mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-09 13:42:56 +00:00
9d5abbddbf
especially in troff files.
2114 lines
48 KiB
C
2114 lines
48 KiB
C
/*
|
|
* Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* uma_core.c Implementation of the Universal Memory allocator
|
|
*
|
|
* This allocator is intended to replace the multitude of similar object caches
|
|
* in the standard FreeBSD kernel. The intent is to be flexible as well as
|
|
* effecient. A primary design goal is to return unused memory to the rest of
|
|
* the system. This will make the system as a whole more flexible due to the
|
|
* ability to move memory to subsystems which most need it instead of leaving
|
|
* pools of reserved memory unused.
|
|
*
|
|
* The basic ideas stem from similar slab/zone based allocators whose algorithms
|
|
* are well known.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
* - Improve memory usage for large allocations
|
|
* - Investigate cache size adjustments
|
|
*/
|
|
|
|
/* I should really use ktr.. */
|
|
/*
|
|
#define UMA_DEBUG 1
|
|
#define UMA_DEBUG_ALLOC 1
|
|
#define UMA_DEBUG_ALLOC_1 1
|
|
*/
|
|
|
|
|
|
#include "opt_param.h"
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/types.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_int.h>
|
|
#include <vm/uma_dbg.h>
|
|
|
|
#include <machine/vmparam.h>
|
|
|
|
/*
|
|
* This is the zone from which all zones are spawned. The idea is that even
|
|
* the zone heads are allocated from the allocator, so we use the bss section
|
|
* to bootstrap us.
|
|
*/
|
|
static struct uma_zone masterzone;
|
|
static uma_zone_t zones = &masterzone;
|
|
|
|
/* This is the zone from which all of uma_slab_t's are allocated. */
|
|
static uma_zone_t slabzone;
|
|
|
|
/*
|
|
* The initial hash tables come out of this zone so they can be allocated
|
|
* prior to malloc coming up.
|
|
*/
|
|
static uma_zone_t hashzone;
|
|
|
|
/*
|
|
* Zone that buckets come from.
|
|
*/
|
|
static uma_zone_t bucketzone;
|
|
|
|
/*
|
|
* Are we allowed to allocate buckets?
|
|
*/
|
|
static int bucketdisable = 1;
|
|
|
|
/* Linked list of all zones in the system */
|
|
static LIST_HEAD(,uma_zone) uma_zones = LIST_HEAD_INITIALIZER(&uma_zones);
|
|
|
|
/* This mutex protects the zone list */
|
|
static struct mtx uma_mtx;
|
|
|
|
/* Linked list of boot time pages */
|
|
static LIST_HEAD(,uma_slab) uma_boot_pages =
|
|
LIST_HEAD_INITIALIZER(&uma_boot_pages);
|
|
|
|
/* Count of free boottime pages */
|
|
static int uma_boot_free = 0;
|
|
|
|
/* Is the VM done starting up? */
|
|
static int booted = 0;
|
|
|
|
/* This is the handle used to schedule our working set calculator */
|
|
static struct callout uma_callout;
|
|
|
|
/* This is mp_maxid + 1, for use while looping over each cpu */
|
|
static int maxcpu;
|
|
|
|
/*
|
|
* This structure is passed as the zone ctor arg so that I don't have to create
|
|
* a special allocation function just for zones.
|
|
*/
|
|
struct uma_zctor_args {
|
|
char *name;
|
|
size_t size;
|
|
uma_ctor ctor;
|
|
uma_dtor dtor;
|
|
uma_init uminit;
|
|
uma_fini fini;
|
|
int align;
|
|
u_int16_t flags;
|
|
};
|
|
|
|
/* Prototypes.. */
|
|
|
|
static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
|
|
static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
|
|
static void page_free(void *, int, u_int8_t);
|
|
static uma_slab_t slab_zalloc(uma_zone_t, int);
|
|
static void cache_drain(uma_zone_t);
|
|
static void bucket_drain(uma_zone_t, uma_bucket_t);
|
|
static void zone_drain(uma_zone_t);
|
|
static void zone_ctor(void *, int, void *);
|
|
static void zone_dtor(void *, int, void *);
|
|
static void zero_init(void *, int);
|
|
static void zone_small_init(uma_zone_t zone);
|
|
static void zone_large_init(uma_zone_t zone);
|
|
static void zone_foreach(void (*zfunc)(uma_zone_t));
|
|
static void zone_timeout(uma_zone_t zone);
|
|
static int hash_alloc(struct uma_hash *);
|
|
static int hash_expand(struct uma_hash *, struct uma_hash *);
|
|
static void hash_free(struct uma_hash *hash);
|
|
static void uma_timeout(void *);
|
|
static void uma_startup3(void);
|
|
static void *uma_zalloc_internal(uma_zone_t, void *, int);
|
|
static void uma_zfree_internal(uma_zone_t, void *, void *, int);
|
|
static void bucket_enable(void);
|
|
static int uma_zalloc_bucket(uma_zone_t zone, int flags);
|
|
static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags);
|
|
static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab);
|
|
|
|
void uma_print_zone(uma_zone_t);
|
|
void uma_print_stats(void);
|
|
static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS);
|
|
|
|
SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_zone, "A", "Zone Info");
|
|
SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
|
|
|
|
/*
|
|
* This routine checks to see whether or not it's safe to enable buckets.
|
|
*/
|
|
|
|
static void
|
|
bucket_enable(void)
|
|
{
|
|
if (cnt.v_free_count < cnt.v_free_min)
|
|
bucketdisable = 1;
|
|
else
|
|
bucketdisable = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine called by timeout which is used to fire off some time interval
|
|
* based calculations. (working set, stats, etc.)
|
|
*
|
|
* Arguments:
|
|
* arg Unused
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
uma_timeout(void *unused)
|
|
{
|
|
bucket_enable();
|
|
zone_foreach(zone_timeout);
|
|
|
|
/* Reschedule this event */
|
|
callout_reset(&uma_callout, UMA_WORKING_TIME * hz, uma_timeout, NULL);
|
|
}
|
|
|
|
/*
|
|
* Routine to perform timeout driven calculations. This does the working set
|
|
* as well as hash expanding, and per cpu statistics aggregation.
|
|
*
|
|
* Arguments:
|
|
* zone The zone to operate on
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
zone_timeout(uma_zone_t zone)
|
|
{
|
|
uma_cache_t cache;
|
|
u_int64_t alloc;
|
|
int free;
|
|
int cpu;
|
|
|
|
alloc = 0;
|
|
free = 0;
|
|
|
|
/*
|
|
* Aggregate per cpu cache statistics back to the zone.
|
|
*
|
|
* I may rewrite this to set a flag in the per cpu cache instead of
|
|
* locking. If the flag is not cleared on the next round I will have
|
|
* to lock and do it here instead so that the statistics don't get too
|
|
* far out of sync.
|
|
*/
|
|
if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) {
|
|
for (cpu = 0; cpu < maxcpu; cpu++) {
|
|
if (CPU_ABSENT(cpu))
|
|
continue;
|
|
CPU_LOCK(zone, cpu);
|
|
cache = &zone->uz_cpu[cpu];
|
|
/* Add them up, and reset */
|
|
alloc += cache->uc_allocs;
|
|
cache->uc_allocs = 0;
|
|
if (cache->uc_allocbucket)
|
|
free += cache->uc_allocbucket->ub_ptr + 1;
|
|
if (cache->uc_freebucket)
|
|
free += cache->uc_freebucket->ub_ptr + 1;
|
|
CPU_UNLOCK(zone, cpu);
|
|
}
|
|
}
|
|
|
|
/* Now push these stats back into the zone.. */
|
|
ZONE_LOCK(zone);
|
|
zone->uz_allocs += alloc;
|
|
|
|
/*
|
|
* cachefree is an instantanious snapshot of what is in the per cpu
|
|
* caches, not an accurate counter
|
|
*/
|
|
zone->uz_cachefree = free;
|
|
|
|
/*
|
|
* Expand the zone hash table.
|
|
*
|
|
* This is done if the number of slabs is larger than the hash size.
|
|
* What I'm trying to do here is completely reduce collisions. This
|
|
* may be a little aggressive. Should I allow for two collisions max?
|
|
*/
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_HASH &&
|
|
zone->uz_pages / zone->uz_ppera >= zone->uz_hash.uh_hashsize) {
|
|
struct uma_hash newhash;
|
|
struct uma_hash oldhash;
|
|
int ret;
|
|
|
|
/*
|
|
* This is so involved because allocating and freeing
|
|
* while the zone lock is held will lead to deadlock.
|
|
* I have to do everything in stages and check for
|
|
* races.
