1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-18 15:30:21 +00:00
freebsd/sys/dev/advansys/adwlib.c
Yoshihiro Takahashi d4fcf3cba5 Remove bus_{mem,p}io.h and related code for a micro-optimization on i386
and amd64.  The optimization is a trivial on recent machines.

Reviewed by:	-arch (imp, marcel, dfr)
2005-05-29 04:42:30 +00:00

893 lines
24 KiB
C

/*-
* Low level routines for Second Generation
* Advanced Systems Inc. SCSI controllers chips
*
* Copyright (c) 1998, 1999, 2000 Justin Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Ported from:
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-1998 Advanced System Products, Inc.
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <dev/advansys/adwlib.h>
const struct adw_eeprom adw_asc3550_default_eeprom =
{
ADW_EEPROM_BIOS_ENABLE, /* cfg_lsw */
0x0000, /* cfg_msw */
0xFFFF, /* disc_enable */
0xFFFF, /* wdtr_able */
{ 0xFFFF }, /* sdtr_able */
0xFFFF, /* start_motor */
0xFFFF, /* tagqng_able */
0xFFFF, /* bios_scan */
0, /* scam_tolerant */
7, /* adapter_scsi_id */
0, /* bios_boot_delay */
3, /* scsi_reset_delay */
0, /* bios_id_lun */
0, /* termination */
0, /* reserved1 */
0xFFE7, /* bios_ctrl */
{ 0xFFFF }, /* ultra_able */
{ 0 }, /* reserved2 */
ADW_DEF_MAX_HOST_QNG, /* max_host_qng */
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* dvc_cntl */
{ 0 }, /* bug_fix */
{ 0, 0, 0 }, /* serial_number */
0, /* check_sum */
{ /* oem_name[16] */
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
},
0, /* dvc_err_code */
0, /* adv_err_code */
0, /* adv_err_addr */
0, /* saved_dvc_err_code */
0, /* saved_adv_err_code */
0 /* saved_adv_err_addr */
};
const struct adw_eeprom adw_asc38C0800_default_eeprom =
{
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
0x0000, /* 01 cfg_msw */
0xFFFF, /* 02 disc_enable */
0xFFFF, /* 03 wdtr_able */
{ 0x4444 }, /* 04 sdtr_speed1 */
0xFFFF, /* 05 start_motor */
0xFFFF, /* 06 tagqng_able */
0xFFFF, /* 07 bios_scan */
0, /* 08 scam_tolerant */
7, /* 09 adapter_scsi_id */
0, /* bios_boot_delay */
3, /* 10 scsi_reset_delay */
0, /* bios_id_lun */
0, /* 11 termination_se */
0, /* termination_lvd */
0xFFE7, /* 12 bios_ctrl */
{ 0x4444 }, /* 13 sdtr_speed2 */
{ 0x4444 }, /* 14 sdtr_speed3 */
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* 16 dvc_cntl */
{ 0x4444 } , /* 17 sdtr_speed4 */
{ 0, 0, 0 }, /* 18-20 serial_number */
0, /* 21 check_sum */
{ /* 22-29 oem_name[16] */
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
},
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
{ /* 36 - 55 reserved */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
},
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
/* 58-59 sub-id */
(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
};
#define ADW_MC_SDTR_OFFSET_ULTRA2_DT 0
#define ADW_MC_SDTR_OFFSET_ULTRA2 1
#define ADW_MC_SDTR_OFFSET_ULTRA 2
const struct adw_syncrate adw_syncrates[] =
{
/* mc_sdtr period rate */
{ ADW_MC_SDTR_80, 9, "80.0" },
{ ADW_MC_SDTR_40, 10, "40.0" },
{ ADW_MC_SDTR_20, 12, "20.0" },
{ ADW_MC_SDTR_10, 25, "10.0" },
{ ADW_MC_SDTR_5, 50, "5.0" },
{ ADW_MC_SDTR_ASYNC, 0, "async" }
};
const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
static u_int16_t adw_eeprom_read_16(struct adw_softc *adw, int addr);
static void adw_eeprom_write_16(struct adw_softc *adw, int addr,
u_int data);
static void adw_eeprom_wait(struct adw_softc *adw);
int
adw_find_signature(struct adw_softc *adw)
{
if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
&& adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
return (1);
return (0);
}
/*
* Reset Chip.
