mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-02 12:20:51 +00:00
1547 lines
36 KiB
C
1547 lines
36 KiB
C
/*-
|
|
* Copyright (c) 2004-2009 Apple Inc.
|
|
* Copyright (c) 2005 SPARTA, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code was developed in part by Robert N. M. Watson, Senior Principal
|
|
* Scientist, SPARTA, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* P4: //depot/projects/trustedbsd/openbsm/libbsm/bsm_token.c#93
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <sys/ipc.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/un.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
|
|
|
|
#include <bsm/audit.h>
|
|
#include <bsm/audit_internal.h>
|
|
#include <bsm/audit_record.h>
|
|
#include <security/audit/audit.h>
|
|
#include <security/audit/audit_private.h>
|
|
|
|
#define GET_TOKEN_AREA(t, dptr, length) do { \
|
|
t = malloc(sizeof(token_t), M_AUDITBSM, M_WAITOK); \
|
|
t->t_data = malloc(length, M_AUDITBSM, M_WAITOK | M_ZERO); \
|
|
t->len = length; \
|
|
dptr = t->t_data; \
|
|
} while (0)
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* argument # 1 byte
|
|
* argument value 4 bytes/8 bytes (32-bit/64-bit value)
|
|
* text length 2 bytes
|
|
* text N bytes + 1 terminating NULL byte
|
|
*/
|
|
token_t *
|
|
au_to_arg32(char n, const char *text, u_int32_t v)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t textlen;
|
|
|
|
textlen = strlen(text);
|
|
textlen += 1;
|
|
|
|
GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t) +
|
|
sizeof(u_int16_t) + textlen);
|
|
|
|
ADD_U_CHAR(dptr, AUT_ARG32);
|
|
ADD_U_CHAR(dptr, n);
|
|
ADD_U_INT32(dptr, v);
|
|
ADD_U_INT16(dptr, textlen);
|
|
ADD_STRING(dptr, text, textlen);
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_arg64(char n, const char *text, u_int64_t v)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t textlen;
|
|
|
|
textlen = strlen(text);
|
|
textlen += 1;
|
|
|
|
GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int64_t) +
|
|
sizeof(u_int16_t) + textlen);
|
|
|
|
ADD_U_CHAR(dptr, AUT_ARG64);
|
|
ADD_U_CHAR(dptr, n);
|
|
ADD_U_INT64(dptr, v);
|
|
ADD_U_INT16(dptr, textlen);
|
|
ADD_STRING(dptr, text, textlen);
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_arg(char n, const char *text, u_int32_t v)
|
|
{
|
|
|
|
return (au_to_arg32(n, text, v));
|
|
}
|
|
|
|
#if defined(_KERNEL) || defined(KERNEL)
|
|
/*
|
|
* token ID 1 byte
|
|
* file access mode 4 bytes
|
|
* owner user ID 4 bytes
|
|
* owner group ID 4 bytes
|
|
* file system ID 4 bytes
|
|
* node ID 8 bytes
|
|
* device 4 bytes/8 bytes (32-bit/64-bit)
|
|
*/
|
|
token_t *
|
|
au_to_attr32(struct vnode_au_info *vni)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t pad0_16 = 0;
|
|
u_int32_t pad0_32 = 0;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int16_t) +
|
|
3 * sizeof(u_int32_t) + sizeof(u_int64_t) + sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_ATTR32);
|
|
|
|
/*
|
|
* BSD defines the size for the file mode as 2 bytes; BSM defines 4
|
|
* so pad with 0.
|
|
*
|
|
* XXXRW: Possibly should be conditionally compiled.
|
|
*
|
|
* XXXRW: Should any conversions take place on the mode?
|
|
*/
|
|
ADD_U_INT16(dptr, pad0_16);
|
|
ADD_U_INT16(dptr, vni->vn_mode);
|
|
|
|
ADD_U_INT32(dptr, vni->vn_uid);
|
|
ADD_U_INT32(dptr, vni->vn_gid);
|
|
ADD_U_INT32(dptr, vni->vn_fsid);
|
|
|
|
/*
|
|
* Some systems use 32-bit file ID's, others use 64-bit file IDs.
|
|
* Attempt to handle both, and let the compiler sort it out. If we
|
|
* could pick this out at compile-time, it would be better, so as to
|
|
* avoid the else case below.
|
|
*/
|
|
if (sizeof(vni->vn_fileid) == sizeof(uint32_t)) {
|
|
ADD_U_INT32(dptr, pad0_32);
|
|
ADD_U_INT32(dptr, vni->vn_fileid);
|
|
} else if (sizeof(vni->vn_fileid) == sizeof(uint64_t))
|
|
ADD_U_INT64(dptr, vni->vn_fileid);
|
|
else
|
|
ADD_U_INT64(dptr, 0LL);
|
|
|
|
ADD_U_INT32(dptr, vni->vn_dev);
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_attr64(struct vnode_au_info *vni)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t pad0_16 = 0;
|
|
u_int32_t pad0_32 = 0;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int16_t) +
|
|
3 * sizeof(u_int32_t) + sizeof(u_int64_t) * 2);
|
|
|
|
ADD_U_CHAR(dptr, AUT_ATTR64);
|
|
|
|
/*
|
|
* BSD defines the size for the file mode as 2 bytes; BSM defines 4
|
|
* so pad with 0.
|
|
*
|
|
* XXXRW: Possibly should be conditionally compiled.
|
|
*
|
|
* XXXRW: Should any conversions take place on the mode?