|
|
*/
|
|
newhash = zone->uz_hash;
|
|
ZONE_UNLOCK(zone);
|
|
ret = hash_alloc(&newhash);
|
|
ZONE_LOCK(zone);
|
|
if (ret) {
|
|
if (hash_expand(&zone->uz_hash, &newhash)) {
|
|
oldhash = zone->uz_hash;
|
|
zone->uz_hash = newhash;
|
|
} else
|
|
oldhash = newhash;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
hash_free(&oldhash);
|
|
ZONE_LOCK(zone);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Here we compute the working set size as the total number of items
|
|
* left outstanding since the last time interval. This is slightly
|
|
* suboptimal. What we really want is the highest number of outstanding
|
|
* items during the last time quantum. This should be close enough.
|
|
*
|
|
* The working set size is used to throttle the zone_drain function.
|
|
* We don't want to return memory that we may need again immediately.
|
|
*/
|
|
alloc = zone->uz_allocs - zone->uz_oallocs;
|
|
zone->uz_oallocs = zone->uz_allocs;
|
|
zone->uz_wssize = alloc;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/*
|
|
* Allocate and zero fill the next sized hash table from the appropriate
|
|
* backing store.
|
|
*
|
|
* Arguments:
|
|
* hash A new hash structure with the old hash size in uh_hashsize
|
|
*
|
|
* Returns:
|
|
* 1 on sucess and 0 on failure.
|
|
*/
|
|
static int
|
|
hash_alloc(struct uma_hash *hash)
|
|
{
|
|
int oldsize;
|
|
int alloc;
|
|
|
|
oldsize = hash->uh_hashsize;
|
|
|
|
/* We're just going to go to a power of two greater */
|
|
if (oldsize) {
|
|
hash->uh_hashsize = oldsize * 2;
|
|
alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
|
|
/* XXX Shouldn't be abusing DEVBUF here */
|
|
hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
|
|
M_DEVBUF, M_NOWAIT);
|
|
} else {
|
|
alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
|
|
hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL,
|
|
M_WAITOK);
|
|
hash->uh_hashsize = UMA_HASH_SIZE_INIT;
|
|
}
|
|
if (hash->uh_slab_hash) {
|
|
bzero(hash->uh_slab_hash, alloc);
|
|
hash->uh_hashmask = hash->uh_hashsize - 1;
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Expands the hash table for OFFPAGE zones. This is done from zone_timeout
|
|
* to reduce collisions. This must not be done in the regular allocation path,
|
|
* otherwise, we can recurse on the vm while allocating pages.
|
|
*
|
|
* Arguments:
|
|
* oldhash The hash you want to expand
|
|
* newhash The hash structure for the new table
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*
|
|
* Discussion:
|
|
*/
|
|
static int
|
|
hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
|
|
{
|
|
uma_slab_t slab;
|
|
int hval;
|
|
int i;
|
|
|
|
if (!newhash->uh_slab_hash)
|
|
return (0);
|
|
|
|
if (oldhash->uh_hashsize >= newhash->uh_hashsize)
|
|
return (0);
|
|
|
|
/*
|
|
* I need to investigate hash algorithms for resizing without a
|
|
* full rehash.
|
|
*/
|
|
|
|
for (i = 0; i < oldhash->uh_hashsize; i++)
|
|
while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
|
|
slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
|
|
SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
|
|
hval = UMA_HASH(newhash, slab->us_data);
|
|
SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
|
|
slab, us_hlink);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Free the hash bucket to the appropriate backing store.
|
|
*
|
|
* Arguments:
|
|
* slab_hash The hash bucket we're freeing
|
|
* hashsize The number of entries in that hash bucket
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
hash_free(struct uma_hash *hash)
|
|
{
|
|
if (hash->uh_slab_hash == NULL)
|
|
return;
|
|
if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
|
|
uma_zfree_internal(hashzone,
|
|
hash->uh_slab_hash, NULL, 0);
|
|
else
|
|
free(hash->uh_slab_hash, M_DEVBUF);
|
|
}
|
|
|
|
/*
|
|
* Frees all outstanding items in a bucket
|
|
*
|
|
* Arguments:
|
|
* zone The zone to free to, must be unlocked.
|
|
* bucket The free/alloc bucket with items, cpu queue must be locked.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
|
|
static void
|
|
bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
|
|
{
|
|
uma_slab_t slab;
|
|
int mzone;
|
|
void *item;
|
|
|
|
if (bucket == NULL)
|
|
return;
|
|
|
|
slab = NULL;
|
|
mzone = 0;
|
|
|
|
/* We have to lookup the slab again for malloc.. */
|
|
if (zone->uz_flags & UMA_ZFLAG_MALLOC)
|
|
mzone = 1;
|
|
|
|
while (bucket->ub_ptr > -1) {
|
|
item = bucket->ub_bucket[bucket->ub_ptr];
|
|
#ifdef INVARIANTS
|
|
bucket->ub_bucket[bucket->ub_ptr] = NULL;
|
|
KASSERT(item != NULL,
|
|
("bucket_drain: botched ptr, item is NULL"));
|
|
#endif
|
|
bucket->ub_ptr--;
|
|
/*
|
|
* This is extremely inefficient. The slab pointer was passed
|
|
* to uma_zfree_arg, but we lost it because the buckets don't
|
|
* hold them. This will go away when free() gets a size passed
|
|
* to it.
|
|
*/
|
|
if (mzone)
|
|
slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
|
|
uma_zfree_internal(zone, item, slab, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drains the per cpu caches for a zone.
|
|
*
|
|
* Arguments:
|
|
* zone The zone to drain, must be unlocked.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*
|
|
* This function returns with the zone locked so that the per cpu queues can
|
|
* not be filled until zone_drain is finished.
|
|
*
|
|
*/
|
|
static void
|
|
cache_drain(uma_zone_t zone)
|
|
{
|
|
uma_bucket_t bucket;
|
|
uma_cache_t cache;
|
|
int cpu;
|
|
|
|
/*
|
|
* Flush out the per cpu queues.
|
|
*
|
|
* XXX This causes unnecessary thrashing due to immediately having
|
|
* empty per cpu queues. I need to improve this.
|
|
*/
|
|
|
|
/*
|
|
* We have to lock each cpu cache before locking the zone
|
|
*/
|
|
ZONE_UNLOCK(zone);
|
|
|
|
for (cpu = 0; cpu < maxcpu; cpu++) {
|
|
if (CPU_ABSENT(cpu))
|
|
continue;
|
|
CPU_LOCK(zone, cpu);
|
|
cache = &zone->uz_cpu[cpu];
|
|
bucket_drain(zone, cache->uc_allocbucket);
|
|
bucket_drain(zone, cache->uc_freebucket);
|
|
}
|
|
|
|
/*
|
|
* Drain the bucket queues and free the buckets, we just keep two per
|
|
* cpu (alloc/free).
|
|
*/
|
|
ZONE_LOCK(zone);
|
|
while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
|
|
LIST_REMOVE(bucket, ub_link);
|
|
ZONE_UNLOCK(zone);
|
|
bucket_drain(zone, bucket);
|
|
uma_zfree_internal(bucketzone, bucket, NULL, 0);
|
|
ZONE_LOCK(zone);
|
|
}
|
|
|
|
/* Now we do the free queue.. */
|
|
while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
|
|
LIST_REMOVE(bucket, ub_link);
|
|
uma_zfree_internal(bucketzone, bucket, NULL, 0);
|
|
}
|
|
|
|
/* We unlock here, but they will all block until the zone is unlocked */
|
|
for (cpu = 0; cpu < maxcpu; cpu++) {
|
|
if (CPU_ABSENT(cpu))
|
|
continue;
|
|
CPU_UNLOCK(zone, cpu);
|
|
}
|
|
|
|
zone->uz_cachefree = 0;
|
|
}
|
|
|
|
/*
|
|
* Frees pages from a zone back to the system. This is done on demand from
|
|
* the pageout daemon.
|
|
*
|
|
* Arguments:
|
|
* zone The zone to free pages from
|
|
* all Should we drain all items?