*/
void
adw_reset_chip(struct adw_softc *adw)
{
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
DELAY(1000 * 100);
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
/*
* Initialize Chip registers.
*/
adw_outw(adw, ADW_SCSI_CFG1,
adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
}
/*
* Reset the SCSI bus.
*/
int
adw_reset_bus(struct adw_softc *adw)
{
adw_idle_cmd_status_t status;
status =
adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
if (status != ADW_IDLE_CMD_SUCCESS) {
xpt_print_path(adw->path);
printf("Bus Reset start attempt failed\n");
return (1);
}
DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
status =
adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
if (status != ADW_IDLE_CMD_SUCCESS) {
xpt_print_path(adw->path);
printf("Bus Reset end attempt failed\n");
return (1);
}
return (0);
}
/*
* Read the specified EEPROM location
*/
static u_int16_t
adw_eeprom_read_16(struct adw_softc *adw, int addr)
{
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
adw_eeprom_wait(adw);
return (adw_inw(adw, ADW_EEP_DATA));
}
static void
adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
{
adw_outw(adw, ADW_EEP_DATA, data);
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
adw_eeprom_wait(adw);
}
/*
* Wait for and EEPROM command to complete
*/
static void
adw_eeprom_wait(struct adw_softc *adw)
{
int i;
for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
break;
DELAY(1000);
}
if (i == ADW_EEP_DELAY_MS)
panic("%s: Timedout Reading EEPROM", adw_name(adw));
}
/*
* Read EEPROM configuration into the specified buffer.
*
* Return a checksum based on the EEPROM configuration read.
*/
u_int16_t
adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
{
u_int16_t *wbuf;
u_int16_t wval;
u_int16_t chksum;
int eep_addr;
wbuf = (u_int16_t *)eep_buf;
chksum = 0;
for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
eep_addr < ADW_EEP_DVC_CFG_END;
eep_addr++, wbuf++) {
wval = adw_eeprom_read_16(adw, eep_addr);
chksum += wval;
*wbuf = wval;
}
/* checksum field is not counted in the checksum */
*wbuf = adw_eeprom_read_16(adw, eep_addr);
wbuf++;
/* Driver seeprom variables are not included in the checksum */
for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
eep_addr < ADW_EEP_MAX_WORD_ADDR;
eep_addr++, wbuf++)
*wbuf = adw_eeprom_read_16(adw, eep_addr);
return (chksum);
}
void
adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
{
u_int16_t *wbuf;
u_int16_t addr;
u_int16_t chksum;
wbuf = (u_int16_t *)eep_buf;
chksum = 0;
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
adw_eeprom_wait(adw);
/*
* Write EEPROM until checksum.
*/
for (addr = ADW_EEP_DVC_CFG_BEGIN;
addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
chksum += *wbuf;
adw_eeprom_write_16(adw, addr, *wbuf);
}
/*
* Write calculated EEPROM checksum
*/
adw_eeprom_write_16(adw, addr, chksum);
/* skip over buffer's checksum */
wbuf++;
/*
* Write the rest.
*/
for (addr = ADW_EEP_DVC_CTL_BEGIN;
addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
adw_eeprom_write_16(adw, addr, *wbuf);
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
adw_eeprom_wait(adw);
}
int
adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
{
u_int8_t biosmem[ADW_MC_BIOSLEN];
const u_int16_t *word_table;
const u_int8_t *byte_codes;
const u_int8_t *byte_codes_end;
u_int bios_sig;
u_int bytes_downloaded;
u_int addr;
u_int end_addr;
u_int checksum;
u_int scsicfg1;
u_int tid;
/*
* Save the RISC memory BIOS region before writing the microcode.
