mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-11 14:10:34 +00:00
25792ef324
parameter a char ** instead of a const char **. This make these kernel routines consistent with the corresponding libc userland routines. Which is actually 'correct' is debatable, but consistency and following the spec was deemed more important in this case. Reviewed by (in concept): phk, bde
441 lines
13 KiB
C
441 lines
13 KiB
C
|
|
/*
|
|
* ng_sample.c
|
|
*
|
|
* Copyright (c) 1996-1999 Whistle Communications, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Subject to the following obligations and disclaimer of warranty, use and
|
|
* redistribution of this software, in source or object code forms, with or
|
|
* without modifications are expressly permitted by Whistle Communications;
|
|
* provided, however, that:
|
|
* 1. Any and all reproductions of the source or object code must include the
|
|
* copyright notice above and the following disclaimer of warranties; and
|
|
* 2. No rights are granted, in any manner or form, to use Whistle
|
|
* Communications, Inc. trademarks, including the mark "WHISTLE
|
|
* COMMUNICATIONS" on advertising, endorsements, or otherwise except as
|
|
* such appears in the above copyright notice or in the software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND
|
|
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO
|
|
* REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE,
|
|
* INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
|
|
* WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
|
|
* REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS
|
|
* SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE.
|
|
* IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES
|
|
* RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING
|
|
* WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
|
* PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*
|
|
* Author: Julian Elischer <julian@whistle.com>
|
|
*
|
|
* $FreeBSD$
|
|
* $Whistle: ng_sample.c,v 1.13 1999/11/01 09:24:52 julian Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <netgraph/ng_message.h>
|
|
#include <netgraph/ng_sample.h>
|
|
#include <netgraph/netgraph.h>
|
|
|
|
/*
|
|
* This section contains the netgraph method declarations for the
|
|
* sample node. These methods define the netgraph 'type'.
|
|
*/
|
|
|
|
static ng_constructor_t ng_xxx_constructor;
|
|
static ng_rcvmsg_t ng_xxx_rcvmsg;
|
|
static ng_shutdown_t ng_xxx_rmnode;
|
|
static ng_newhook_t ng_xxx_newhook;
|
|
static ng_connect_t ng_xxx_connect;
|
|
static ng_rcvdata_t ng_xxx_rcvdata; /* note these are both ng_rcvdata_t */
|
|
static ng_rcvdata_t ng_xxx_rcvdataq; /* note these are both ng_rcvdata_t */
|
|
static ng_disconnect_t ng_xxx_disconnect;
|
|
|
|
/* Netgraph node type descriptor */
|
|
static struct ng_type typestruct = {
|
|
NG_VERSION,
|
|
NG_XXX_NODE_TYPE,
|
|
NULL,
|
|
ng_xxx_constructor,
|
|
ng_xxx_rcvmsg,
|
|
ng_xxx_rmnode,
|
|
ng_xxx_newhook,
|
|
NULL,
|
|
ng_xxx_connect,
|
|
ng_xxx_rcvdata,
|
|
ng_xxx_rcvdataq,
|
|
ng_xxx_disconnect
|
|
};
|
|
NETGRAPH_INIT(xxx, &typestruct);
|
|
|
|
/* Information we store for each hook on each node */
|
|
struct XXX_hookinfo {
|
|
int dlci; /* The DLCI it represents, -1 == downstream */
|
|
int channel; /* The channel representing this DLCI */
|
|
hook_p hook;
|
|
};
|
|
|
|
/* Information we store for each node */
|
|
struct XXX {
|
|
struct XXX_hookinfo channel[XXX_NUM_DLCIS];
|
|
struct XXX_hookinfo downstream_hook;
|
|
node_p node; /* back pointer to node */
|
|
hook_p debughook;
|
|
u_int packets_in; /* packets in from downstream */
|
|
u_int packets_out; /* packets out towards downstream */
|
|
u_int32_t flags;
|
|
};
|
|
typedef struct XXX *xxx_p;
|
|
|
|
/*
|
|
* Allocate the private data structure and the generic node
|
|
* and link them together.
|
|
*
|
|
* ng_make_node_common() returns with a generic node struct
|
|
* with a single reference for us.. we transfer it to the
|
|
* private structure.. when we free the private struct we must
|
|
* unref the node so it gets freed too.