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*/
|
|
static void
|
|
zone_drain(uma_zone_t zone)
|
|
{
|
|
struct slabhead freeslabs = {};
|
|
uma_slab_t slab;
|
|
uma_slab_t n;
|
|
u_int64_t extra;
|
|
u_int8_t flags;
|
|
u_int8_t *mem;
|
|
int i;
|
|
|
|
/*
|
|
* We don't want to take pages from staticly allocated zones at this
|
|
* time
|
|
*/
|
|
if (zone->uz_flags & UMA_ZFLAG_NOFREE || zone->uz_freef == NULL)
|
|
return;
|
|
|
|
ZONE_LOCK(zone);
|
|
|
|
if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
|
|
cache_drain(zone);
|
|
|
|
if (zone->uz_free < zone->uz_wssize)
|
|
goto finished;
|
|
#ifdef UMA_DEBUG
|
|
printf("%s working set size: %llu free items: %u\n",
|
|
zone->uz_name, (unsigned long long)zone->uz_wssize, zone->uz_free);
|
|
#endif
|
|
extra = zone->uz_free - zone->uz_wssize;
|
|
extra /= zone->uz_ipers;
|
|
|
|
/* extra is now the number of extra slabs that we can free */
|
|
|
|
if (extra == 0)
|
|
goto finished;
|
|
|
|
slab = LIST_FIRST(&zone->uz_free_slab);
|
|
while (slab && extra) {
|
|
n = LIST_NEXT(slab, us_link);
|
|
|
|
/* We have no where to free these to */
|
|
if (slab->us_flags & UMA_SLAB_BOOT) {
|
|
slab = n;
|
|
continue;
|
|
}
|
|
|
|
LIST_REMOVE(slab, us_link);
|
|
zone->uz_pages -= zone->uz_ppera;
|
|
zone->uz_free -= zone->uz_ipers;
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_HASH)
|
|
UMA_HASH_REMOVE(&zone->uz_hash, slab, slab->us_data);
|
|
|
|
SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
|
|
|
|
slab = n;
|
|
extra--;
|
|
}
|
|
finished:
|
|
ZONE_UNLOCK(zone);
|
|
|
|
while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
|
|
SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
|
|
if (zone->uz_fini)
|
|
for (i = 0; i < zone->uz_ipers; i++)
|
|
zone->uz_fini(
|
|
slab->us_data + (zone->uz_rsize * i),
|
|
zone->uz_size);
|
|
flags = slab->us_flags;
|
|
mem = slab->us_data;
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_OFFPAGE)
|
|
uma_zfree_internal(slabzone, slab, NULL, 0);
|
|
if (zone->uz_flags & UMA_ZFLAG_MALLOC) {
|
|
vm_object_t obj;
|
|
|
|
if (flags & UMA_SLAB_KMEM)
|
|
obj = kmem_object;
|
|
else
|
|
obj = NULL;
|
|
for (i = 0; i < zone->uz_ppera; i++)
|
|
vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
|
|
obj);
|
|
}
|
|
#ifdef UMA_DEBUG
|
|
printf("%s: Returning %d bytes.\n",
|
|
zone->uz_name, UMA_SLAB_SIZE * zone->uz_ppera);
|
|
#endif
|
|
zone->uz_freef(mem, UMA_SLAB_SIZE * zone->uz_ppera, flags);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Allocate a new slab for a zone. This does not insert the slab onto a list.
|
|
*
|
|
* Arguments:
|
|
* zone The zone to allocate slabs for
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* The slab that was allocated or NULL if there is no memory and the
|
|
* caller specified M_NOWAIT.
|
|
*
|
|
*/
|
|
static uma_slab_t
|
|
slab_zalloc(uma_zone_t zone, int wait)
|
|
{
|
|
uma_slab_t slab; /* Starting slab */
|
|
u_int8_t *mem;
|
|
u_int8_t flags;
|
|
int i;
|
|
|
|
slab = NULL;
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("slab_zalloc: Allocating a new slab for %s\n", zone->uz_name);
|
|
#endif
|
|
ZONE_UNLOCK(zone);
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_OFFPAGE) {
|
|
slab = uma_zalloc_internal(slabzone, NULL, wait);
|
|
if (slab == NULL) {
|
|
ZONE_LOCK(zone);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This reproduces the old vm_zone behavior of zero filling pages the
|
|
* first time they are added to a zone.
|
|
*
|
|
* Malloced items are zeroed in uma_zalloc.
|
|
*/
|
|
|
|
if ((zone->uz_flags & UMA_ZFLAG_MALLOC) == 0)
|
|
wait |= M_ZERO;
|
|
else
|
|
wait &= ~M_ZERO;
|
|
|
|
if (booted || (zone->uz_flags & UMA_ZFLAG_PRIVALLOC)) {
|
|
mtx_lock(&Giant);
|
|
mem = zone->uz_allocf(zone,
|
|
zone->uz_ppera * UMA_SLAB_SIZE, &flags, wait);
|
|
mtx_unlock(&Giant);
|
|
if (mem == NULL) {
|
|
ZONE_LOCK(zone);
|
|
return (NULL);
|
|
}
|
|
} else {
|
|
uma_slab_t tmps;
|
|
|
|
if (zone->uz_ppera > 1)
|
|
panic("UMA: Attemping to allocate multiple pages before vm has started.\n");
|
|
if (zone->uz_flags & UMA_ZFLAG_MALLOC)
|
|
panic("Mallocing before uma_startup2 has been called.\n");
|
|
if (uma_boot_free == 0)
|
|
panic("UMA: Ran out of pre init pages, increase UMA_BOOT_PAGES\n");
|
|
tmps = LIST_FIRST(&uma_boot_pages);
|
|
LIST_REMOVE(tmps, us_link);
|
|
uma_boot_free--;
|
|
mem = tmps->us_data;
|
|
flags = tmps->us_flags;
|
|
}
|
|
|
|
/* Point the slab into the allocated memory */
|
|
if (!(zone->uz_flags & UMA_ZFLAG_OFFPAGE))
|
|
slab = (uma_slab_t )(mem + zone->uz_pgoff);
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_MALLOC)
|
|
for (i = 0; i < zone->uz_ppera; i++)
|
|
vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
|
|
|
|
slab->us_zone = zone;
|
|
slab->us_data = mem;
|
|
|
|
/*
|
|
* This is intended to spread data out across cache lines.
|
|
*
|
|
* This code doesn't seem to work properly on x86, and on alpha
|
|
* it makes absolutely no performance difference. I'm sure it could
|
|
* use some tuning, but sun makes outrageous claims about it's
|
|
* performance.
|
|
*/
|
|
#if 0
|
|
if (zone->uz_cachemax) {
|
|
slab->us_data += zone->uz_cacheoff;
|
|
zone->uz_cacheoff += UMA_CACHE_INC;
|
|
if (zone->uz_cacheoff > zone->uz_cachemax)
|
|
zone->uz_cacheoff = 0;
|
|
}
|
|
#endif
|
|
|
|
slab->us_freecount = zone->uz_ipers;
|
|
slab->us_firstfree = 0;
|
|
slab->us_flags = flags;
|
|
for (i = 0; i < zone->uz_ipers; i++)
|
|
slab->us_freelist[i] = i+1;
|
|
|
|
if (zone->uz_init)
|
|
for (i = 0; i < zone->uz_ipers; i++)
|
|
zone->uz_init(slab->us_data + (zone->uz_rsize * i),
|
|
zone->uz_size);
|
|
ZONE_LOCK(zone);
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_HASH)
|
|
UMA_HASH_INSERT(&zone->uz_hash, slab, mem);
|
|
|
|
zone->uz_pages += zone->uz_ppera;
|
|
zone->uz_free += zone->uz_ipers;
|
|
|
|
|
|
return (slab);
|
|
}
|
|
|
|
/*
|
|
* Allocates a number of pages from the system
|
|
*
|
|
* Arguments:
|
|
* zone Unused
|
|
* bytes The number of bytes requested
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* A pointer to the alloced memory or possibly
|
|
* NULL if M_NOWAIT is set.
|
|
*/
|
|
static void *
|
|
page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
|
|
{
|
|
void *p; /* Returned page */
|
|
|
|
*pflag = UMA_SLAB_KMEM;
|
|
p = (void *) kmem_malloc(kmem_map, bytes, wait);
|
|
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Allocates a number of pages from within an object
|
|
*
|
|
* Arguments:
|
|
* zone Unused
|
|
* bytes The number of bytes requested
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* A pointer to the alloced memory or possibly
|
|
* NULL if M_NOWAIT is set.
|
|
*
|
|
* TODO: If we fail during a multi-page allocation release the pages that have
|
|
* already been allocated.