* The BIOS may already be loaded and using its RISC LRAM region
* so its region must be saved and restored.
*/
for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
/*
* Save current per TID negotiated values if the BIOS has been
* loaded (BIOS signature is present). These will be used if
* we cannot get information from the EEPROM.
*/
addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
bios_sig = biosmem[addr]
| (biosmem[addr + 1] << 8);
if (bios_sig == 0x55AA
&& (adw->flags & ADW_EEPROM_FAILED) != 0) {
u_int major_ver;
u_int minor_ver;
u_int sdtr_able;
addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
minor_ver = biosmem[addr + 1] & 0xF;
major_ver = (biosmem[addr + 1] >> 4) & 0xF;
if ((adw->chip == ADW_CHIP_ASC3550)
&& (major_ver <= 3
|| (major_ver == 3 && minor_ver <= 1))) {
/*
* BIOS 3.1 and earlier location of
* 'wdtr_able' variable.
*/
adw->user_wdtr =
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
} else {
adw->user_wdtr =
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
}
sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
for (tid = 0; tid < ADW_MAX_TID; tid++) {
u_int tid_mask;
u_int mc_sdtr;
tid_mask = 0x1 << tid;
if ((sdtr_able & tid_mask) == 0)
mc_sdtr = ADW_MC_SDTR_ASYNC;
else if ((adw->features & ADW_DT) != 0)
mc_sdtr = ADW_MC_SDTR_80;
else if ((adw->features & ADW_ULTRA2) != 0)
mc_sdtr = ADW_MC_SDTR_40;
else
mc_sdtr = ADW_MC_SDTR_20;
adw_set_user_sdtr(adw, tid, mc_sdtr);
}
adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
}
/*
* Load the Microcode.
*
* Assume the following compressed format of the microcode buffer:
*
* 253 word (506 byte) table indexed by byte code followed
* by the following byte codes:
*
* 1-Byte Code:
* 00: Emit word 0 in table.
* 01: Emit word 1 in table.
* .
* FD: Emit word 253 in table.
*
* Multi-Byte Code:
* FD RESEVED
*
* FE WW WW: (3 byte code)
* Word to emit is the next word WW WW.
* FF BB WW WW: (4 byte code)
* Emit BB count times next word WW WW.
*
*/
bytes_downloaded = 0;
word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
byte_codes = (const u_int8_t *)&word_table[253];
byte_codes_end = adw->mcode_data->mcode_buf
+ adw->mcode_data->mcode_size;
adw_outw(adw, ADW_RAM_ADDR, 0);
while (byte_codes < byte_codes_end) {
if (*byte_codes == 0xFF) {
u_int16_t value;
value = byte_codes[2]
| byte_codes[3] << 8;
adw_set_multi_2(adw, ADW_RAM_DATA,
value, byte_codes[1]);
bytes_downloaded += byte_codes[1];
byte_codes += 4;
} else if (*byte_codes == 0xFE) {
u_int16_t value;
value = byte_codes[1]
| byte_codes[2] << 8;
adw_outw(adw, ADW_RAM_DATA, value);
bytes_downloaded++;
byte_codes += 3;
} else {
adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
bytes_downloaded++;
byte_codes++;
}
}
/* Convert from words to bytes */
bytes_downloaded *= 2;
/*
* Clear the rest of LRAM.
*/
for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
adw_outw(adw, ADW_RAM_DATA, 0);
/*
* Verify the microcode checksum.
*/
checksum = 0;
adw_outw(adw, ADW_RAM_ADDR, 0);
for (addr = 0; addr < bytes_downloaded; addr += 2)
checksum += adw_inw(adw, ADW_RAM_DATA);
if (checksum != adw->mcode_data->mcode_chksum) {
printf("%s: Firmware load failed!\n", adw_name(adw));
return (EIO);
}
/*
* Restore the RISC memory BIOS region.
*/
for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
/*
* Calculate and write the microcode code checksum to
* the microcode code checksum location.
