1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-19 10:53:58 +00:00
freebsd/sys/kern/kern_intr.c
Don Lewis 288e351b55 If a device attach routine fails during boot and calls bus_teardown_intr(),
ithread_remove_handler() may fail to remove the interrupt handler if
it decides to let the ithread do the removal.  The problem is that during
boot "cold" is set, which causes msleep() to return immediately.  This
will cause ithread_remove_handler() to fail to wait for the ithread
to do the removal from the handler TAILQ before freeing the handler
back to the heap.  Bad things will happen when some other user of the
TAILQ, such as ithread_add_handler() or the actual ithread attempts to use
the freed handler.  Fix the problem by forcing ithread_remove_handler()
to do the actual removal itself if the "cold" flag is set.

Reviewed by:	jhb
2004-01-13 22:55:46 +00:00

785 lines
19 KiB
C

/*
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/rtprio.h>
#include <sys/systm.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/random.h>
#include <sys/resourcevar.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <sys/vmmeter.h>
#include <machine/atomic.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/stdarg.h>
#ifdef DDB
#include <ddb/ddb.h>
#include <ddb/db_sym.h>
#endif
struct int_entropy {
struct proc *proc;
uintptr_t vector;
};
void *vm_ih;
void *softclock_ih;
struct ithd *clk_ithd;
struct ithd *tty_ithd;
static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
static void ithread_update(struct ithd *);
static void ithread_loop(void *);
static void start_softintr(void *);
u_char
ithread_priority(enum intr_type flags)
{
u_char pri;
flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
switch (flags) {
case INTR_TYPE_TTY:
pri = PI_TTYLOW;
break;
case INTR_TYPE_BIO:
/*
* XXX We need to refine this. BSD/OS distinguishes
* between tape and disk priorities.
*/
pri = PI_DISK;
break;
case INTR_TYPE_NET:
pri = PI_NET;
break;
case INTR_TYPE_CAM:
pri = PI_DISK; /* XXX or PI_CAM? */
break;
case INTR_TYPE_AV: /* Audio/video */
pri = PI_AV;
break;
case INTR_TYPE_CLK:
pri = PI_REALTIME;
break;
case INTR_TYPE_MISC:
pri = PI_DULL; /* don't care */
break;
default:
/* We didn't specify an interrupt level. */
panic("ithread_priority: no interrupt type in flags");
}
return pri;
}
/*
* Regenerate the name (p_comm) and priority for a threaded interrupt thread.
*/
static void
ithread_update(struct ithd *ithd)
{
struct intrhand *ih;
struct thread *td;
struct proc *p;
int entropy;
mtx_assert(&ithd->it_lock, MA_OWNED);
td = ithd->it_td;
if (td == NULL)
return;
p = td->td_proc;
strlcpy(p->p_comm, ithd->it_name, sizeof(p->p_comm));
ih = TAILQ_FIRST(&ithd->it_handlers);
if (ih == NULL) {
mtx_lock_spin(&sched_lock);
td->td_priority = PRI_MAX_ITHD;
td->td_base_pri = PRI_MAX_ITHD;
mtx_unlock_spin(&sched_lock);
ithd->it_flags &= ~IT_ENTROPY;
return;
}
entropy = 0;
mtx_lock_spin(&sched_lock);
td->td_priority = ih->ih_pri;
td->td_base_pri = ih->ih_pri;
mtx_unlock_spin(&sched_lock);
TAILQ_FOREACH(ih, &ithd->it_handlers, ih_next) {
if (strlen(p->p_comm) + strlen(ih->ih_name) + 1 <
sizeof(p->p_comm)) {
strcat(p->p_comm, " ");
strcat(p->p_comm, ih->ih_name);
} else if (strlen(p->p_comm) + 1 == sizeof(p->p_comm)) {
if (p->p_comm[sizeof(p->p_comm) - 2] == '+')
p->p_comm[sizeof(p->p_comm) - 2] = '*';
else
p->p_comm[sizeof(p->p_comm) - 2] = '+';
} else
strcat(p->p_comm, "+");
if (ih->ih_flags & IH_ENTROPY)
entropy++;
}
if (entropy)
ithd->it_flags |= IT_ENTROPY;
else
ithd->it_flags &= ~IT_ENTROPY;
CTR2(KTR_INTR, "%s: updated %s", __func__, p->p_comm);
}
int
ithread_create(struct ithd **ithread, uintptr_t vector, int flags,
void (*disable)(uintptr_t), void (*enable)(uintptr_t), const char *fmt, ...)