|
|
*/
|
|
static void *
|
|
obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
|
|
{
|
|
vm_offset_t zkva;
|
|
vm_offset_t retkva;
|
|
vm_page_t p;
|
|
int pages;
|
|
|
|
retkva = 0;
|
|
pages = zone->uz_pages;
|
|
|
|
/*
|
|
* This looks a little weird since we're getting one page at a time
|
|
*/
|
|
while (bytes > 0) {
|
|
p = vm_page_alloc(zone->uz_obj, pages,
|
|
VM_ALLOC_INTERRUPT);
|
|
if (p == NULL)
|
|
return (NULL);
|
|
|
|
zkva = zone->uz_kva + pages * PAGE_SIZE;
|
|
if (retkva == 0)
|
|
retkva = zkva;
|
|
pmap_qenter(zkva, &p, 1);
|
|
bytes -= PAGE_SIZE;
|
|
pages += 1;
|
|
}
|
|
|
|
*flags = UMA_SLAB_PRIV;
|
|
|
|
return ((void *)retkva);
|
|
}
|
|
|
|
/*
|
|
* Frees a number of pages to the system
|
|
*
|
|
* Arguments:
|
|
* mem A pointer to the memory to be freed
|
|
* size The size of the memory being freed
|
|
* flags The original p->us_flags field
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*
|
|
*/
|
|
static void
|
|
page_free(void *mem, int size, u_int8_t flags)
|
|
{
|
|
vm_map_t map;
|
|
|
|
if (flags & UMA_SLAB_KMEM)
|
|
map = kmem_map;
|
|
else
|
|
panic("UMA: page_free used with invalid flags %d\n", flags);
|
|
|
|
kmem_free(map, (vm_offset_t)mem, size);
|
|
}
|
|
|
|
/*
|
|
* Zero fill initializer
|
|
*
|
|
* Arguments/Returns follow uma_init specifications
|
|
*
|
|
*/
|
|
static void
|
|
zero_init(void *mem, int size)
|
|
{
|
|
bzero(mem, size);
|
|
}
|
|
|
|
/*
|
|
* Finish creating a small uma zone. This calculates ipers, and the zone size.
|
|
*
|
|
* Arguments
|
|
* zone The zone we should initialize
|
|
*
|
|
* Returns
|
|
* Nothing
|
|
*/
|
|
static void
|
|
zone_small_init(uma_zone_t zone)
|
|
{
|
|
int rsize;
|
|
int memused;
|
|
int ipers;
|
|
|
|
rsize = zone->uz_size;
|
|
|
|
if (rsize < UMA_SMALLEST_UNIT)
|
|
rsize = UMA_SMALLEST_UNIT;
|
|
|
|
if (rsize & zone->uz_align)
|
|
rsize = (rsize & ~zone->uz_align) + (zone->uz_align + 1);
|
|
|
|
zone->uz_rsize = rsize;
|
|
|
|
rsize += 1; /* Account for the byte of linkage */
|
|
zone->uz_ipers = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / rsize;
|
|
zone->uz_ppera = 1;
|
|
|
|
memused = zone->uz_ipers * zone->uz_rsize;
|
|
|
|
/* Can we do any better? */
|
|
if ((UMA_SLAB_SIZE - memused) >= UMA_MAX_WASTE) {
|
|
if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
|
|
return;
|
|
ipers = UMA_SLAB_SIZE / zone->uz_rsize;
|
|
if (ipers > zone->uz_ipers) {
|
|
zone->uz_flags |= UMA_ZFLAG_OFFPAGE;
|
|
if ((zone->uz_flags & UMA_ZFLAG_MALLOC) == 0)
|
|
zone->uz_flags |= UMA_ZFLAG_HASH;
|
|
zone->uz_ipers = ipers;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Finish creating a large (> UMA_SLAB_SIZE) uma zone. Just give in and do
|
|
* OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
|
|
* more complicated.
|
|
*
|
|
* Arguments
|
|
* zone The zone we should initialize
|
|
*
|
|
* Returns
|
|
* Nothing
|
|
*/
|
|
static void
|
|
zone_large_init(uma_zone_t zone)
|
|
{
|
|
int pages;
|
|
|
|
pages = zone->uz_size / UMA_SLAB_SIZE;
|
|
|
|
/* Account for remainder */
|
|
if ((pages * UMA_SLAB_SIZE) < zone->uz_size)
|
|
pages++;
|
|
|
|
zone->uz_ppera = pages;
|
|
zone->uz_ipers = 1;
|
|
|
|
zone->uz_flags |= UMA_ZFLAG_OFFPAGE;
|
|
if ((zone->uz_flags & UMA_ZFLAG_MALLOC) == 0)
|
|
zone->uz_flags |= UMA_ZFLAG_HASH;
|
|
|
|
zone->uz_rsize = zone->uz_size;
|
|
}
|
|
|
|
/*
|
|
* Zone header ctor. This initializes all fields, locks, etc. And inserts
|
|
* the zone onto the global zone list.
|
|
*
|
|
* Arguments/Returns follow uma_ctor specifications
|
|
* udata Actually uma_zcreat_args
|
|
*
|
|
*/
|
|
|
|
static void
|
|
zone_ctor(void *mem, int size, void *udata)
|
|
{
|
|
struct uma_zctor_args *arg = udata;
|
|
uma_zone_t zone = mem;
|
|
int privlc;
|
|
int cplen;
|
|
int cpu;
|
|
|
|
bzero(zone, size);
|
|
zone->uz_name = arg->name;
|
|
zone->uz_size = arg->size;
|
|
zone->uz_ctor = arg->ctor;
|
|
zone->uz_dtor = arg->dtor;
|
|
zone->uz_init = arg->uminit;
|
|
zone->uz_fini = arg->fini;
|
|
zone->uz_align = arg->align;
|
|
zone->uz_free = 0;
|
|
zone->uz_pages = 0;
|
|
zone->uz_flags = 0;
|
|
zone->uz_allocf = page_alloc;
|
|
zone->uz_freef = page_free;
|
|
|
|
if (arg->flags & UMA_ZONE_ZINIT)
|
|
zone->uz_init = zero_init;
|
|
|
|
if (arg->flags & UMA_ZONE_INTERNAL)
|
|
zone->uz_flags |= UMA_ZFLAG_INTERNAL;
|
|
|
|
if (arg->flags & UMA_ZONE_MALLOC)
|
|
zone->uz_flags |= UMA_ZFLAG_MALLOC;
|
|
|
|
if (arg->flags & UMA_ZONE_NOFREE)
|
|
zone->uz_flags |= UMA_ZFLAG_NOFREE;
|
|
|
|
if (arg->flags & UMA_ZONE_VM)
|
|
zone->uz_flags |= UMA_ZFLAG_BUCKETCACHE;
|
|
|
|
if (zone->uz_size > UMA_SLAB_SIZE)
|
|
zone_large_init(zone);
|
|
else
|
|
zone_small_init(zone);
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
if (zone->uz_ppera == 1) {
|
|
zone->uz_allocf = uma_small_alloc;
|
|
zone->uz_freef = uma_small_free;
|
|
}
|
|
#endif /* UMA_MD_SMALL_ALLOC */
|
|
|
|
if (arg->flags & UMA_ZONE_MTXCLASS)
|
|
privlc = 1;
|
|
else
|
|
privlc = 0;
|
|
|
|
/* We do this so that the per cpu lock name is unique for each zone */
|
|
memcpy(zone->uz_lname, "PCPU ", 5);
|
|
cplen = min(strlen(zone->uz_name) + 1, LOCKNAME_LEN - 6);
|
|
memcpy(zone->uz_lname+5, zone->uz_name, cplen);
|
|
zone->uz_lname[LOCKNAME_LEN - 1] = '\0';
|
|
|
|
/*
|
|
* If we're putting the slab header in the actual page we need to
|
|
* figure out where in each page it goes. This calculates a right
|
|
* justified offset into the memory on an ALIGN_PTR boundary.
|
|
*/
|
|
if (!(zone->uz_flags & UMA_ZFLAG_OFFPAGE)) {
|
|
int totsize;
|
|
int waste;
|
|
|
|
/* Size of the slab struct and free list */
|
|
totsize = sizeof(struct uma_slab) + zone->uz_ipers;
|
|
if (totsize & UMA_ALIGN_PTR)
|
|
totsize = (totsize & ~UMA_ALIGN_PTR) +
|
|
(UMA_ALIGN_PTR + 1);
|
|
zone->uz_pgoff = UMA_SLAB_SIZE - totsize;
|
|
|
|
waste = zone->uz_pgoff;
|
|
waste -= (zone->uz_ipers * zone->uz_rsize);
|
|
|
|
/*
|
|
* This calculates how much space we have for cache line size
|
|
* optimizations. It works by offseting each slab slightly.
|
|
* Currently it breaks on x86, and so it is disabled.