|
|
*/
|
|
ADD_U_INT16(dptr, pad0_16);
|
|
ADD_U_INT16(dptr, vni->vn_mode);
|
|
|
|
ADD_U_INT32(dptr, vni->vn_uid);
|
|
ADD_U_INT32(dptr, vni->vn_gid);
|
|
ADD_U_INT32(dptr, vni->vn_fsid);
|
|
|
|
/*
|
|
* Some systems use 32-bit file ID's, other's use 64-bit file IDs.
|
|
* Attempt to handle both, and let the compiler sort it out. If we
|
|
* could pick this out at compile-time, it would be better, so as to
|
|
* avoid the else case below.
|
|
*/
|
|
if (sizeof(vni->vn_fileid) == sizeof(uint32_t)) {
|
|
ADD_U_INT32(dptr, pad0_32);
|
|
ADD_U_INT32(dptr, vni->vn_fileid);
|
|
} else if (sizeof(vni->vn_fileid) == sizeof(uint64_t))
|
|
ADD_U_INT64(dptr, vni->vn_fileid);
|
|
else
|
|
ADD_U_INT64(dptr, 0LL);
|
|
|
|
ADD_U_INT64(dptr, vni->vn_dev);
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_attr(struct vnode_au_info *vni)
|
|
{
|
|
|
|
return (au_to_attr32(vni));
|
|
}
|
|
#endif /* !(defined(_KERNEL) || defined(KERNEL) */
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* how to print 1 byte
|
|
* basic unit 1 byte
|
|
* unit count 1 byte
|
|
* data items (depends on basic unit)
|
|
*/
|
|
token_t *
|
|
au_to_data(char unit_print, char unit_type, char unit_count, const char *p)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
size_t datasize, totdata;
|
|
|
|
/* Determine the size of the basic unit. */
|
|
switch (unit_type) {
|
|
case AUR_BYTE:
|
|
/* case AUR_CHAR: */
|
|
datasize = AUR_BYTE_SIZE;
|
|
break;
|
|
|
|
case AUR_SHORT:
|
|
datasize = AUR_SHORT_SIZE;
|
|
break;
|
|
|
|
case AUR_INT32:
|
|
/* case AUR_INT: */
|
|
datasize = AUR_INT32_SIZE;
|
|
break;
|
|
|
|
case AUR_INT64:
|
|
datasize = AUR_INT64_SIZE;
|
|
break;
|
|
|
|
default:
|
|
return (NULL);
|
|
}
|
|
|
|
totdata = datasize * unit_count;
|
|
|
|
GET_TOKEN_AREA(t, dptr, 4 * sizeof(u_char) + totdata);
|
|
|
|
/*
|
|
* XXXRW: We should be byte-swapping each data item for multi-byte
|
|
* types.
|
|
*/
|
|
ADD_U_CHAR(dptr, AUT_DATA);
|
|
ADD_U_CHAR(dptr, unit_print);
|
|
ADD_U_CHAR(dptr, unit_type);
|
|
ADD_U_CHAR(dptr, unit_count);
|
|
ADD_MEM(dptr, p, totdata);
|
|
|
|
return (t);
|
|
}
|
|
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* status 4 bytes
|
|
* return value 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_exit(int retval, int err)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_EXIT);
|
|
ADD_U_INT32(dptr, err);
|
|
ADD_U_INT32(dptr, retval);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
*/
|
|
token_t *
|
|
au_to_groups(int *groups)
|
|
{
|
|
|
|
return (au_to_newgroups(AUDIT_MAX_GROUPS, (gid_t *)groups));
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* number groups 2 bytes
|
|
* group list count * 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_newgroups(u_int16_t n, gid_t *groups)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
int i;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) +
|
|
n * sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_NEWGROUPS);
|
|
ADD_U_INT16(dptr, n);
|
|
for (i = 0; i < n; i++)
|
|
ADD_U_INT32(dptr, groups[i]);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* internet address 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_in_addr(struct in_addr *internet_addr)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(uint32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_IN_ADDR);
|
|
ADD_MEM(dptr, &internet_addr->s_addr, sizeof(uint32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* address type/length 4 bytes
|
|
* address 16 bytes
|
|
*/
|
|
token_t *
|
|
au_to_in_addr_ex(struct in6_addr *internet_addr)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int32_t type = AU_IPv6;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 5 * sizeof(uint32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_IN_ADDR_EX);
|
|
ADD_U_INT32(dptr, type);
|
|
ADD_MEM(dptr, internet_addr, 4 * sizeof(uint32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* ip header 20 bytes
|
|
*
|
|
* The IP header should be submitted in network byte order.
|
|
*/
|
|
token_t *
|
|
au_to_ip(struct ip *ip)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(struct ip));
|
|
|
|
ADD_U_CHAR(dptr, AUT_IP);
|
|
ADD_MEM(dptr, ip, sizeof(struct ip));
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* object ID type 1 byte
|
|
* object ID 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_ipc(char type, int id)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_IPC);
|
|
ADD_U_CHAR(dptr, type);
|
|
ADD_U_INT32(dptr, id);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* owner user ID 4 bytes
|
|
* owner group ID 4 bytes
|
|
* creator user ID 4 bytes
|
|
* creator group ID 4 bytes
|
|
* access mode 4 bytes
|
|
* slot sequence # 4 bytes
|
|
* key 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_ipc_perm(struct ipc_perm *perm)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t pad0 = 0;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 12 * sizeof(u_int16_t) +
|
|
sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_IPC_PERM);
|
|
|
|
/*
|
|
* Systems vary significantly in what types they use in struct
|
|
* ipc_perm; at least a few still use 16-bit uid's and gid's, so
|
|
* allow for that, as BSM define 32-bit values here.
|
|
* Some systems define the sizes for ipc_perm members as 2 bytes;
|
|
* BSM defines 4 so pad with 0.