{
struct ithd *ithd;
struct thread *td;
struct proc *p;
int error;
va_list ap;
/* The only valid flag during creation is IT_SOFT. */
if ((flags & ~IT_SOFT) != 0)
return (EINVAL);
ithd = malloc(sizeof(struct ithd), M_ITHREAD, M_WAITOK | M_ZERO);
ithd->it_vector = vector;
ithd->it_disable = disable;
ithd->it_enable = enable;
ithd->it_flags = flags;
TAILQ_INIT(&ithd->it_handlers);
mtx_init(&ithd->it_lock, "ithread", NULL, MTX_DEF);
va_start(ap, fmt);
vsnprintf(ithd->it_name, sizeof(ithd->it_name), fmt, ap);
va_end(ap);
error = kthread_create(ithread_loop, ithd, &p, RFSTOPPED | RFHIGHPID,
0, "%s", ithd->it_name);
if (error) {
mtx_destroy(&ithd->it_lock);
free(ithd, M_ITHREAD);
return (error);
}
td = FIRST_THREAD_IN_PROC(p); /* XXXKSE */
mtx_lock_spin(&sched_lock);
td->td_ksegrp->kg_pri_class = PRI_ITHD;
td->td_priority = PRI_MAX_ITHD;
TD_SET_IWAIT(td);
mtx_unlock_spin(&sched_lock);
ithd->it_td = td;
td->td_ithd = ithd;
if (ithread != NULL)
*ithread = ithd;
CTR2(KTR_INTR, "%s: created %s", __func__, ithd->it_name);
return (0);
}
int
ithread_destroy(struct ithd *ithread)
{
struct thread *td;
if (ithread == NULL)
return (EINVAL);
td = ithread->it_td;
mtx_lock(&ithread->it_lock);
if (!TAILQ_EMPTY(&ithread->it_handlers)) {
mtx_unlock(&ithread->it_lock);
return (EINVAL);
}
ithread->it_flags |= IT_DEAD;
mtx_lock_spin(&sched_lock);
if (TD_AWAITING_INTR(td)) {
TD_CLR_IWAIT(td);
setrunqueue(td);
}
mtx_unlock_spin(&sched_lock);
mtx_unlock(&ithread->it_lock);
CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_name);
return (0);
}
int
ithread_add_handler(struct ithd* ithread, const char *name,
driver_intr_t handler, void *arg, u_char pri, enum intr_type flags,
void **cookiep)
{
struct intrhand *ih, *temp_ih;
if (ithread == NULL || name == NULL || handler == NULL)
return (EINVAL);
ih = malloc(sizeof(struct intrhand), M_ITHREAD, M_WAITOK | M_ZERO);
ih->ih_handler = handler;
ih->ih_argument = arg;
ih->ih_name = name;
ih->ih_ithread = ithread;
ih->ih_pri = pri;
if (flags & INTR_FAST)
ih->ih_flags = IH_FAST;
else if (flags & INTR_EXCL)
ih->ih_flags = IH_EXCLUSIVE;
if (flags & INTR_MPSAFE)
ih->ih_flags |= IH_MPSAFE;
if (flags & INTR_ENTROPY)
ih->ih_flags |= IH_ENTROPY;
mtx_lock(&ithread->it_lock);
if ((flags & INTR_EXCL) != 0 && !TAILQ_EMPTY(&ithread->it_handlers))
goto fail;
if (!TAILQ_EMPTY(&ithread->it_handlers)) {
temp_ih = TAILQ_FIRST(&ithread->it_handlers);
if (temp_ih->ih_flags & IH_EXCLUSIVE)
goto fail;
if ((ih->ih_flags & IH_FAST) && !(temp_ih->ih_flags & IH_FAST))
goto fail;
if (!(ih->ih_flags & IH_FAST) && (temp_ih->ih_flags & IH_FAST))
goto fail;
}
TAILQ_FOREACH(temp_ih, &ithread->it_handlers, ih_next)
if (temp_ih->ih_pri > ih->ih_pri)
break;
if (temp_ih == NULL)
TAILQ_INSERT_TAIL(&ithread->it_handlers, ih, ih_next);
else
TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
ithread_update(ithread);
mtx_unlock(&ithread->it_lock);
if (cookiep != NULL)
*cookiep = ih;
CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
ithread->it_name);
return (0);
fail:
mtx_unlock(&ithread->it_lock);
free(ih, M_ITHREAD);
return (EINVAL);
}
int
ithread_remove_handler(void *cookie)
{
struct intrhand *handler = (struct intrhand *)cookie;
struct ithd *ithread;
#ifdef INVARIANTS
struct intrhand *ih;
#endif
if (handler == NULL)
return (EINVAL);
ithread = handler->ih_ithread;
KASSERT(ithread != NULL,
("interrupt handler \"%s\" has a NULL interrupt thread",
handler->ih_name));
CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
ithread->it_name);
mtx_lock(&ithread->it_lock);
#ifdef INVARIANTS
TAILQ_FOREACH(ih, &ithread->it_handlers, ih_next)
if (ih == handler)
goto ok;
mtx_unlock(&ithread->it_lock);
panic("interrupt handler \"%s\" not found in interrupt thread \"%s\"",
ih->ih_name, ithread->it_name);
ok:
#endif
/*
* If the interrupt thread is already running, then just mark this
* handler as being dead and let the ithread do the actual removal.