|
|
*/
|
|
|
|
if (zone->uz_align < UMA_CACHE_INC && waste > UMA_CACHE_INC) {
|
|
zone->uz_cachemax = waste - UMA_CACHE_INC;
|
|
zone->uz_cacheoff = 0;
|
|
}
|
|
|
|
totsize = zone->uz_pgoff + sizeof(struct uma_slab)
|
|
+ zone->uz_ipers;
|
|
/* I don't think it's possible, but I'll make sure anyway */
|
|
if (totsize > UMA_SLAB_SIZE) {
|
|
printf("zone %s ipers %d rsize %d size %d\n",
|
|
zone->uz_name, zone->uz_ipers, zone->uz_rsize,
|
|
zone->uz_size);
|
|
panic("UMA slab won't fit.\n");
|
|
}
|
|
}
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_HASH)
|
|
hash_alloc(&zone->uz_hash);
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n",
|
|
zone->uz_name, zone,
|
|
zone->uz_size, zone->uz_ipers,
|
|
zone->uz_ppera, zone->uz_pgoff);
|
|
#endif
|
|
ZONE_LOCK_INIT(zone, privlc);
|
|
|
|
mtx_lock(&uma_mtx);
|
|
LIST_INSERT_HEAD(&uma_zones, zone, uz_link);
|
|
mtx_unlock(&uma_mtx);
|
|
|
|
/*
|
|
* Some internal zones don't have room allocated for the per cpu
|
|
* caches. If we're internal, bail out here.
|
|
*/
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
|
|
return;
|
|
|
|
if (zone->uz_ipers < UMA_BUCKET_SIZE)
|
|
zone->uz_count = zone->uz_ipers - 1;
|
|
else
|
|
zone->uz_count = UMA_BUCKET_SIZE - 1;
|
|
|
|
for (cpu = 0; cpu < maxcpu; cpu++)
|
|
CPU_LOCK_INIT(zone, cpu, privlc);
|
|
}
|
|
|
|
/*
|
|
* Zone header dtor. This frees all data, destroys locks, frees the hash table
|
|
* and removes the zone from the global list.
|
|
*
|
|
* Arguments/Returns follow uma_dtor specifications
|
|
* udata unused
|
|
*/
|
|
|
|
static void
|
|
zone_dtor(void *arg, int size, void *udata)
|
|
{
|
|
uma_zone_t zone;
|
|
int cpu;
|
|
|
|
zone = (uma_zone_t)arg;
|
|
|
|
ZONE_LOCK(zone);
|
|
zone->uz_wssize = 0;
|
|
ZONE_UNLOCK(zone);
|
|
|
|
mtx_lock(&uma_mtx);
|
|
LIST_REMOVE(zone, uz_link);
|
|
zone_drain(zone);
|
|
mtx_unlock(&uma_mtx);
|
|
|
|
ZONE_LOCK(zone);
|
|
if (zone->uz_free != 0)
|
|
printf("Zone %s was not empty. Lost %d pages of memory.\n",
|
|
zone->uz_name, zone->uz_pages);
|
|
|
|
if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0)
|
|
for (cpu = 0; cpu < maxcpu; cpu++)
|
|
CPU_LOCK_FINI(zone, cpu);
|
|
|
|
ZONE_UNLOCK(zone);
|
|
if ((zone->uz_flags & UMA_ZFLAG_OFFPAGE) != 0)
|
|
hash_free(&zone->uz_hash);
|
|
|
|
ZONE_LOCK_FINI(zone);
|
|
}
|
|
/*
|
|
* Traverses every zone in the system and calls a callback
|
|
*
|
|
* Arguments:
|
|
* zfunc A pointer to a function which accepts a zone
|
|
* as an argument.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
zone_foreach(void (*zfunc)(uma_zone_t))
|
|
{
|
|
uma_zone_t zone;
|
|
|
|
mtx_lock(&uma_mtx);
|
|
LIST_FOREACH(zone, &uma_zones, uz_link) {
|
|
zfunc(zone);
|
|
}
|
|
mtx_unlock(&uma_mtx);
|
|
}
|
|
|
|
/* Public functions */
|
|
/* See uma.h */
|
|
void
|
|
uma_startup(void *bootmem)
|
|
{
|
|
struct uma_zctor_args args;
|
|
uma_slab_t slab;
|
|
int slabsize;
|
|
int i;
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("Creating uma zone headers zone.\n");
|
|
#endif
|
|
#ifdef SMP
|
|
maxcpu = mp_maxid + 1;
|
|
#else
|
|
maxcpu = 1;
|
|
#endif
|
|
#ifdef UMA_DEBUG
|
|
printf("Max cpu = %d, mp_maxid = %d\n", maxcpu, mp_maxid);
|
|
Debugger("stop");
|
|
#endif
|
|
mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
|
|
/* "manually" Create the initial zone */
|
|
args.name = "UMA Zones";
|
|
args.size = sizeof(struct uma_zone) +
|
|
(sizeof(struct uma_cache) * (maxcpu - 1));
|
|
args.ctor = zone_ctor;
|
|
args.dtor = zone_dtor;
|
|
args.uminit = zero_init;
|
|
args.fini = NULL;
|
|
args.align = 32 - 1;
|
|
args.flags = UMA_ZONE_INTERNAL;
|
|
/* The initial zone has no Per cpu queues so it's smaller */
|
|
zone_ctor(zones, sizeof(struct uma_zone), &args);
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("Filling boot free list.\n");
|
|
#endif
|
|
for (i = 0; i < UMA_BOOT_PAGES; i++) {
|
|
slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
|
|
slab->us_data = (u_int8_t *)slab;
|
|
slab->us_flags = UMA_SLAB_BOOT;
|
|
LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
|
|
uma_boot_free++;
|
|
}
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("Creating slab zone.\n");
|
|
#endif
|
|
|
|
/*
|
|
* This is the max number of free list items we'll have with
|
|
* offpage slabs.
|
|
*/
|
|
|
|
slabsize = UMA_SLAB_SIZE - sizeof(struct uma_slab);
|
|
slabsize /= UMA_MAX_WASTE;
|
|
slabsize++; /* In case there it's rounded */
|
|
slabsize += sizeof(struct uma_slab);
|
|
|
|
/* Now make a zone for slab headers */
|
|
slabzone = uma_zcreate("UMA Slabs",
|
|
slabsize,
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZONE_INTERNAL);
|
|
|
|
hashzone = uma_zcreate("UMA Hash",
|
|
sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZONE_INTERNAL);
|
|
|
|
bucketzone = uma_zcreate("UMA Buckets", sizeof(struct uma_bucket),
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZONE_INTERNAL);
|
|
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
booted = 1;
|
|
#endif
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA startup complete.\n");
|
|
#endif
|
|
}
|
|
|
|
/* see uma.h */
|
|
void
|
|
uma_startup2(void)
|
|
{
|
|
booted = 1;
|
|
bucket_enable();
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA startup2 complete.\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Initialize our callout handle
|
|
*
|
|
*/
|
|
|
|
static void
|
|
uma_startup3(void)
|
|
{
|
|
#ifdef UMA_DEBUG
|
|
printf("Starting callout.\n");
|
|
#endif
|
|
callout_init(&uma_callout, 0);
|
|
callout_reset(&uma_callout, UMA_WORKING_TIME * hz, uma_timeout, NULL);
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA startup3 complete.\n");
|
|
#endif
|
|
}
|
|
|
|
/* See uma.h */
|
|
uma_zone_t
|
|
uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
|
|
uma_init uminit, uma_fini fini, int align, u_int16_t flags)
|
|
|
|
{
|
|
struct uma_zctor_args args;
|
|
|
|
/* This stuff is essential for the zone ctor */
|
|
args.name = name;
|
|
args.size = size;
|
|
args.ctor = ctor;
|
|
args.dtor = dtor;
|
|
args.uminit = uminit;
|
|
args.fini = fini;
|
|
args.align = align;
|
|
args.flags = flags;
|
|
|
|
return (uma_zalloc_internal(zones, &args, M_WAITOK));
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zdestroy(uma_zone_t zone)
|
|
{
|
|
uma_zfree_internal(zones, zone, NULL, 0);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void *
|
|
uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
|
|
{
|
|
void *item;
|
|
uma_cache_t cache;
|
|
uma_bucket_t bucket;
|
|
int cpu;
|
|
|
|
/* This is the fast path allocation */
|
|
#ifdef UMA_DEBUG_ALLOC_1
|
|
printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
|
|
#endif
|
|
|
|
if (!(flags & M_NOWAIT)) {
|
|
KASSERT(curthread->td_intr_nesting_level == 0,
|
|
("malloc(M_WAITOK) in interrupt context"));
|
|
WITNESS_SLEEP(1, NULL);
|
|
}
|
|
|
|
zalloc_restart:
|
|
cpu = PCPU_GET(cpuid);
|
|
CPU_LOCK(zone, cpu);
|
|
cache = &zone->uz_cpu[cpu];
|
|
|
|
zalloc_start:
|
|
bucket = cache->uc_allocbucket;
|
|
|
|
if (bucket) {
|
|
if (bucket->ub_ptr > -1) {
|
|
item = bucket->ub_bucket[bucket->ub_ptr];
|
|
#ifdef INVARIANTS
|
|
bucket->ub_bucket[bucket->ub_ptr] = NULL;
|
|
#endif
|
|
bucket->ub_ptr--;
|
|
KASSERT(item != NULL,
|
|
("uma_zalloc: Bucket pointer mangled."));
|
|
cache->uc_allocs++;
|
|
#ifdef INVARIANTS
|
|
ZONE_LOCK(zone);
|
|
uma_dbg_alloc(zone, NULL, item);
|
|
ZONE_UNLOCK(zone);
|
|
#endif
|
|
CPU_UNLOCK(zone, cpu);
|
|
if (zone->uz_ctor)
|
|
zone->uz_ctor(item, zone->uz_size, udata);
|
|
if (flags & M_ZERO)
|
|
bzero(item, zone->uz_size);
|
|
return (item);
|
|
} else if (cache->uc_freebucket) {
|
|
/*
|
|
* We have run out of items in our allocbucket.