|
|
*
|
|
* XXXRW: Possibly shoulid be conditionally compiled, and more cases
|
|
* need to be handled.
|
|
*/
|
|
if (sizeof(perm->uid) != sizeof(u_int32_t)) {
|
|
ADD_U_INT16(dptr, pad0);
|
|
ADD_U_INT16(dptr, perm->uid);
|
|
ADD_U_INT16(dptr, pad0);
|
|
ADD_U_INT16(dptr, perm->gid);
|
|
ADD_U_INT16(dptr, pad0);
|
|
ADD_U_INT16(dptr, perm->cuid);
|
|
ADD_U_INT16(dptr, pad0);
|
|
ADD_U_INT16(dptr, perm->cgid);
|
|
} else {
|
|
ADD_U_INT32(dptr, perm->uid);
|
|
ADD_U_INT32(dptr, perm->gid);
|
|
ADD_U_INT32(dptr, perm->cuid);
|
|
ADD_U_INT32(dptr, perm->cgid);
|
|
}
|
|
|
|
ADD_U_INT16(dptr, pad0);
|
|
ADD_U_INT16(dptr, perm->mode);
|
|
|
|
ADD_U_INT16(dptr, pad0);
|
|
|
|
ADD_U_INT16(dptr, perm->seq);
|
|
|
|
ADD_U_INT32(dptr, perm->key);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* port IP address 2 bytes
|
|
*/
|
|
token_t *
|
|
au_to_iport(u_int16_t iport)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_IPORT);
|
|
ADD_U_INT16(dptr, iport);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* size 2 bytes
|
|
* data size bytes
|
|
*/
|
|
token_t *
|
|
au_to_opaque(const char *data, u_int16_t bytes)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + bytes);
|
|
|
|
ADD_U_CHAR(dptr, AUT_OPAQUE);
|
|
ADD_U_INT16(dptr, bytes);
|
|
ADD_MEM(dptr, data, bytes);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* seconds of time 4 bytes
|
|
* milliseconds of time 4 bytes
|
|
* file name len 2 bytes
|
|
* file pathname N bytes + 1 terminating NULL byte
|
|
*/
|
|
token_t *
|
|
au_to_file(const char *file, struct timeval tm)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t filelen;
|
|
u_int32_t timems;
|
|
|
|
filelen = strlen(file);
|
|
filelen += 1;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int32_t) +
|
|
sizeof(u_int16_t) + filelen);
|
|
|
|
timems = tm.tv_usec/1000;
|
|
|
|
ADD_U_CHAR(dptr, AUT_OTHER_FILE32);
|
|
ADD_U_INT32(dptr, tm.tv_sec);
|
|
ADD_U_INT32(dptr, timems); /* We need time in ms. */
|
|
ADD_U_INT16(dptr, filelen);
|
|
ADD_STRING(dptr, file, filelen);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* text length 2 bytes
|
|
* text N bytes + 1 terminating NULL byte
|
|
*/
|
|
token_t *
|
|
au_to_text(const char *text)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t textlen;
|
|
|
|
textlen = strlen(text);
|
|
textlen += 1;
|
|
|
|
/* XXXRW: Should validate length against token size limit. */
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen);
|
|
|
|
ADD_U_CHAR(dptr, AUT_TEXT);
|
|
ADD_U_INT16(dptr, textlen);
|
|
ADD_STRING(dptr, text, textlen);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* path length 2 bytes
|
|
* path N bytes + 1 terminating NULL byte
|
|
*/
|
|
token_t *
|
|
au_to_path(const char *text)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t textlen;
|
|
|
|
textlen = strlen(text);
|
|
textlen += 1;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen);
|
|
|
|
ADD_U_CHAR(dptr, AUT_PATH);
|
|
ADD_U_INT16(dptr, textlen);
|
|
ADD_STRING(dptr, text, textlen);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* audit ID 4 bytes
|
|
* effective user ID 4 bytes
|
|
* effective group ID 4 bytes
|
|
* real user ID 4 bytes
|
|
* real group ID 4 bytes
|
|
* process ID 4 bytes
|
|
* session ID 4 bytes
|
|
* terminal ID
|
|
* port ID 4 bytes/8 bytes (32-bit/64-bit value)
|
|
* machine address 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_process32(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
|
|
pid_t pid, au_asid_t sid, au_tid_t *tid)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 9 * sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_PROCESS32);
|
|
ADD_U_INT32(dptr, auid);
|
|
ADD_U_INT32(dptr, euid);
|
|
ADD_U_INT32(dptr, egid);
|
|
ADD_U_INT32(dptr, ruid);
|
|
ADD_U_INT32(dptr, rgid);
|
|
ADD_U_INT32(dptr, pid);
|
|
ADD_U_INT32(dptr, sid);
|
|
ADD_U_INT32(dptr, tid->port);
|
|
|
|
/*
|
|
* Note: Solaris will write out IPv6 addresses here as a 32-bit
|
|
* address type and 16 bytes of address, but for IPv4 addresses it
|
|
* simply writes the 4-byte address directly. We support only IPv4
|
|
* addresses for process32 tokens.
|
|
*/
|
|
ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_process64(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
|
|
pid_t pid, au_asid_t sid, au_tid_t *tid)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 8 * sizeof(u_int32_t) +
|
|
sizeof(u_int64_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_PROCESS64);
|
|
ADD_U_INT32(dptr, auid);
|
|
ADD_U_INT32(dptr, euid);
|
|
ADD_U_INT32(dptr, egid);
|
|
ADD_U_INT32(dptr, ruid);
|
|
ADD_U_INT32(dptr, rgid);
|
|
ADD_U_INT32(dptr, pid);
|
|
ADD_U_INT32(dptr, sid);
|
|
ADD_U_INT64(dptr, tid->port);
|
|
|
|
/*
|
|
* Note: Solaris will write out IPv6 addresses here as a 32-bit
|
|
* address type and 16 bytes of address, but for IPv4 addresses it
|
|
* simply writes the 4-byte address directly. We support only IPv4
|
|
* addresses for process64 tokens.