*
* During a cold boot while cold is set, msleep() does not sleep,
* so we have to remove the handler here rather than letting the
* thread do it.
*/
mtx_lock_spin(&sched_lock);
if (!TD_AWAITING_INTR(ithread->it_td) && !cold) {
handler->ih_flags |= IH_DEAD;
/*
* Ensure that the thread will process the handler list
* again and remove this handler if it has already passed
* it on the list.
*/
ithread->it_need = 1;
} else
TAILQ_REMOVE(&ithread->it_handlers, handler, ih_next);
mtx_unlock_spin(&sched_lock);
if ((handler->ih_flags & IH_DEAD) != 0)
msleep(handler, &ithread->it_lock, PUSER, "itrmh", 0);
ithread_update(ithread);
mtx_unlock(&ithread->it_lock);
free(handler, M_ITHREAD);
return (0);
}
int
ithread_schedule(struct ithd *ithread, int do_switch)
{
struct int_entropy entropy;
struct thread *td;
struct thread *ctd;
struct proc *p;
/*
* If no ithread or no handlers, then we have a stray interrupt.
*/
if ((ithread == NULL) || TAILQ_EMPTY(&ithread->it_handlers))
return (EINVAL);
ctd = curthread;
/*
* If any of the handlers for this ithread claim to be good
* sources of entropy, then gather some.
*/
if (harvest.interrupt && ithread->it_flags & IT_ENTROPY) {
entropy.vector = ithread->it_vector;
entropy.proc = ctd->td_proc;
random_harvest(&entropy, sizeof(entropy), 2, 0,
RANDOM_INTERRUPT);
}
td = ithread->it_td;
p = td->td_proc;
KASSERT(p != NULL, ("ithread %s has no process", ithread->it_name));
CTR4(KTR_INTR, "%s: pid %d: (%s) need = %d",
__func__, p->p_pid, p->p_comm, ithread->it_need);
/*
* Set it_need to tell the thread to keep running if it is already
* running. Then, grab sched_lock and see if we actually need to
* put this thread on the runqueue. If so and the do_switch flag is
* true and it is safe to switch, then switch to the ithread
* immediately. Otherwise, set the needresched flag to guarantee
* that this ithread will run before any userland processes.
*/
ithread->it_need = 1;
mtx_lock_spin(&sched_lock);
if (TD_AWAITING_INTR(td)) {
CTR2(KTR_INTR, "%s: setrunqueue %d", __func__, p->p_pid);
TD_CLR_IWAIT(td);
setrunqueue(td);
if (do_switch &&
(ctd->td_critnest == 1) ) {
KASSERT((TD_IS_RUNNING(ctd)),
("ithread_schedule: Bad state for curthread."));
ctd->td_proc->p_stats->p_ru.ru_nivcsw++;
if (ctd->td_flags & TDF_IDLETD)
ctd->td_state = TDS_CAN_RUN; /* XXXKSE */
mi_switch();
} else {
curthread->td_flags |= TDF_NEEDRESCHED;
}
} else {
CTR4(KTR_INTR, "%s: pid %d: it_need %d, state %d",
__func__, p->p_pid, ithread->it_need, td->td_state);
}
mtx_unlock_spin(&sched_lock);
return (0);
}
int
swi_add(struct ithd **ithdp, const char *name, driver_intr_t handler,
void *arg, int pri, enum intr_type flags, void **cookiep)
{
struct ithd *ithd;
int error;
if (flags & (INTR_FAST | INTR_ENTROPY))
return (EINVAL);
ithd = (ithdp != NULL) ? *ithdp : NULL;
if (ithd != NULL) {
if ((ithd->it_flags & IT_SOFT) == 0)
return(EINVAL);
} else {
error = ithread_create(&ithd, pri, IT_SOFT, NULL, NULL,
"swi%d:", pri);
if (error)
return (error);
if (ithdp != NULL)
*ithdp = ithd;
}
return (ithread_add_handler(ithd, name, handler, arg,
(pri * RQ_PPQ) + PI_SOFT, flags, cookiep));
}
/*
* Schedule a heavyweight software interrupt process.