|
|
* See if we can switch with our free bucket.
|
|
*/
|
|
if (cache->uc_freebucket->ub_ptr > -1) {
|
|
uma_bucket_t swap;
|
|
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("uma_zalloc: Swapping empty with alloc.\n");
|
|
#endif
|
|
swap = cache->uc_freebucket;
|
|
cache->uc_freebucket = cache->uc_allocbucket;
|
|
cache->uc_allocbucket = swap;
|
|
|
|
goto zalloc_start;
|
|
}
|
|
}
|
|
}
|
|
ZONE_LOCK(zone);
|
|
/* Since we have locked the zone we may as well send back our stats */
|
|
zone->uz_allocs += cache->uc_allocs;
|
|
cache->uc_allocs = 0;
|
|
|
|
/* Our old one is now a free bucket */
|
|
if (cache->uc_allocbucket) {
|
|
KASSERT(cache->uc_allocbucket->ub_ptr == -1,
|
|
("uma_zalloc_arg: Freeing a non free bucket."));
|
|
LIST_INSERT_HEAD(&zone->uz_free_bucket,
|
|
cache->uc_allocbucket, ub_link);
|
|
cache->uc_allocbucket = NULL;
|
|
}
|
|
|
|
/* Check the free list for a new alloc bucket */
|
|
if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
|
|
KASSERT(bucket->ub_ptr != -1,
|
|
("uma_zalloc_arg: Returning an empty bucket."));
|
|
|
|
LIST_REMOVE(bucket, ub_link);
|
|
cache->uc_allocbucket = bucket;
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_start;
|
|
}
|
|
/* We are no longer associated with this cpu!!! */
|
|
CPU_UNLOCK(zone, cpu);
|
|
|
|
/* Bump up our uz_count so we get here less */
|
|
if (zone->uz_count < UMA_BUCKET_SIZE - 1)
|
|
zone->uz_count++;
|
|
|
|
/*
|
|
* Now lets just fill a bucket and put it on the free list. If that
|
|
* works we'll restart the allocation from the begining.
|
|
*/
|
|
|
|
if (uma_zalloc_bucket(zone, flags)) {
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_restart;
|
|
}
|
|
ZONE_UNLOCK(zone);
|
|
/*
|
|
* We may not be able to get a bucket so return an actual item.
|
|
*/
|
|
#ifdef UMA_DEBUG
|
|
printf("uma_zalloc_arg: Bucketzone returned NULL\n");
|
|
#endif
|
|
|
|
return (uma_zalloc_internal(zone, udata, flags));
|
|
}
|
|
|
|
static uma_slab_t
|
|
uma_zone_slab(uma_zone_t zone, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
|
|
/*
|
|
* This is to prevent us from recursively trying to allocate
|
|
* buckets. The problem is that if an allocation forces us to
|
|
* grab a new bucket we will call page_alloc, which will go off
|
|
* and cause the vm to allocate vm_map_entries. If we need new
|
|
* buckets there too we will recurse in kmem_alloc and bad
|
|
* things happen. So instead we return a NULL bucket, and make
|
|
* the code that allocates buckets smart enough to deal with it
|
|
*/
|
|
if (zone == bucketzone && zone->uz_recurse != 0)
|
|
return (NULL);
|
|
|
|
slab = NULL;
|
|
|
|
for (;;) {
|
|
/*
|
|
* Find a slab with some space. Prefer slabs that are partially
|
|
* used over those that are totally full. This helps to reduce
|
|
* fragmentation.
|
|
*/
|
|
if (zone->uz_free != 0) {
|
|
if (!LIST_EMPTY(&zone->uz_part_slab)) {
|
|
slab = LIST_FIRST(&zone->uz_part_slab);
|
|
} else {
|
|
slab = LIST_FIRST(&zone->uz_free_slab);
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&zone->uz_part_slab, slab,
|
|
us_link);
|
|
}
|
|
return (slab);
|
|
}
|
|
|
|
/*
|
|
* M_NOVM means don't ask at all!
|
|
*/
|
|
if (flags & M_NOVM)
|
|
break;
|
|
|
|
if (zone->uz_maxpages &&
|
|
zone->uz_pages >= zone->uz_maxpages) {
|
|
zone->uz_flags |= UMA_ZFLAG_FULL;
|
|
|
|
if (flags & M_WAITOK)
|
|
msleep(zone, &zone->uz_lock, PVM, "zonelimit", 0);
|
|
else
|
|
break;
|
|
continue;
|
|
}
|
|
zone->uz_recurse++;
|
|
slab = slab_zalloc(zone, flags);
|
|
zone->uz_recurse--;
|
|
/*
|
|
* If we got a slab here it's safe to mark it partially used
|
|
* and return. We assume that the caller is going to remove
|
|
* at least one item.
|
|
*/
|
|
if (slab) {
|
|
LIST_INSERT_HEAD(&zone->uz_part_slab, slab, us_link);
|
|
return (slab);
|
|
}
|
|
/*
|
|
* We might not have been able to get a slab but another cpu
|
|
* could have while we were unlocked. Check again before we
|
|
* fail.
|
|
*/
|
|
if ((flags & M_WAITOK) == 0)
|
|
flags |= M_NOVM;
|
|
}
|
|
return (slab);
|
|
}
|
|
|
|
static __inline void *
|
|
uma_slab_alloc(uma_zone_t zone, uma_slab_t slab)
|
|
{
|
|
void *item;
|
|
u_int8_t freei;
|
|
|
|
freei = slab->us_firstfree;
|
|
slab->us_firstfree = slab->us_freelist[freei];
|
|
item = slab->us_data + (zone->uz_rsize * freei);
|
|
|
|
slab->us_freecount--;
|
|
zone->uz_free--;
|
|
#ifdef INVARIANTS
|
|
uma_dbg_alloc(zone, slab, item);
|
|
#endif
|
|
/* Move this slab to the full list */
|
|
if (slab->us_freecount == 0) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&zone->uz_full_slab, slab, us_link);
|
|
}
|
|
|
|
return (item);
|
|
}
|
|
|
|
static int
|
|
uma_zalloc_bucket(uma_zone_t zone, int flags)
|
|
{
|
|
uma_bucket_t bucket;
|
|
uma_slab_t slab;
|
|
|
|
/*
|
|
* Try this zone's free list first so we don't allocate extra buckets.
|
|
*/
|
|
|
|
if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
|
|
KASSERT(bucket->ub_ptr == -1,
|
|
("uma_zalloc_bucket: Bucket on free list is not empty."));
|
|
LIST_REMOVE(bucket, ub_link);
|
|
} else {
|
|
int bflags;
|
|
|
|
bflags = flags;
|
|
if (zone->uz_flags & UMA_ZFLAG_BUCKETCACHE)
|
|
bflags |= M_NOVM;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
bucket = uma_zalloc_internal(bucketzone,
|
|
NULL, bflags);
|
|
ZONE_LOCK(zone);
|
|
if (bucket != NULL) {
|
|
#ifdef INVARIANTS
|
|
bzero(bucket, bucketzone->uz_size);
|
|
#endif
|
|
bucket->ub_ptr = -1;
|
|
}
|
|
}
|
|
|
|
if (bucket == NULL)
|
|
return (0);
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* This code is here to limit the number of simultaneous bucket fills
|
|
* for any given zone to the number of per cpu caches in this zone. This
|
|
* is done so that we don't allocate more memory than we really need.
