(errno));
return;
}
switch ((pid = fork())) {
case -1:
log_Printf(LogERROR, "fork(2): %s\n", strerror(errno));
close(fds[0]);
close(fds[1]);
return;
case 0:
close(fds[1]);
bundle_LockTun(bundle); /* update pid */
read(fds[0], &done, 1); /* uu_locks are mine ! */
close(fds[0]);
setsid();
bundle_ChangedPID(bundle);
log_Printf(LogDEBUG, "%ld -> %ld: %s session control\n",
(long)orig, (long)getpid(),
holdsession ? "Passed" : "Dropped");
timer_InitService(0); /* Start the Timer Service */
break;
default:
close(fds[0]);
/* Give away all our physical locks (to the final process) */
for (dl = bundle->links; dl; dl = dl->next)
if (dl->state != DATALINK_CLOSED)
physical_ChangedPid(dl->physical, pid);
write(fds[1], "!", 1); /* done */
close(fds[1]);
_exit(0);
break;
}
break;
default:
close(fds[0]);
/* Give away all our physical locks (to the intermediate process) */
for (dl = bundle->links; dl; dl = dl->next)
if (dl->state != DATALINK_CLOSED)
physical_ChangedPid(dl->physical, pid);
write(fds[1], "!", 1); /* done */
close(fds[1]);
if (holdsession) {
int fd, status;
timer_TermService();
signal(SIGPIPE, SIG_DFL);
signal(SIGALRM, SIG_DFL);
signal(SIGHUP, SIG_DFL);
signal(SIGTERM, SIG_DFL);
signal(SIGINT, SIG_DFL);
signal(SIGQUIT, SIG_DFL);
for (fd = getdtablesize(); fd >= 0; fd--)
close(fd);
/*
* Reap the intermediate process. As we're not exiting but the
* intermediate is, we don't want it to become defunct.
*/
waitpid(pid, &status, 0);
/* Tweak our process arguments.... */
SetTitle("session owner");
#ifndef NOSUID
setuid(ID0realuid());
#endif
/*
* Hang around for a HUP. This should happen as soon as the
* ppp that we passed our ctty descriptor to closes it.
* NOTE: If this process dies, the passed descriptor becomes
* invalid and will give a select() error by setting one
* of the error fds, aborting the other ppp. We don't
* want that to happen !
*/
pause();
}
_exit(0);
break;
}
}
unsigned
bundle_HighestState(struct bundle *bundle)
{
struct datalink *dl;
unsigned result = DATALINK_CLOSED;
for (dl = bundle->links; dl; dl = dl->next)
if (result < dl->state)
result = dl->state;
return result;
}
int
bundle_Exception(struct bundle *bundle, int fd)
{
struct datalink *dl;
for (dl = bundle->links; dl; dl = dl->next)
if (dl->physical->fd == fd) {
datalink_Down(dl, CLOSE_NORMAL);
return 1;
}
return 0;
}
void
bundle_AdjustFilters(struct bundle *bundle, struct ncpaddr *local,
struct ncpaddr *remote)
{
filter_AdjustAddr(&bundle->filter.in, local, remote, NULL);
filter_AdjustAddr(&bundle->filter.out, local, remote, NULL);
filter_AdjustAddr(&bundle->filter.dial, local, remote, NULL);
filter_AdjustAddr(&bundle->filter.alive, local, remote, NULL);
}
void
bundle_AdjustDNS(struct bundle *bundle)
{
struct in_addr *dns = bundle->ncp.ipcp.ns.dns;
filter_AdjustAddr(&bundle->filter.in, NULL, NULL, dns);
filter_AdjustAddr(&bundle->filter.out, NULL, NULL, dns);
filter_AdjustAddr(&bundle->filter.dial, NULL, NULL, dns);
filter_AdjustAddr(&bundle->filter.alive, NULL, NULL, dns);
}
void
bundle_CalculateBandwidth(struct bundle *bundle)
{
struct datalink *dl;
int sp, overhead, maxoverhead;