*/
void
swi_sched(void *cookie, int flags)
{
struct intrhand *ih = (struct intrhand *)cookie;
struct ithd *it = ih->ih_ithread;
int error;
atomic_add_int(&cnt.v_intr, 1); /* one more global interrupt */
CTR3(KTR_INTR, "swi_sched pid %d(%s) need=%d",
it->it_td->td_proc->p_pid, it->it_td->td_proc->p_comm, it->it_need);
/*
* Set ih_need for this handler so that if the ithread is already
* running it will execute this handler on the next pass. Otherwise,
* it will execute it the next time it runs.
*/
atomic_store_rel_int(&ih->ih_need, 1);
if (!(flags & SWI_DELAY)) {
error = ithread_schedule(it, !cold && !dumping);
KASSERT(error == 0, ("stray software interrupt"));
}
}
/*
* This is the main code for interrupt threads.
*/
static void
ithread_loop(void *arg)
{
struct ithd *ithd; /* our thread context */
struct intrhand *ih; /* and our interrupt handler chain */
struct thread *td;
struct proc *p;
td = curthread;
p = td->td_proc;
ithd = (struct ithd *)arg; /* point to myself */
KASSERT(ithd->it_td == td && td->td_ithd == ithd,
("%s: ithread and proc linkage out of sync", __func__));
/*
* As long as we have interrupts outstanding, go through the
* list of handlers, giving each one a go at it.
*/
for (;;) {
/*
* If we are an orphaned thread, then just die.
*/
if (ithd->it_flags & IT_DEAD) {
CTR3(KTR_INTR, "%s: pid %d: (%s) exiting", __func__,
p->p_pid, p->p_comm);
td->td_ithd = NULL;
mtx_destroy(&ithd->it_lock);
mtx_lock(&Giant);
free(ithd, M_ITHREAD);
kthread_exit(0);
}
CTR4(KTR_INTR, "%s: pid %d: (%s) need=%d", __func__,
p->p_pid, p->p_comm, ithd->it_need);
while (ithd->it_need) {
/*
* Service interrupts. If another interrupt
* arrives while we are running, they will set
* it_need to denote that we should make
* another pass.
*/
atomic_store_rel_int(&ithd->it_need, 0);
restart:
TAILQ_FOREACH(ih, &ithd->it_handlers, ih_next) {
if (ithd->it_flags & IT_SOFT && !ih->ih_need)
continue;
atomic_store_rel_int(&ih->ih_need, 0);
CTR6(KTR_INTR,
"%s: pid %d ih=%p: %p(%p) flg=%x", __func__,
p->p_pid, (void *)ih,
(void *)ih->ih_handler, ih->ih_argument,
ih->ih_flags);
if ((ih->ih_flags & IH_DEAD) != 0) {
mtx_lock(&ithd->it_lock);
TAILQ_REMOVE(&ithd->it_handlers, ih,
ih_next);
wakeup(ih);
mtx_unlock(&ithd->it_lock);
goto restart;
}
if ((ih->ih_flags & IH_MPSAFE) == 0)
mtx_lock(&Giant);
ih->ih_handler(ih->ih_argument);
if ((ih->ih_flags & IH_MPSAFE) == 0)
mtx_unlock(&Giant);
}
}
/*
* Processed all our interrupts. Now get the sched
* lock. This may take a while and it_need may get
* set again, so we have to check it again.
*/
WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
mtx_assert(&Giant, MA_NOTOWNED);
mtx_lock_spin(&sched_lock);
if (!ithd->it_need) {
/*
* Should we call this earlier in the loop above?
