1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-21 11:13:30 +00:00
freebsd/sys/dev/en/midway.c
2003-02-19 05:47:46 +00:00

3468 lines
96 KiB
C

/* $NetBSD: midway.c,v 1.30 1997/09/29 17:40:38 chuck Exp $ */
/* (sync'd to midway.c 1.68) */
/*
*
* Copyright (c) 1996 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
*
* m i d w a y . c e n i 1 5 5 d r i v e r
*
* author: Chuck Cranor <chuck@ccrc.wustl.edu>
* started: spring, 1996 (written from scratch).
*
* notes from the author:
* Extra special thanks go to Werner Almesberger, EPFL LRC. Werner's
* ENI driver was especially useful in figuring out how this card works.
* I would also like to thank Werner for promptly answering email and being
* generally helpful.
*/
#undef EN_DEBUG
#undef EN_DEBUG_RANGE /* check ranges on en_read/en_write's? */
#define EN_MBUF_OPT /* try and put more stuff in mbuf? */
#define EN_DIAG
#define EN_STAT
#ifndef EN_DMA
#define EN_DMA 1 /* use dma? */
#endif
#define EN_NOTXDMA 0 /* hook to disable tx dma only */
#define EN_NORXDMA 0 /* hook to disable rx dma only */
#define EN_DDBHOOK 1 /* compile in ddb functions */
#if defined(MIDWAY_ADPONLY)
#define EN_ENIDMAFIX 0 /* no ENI cards to worry about */
#else
#define EN_ENIDMAFIX 1 /* avoid byte DMA on the ENI card (see below) */
#endif
/*
* note on EN_ENIDMAFIX: the byte aligner on the ENI version of the card
* appears to be broken. it works just fine if there is no load... however
* when the card is loaded the data get corrupted. to see this, one only
* has to use "telnet" over ATM. do the following command in "telnet":
* cat /usr/share/misc/termcap
* "telnet" seems to generate lots of 1023 byte mbufs (which make great
* use of the byte aligner). watch "netstat -s" for checksum errors.
*
* I further tested this by adding a function that compared the transmit
* data on the card's SRAM with the data in the mbuf chain _after_ the
* "transmit DMA complete" interrupt. using the "telnet" test I got data
* mismatches where the byte-aligned data should have been. using ddb
* and en_dumpmem() I verified that the DTQs fed into the card were
* absolutely correct. thus, we are forced to concluded that the ENI
* hardware is buggy. note that the Adaptec version of the card works
* just fine with byte DMA.
*
* bottom line: we set EN_ENIDMAFIX to 1 to avoid byte DMAs on the ENI
* card.
*/
#if defined(DIAGNOSTIC) && !defined(EN_DIAG)
#define EN_DIAG /* link in with master DIAG option */
#endif
#ifdef EN_STAT
#define EN_COUNT(X) (X)++
#else
#define EN_COUNT(X) /* nothing */
#endif
#ifdef EN_DEBUG
#undef EN_DDBHOOK
#define EN_DDBHOOK 1
#define STATIC /* nothing */
#define INLINE /* nothing */
#else /* EN_DEBUG */
#define STATIC static
#define INLINE __inline
#endif /* EN_DEBUG */
#ifdef __FreeBSD__
#include "opt_inet.h"
#include "opt_natm.h"
#include "opt_ddb.h"
/* enable DDBHOOK when DDB is available */
#undef EN_DDBHOOK
#ifdef DDB
#define EN_DDBHOOK 1
#endif
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/queue.h>
#if defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)
#include <sys/device.h>
#endif
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_atm.h>
#include <vm/vm.h>
#if defined(INET) || defined(INET6)