|
|
*/
|
|
ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_process(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
|
|
pid_t pid, au_asid_t sid, au_tid_t *tid)
|
|
{
|
|
|
|
return (au_to_process32(auid, euid, egid, ruid, rgid, pid, sid,
|
|
tid));
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* audit ID 4 bytes
|
|
* effective user ID 4 bytes
|
|
* effective group ID 4 bytes
|
|
* real user ID 4 bytes
|
|
* real group ID 4 bytes
|
|
* process ID 4 bytes
|
|
* session ID 4 bytes
|
|
* terminal ID
|
|
* port ID 4 bytes/8 bytes (32-bit/64-bit value)
|
|
* address type-len 4 bytes
|
|
* machine address 16 bytes
|
|
*/
|
|
token_t *
|
|
au_to_process32_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
|
|
gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
KASSERT((tid->at_type == AU_IPv4) || (tid->at_type == AU_IPv6),
|
|
("au_to_process32_ex: type %u", (unsigned int)tid->at_type));
|
|
if (tid->at_type == AU_IPv4)
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
|
|
10 * sizeof(u_int32_t));
|
|
else
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
|
|
13 * sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_PROCESS32_EX);
|
|
ADD_U_INT32(dptr, auid);
|
|
ADD_U_INT32(dptr, euid);
|
|
ADD_U_INT32(dptr, egid);
|
|
ADD_U_INT32(dptr, ruid);
|
|
ADD_U_INT32(dptr, rgid);
|
|
ADD_U_INT32(dptr, pid);
|
|
ADD_U_INT32(dptr, sid);
|
|
ADD_U_INT32(dptr, tid->at_port);
|
|
ADD_U_INT32(dptr, tid->at_type);
|
|
ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
|
|
if (tid->at_type == AU_IPv6) {
|
|
ADD_MEM(dptr, &tid->at_addr[1], sizeof(u_int32_t));
|
|
ADD_MEM(dptr, &tid->at_addr[2], sizeof(u_int32_t));
|
|
ADD_MEM(dptr, &tid->at_addr[3], sizeof(u_int32_t));
|
|
}
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_process64_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
|
|
gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
if (tid->at_type == AU_IPv4)
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
|
|
7 * sizeof(u_int32_t) + sizeof(u_int64_t) +
|
|
2 * sizeof(u_int32_t));
|
|
else if (tid->at_type == AU_IPv6)
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
|
|
7 * sizeof(u_int32_t) + sizeof(u_int64_t) +
|
|
5 * sizeof(u_int32_t));
|
|
else
|
|
panic("au_to_process64_ex: invalidate at_type (%d)",
|
|
tid->at_type);
|
|
|
|
ADD_U_CHAR(dptr, AUT_PROCESS64_EX);
|
|
ADD_U_INT32(dptr, auid);
|
|
ADD_U_INT32(dptr, euid);
|
|
ADD_U_INT32(dptr, egid);
|
|
ADD_U_INT32(dptr, ruid);
|
|
ADD_U_INT32(dptr, rgid);
|
|
ADD_U_INT32(dptr, pid);
|
|
ADD_U_INT32(dptr, sid);
|
|
ADD_U_INT64(dptr, tid->at_port);
|
|
ADD_U_INT32(dptr, tid->at_type);
|
|
ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
|
|
if (tid->at_type == AU_IPv6) {
|
|
ADD_MEM(dptr, &tid->at_addr[1], sizeof(u_int32_t));
|
|
ADD_MEM(dptr, &tid->at_addr[2], sizeof(u_int32_t));
|
|
ADD_MEM(dptr, &tid->at_addr[3], sizeof(u_int32_t));
|
|
}
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_process_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
|
|
gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
|
|
{
|
|
|
|
return (au_to_process32_ex(auid, euid, egid, ruid, rgid, pid, sid,
|
|
tid));
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* error status 1 byte
|
|
* return value 4 bytes/8 bytes (32-bit/64-bit value)
|
|
*/
|
|
token_t *
|
|
au_to_return32(char status, u_int32_t ret)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_RETURN32);
|
|
ADD_U_CHAR(dptr, status);
|
|
ADD_U_INT32(dptr, ret);
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_return64(char status, u_int64_t ret)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, 2 * sizeof(u_char) + sizeof(u_int64_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_RETURN64);
|
|
ADD_U_CHAR(dptr, status);
|
|
ADD_U_INT64(dptr, ret);
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_return(char status, u_int32_t ret)
|
|
{
|
|
|
|
return (au_to_return32(status, ret));
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* sequence number 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_seq(long audit_count)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_SEQ);
|
|
ADD_U_INT32(dptr, audit_count);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* socket domain 2 bytes
|
|
* socket type 2 bytes
|
|
* address type 2 byte
|
|
* local port 2 bytes
|
|
* local address 4 bytes/16 bytes (IPv4/IPv6 address)
|
|
* remote port 2 bytes
|
|
* remote address 4 bytes/16 bytes (IPv4/IPv6 address)
|
|
*
|
|
* Domain and type arguments to this routine are assumed to already have been
|
|
* converted to the BSM constant space, so we don't do that here.