|
|
*
|
|
* If this were a device node than this work would be done in the attach()
|
|
* routine and the constructor would return EINVAL as you should not be able
|
|
* to creatednodes that depend on hardware (unless you can add the hardware :)
|
|
*/
|
|
static int
|
|
ng_xxx_constructor(node_p *nodep)
|
|
{
|
|
xxx_p privdata;
|
|
int i, error;
|
|
|
|
/* Initialize private descriptor */
|
|
MALLOC(privdata, xxx_p, sizeof(*privdata), M_NETGRAPH, M_WAITOK);
|
|
if (privdata == NULL)
|
|
return (ENOMEM);
|
|
bzero(privdata, sizeof(struct XXX));
|
|
for (i = 0; i < XXX_NUM_DLCIS; i++) {
|
|
privdata->channel[i].dlci = -2;
|
|
privdata->channel[i].channel = i;
|
|
}
|
|
|
|
/* Call the 'generic' (ie, superclass) node constructor */
|
|
if ((error = ng_make_node_common(&typestruct, nodep))) {
|
|
FREE(privdata, M_NETGRAPH);
|
|
return (error);
|
|
}
|
|
|
|
/* Link structs together; this counts as our one reference to *nodep */
|
|
(*nodep)->private = privdata;
|
|
privdata->node = *nodep;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Give our ok for a hook to be added...
|
|
* If we are not running this might kick a device into life.
|
|
* Possibly decode information out of the hook name.
|
|
* Add the hook's private info to the hook structure.
|
|
* (if we had some). In this example, we assume that there is a
|
|
* an array of structs, called 'channel' in the private info,
|
|
* one for each active channel. The private
|
|
* pointer of each hook points to the appropriate XXX_hookinfo struct
|
|
* so that the source of an input packet is easily identified.
|
|
* (a dlci is a frame relay channel)
|
|
*/
|
|
static int
|
|
ng_xxx_newhook(node_p node, hook_p hook, const char *name)
|
|
{
|
|
const xxx_p xxxp = node->private;
|
|
const char *cp;
|
|
char c = '\0';
|
|
int digits = 0;
|
|
int dlci = 0;
|
|
int chan;
|
|
|
|
#if 0
|
|
/* Possibly start up the device if it's not already going */
|
|
if ((xxxp->flags & SCF_RUNNING) == 0) {
|
|
ng_xxx_start_hardware(xxxp);
|
|
}
|
|
#endif
|
|
|
|
/* Example of how one might use hooks with embedded numbers: All
|
|
* hooks start with 'dlci' and have a decimal trailing channel
|
|
* number up to 4 digits Use the leadin defined int he associated .h
|
|
* file. */
|
|
if (strncmp(name,
|
|
NG_XXX_HOOK_DLCI_LEADIN, strlen(NG_XXX_HOOK_DLCI_LEADIN)) == 0) {
|
|
char *eptr;
|
|
|
|
cp = name + sizeof(NG_XXX_HOOK_DLCI_LEADIN);
|
|
if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0'))
|
|
return (EINVAL);
|
|
dlci = (int)strtoul(cp, &eptr, 10);
|
|
if (*eptr != '\0' || dlci < 0 || dlci > 1023)
|
|
return (EINVAL);
|
|
|
|
/* We have a dlci, now either find it, or allocate it */
|
|
for (chan = 0; chan < XXX_NUM_DLCIS; chan++)
|
|
if (xxxp->channel[chan].dlci == dlci)
|
|
break;
|
|
if (chan == XXX_NUM_DLCIS) {
|
|
for (chan = 0; chan < XXX_NUM_DLCIS; chan++)
|
|
if (xxxp->channel[chan].dlci != -2)
|
|
continue;
|
|
if (chan == XXX_NUM_DLCIS)
|
|
return (ENOBUFS);
|
|
}
|
|
if (xxxp->channel[chan].hook != NULL)
|
|
return (EADDRINUSE);
|
|
hook->private = xxxp->channel + chan;
|
|
xxxp->channel[chan].hook = hook;
|
|
return (0);
|
|
} else if (strcmp(name, NG_XXX_HOOK_DOWNSTREAM) == 0) {
|
|
/* Example of simple predefined hooks. */
|
|
/* do something specific to the downstream connection */
|
|
xxxp->downstream_hook.hook = hook;
|
|
hook->private = &xxxp->downstream_hook;
|
|
} else if (strcmp(name, NG_XXX_HOOK_DEBUG) == 0) {
|
|
/* do something specific to a debug connection */
|
|
xxxp->debughook = hook;
|
|
hook->private = NULL;
|
|
} else
|
|
return (EINVAL); /* not a hook we know about */
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Get a netgraph control message.