*/
addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
checksum = 0;
adw_outw(adw, ADW_RAM_ADDR, addr);
for (; addr < end_addr; addr += 2)
checksum += adw_inw(adw, ADW_RAM_DATA);
adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
/*
* Tell the microcode what kind of chip it's running on.
*/
adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
/*
* Leave WDTR and SDTR negotiation disabled until the XPT has
* informed us of device capabilities, but do set the desired
* user rates in case we receive an SDTR request from the target
* before we negotiate. We turn on tagged queuing at the microcode
* level for all devices, and modulate this on a per command basis.
*/
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
for (tid = 0; tid < ADW_MAX_TID; tid++) {
/* Cam limits the maximum number of commands for us */
adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
adw->max_acbs);
}
adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
/*
* Set SCSI_CFG0 Microcode Default Value.
*
* The microcode will set the SCSI_CFG0 register using this value
* after it is started.
*/
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
/*
* Tell the MC about the memory size that
* was setup by the probe code.
*/
adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
/*
* If the internal narrow cable is reversed all of the SCSI_CTRL
* register signals will be set. Check for and return an error if
* this condition is found.
*/
if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
printf("%s: Illegal Cable Config!\n", adw_name(adw));
printf("%s: Internal cable is reversed!\n", adw_name(adw));
return (EIO);
}
/*
* If this is a differential board and a single-ended device
* is attached to one of the connectors, return an error.
*/
if ((adw->features & ADW_ULTRA) != 0) {
if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
&& (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
printf("%s: A Single Ended Device is attached to our "
"differential bus!\n", adw_name(adw));
return (EIO);
}
} else {
if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
printf("%s: A High Voltage Differential Device "
"is attached to this controller.\n",
adw_name(adw));
printf("%s: HVD devices are not supported.\n",
adw_name(adw));
return (EIO);
}
}
/*
* Perform automatic termination control if desired.
*/
if ((adw->features & ADW_ULTRA2) != 0) {
u_int cable_det;
/*
* Ultra2 Chips require termination disabled to
* detect cable presence.
*/
adw_outw(adw, ADW_SCSI_CFG1,
scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
cable_det = adw_inw(adw, ADW_SCSI_CFG1);
adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
/* SE Termination first if auto-term has been specified */
if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
/*
* For all SE cable configurations, high byte
* termination is enabled.
*/
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
|| (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
/*
* If either cable is not present, the
* low byte must be terminated as well.
*/
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
}
}
/* LVD auto-term */
if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
&& (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
/*
* If both cables are installed, termination
* is disabled. Otherwise it is enabled.
*/
if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
|| (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
}
}
term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
} else {
/* Ultra Controller Termination */
if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
int cable_count;
int wide_cable_count;
cable_count = 0;
wide_cable_count = 0;
if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
cable_count++;
wide_cable_count++;
}
if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
cable_count++;
/* There is only one external port */
if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
cable_count++;
wide_cable_count++;
} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
cable_count++;
if (cable_count == 3) {
printf("%s: Illegal Cable Config!\n",
adw_name(adw));
printf("%s: Only Two Ports may be used at "
"a time!\n", adw_name(adw));
} else if (cable_count <= 1) {
/*
* At least two out of three cables missing.
* Terminate both bytes.
*/
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
| ADW_SCSI_CFG1_TERM_CTL_L;
} else if (wide_cable_count <= 1) {
/* No two 16bit cables present. High on. */
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
}
}
}
/* Tell the user about our decission */
switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
case ADW_SCSI_CFG1_TERM_CTL_MASK:
printf("High & Low SE Term Enabled, ");
break;
case ADW_SCSI_CFG1_TERM_CTL_H:
printf("High SE Termination Enabled, ");
break;
case ADW_SCSI_CFG1_TERM_CTL_L:
printf("Low SE Term Enabled, ");
break;
default:
break;
}
if ((adw->features & ADW_ULTRA2) != 0
&& (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
printf("LVD Term Enabled, ");
/*
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
* set 'scsicfg1'. The TERM_POL bit does not need to be
* referenced, because the hardware internally inverts
* the Termination High and Low bits if TERM_POL is set.