*/
if (ithd->it_enable != NULL)
ithd->it_enable(ithd->it_vector);
TD_SET_IWAIT(td); /* we're idle */
p->p_stats->p_ru.ru_nvcsw++;
CTR2(KTR_INTR, "%s: pid %d: done", __func__, p->p_pid);
mi_switch();
CTR2(KTR_INTR, "%s: pid %d: resumed", __func__, p->p_pid);
}
mtx_unlock_spin(&sched_lock);
}
}
#ifdef DDB
/*
* Dump details about an interrupt handler
*/
static void
db_dump_intrhand(struct intrhand *ih)
{
int comma;
db_printf("\t%-10s ", ih->ih_name);
switch (ih->ih_pri) {
case PI_REALTIME:
db_printf("CLK ");
break;
case PI_AV:
db_printf("AV ");
break;
case PI_TTYHIGH:
case PI_TTYLOW:
db_printf("TTY ");
break;
case PI_TAPE:
db_printf("TAPE");
break;
case PI_NET:
db_printf("NET ");
break;
case PI_DISK:
case PI_DISKLOW:
db_printf("DISK");
break;
case PI_DULL:
db_printf("DULL");
break;
default:
if (ih->ih_pri >= PI_SOFT)
db_printf("SWI ");
else
db_printf("%4u", ih->ih_pri);
break;
}
db_printf(" ");
db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
db_printf("(%p)", ih->ih_argument);
if (ih->ih_need ||
(ih->ih_flags & (IH_FAST | IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
IH_MPSAFE)) != 0) {
db_printf(" {");
comma = 0;
if (ih->ih_flags & IH_FAST) {
db_printf("FAST");
comma = 1;
}
if (ih->ih_flags & IH_EXCLUSIVE) {
if (comma)
db_printf(", ");
db_printf("EXCL");
comma = 1;
}
if (ih->ih_flags & IH_ENTROPY) {
if (comma)
db_printf(", ");
db_printf("ENTROPY");
comma = 1;
}
if (ih->ih_flags & IH_DEAD) {
if (comma)
db_printf(", ");
db_printf("DEAD");
comma = 1;
}
if (ih->ih_flags & IH_MPSAFE) {
if (comma)
db_printf(", ");
db_printf("MPSAFE");
comma = 1;
}
if (ih->ih_need) {
if (comma)
db_printf(", ");
db_printf("NEED");
}
db_printf("}");
}
db_printf("\n");
}
/*
* Dump details about an ithread
*/
void
db_dump_ithread(struct ithd *ithd, int handlers)
{
struct proc *p;
struct intrhand *ih;
int comma;
if (ithd->it_td != NULL) {
p = ithd->it_td->td_proc;
db_printf("%s (pid %d)", p->p_comm, p->p_pid);
} else
db_printf("%s: (no thread)", ithd->it_name);
if ((ithd->it_flags & (IT_SOFT | IT_ENTROPY | IT_DEAD)) != 0 ||
ithd->it_need) {
db_printf(" {");
comma = 0;
if (ithd->it_flags & IT_SOFT) {
db_printf("SOFT");
comma = 1;
}
if (ithd->it_flags & IT_ENTROPY) {
if (comma)
db_printf(", ");
db_printf("ENTROPY");
comma = 1;
}
if (ithd->it_flags & IT_DEAD) {
if (comma)
db_printf(", ");
db_printf("DEAD");
comma = 1;
}
if (ithd->it_need) {
if (comma)
db_printf(", ");
db_printf("NEED");
}
db_printf("}");
}
db_printf("\n");
if (handlers)
TAILQ_FOREACH(ih, &ithd->it_handlers, ih_next)
db_dump_intrhand(ih);
}
#endif /* DDB */
/*
* Start standard software interrupt threads
*/
static void
start_softintr(void *dummy)
{
struct proc *p;
if (swi_add(&clk_ithd, "clock", softclock, NULL, SWI_CLOCK,
INTR_MPSAFE, &softclock_ih) ||
swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
panic("died while creating standard software ithreads");
p = clk_ithd->it_td->td_proc;
PROC_LOCK(p);
p->p_flag |= P_NOLOAD;
PROC_UNLOCK(p);
}
SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr, NULL)
/*
* Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
* The data for this machine dependent, and the declarations are in machine
* dependent code. The layout of intrnames and intrcnt however is machine
* independent.
*
* We do not know the length of intrcnt and intrnames at compile time, so
* calculate things at run time.
*/
static int
sysctl_intrnames(SYSCTL_HANDLER_ARGS)
{
return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames,
req));
}
SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
NULL, 0, sysctl_intrnames, "", "Interrupt Names");
static int
sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
{
return (sysctl_handle_opaque(oidp, intrcnt,
(char *)eintrcnt - (char *)intrcnt, req));
}
SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
#ifdef DDB
/*
* DDB command to dump the interrupt statistics.
*/
DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
{
u_long *i;
char *cp;
int quit;
cp = intrnames;
db_setup_paging(db_simple_pager, &quit, DB_LINES_PER_PAGE);
for (i = intrcnt, quit = 0; i != eintrcnt && !quit; i++) {
if (*cp == '\0')
break;
if (*i != 0)
db_printf("%s\t%lu\n", cp, *i);
cp += strlen(cp) + 1;
}
}
#endif