|
|
* Check it is one we understand. If needed, send a response.
|
|
* We could save the address for an async action later, but don't here.
|
|
* Always free the message.
|
|
* The response should be in a malloc'd region that the caller can 'free'.
|
|
* A response is not required.
|
|
* Theoretically you could respond defferently to old message types if
|
|
* the cookie in the header didn't match what we consider to be current
|
|
* (so that old userland programs could continue to work).
|
|
*/
|
|
static int
|
|
ng_xxx_rcvmsg(node_p node,
|
|
struct ng_mesg *msg, const char *retaddr, struct ng_mesg **rptr)
|
|
{
|
|
const xxx_p xxxp = node->private;
|
|
struct ng_mesg *resp = NULL;
|
|
int error = 0;
|
|
|
|
/* Deal with message according to cookie and command */
|
|
switch (msg->header.typecookie) {
|
|
case NGM_XXX_COOKIE:
|
|
switch (msg->header.cmd) {
|
|
case NGM_XXX_GET_STATUS:
|
|
{
|
|
struct ngxxxstat *stats;
|
|
|
|
NG_MKRESPONSE(resp, msg, sizeof(*stats), M_NOWAIT);
|
|
if (!resp) {
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
stats = (struct ngxxxstat *) resp->data;
|
|
stats->packets_in = xxxp->packets_in;
|
|
stats->packets_out = xxxp->packets_out;
|
|
break;
|
|
}
|
|
case NGM_XXX_SET_FLAG:
|
|
if (msg->header.arglen != sizeof(u_int32_t)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
xxxp->flags = *((u_int32_t *) msg->data);
|
|
break;
|
|
default:
|
|
error = EINVAL; /* unknown command */
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL; /* unknown cookie type */
|
|
break;
|
|
}
|
|
|
|
/* Take care of synchronous response, if any */
|
|
if (rptr)
|
|
*rptr = resp;
|
|
else if (resp)
|
|
FREE(resp, M_NETGRAPH);
|
|
|
|
/* Free the message and return */
|
|
FREE(msg, M_NETGRAPH);
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Receive data, and do something with it.
|
|
* Possibly send it out on another link after processing.
|
|
* Possibly do something different if it comes from different
|
|
* hooks. the caller will never free m or meta, so
|
|
* if we use up this data or abort we must free BOTH of these.
|
|
*
|
|
* If we want, we may decide to force this data to be queued and reprocessed
|
|
* at the netgraph NETISR time. (at which time it will be entered using ng_xxx_rcvdataq().
|
|
*/
|
|
static int
|
|
ng_xxx_rcvdata(hook_p hook, struct mbuf *m, meta_p meta)
|
|
{
|
|
int dlci = -2;
|
|
int error;
|
|
|
|
if (hook->private) {
|
|
/*
|
|
* If it's dlci 1023, requeue it so that it's handled at a lower priority.
|
|
* This is how a node decides to defer a data message.
|
|
*/
|
|
dlci = ((struct XXX_hookinfo *) hook->private)->dlci;
|
|
if (dlci == 1023) {
|
|
return(ng_queue_data(hook->peer, m, meta));
|
|
}
|
|
}
|
|
return(ng_xxx_rcvdataq(hook, m, meta));
|
|
}
|
|
|
|
/*
|
|
* Always accept the data. This version of rcvdata is called from the dequeueing routine.
|
|
*/
|
|
static int
|
|
ng_xxx_rcvdataq(hook_p hook, struct mbuf *m, meta_p meta)
|
|
{
|
|
const xxx_p xxxp = hook->node->private;
|
|
int chan = -2;
|
|
int dlci = -2;
|
|
int error;
|
|
|
|
if (hook->private) {
|
|
dlci = ((struct XXX_hookinfo *) hook->private)->dlci;
|
|
chan = ((struct XXX_hookinfo *) hook->private)->channel;
|
|
if (dlci != -1) {
|
|
/* If received on a DLCI hook process for this
|
|
* channel and pass it to the downstream module.