|
|
*/
|
|
token_t *
|
|
au_to_socket_ex(u_short so_domain, u_short so_type,
|
|
struct sockaddr *sa_local, struct sockaddr *sa_remote)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
struct sockaddr_in *sin;
|
|
struct sockaddr_in6 *sin6;
|
|
|
|
if (so_domain == AF_INET)
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
|
|
5 * sizeof(u_int16_t) + 2 * sizeof(u_int32_t));
|
|
else if (so_domain == AF_INET6)
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
|
|
5 * sizeof(u_int16_t) + 8 * sizeof(u_int32_t));
|
|
else
|
|
return (NULL);
|
|
|
|
ADD_U_CHAR(dptr, AUT_SOCKET_EX);
|
|
ADD_U_INT16(dptr, au_domain_to_bsm(so_domain));
|
|
ADD_U_INT16(dptr, au_socket_type_to_bsm(so_type));
|
|
if (so_domain == AF_INET) {
|
|
ADD_U_INT16(dptr, AU_IPv4);
|
|
sin = (struct sockaddr_in *)sa_local;
|
|
ADD_MEM(dptr, &sin->sin_port, sizeof(uint16_t));
|
|
ADD_MEM(dptr, &sin->sin_addr.s_addr, sizeof(uint32_t));
|
|
sin = (struct sockaddr_in *)sa_remote;
|
|
ADD_MEM(dptr, &sin->sin_port, sizeof(uint16_t));
|
|
ADD_MEM(dptr, &sin->sin_addr.s_addr, sizeof(uint32_t));
|
|
} else {
|
|
ADD_U_INT16(dptr, AU_IPv6);
|
|
sin6 = (struct sockaddr_in6 *)sa_local;
|
|
ADD_MEM(dptr, &sin6->sin6_port, sizeof(uint16_t));
|
|
ADD_MEM(dptr, &sin6->sin6_addr, 4 * sizeof(uint32_t));
|
|
sin6 = (struct sockaddr_in6 *)sa_remote;
|
|
ADD_MEM(dptr, &sin6->sin6_port, sizeof(uint16_t));
|
|
ADD_MEM(dptr, &sin6->sin6_addr, 4 * sizeof(uint32_t));
|
|
}
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* Kernel-specific version of the above function.
|
|
*
|
|
* XXXRW: Should now use au_to_socket_ex() here.
|
|
*/
|
|
#ifdef _KERNEL
|
|
token_t *
|
|
kau_to_socket(struct socket_au_info *soi)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr;
|
|
u_int16_t so_type;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(u_int16_t) +
|
|
sizeof(u_int32_t) + sizeof(u_int16_t) + sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_SOCKET);
|
|
/* Coerce the socket type into a short value */
|
|
so_type = soi->so_type;
|
|
ADD_U_INT16(dptr, so_type);
|
|
ADD_U_INT16(dptr, soi->so_lport);
|
|
ADD_U_INT32(dptr, soi->so_laddr);
|
|
ADD_U_INT16(dptr, soi->so_rport);
|
|
ADD_U_INT32(dptr, soi->so_raddr);
|
|
|
|
return (t);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* socket family 2 bytes
|
|
* path (up to) 104 bytes + NULL (NULL terminated string)
|
|
*/
|
|
token_t *
|
|
au_to_sock_unix(struct sockaddr_un *so)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr;
|
|
|
|
GET_TOKEN_AREA(t, dptr, 3 * sizeof(u_char) + strlen(so->sun_path) + 1);
|
|
|
|
ADD_U_CHAR(dptr, AUT_SOCKUNIX);
|
|
/* BSM token has two bytes for family */
|
|
ADD_U_CHAR(dptr, 0);
|
|
ADD_U_CHAR(dptr, so->sun_family);
|
|
ADD_STRING(dptr, so->sun_path, strlen(so->sun_path) + 1);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* socket family 2 bytes
|
|
* local port 2 bytes
|
|
* socket address 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_sock_inet32(struct sockaddr_in *so)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
uint16_t family;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 2 * sizeof(uint16_t) +
|
|
sizeof(uint32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_SOCKINET32);
|
|
/*
|
|
* BSM defines the family field as 16 bits, but many operating
|
|
* systems have an 8-bit sin_family field. Extend to 16 bits before
|
|
* writing into the token. Assume that both the port and the address
|
|
* in the sockaddr_in are already in network byte order, but family
|
|
* is in local byte order.
|
|
*
|
|
* XXXRW: Should a name space conversion be taking place on the value
|
|
* of sin_family?
|
|
*/
|
|
family = so->sin_family;
|
|
ADD_U_INT16(dptr, family);
|
|
ADD_MEM(dptr, &so->sin_port, sizeof(uint16_t));
|
|
ADD_MEM(dptr, &so->sin_addr.s_addr, sizeof(uint32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_sock_inet128(struct sockaddr_in6 *so)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, 3 * sizeof(u_char) + sizeof(u_int16_t) +
|
|
4 * sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_SOCKINET128);
|
|
/*
|
|
* In BSD, sin6_family is one octet, but BSM defines the token to
|
|
* store two. So we copy in a 0 first. XXXRW: Possibly should be
|
|
* conditionally compiled.