bundle->bandwidth = 0;
bundle->iface->mtu = 0;
maxoverhead = 0;
for (dl = bundle->links; dl; dl = dl->next) {
overhead = ccp_MTUOverhead(&dl->physical->link.ccp);
if (maxoverhead < overhead)
maxoverhead = overhead;
if (dl->state == DATALINK_OPEN) {
if ((sp = dl->mp.bandwidth) == 0 &&
(sp = physical_GetSpeed(dl->physical)) == 0)
log_Printf(LogDEBUG, "%s: %s: Cannot determine bandwidth\n",
dl->name, dl->physical->name.full);
else
bundle->bandwidth += sp;
if (!bundle->ncp.mp.active) {
bundle->iface->mtu = dl->physical->link.lcp.his_mru;
break;
}
}
}
if (bundle->bandwidth == 0)
bundle->bandwidth = 115200; /* Shrug */
if (bundle->ncp.mp.active) {
bundle->iface->mtu = bundle->ncp.mp.peer_mrru;
overhead = ccp_MTUOverhead(&bundle->ncp.mp.link.ccp);
if (maxoverhead < overhead)
maxoverhead = overhead;
} else if (!bundle->iface->mtu)
bundle->iface->mtu = DEF_MRU;
#ifndef NORADIUS
if (bundle->radius.valid && bundle->radius.mtu &&
bundle->radius.mtu < bundle->iface->mtu) {
log_Printf(LogLCP, "Reducing MTU to radius value %lu\n",
bundle->radius.mtu);
bundle->iface->mtu = bundle->radius.mtu;
}
#endif
if (maxoverhead) {
log_Printf(LogLCP, "Reducing MTU from %lu to %lu (CCP requirement)\n",
bundle->iface->mtu, bundle->iface->mtu - maxoverhead);
bundle->iface->mtu -= maxoverhead;
}
tun_configure(bundle);
route_UpdateMTU(bundle);
}
void
bundle_AutoAdjust(struct bundle *bundle, int percent, int what)
{
struct datalink *dl, *choice, *otherlinkup;
choice = otherlinkup = NULL;
for (dl = bundle->links; dl; dl = dl->next)
if (dl->physical->type == PHYS_AUTO) {
if (dl->state == DATALINK_OPEN) {
if (what == AUTO_DOWN) {
if (choice)
otherlinkup = choice;
choice = dl;
}
} else if (dl->state == DATALINK_CLOSED) {
if (what == AUTO_UP) {
choice = dl;
break;
}
} else {
/* An auto link in an intermediate state - forget it for the moment */
choice = NULL;
break;
}
} else if (dl->state == DATALINK_OPEN && what == AUTO_DOWN)
otherlinkup = dl;
if (choice) {
if (what == AUTO_UP) {
log_Printf(LogPHASE, "%d%% saturation -> Opening link ``%s''\n",
percent, choice->name);
datalink_Up(choice, 1, 1);
mp_CheckAutoloadTimer(&bundle->ncp.mp);
} else if (otherlinkup) { /* Only bring the second-last link down */
log_Printf(LogPHASE, "%d%% saturation -> Closing link ``%s''\n",
percent, choice->name);
datalink_Close(choice, CLOSE_STAYDOWN);
mp_CheckAutoloadTimer(&bundle->ncp.mp);
}
}
}
int
bundle_WantAutoloadTimer(struct bundle *bundle)
{
struct datalink *dl;
int autolink, opened;
if (bundle->phase == PHASE_NETWORK) {
for (autolink = opened = 0, dl = bundle->links; dl; dl = dl->next)
if (dl->physical->type == PHYS_AUTO) {
if (++autolink == 2 || (autolink == 1 && opened))
/* Two auto links or one auto and one open in NETWORK phase */
return 1;
} else if (dl->state == DATALINK_OPEN) {
opened++;
if (autolink)
/* One auto and one open link in NETWORK phase */
return 1;
}
}
return 0;
}
void
bundle_ChangedPID(struct bundle *bundle)
{
#ifdef TUNSIFPID
ioctl(bundle->dev.fd, TUNSIFPID, 0);
#endif
}
int
bundle_Uptime(struct bundle *bundle)
{
if (bundle->upat)
return time(NULL) - bundle->upat;
return 0;
}