|
|
*/
|
|
if (zone->uz_fills >= mp_ncpus)
|
|
goto done;
|
|
|
|
#endif
|
|
zone->uz_fills++;
|
|
|
|
/* Try to keep the buckets totally full */
|
|
while ((slab = uma_zone_slab(zone, flags)) != NULL &&
|
|
bucket->ub_ptr < zone->uz_count) {
|
|
while (slab->us_freecount &&
|
|
bucket->ub_ptr < zone->uz_count) {
|
|
bucket->ub_bucket[++bucket->ub_ptr] =
|
|
uma_slab_alloc(zone, slab);
|
|
}
|
|
/* Don't block on the next fill */
|
|
flags |= M_NOWAIT;
|
|
flags &= ~M_WAITOK;
|
|
}
|
|
|
|
zone->uz_fills--;
|
|
|
|
if (bucket->ub_ptr != -1) {
|
|
LIST_INSERT_HEAD(&zone->uz_full_bucket,
|
|
bucket, ub_link);
|
|
return (1);
|
|
}
|
|
#ifdef SMP
|
|
done:
|
|
#endif
|
|
uma_zfree_internal(bucketzone, bucket, NULL, 0);
|
|
|
|
return (0);
|
|
}
|
|
/*
|
|
* Allocates an item for an internal zone
|
|
*
|
|
* Arguments
|
|
* zone The zone to alloc for.
|
|
* udata The data to be passed to the constructor.
|
|
* flags M_WAITOK, M_NOWAIT, M_ZERO.
|
|
*
|
|
* Returns
|
|
* NULL if there is no memory and M_NOWAIT is set
|
|
* An item if successful
|
|
*/
|
|
|
|
static void *
|
|
uma_zalloc_internal(uma_zone_t zone, void *udata, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
void *item;
|
|
|
|
item = NULL;
|
|
|
|
/*
|
|
* This is to stop us from allocating per cpu buckets while we're
|
|
* running out of UMA_BOOT_PAGES. Otherwise, we would exhaust the
|
|
* boot pages.
|
|
*/
|
|
|
|
if (bucketdisable && zone == bucketzone)
|
|
return (NULL);
|
|
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
|
|
#endif
|
|
ZONE_LOCK(zone);
|
|
|
|
slab = uma_zone_slab(zone, flags);
|
|
if (slab == NULL) {
|
|
ZONE_UNLOCK(zone);
|
|
return (NULL);
|
|
}
|
|
|
|
item = uma_slab_alloc(zone, slab);
|
|
|
|
ZONE_UNLOCK(zone);
|
|
|
|
if (zone->uz_ctor != NULL)
|
|
zone->uz_ctor(item, zone->uz_size, udata);
|
|
if (flags & M_ZERO)
|
|
bzero(item, zone->uz_size);
|
|
|
|
return (item);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
|
|
{
|
|
uma_cache_t cache;
|
|
uma_bucket_t bucket;
|
|
int bflags;
|
|
int cpu;
|
|
|
|
/* This is the fast path free */
|
|
#ifdef UMA_DEBUG_ALLOC_1
|
|
printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
|
|
#endif
|
|
/*
|
|
* The race here is acceptable. If we miss it we'll just have to wait
|
|
* a little longer for the limits to be reset.
|
|
*/
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_FULL)
|
|
goto zfree_internal;
|
|
|
|
if (zone->uz_dtor)
|
|
zone->uz_dtor(item, zone->uz_size, udata);
|
|
|
|
zfree_restart:
|
|
cpu = PCPU_GET(cpuid);
|
|
CPU_LOCK(zone, cpu);
|
|
cache = &zone->uz_cpu[cpu];
|
|
|
|
zfree_start:
|
|
bucket = cache->uc_freebucket;
|
|
|
|
if (bucket) {
|
|
/*
|
|
* Do we have room in our bucket? It is OK for this uz count
|
|
* check to be slightly out of sync.
|
|
*/
|
|
|
|
if (bucket->ub_ptr < zone->uz_count) {
|
|
bucket->ub_ptr++;
|
|
KASSERT(bucket->ub_bucket[bucket->ub_ptr] == NULL,
|
|
("uma_zfree: Freeing to non free bucket index."));
|
|
bucket->ub_bucket[bucket->ub_ptr] = item;
|
|
#ifdef INVARIANTS
|
|
ZONE_LOCK(zone);
|
|
if (zone->uz_flags & UMA_ZFLAG_MALLOC)
|
|
uma_dbg_free(zone, udata, item);
|
|
else
|
|
uma_dbg_free(zone, NULL, item);
|
|
ZONE_UNLOCK(zone);
|
|
#endif
|
|
CPU_UNLOCK(zone, cpu);
|
|
return;
|
|
} else if (cache->uc_allocbucket) {
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("uma_zfree: Swapping buckets.\n");
|
|
#endif
|
|
/*
|
|
* We have run out of space in our freebucket.
|
|
* See if we can switch with our alloc bucket.
|
|
*/
|
|
if (cache->uc_allocbucket->ub_ptr <
|
|
cache->uc_freebucket->ub_ptr) {
|
|
uma_bucket_t swap;
|
|
|
|
swap = cache->uc_freebucket;
|
|
cache->uc_freebucket = cache->uc_allocbucket;
|
|
cache->uc_allocbucket = swap;
|
|
|
|
goto zfree_start;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We can get here for two reasons:
|
|
*
|
|
* 1) The buckets are NULL
|
|
* 2) The alloc and free buckets are both somewhat full.
|
|
*
|
|
*/
|
|
|
|
ZONE_LOCK(zone);
|
|
|
|
bucket = cache->uc_freebucket;
|
|
cache->uc_freebucket = NULL;
|
|
|
|
/* Can we throw this on the zone full list? */
|
|
if (bucket != NULL) {
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("uma_zfree: Putting old bucket on the free list.\n");
|
|
#endif
|
|
/* ub_ptr is pointing to the last free item */
|
|
KASSERT(bucket->ub_ptr != -1,
|
|
("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
|
|
LIST_INSERT_HEAD(&zone->uz_full_bucket,
|
|
bucket, ub_link);
|
|
}
|
|
if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
|
|
LIST_REMOVE(bucket, ub_link);
|
|
ZONE_UNLOCK(zone);
|
|
cache->uc_freebucket = bucket;
|
|
goto zfree_start;
|
|
}
|
|
/* We're done with this CPU now */
|
|
CPU_UNLOCK(zone, cpu);
|
|
|
|
/* And the zone.. */
|
|
ZONE_UNLOCK(zone);
|
|
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("uma_zfree: Allocating new free bucket.\n");
|
|
#endif
|
|
bflags = M_NOWAIT;
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_BUCKETCACHE)
|
|
bflags |= M_NOVM;
|
|
#ifdef INVARIANTS
|
|
bflags |= M_ZERO;
|
|
#endif
|
|
bucket = uma_zalloc_internal(bucketzone,
|
|
NULL, bflags);
|
|
if (bucket) {
|
|
bucket->ub_ptr = -1;
|
|
ZONE_LOCK(zone);
|
|
LIST_INSERT_HEAD(&zone->uz_free_bucket,
|
|
bucket, ub_link);
|
|
ZONE_UNLOCK(zone);
|
|
goto zfree_restart;
|
|
}
|
|
|
|
/*
|
|
* If nothing else caught this, we'll just do an internal free.