|
|
*/
|
|
ADD_U_CHAR(dptr, 0);
|
|
ADD_U_CHAR(dptr, so->sin6_family);
|
|
|
|
ADD_U_INT16(dptr, so->sin6_port);
|
|
ADD_MEM(dptr, &so->sin6_addr, 4 * sizeof(uint32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_sock_inet(struct sockaddr_in *so)
|
|
{
|
|
|
|
return (au_to_sock_inet32(so));
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* audit ID 4 bytes
|
|
* effective user ID 4 bytes
|
|
* effective group ID 4 bytes
|
|
* real user ID 4 bytes
|
|
* real group ID 4 bytes
|
|
* process ID 4 bytes
|
|
* session ID 4 bytes
|
|
* terminal ID
|
|
* port ID 4 bytes/8 bytes (32-bit/64-bit value)
|
|
* machine address 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_subject32(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
|
|
pid_t pid, au_asid_t sid, au_tid_t *tid)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 9 * sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_SUBJECT32);
|
|
ADD_U_INT32(dptr, auid);
|
|
ADD_U_INT32(dptr, euid);
|
|
ADD_U_INT32(dptr, egid);
|
|
ADD_U_INT32(dptr, ruid);
|
|
ADD_U_INT32(dptr, rgid);
|
|
ADD_U_INT32(dptr, pid);
|
|
ADD_U_INT32(dptr, sid);
|
|
ADD_U_INT32(dptr, tid->port);
|
|
ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_subject64(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
|
|
pid_t pid, au_asid_t sid, au_tid_t *tid)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 7 * sizeof(u_int32_t) +
|
|
sizeof(u_int64_t) + sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_SUBJECT64);
|
|
ADD_U_INT32(dptr, auid);
|
|
ADD_U_INT32(dptr, euid);
|
|
ADD_U_INT32(dptr, egid);
|
|
ADD_U_INT32(dptr, ruid);
|
|
ADD_U_INT32(dptr, rgid);
|
|
ADD_U_INT32(dptr, pid);
|
|
ADD_U_INT32(dptr, sid);
|
|
ADD_U_INT64(dptr, tid->port);
|
|
ADD_MEM(dptr, &tid->machine, sizeof(u_int32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_subject(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid,
|
|
pid_t pid, au_asid_t sid, au_tid_t *tid)
|
|
{
|
|
|
|
return (au_to_subject32(auid, euid, egid, ruid, rgid, pid, sid,
|
|
tid));
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* audit ID 4 bytes
|
|
* effective user ID 4 bytes
|
|
* effective group ID 4 bytes
|
|
* real user ID 4 bytes
|
|
* real group ID 4 bytes
|
|
* process ID 4 bytes
|
|
* session ID 4 bytes
|
|
* terminal ID
|
|
* port ID 4 bytes/8 bytes (32-bit/64-bit value)
|
|
* address type/length 4 bytes
|
|
* machine address 16 bytes
|
|
*/
|
|
token_t *
|
|
au_to_subject32_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
|
|
gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
KASSERT((tid->at_type == AU_IPv4) || (tid->at_type == AU_IPv6),
|
|
("au_to_subject32_ex: type %u", (unsigned int)tid->at_type));
|
|
|
|
if (tid->at_type == AU_IPv4)
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 10 *
|
|
sizeof(u_int32_t));
|
|
else
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + 13 *
|
|
sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_SUBJECT32_EX);
|
|
ADD_U_INT32(dptr, auid);
|
|
ADD_U_INT32(dptr, euid);
|
|
ADD_U_INT32(dptr, egid);
|
|
ADD_U_INT32(dptr, ruid);
|
|
ADD_U_INT32(dptr, rgid);
|
|
ADD_U_INT32(dptr, pid);
|
|
ADD_U_INT32(dptr, sid);
|
|
ADD_U_INT32(dptr, tid->at_port);
|
|
ADD_U_INT32(dptr, tid->at_type);
|
|
if (tid->at_type == AU_IPv6)
|
|
ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t));
|
|
else
|
|
ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_subject64_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
|
|
gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
|
|
KASSERT((tid->at_type == AU_IPv4) || (tid->at_type == AU_IPv6),
|
|
("au_to_subject64_ex: type %u", (unsigned int)tid->at_type));
|
|
|
|
if (tid->at_type == AU_IPv4)
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
|
|
7 * sizeof(u_int32_t) + sizeof(u_int64_t) +
|
|
2 * sizeof(u_int32_t));
|
|
else
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) +
|
|
7 * sizeof(u_int32_t) + sizeof(u_int64_t) +
|
|
5 * sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_SUBJECT64_EX);
|
|
ADD_U_INT32(dptr, auid);
|
|
ADD_U_INT32(dptr, euid);
|
|
ADD_U_INT32(dptr, egid);
|
|
ADD_U_INT32(dptr, ruid);
|
|
ADD_U_INT32(dptr, rgid);
|
|
ADD_U_INT32(dptr, pid);
|
|
ADD_U_INT32(dptr, sid);
|
|
ADD_U_INT64(dptr, tid->at_port);
|
|
ADD_U_INT32(dptr, tid->at_type);
|
|
if (tid->at_type == AU_IPv6)
|
|
ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t));
|
|
else
|
|
ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_subject_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t ruid,
|
|
gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid)
|
|
{
|
|
|
|
return (au_to_subject32_ex(auid, euid, egid, ruid, rgid, pid, sid,
|
|
tid));
|
|
}
|
|
|
|
#if !defined(_KERNEL) && !defined(KERNEL) && defined(HAVE_AUDIT_SYSCALLS)
|
|
/*
|
|
* Collects audit information for the current process and creates a subject
|
|
* token from it.
|
|
*/
|
|
token_t *
|
|
au_to_me(void)
|
|
{
|
|
auditinfo_t auinfo;
|
|
auditinfo_addr_t aia;
|
|
|
|
/*
|
|
* Try to use getaudit_addr(2) first. If this kernel does not support
|
|
* it, then fall back on to getaudit(2).