*/
if ((adw->features & ADW_ULTRA2) != 0) {
term_scsicfg1 = ~term_scsicfg1;
term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
| ADW2_SCSI_CFG1_TERM_CTL_LVD;
scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
|ADW2_SCSI_CFG1_TERM_CTL_LVD
|ADW_SCSI_CFG1_BIG_ENDIAN
|ADW_SCSI_CFG1_TERM_POL
|ADW2_SCSI_CFG1_DEV_DETECT);
scsicfg1 |= term_scsicfg1;
} else {
term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
}
/*
* Set SCSI_CFG1 Microcode Default Value
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
/*
* Only accept selections on our initiator target id.
* This may change in target mode scenarios...
*/
adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
(0x01 << adw->initiator_id));
/*
* Tell the microcode where it can find our
* Initiator Command Queue (ICQ). It is
* currently empty hence the "stopper" address.
*/
adw->commandq = adw->free_carriers;
adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
adw->commandq->next_ba = ADW_CQ_STOPPER;
adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
/*
* Tell the microcode where it can find our
* Initiator Response Queue (IRQ). It too
* is currently empty.
*/
adw->responseq = adw->free_carriers;
adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
adw->responseq->next_ba = ADW_CQ_STOPPER;
adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
adw_outb(adw, ADW_INTR_ENABLES,
ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
return (0);
}
void
adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
{
adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
}
u_int
adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
{
u_int mc_sdtr;
mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
return (mc_sdtr);
}
void
adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
{
u_int mc_sdtr_offset;
u_int mc_sdtr;
mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
}
u_int
adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
{
u_int mc_sdtr_offset;
u_int mc_sdtr;
mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
return (mc_sdtr);
}
u_int
adw_find_sdtr(struct adw_softc *adw, u_int period)
{
int i;
i = 0;
if ((adw->features & ADW_DT) == 0)
i = ADW_MC_SDTR_OFFSET_ULTRA2;
if ((adw->features & ADW_ULTRA2) == 0)
i = ADW_MC_SDTR_OFFSET_ULTRA;
if (period == 0)
return ADW_MC_SDTR_ASYNC;
for (; i < adw_num_syncrates; i++) {
if (period <= adw_syncrates[i].period)
return (adw_syncrates[i].mc_sdtr);
}
return ADW_MC_SDTR_ASYNC;
}
u_int
adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
{
int i;
for (i = 0; i < adw_num_syncrates; i++) {
if (mc_sdtr == adw_syncrates[i].mc_sdtr)
break;
}
return (adw_syncrates[i].period);
}
u_int
adw_hshk_cfg_period_factor(u_int tinfo)
{
tinfo &= ADW_HSHK_CFG_RATE_MASK;
tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
if (tinfo == 0x11)
/* 80MHz/DT */
return (9);
else if (tinfo == 0x10)
/* 40MHz */
return (10);
else
return (((tinfo * 25) + 50) / 4);
}
/*
* Send an idle command to the chip and wait for completion.
*/
adw_idle_cmd_status_t
adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
{
u_int timeout;
adw_idle_cmd_status_t status;
int s;
s = splcam();
/*
* Clear the idle command status which is set by the microcode
* to a non-zero value to indicate when the command is completed.
*/
adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
/*
* Write the idle command value after the idle command parameter
* has been written to avoid a race condition. If the order is not
* followed, the microcode may process the idle command before the
* parameters have been written to LRAM.
*/
adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
/*
* Tickle the RISC to tell it to process the idle command.
*/
adw_tickle_risc(adw, ADW_TICKLE_B);
/* Wait for up to 10 seconds for the command to complete */
timeout = 5000000;
while (--timeout) {
status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
if (status != 0)
break;
DELAY(20);
}
if (timeout == 0)
panic("%s: Idle Command Timed Out!\n", adw_name(adw));
splx(s);
return (status);
}