|
|
*/
|
|
|
|
zfree_internal:
|
|
|
|
uma_zfree_internal(zone, item, udata, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
* Frees an item to an INTERNAL zone or allocates a free bucket
|
|
*
|
|
* Arguments:
|
|
* zone The zone to free to
|
|
* item The item we're freeing
|
|
* udata User supplied data for the dtor
|
|
* skip Skip the dtor, it was done in uma_zfree_arg
|
|
*/
|
|
|
|
static void
|
|
uma_zfree_internal(uma_zone_t zone, void *item, void *udata, int skip)
|
|
{
|
|
uma_slab_t slab;
|
|
u_int8_t *mem;
|
|
u_int8_t freei;
|
|
|
|
if (!skip && zone->uz_dtor)
|
|
zone->uz_dtor(item, zone->uz_size, udata);
|
|
|
|
ZONE_LOCK(zone);
|
|
|
|
if (!(zone->uz_flags & UMA_ZFLAG_MALLOC)) {
|
|
mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
|
|
if (zone->uz_flags & UMA_ZFLAG_HASH)
|
|
slab = hash_sfind(&zone->uz_hash, mem);
|
|
else {
|
|
mem += zone->uz_pgoff;
|
|
slab = (uma_slab_t)mem;
|
|
}
|
|
} else {
|
|
slab = (uma_slab_t)udata;
|
|
}
|
|
|
|
/* Do we need to remove from any lists? */
|
|
if (slab->us_freecount+1 == zone->uz_ipers) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&zone->uz_free_slab, slab, us_link);
|
|
} else if (slab->us_freecount == 0) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&zone->uz_part_slab, slab, us_link);
|
|
}
|
|
|
|
/* Slab management stuff */
|
|
freei = ((unsigned long)item - (unsigned long)slab->us_data)
|
|
/ zone->uz_rsize;
|
|
|
|
#ifdef INVARIANTS
|
|
if (!skip)
|
|
uma_dbg_free(zone, slab, item);
|
|
#endif
|
|
|
|
slab->us_freelist[freei] = slab->us_firstfree;
|
|
slab->us_firstfree = freei;
|
|
slab->us_freecount++;
|
|
|
|
/* Zone statistics */
|
|
zone->uz_free++;
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_FULL) {
|
|
if (zone->uz_pages < zone->uz_maxpages)
|
|
zone->uz_flags &= ~UMA_ZFLAG_FULL;
|
|
|
|
/* We can handle one more allocation */
|
|
wakeup_one(zone);
|
|
}
|
|
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_max(uma_zone_t zone, int nitems)
|
|
{
|
|
ZONE_LOCK(zone);
|
|
if (zone->uz_ppera > 1)
|
|
zone->uz_maxpages = nitems * zone->uz_ppera;
|
|
else
|
|
zone->uz_maxpages = nitems / zone->uz_ipers;
|
|
|
|
if (zone->uz_maxpages * zone->uz_ipers < nitems)
|
|
zone->uz_maxpages++;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_freef(uma_zone_t zone, uma_free freef)
|
|
{
|
|
ZONE_LOCK(zone);
|
|
|
|
zone->uz_freef = freef;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
|
|
{
|
|
ZONE_LOCK(zone);
|
|
|
|
zone->uz_flags |= UMA_ZFLAG_PRIVALLOC;
|
|
zone->uz_allocf = allocf;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
|
|
{
|
|
int pages;
|
|
vm_offset_t kva;
|
|
|
|
mtx_lock(&Giant);
|
|
|
|
pages = count / zone->uz_ipers;
|
|
|
|
if (pages * zone->uz_ipers < count)
|
|
pages++;
|
|
|
|
kva = kmem_alloc_pageable(kernel_map, pages * UMA_SLAB_SIZE);
|
|
|
|
if (kva == 0) {
|
|
mtx_unlock(&Giant);
|
|
return (0);
|
|
}
|
|
|
|
|
|
if (obj == NULL)
|
|
obj = vm_object_allocate(OBJT_DEFAULT,
|
|
pages);
|
|
else
|
|
_vm_object_allocate(OBJT_DEFAULT,
|
|
pages, obj);
|
|
|
|
ZONE_LOCK(zone);
|
|
zone->uz_kva = kva;
|
|
zone->uz_obj = obj;
|
|
zone->uz_maxpages = pages;
|
|
|
|
zone->uz_allocf = obj_alloc;
|
|
zone->uz_flags |= UMA_ZFLAG_NOFREE | UMA_ZFLAG_PRIVALLOC;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
mtx_unlock(&Giant);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_prealloc(uma_zone_t zone, int items)
|
|
{
|
|
int slabs;
|
|
uma_slab_t slab;
|
|
|
|
ZONE_LOCK(zone);
|
|
slabs = items / zone->uz_ipers;
|
|
if (slabs * zone->uz_ipers < items)
|
|
slabs++;
|
|
|
|
while (slabs > 0) {
|
|
slab = slab_zalloc(zone, M_WAITOK);
|
|
LIST_INSERT_HEAD(&zone->uz_free_slab, slab, us_link);
|
|
slabs--;
|
|
}
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_reclaim(void)
|
|
{
|
|
/*
|
|
* You might think that the delay below would improve performance since
|
|
* the allocator will give away memory that it may ask for immediately.
|
|
* Really, it makes things worse, since cpu cycles are so much cheaper
|
|
* than disk activity.
|
|
*/
|
|
#if 0
|
|
static struct timeval tv = {0};
|
|
struct timeval now;
|
|
getmicrouptime(&now);
|
|
if (now.tv_sec > tv.tv_sec + 30)
|
|
tv = now;
|
|
else
|
|
return;
|
|
#endif
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA: vm asked us to release pages!\n");
|
|
#endif
|
|
bucket_enable();
|
|
zone_foreach(zone_drain);
|
|
|
|
/*
|
|
* Some slabs may have been freed but this zone will be visited early
|
|
* we visit again so that we can free pages that are empty once other
|
|
* zones are drained. We have to do the same for buckets.
|
|
*/
|
|
zone_drain(slabzone);
|
|
zone_drain(bucketzone);
|
|
}
|
|
|
|
void *
|
|
uma_large_malloc(int size, int wait)
|
|
{
|
|
void *mem;
|
|
uma_slab_t slab;
|
|
u_int8_t flags;
|
|
|
|
slab = uma_zalloc_internal(slabzone, NULL, wait);
|
|
if (slab == NULL)
|
|
return (NULL);
|
|
|
|
mem = page_alloc(NULL, size, &flags, wait);
|
|
if (mem) {
|
|
vsetslab((vm_offset_t)mem, slab);
|
|
slab->us_data = mem;
|
|
slab->us_flags = flags | UMA_SLAB_MALLOC;
|
|
slab->us_size = size;
|
|
} else {
|
|
uma_zfree_internal(slabzone, slab, NULL, 0);
|
|
}
|
|
|
|
|
|
return (mem);
|
|
}
|
|
|
|
void
|
|
uma_large_free(uma_slab_t slab)
|
|
{
|
|
vsetobj((vm_offset_t)slab->us_data, kmem_object);
|
|
page_free(slab->us_data, slab->us_size, slab->us_flags);
|
|
uma_zfree_internal(slabzone, slab, NULL, 0);
|
|
}
|
|
|
|
void
|
|
uma_print_stats(void)
|
|
{
|
|
zone_foreach(uma_print_zone);
|
|
}
|
|
|
|
void
|
|
uma_print_zone(uma_zone_t zone)
|
|
{
|
|
printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
|
|
zone->uz_name, zone, zone->uz_size, zone->uz_rsize, zone->uz_flags,
|
|
zone->uz_ipers, zone->uz_ppera,
|
|
(zone->uz_ipers * zone->uz_pages) - zone->uz_free, zone->uz_free);
|
|
}
|
|
|
|
/*
|
|
* Sysctl handler for vm.zone
|
|
*
|
|
* stolen from vm_zone.c
|
|
*/
|
|
static int
|
|
sysctl_vm_zone(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, len, cnt;
|
|
const int linesize = 128; /* conservative */
|
|
int totalfree;
|
|
char *tmpbuf, *offset;
|
|
uma_zone_t z;
|
|
char *p;
|
|
|
|
cnt = 0;
|
|
mtx_lock(&uma_mtx);
|
|
LIST_FOREACH(z, &uma_zones, uz_link)
|
|
cnt++;
|
|
mtx_unlock(&uma_mtx);
|
|
MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize,
|
|
M_TEMP, M_WAITOK);
|
|
len = snprintf(tmpbuf, linesize,
|
|
"\nITEM SIZE LIMIT USED FREE REQUESTS\n\n");
|
|
if (cnt == 0)
|
|
tmpbuf[len - 1] = '\0';
|
|
error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len);
|
|
if (error || cnt == 0)
|
|
goto out;
|
|
offset = tmpbuf;
|
|
mtx_lock(&uma_mtx);
|
|
LIST_FOREACH(z, &uma_zones, uz_link) {
|
|
if (cnt == 0) /* list may have changed size */
|
|
break;
|
|
ZONE_LOCK(z);
|
|
totalfree = z->uz_free + z->uz_cachefree;
|
|
len = snprintf(offset, linesize,
|
|
"%-12.12s %6.6u, %8.8u, %6.6u, %6.6u, %8.8llu\n",
|
|
z->uz_name, z->uz_size,
|
|
z->uz_maxpages * z->uz_ipers,
|
|
(z->uz_ipers * (z->uz_pages / z->uz_ppera)) - totalfree,
|
|
totalfree,
|
|
(unsigned long long)z->uz_allocs);
|
|
ZONE_UNLOCK(z);
|
|
for (p = offset + 12; p > offset && *p == ' '; --p)
|
|
/* nothing */ ;
|
|
p[1] = ':';
|
|
cnt--;
|
|
offset += len;
|
|
}
|
|
mtx_unlock(&uma_mtx);
|
|
*offset++ = '\0';
|
|
error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf);
|
|
out:
|
|
FREE(tmpbuf, M_TEMP);
|
|
return (error);
|
|
}
|