|
|
*/
|
|
if (getaudit_addr(&aia, sizeof(aia)) != 0) {
|
|
if (errno == ENOSYS) {
|
|
if (getaudit(&auinfo) != 0)
|
|
return (NULL);
|
|
return (au_to_subject32(auinfo.ai_auid, geteuid(),
|
|
getegid(), getuid(), getgid(), getpid(),
|
|
auinfo.ai_asid, &auinfo.ai_termid));
|
|
} else {
|
|
/* getaudit_addr(2) failed for some other reason. */
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
return (au_to_subject32_ex(aia.ai_auid, geteuid(), getegid(), getuid(),
|
|
getgid(), getpid(), aia.ai_asid, &aia.ai_termid));
|
|
}
|
|
#endif
|
|
|
|
#if defined(_KERNEL) || defined(KERNEL)
|
|
static token_t *
|
|
au_to_exec_strings(char *strs, int count, u_char type)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int32_t totlen;
|
|
int ctr;
|
|
char *p;
|
|
|
|
totlen = 0;
|
|
ctr = count;
|
|
p = strs;
|
|
while (ctr-- > 0) {
|
|
totlen += strlen(p) + 1;
|
|
p = strs + totlen;
|
|
}
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + totlen);
|
|
ADD_U_CHAR(dptr, type);
|
|
ADD_U_INT32(dptr, count);
|
|
ADD_STRING(dptr, strs, totlen);
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* count 4 bytes
|
|
* text count null-terminated strings
|
|
*/
|
|
token_t *
|
|
au_to_exec_args(char *args, int argc)
|
|
{
|
|
|
|
return (au_to_exec_strings(args, argc, AUT_EXEC_ARGS));
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* count 4 bytes
|
|
* text count null-terminated strings
|
|
*/
|
|
token_t *
|
|
au_to_exec_env(char *envs, int envc)
|
|
{
|
|
|
|
return (au_to_exec_strings(envs, envc, AUT_EXEC_ENV));
|
|
}
|
|
#else
|
|
/*
|
|
* token ID 1 byte
|
|
* count 4 bytes
|
|
* text count null-terminated strings
|
|
*/
|
|
token_t *
|
|
au_to_exec_args(char **argv)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
const char *nextarg;
|
|
int i, count = 0;
|
|
size_t totlen = 0;
|
|
|
|
nextarg = *argv;
|
|
|
|
while (nextarg != NULL) {
|
|
int nextlen;
|
|
|
|
nextlen = strlen(nextarg);
|
|
totlen += nextlen + 1;
|
|
count++;
|
|
nextarg = *(argv + count);
|
|
}
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + totlen);
|
|
|
|
ADD_U_CHAR(dptr, AUT_EXEC_ARGS);
|
|
ADD_U_INT32(dptr, count);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
nextarg = *(argv + i);
|
|
ADD_MEM(dptr, nextarg, strlen(nextarg) + 1);
|
|
}
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* count 4 bytes
|
|
* text count null-terminated strings
|
|
*/
|
|
token_t *
|
|
au_to_exec_env(char **envp)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
int i, count = 0;
|
|
size_t totlen = 0;
|
|
const char *nextenv;
|
|
|
|
nextenv = *envp;
|
|
|
|
while (nextenv != NULL) {
|
|
int nextlen;
|
|
|
|
nextlen = strlen(nextenv);
|
|
totlen += nextlen + 1;
|
|
count++;
|
|
nextenv = *(envp + count);
|
|
}
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) + totlen);
|
|
|
|
ADD_U_CHAR(dptr, AUT_EXEC_ENV);
|
|
ADD_U_INT32(dptr, count);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
nextenv = *(envp + i);
|
|
ADD_MEM(dptr, nextenv, strlen(nextenv) + 1);
|
|
}
|
|
|
|
return (t);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* zonename length 2 bytes
|
|
* zonename N bytes + 1 terminating NULL byte
|
|
*/
|
|
token_t *
|
|
au_to_zonename(const char *zonename)
|
|
{
|
|
u_char *dptr = NULL;
|
|
u_int16_t textlen;
|
|
token_t *t;
|
|
|
|
textlen = strlen(zonename) + 1;
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) + textlen);
|
|
|
|
ADD_U_CHAR(dptr, AUT_ZONENAME);
|
|
ADD_U_INT16(dptr, textlen);
|
|
ADD_STRING(dptr, zonename, textlen);
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* record byte count 4 bytes
|
|
* version # 1 byte [2]
|
|
* event type 2 bytes
|
|
* event modifier 2 bytes
|
|
* seconds of time 4 bytes/8 bytes (32-bit/64-bit value)
|
|
* milliseconds of time 4 bytes/8 bytes (32-bit/64-bit value)
|
|
*/
|
|
token_t *
|
|
au_to_header32_tm(int rec_size, au_event_t e_type, au_emod_t e_mod,
|
|
struct timeval tm)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int32_t timems;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) +
|
|
sizeof(u_char) + 2 * sizeof(u_int16_t) + 2 * sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_HEADER32);
|
|
ADD_U_INT32(dptr, rec_size);
|
|
ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM);
|
|
ADD_U_INT16(dptr, e_type);
|
|
ADD_U_INT16(dptr, e_mod);
|
|
|
|