|
|
* Normally one would add a multiplexing header at
|
|
* the front here */
|
|
/* M_PREPEND(....) ; */
|
|
/* mtod(m, xxxxxx)->dlci = dlci; */
|
|
error = ng_send_data(xxxp->downstream_hook.hook,
|
|
m, meta);
|
|
xxxp->packets_out++;
|
|
} else {
|
|
/* data came from the multiplexed link */
|
|
dlci = 1; /* get dlci from header */
|
|
/* madjust(....) *//* chop off header */
|
|
for (chan = 0; chan < XXX_NUM_DLCIS; chan++)
|
|
if (xxxp->channel[chan].dlci == dlci)
|
|
break;
|
|
if (chan == XXX_NUM_DLCIS) {
|
|
NG_FREE_DATA(m, meta);
|
|
return (ENETUNREACH);
|
|
}
|
|
/* If we were called at splnet, use the following:
|
|
* NG_SEND_DATA(error, otherhook, m, meta); if this
|
|
* node is running at some SPL other than SPLNET
|
|
* then you should use instead: error =
|
|
* ng_queueit(otherhook, m, meta); m = NULL: meta =
|
|
* NULL; this queues the data using the standard
|
|
* NETISR system and schedules the data to be picked
|
|
* up again once the system has moved to SPLNET and
|
|
* the processing of the data can continue. after
|
|
* these are run 'm' and 'meta' should be considered
|
|
* as invalid and NG_SEND_DATA actually zaps them. */
|
|
NG_SEND_DATA(error, xxxp->channel[chan].hook, m, meta);
|
|
xxxp->packets_in++;
|
|
}
|
|
} else {
|
|
/* It's the debug hook, throw it away.. */
|
|
if (hook == xxxp->downstream_hook.hook)
|
|
NG_FREE_DATA(m, meta);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* If this were a device node, the data may have been received in response
|
|
* to some interrupt.
|
|
* in which case it would probably look as follows:
|
|
*/
|
|
devintr()
|
|
{
|
|
meta_p meta = NULL; /* whatever metadata we might imagine goes
|
|
* here */
|
|
|
|
/* get packet from device and send on */
|
|
m = MGET(blah blah)
|
|
error = ng_queueit(upstream, m, meta); /* see note above in
|
|
* xxx_rcvdata() */
|
|
}
|
|
|
|
#endif /* 0 */
|
|
|
|
/*
|
|
* Do local shutdown processing..
|
|
* If we are a persistant device, we might refuse to go away, and
|
|
* we'd only remove our links and reset ourself.
|
|
*/
|
|
static int
|
|
ng_xxx_rmnode(node_p node)
|
|
{
|
|
const xxx_p privdata = node->private;
|
|
|
|
node->flags |= NG_INVALID;
|
|
ng_cutlinks(node);
|
|
#ifndef PERSISTANT_NODE
|
|
ng_unname(node);
|
|
node->private = NULL;
|
|
ng_unref(privdata->node);
|
|
FREE(privdata, M_NETGRAPH);
|
|
#else
|
|
privdata->packets_in = 0; /* reset stats */
|
|
privdata->packets_out = 0;
|
|
node->flags &= ~NG_INVALID; /* reset invalid flag */
|
|
#endif /* PERSISTANT_NODE */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This is called once we've already connected a new hook to the other node.
|
|
* It gives us a chance to balk at the last minute.
|
|
*/
|
|
static int
|
|
ng_xxx_connect(hook_p hook)
|
|
{
|
|
/* be really amiable and just say "YUP that's OK by me! " */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Dook disconnection
|
|
*
|
|
* For this type, removal of the last link destroys the node
|
|
*/
|
|
static int
|
|
ng_xxx_disconnect(hook_p hook)
|
|
{
|
|
if (hook->private)
|
|
((struct XXX_hookinfo *) (hook->private))->hook == NULL;
|
|
if (hook->node->numhooks == 0)
|
|
ng_rmnode(hook->node);
|
|
return (0);
|
|
}
|
|
|