timems = tm.tv_usec/1000;
|
|
/* Add the timestamp */
|
|
ADD_U_INT32(dptr, tm.tv_sec);
|
|
ADD_U_INT32(dptr, timems); /* We need time in ms. */
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* record byte count 4 bytes
|
|
* version # 1 byte [2]
|
|
* event type 2 bytes
|
|
* event modifier 2 bytes
|
|
* address type/length 4 bytes
|
|
* machine address 4 bytes/16 bytes (IPv4/IPv6 address)
|
|
* seconds of time 4 bytes/8 bytes (32-bit/64-bit value)
|
|
* milliseconds of time 4 bytes/8 bytes (32-bit/64-bit value)
|
|
*/
|
|
token_t *
|
|
au_to_header32_ex_tm(int rec_size, au_event_t e_type, au_emod_t e_mod,
|
|
struct timeval tm, struct auditinfo_addr *aia)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int32_t timems;
|
|
au_tid_addr_t *tid;
|
|
|
|
tid = &aia->ai_termid;
|
|
KASSERT(tid->at_type == AU_IPv4 || tid->at_type == AU_IPv6,
|
|
("au_to_header32_ex_tm: invalid address family"));
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) +
|
|
sizeof(u_char) + 2 * sizeof(u_int16_t) + 3 *
|
|
sizeof(u_int32_t) + tid->at_type);
|
|
|
|
ADD_U_CHAR(dptr, AUT_HEADER32_EX);
|
|
ADD_U_INT32(dptr, rec_size);
|
|
ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM);
|
|
ADD_U_INT16(dptr, e_type);
|
|
ADD_U_INT16(dptr, e_mod);
|
|
|
|
ADD_U_INT32(dptr, tid->at_type);
|
|
if (tid->at_type == AU_IPv6)
|
|
ADD_MEM(dptr, &tid->at_addr[0], 4 * sizeof(u_int32_t));
|
|
else
|
|
ADD_MEM(dptr, &tid->at_addr[0], sizeof(u_int32_t));
|
|
timems = tm.tv_usec/1000;
|
|
/* Add the timestamp */
|
|
ADD_U_INT32(dptr, tm.tv_sec);
|
|
ADD_U_INT32(dptr, timems); /* We need time in ms. */
|
|
|
|
return (t);
|
|
}
|
|
|
|
token_t *
|
|
au_to_header64_tm(int rec_size, au_event_t e_type, au_emod_t e_mod,
|
|
struct timeval tm)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int32_t timems;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int32_t) +
|
|
sizeof(u_char) + 2 * sizeof(u_int16_t) + 2 * sizeof(u_int64_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_HEADER64);
|
|
ADD_U_INT32(dptr, rec_size);
|
|
ADD_U_CHAR(dptr, AUDIT_HEADER_VERSION_OPENBSM);
|
|
ADD_U_INT16(dptr, e_type);
|
|
ADD_U_INT16(dptr, e_mod);
|
|
|
|
timems = tm.tv_usec/1000;
|
|
/* Add the timestamp */
|
|
ADD_U_INT64(dptr, tm.tv_sec);
|
|
ADD_U_INT64(dptr, timems); /* We need time in ms. */
|
|
|
|
return (t);
|
|
}
|
|
|
|
#if !defined(KERNEL) && !defined(_KERNEL)
|
|
#ifdef HAVE_AUDIT_SYSCALLS
|
|
token_t *
|
|
au_to_header32_ex(int rec_size, au_event_t e_type, au_emod_t e_mod)
|
|
{
|
|
struct timeval tm;
|
|
struct auditinfo_addr aia;
|
|
|
|
if (gettimeofday(&tm, NULL) == -1)
|
|
return (NULL);
|
|
if (audit_get_kaudit(&aia, sizeof(aia)) != 0) {
|
|
if (errno != ENOSYS)
|
|
return (NULL);
|
|
return (au_to_header32_tm(rec_size, e_type, e_mod, tm));
|
|
}
|
|
return (au_to_header32_ex_tm(rec_size, e_type, e_mod, tm, &aia));
|
|
}
|
|
#endif /* HAVE_AUDIT_SYSCALLS */
|
|
|
|
token_t *
|
|
au_to_header32(int rec_size, au_event_t e_type, au_emod_t e_mod)
|
|
{
|
|
struct timeval tm;
|
|
|
|
if (gettimeofday(&tm, NULL) == -1)
|
|
return (NULL);
|
|
return (au_to_header32_tm(rec_size, e_type, e_mod, tm));
|
|
}
|
|
|
|
token_t *
|
|
au_to_header64(__unused int rec_size, __unused au_event_t e_type,
|
|
__unused au_emod_t e_mod)
|
|
{
|
|
struct timeval tm;
|
|
|
|
if (gettimeofday(&tm, NULL) == -1)
|
|
return (NULL);
|
|
return (au_to_header64_tm(rec_size, e_type, e_mod, tm));
|
|
}
|
|
|
|
token_t *
|
|
au_to_header(int rec_size, au_event_t e_type, au_emod_t e_mod)
|
|
{
|
|
|
|
return (au_to_header32(rec_size, e_type, e_mod));
|
|
}
|
|
|
|
#ifdef HAVE_AUDIT_SYSCALLS
|
|
token_t *
|
|
au_to_header_ex(int rec_size, au_event_t e_type, au_emod_t e_mod)
|
|
{
|
|
|
|
return (au_to_header32_ex(rec_size, e_type, e_mod));
|
|
}
|
|
#endif /* HAVE_AUDIT_SYSCALLS */
|
|
#endif /* !defined(KERNEL) && !defined(_KERNEL) */
|
|
|
|
/*
|
|
* token ID 1 byte
|
|
* trailer magic number 2 bytes
|
|
* record byte count 4 bytes
|
|
*/
|
|
token_t *
|
|
au_to_trailer(int rec_size)
|
|
{
|
|
token_t *t;
|
|
u_char *dptr = NULL;
|
|
u_int16_t magic = AUT_TRAILER_MAGIC;
|
|
|
|
GET_TOKEN_AREA(t, dptr, sizeof(u_char) + sizeof(u_int16_t) +
|
|
sizeof(u_int32_t));
|
|
|
|
ADD_U_CHAR(dptr, AUT_TRAILER);
|
|
ADD_U_INT16(dptr, magic);
|
|
ADD_U_INT32(dptr, rec_size);
|
|
|
|
return (t);
|
|
}
|