#include <netinet/in.h>
#include <netinet/if_atm.h>
#endif
#ifdef NATM
#include <netnatm/natm.h>
#endif
#if defined(__NetBSD__) || defined(__OpenBSD__)
#include <machine/bus.h>
#include <dev/ic/midwayreg.h>
#include <dev/ic/midwayvar.h>
#elif defined(__FreeBSD__)
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/en/midwayreg.h>
#include <dev/en/midwayvar.h>
#include <vm/pmap.h> /* for vtophys proto */
#ifndef IFF_NOTRAILERS
#define IFF_NOTRAILERS 0
#endif
#endif /* __FreeBSD__ */
#if defined(__alpha__)
/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
#undef vtophys
#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va))
#endif
#ifdef __FreeBSD__
#define NBPF 1
#else
#include "bpf.h"
#endif
#if NBPF > 0
#include <net/bpf.h>
#ifdef __FreeBSD__
#define BPFATTACH(ifp, dlt, hlen) bpfattach((ifp), (dlt), (hlen))
#else
#define BPFATTACH(ifp, dlt, hlen) bpfattach(&(ifp)->if_bpf, (ifp), (dlt), (hlen))
#define BPF_MTAP(ifp, m) bpf_mtap((ifp)->if_bpf, (m))
#endif
#endif /* NBPF > 0 */
/*
* params
*/
#ifndef EN_TXHIWAT
#define EN_TXHIWAT (64*1024) /* max 64 KB waiting to be DMAd out */
#endif
#ifndef EN_MINDMA
#define EN_MINDMA 32 /* don't DMA anything less than this (bytes) */
#endif
#define RX_NONE 0xffff /* recv VC not in use */
#define EN_OBHDR ATM_PH_DRIVER7 /* TBD in first mbuf ! */
#define EN_OBTRL ATM_PH_DRIVER8 /* PDU trailier in last mbuf ! */
#define ENOTHER_FREE 0x01 /* free rxslot */
#define ENOTHER_DRAIN 0x02 /* almost free (drain DRQ dma) */
#define ENOTHER_RAW 0x04 /* 'raw' access (aka boodi mode) */
#define ENOTHER_SWSL 0x08 /* in software service list */
static int en_dma = EN_DMA; /* use DMA (switch off for dbg) */
#ifndef __FreeBSD__
/*
* autoconfig attachments
*/
struct cfdriver en_cd = {
0, "en", DV_IFNET,
};
#endif
/*
* local structures
*/
/*
* params to en_txlaunch() function
*/
struct en_launch {
u_int32_t tbd1; /* TBD 1 */
u_int32_t tbd2; /* TBD 2 */
u_int32_t pdu1; /* PDU 1 (aal5) */
int nodma; /* don't use DMA */
int need; /* total space we need (pad out if less data) */
int mlen; /* length of mbuf (for dtq) */
struct mbuf *t; /* data */
u_int32_t aal; /* aal code */
u_int32_t atm_vci; /* vci */
u_int8_t atm_flags; /* flags */
};
/*
* dma table (index by # of words)
*
* plan A: use WMAYBE (obsolete)
* plan B: avoid WMAYBE
*/
struct en_dmatab {
u_int8_t bcode; /* code */
u_int8_t divshift; /* byte divisor */
};
static struct en_dmatab en_dma_planB[] = {
{ 0, 0 }, /* 0 */ { MIDDMA_WORD, 2}, /* 1 */
{ MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_WORD, 2}, /* 3 */
{ MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_WORD, 2}, /* 5 */
{ MIDDMA_2WORD, 3}, /* 6 */ { MIDDMA_WORD, 2}, /* 7 */
{ MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_WORD, 2}, /* 9 */
{ MIDDMA_2WORD, 3}, /* 10 */ { MIDDMA_WORD, 2}, /* 11 */
{ MIDDMA_4WORD, 4}, /* 12 */ { MIDDMA_WORD, 2}, /* 13 */
{ MIDDMA_2WORD, 3}, /* 14 */ { MIDDMA_WORD, 2}, /* 15 */
{ MIDDMA_16WORD, 6}, /* 16 */
};
static struct en_dmatab *en_dmaplan = en_dma_planB;
/*
* prototypes
*/
STATIC INLINE int en_b2sz(int) __attribute__ ((unused));
#ifdef EN_DDBHOOK
int en_dump(int,int);
int en_dumpmem(int,int,int);
#endif
STATIC void en_dmaprobe(struct en_softc *);
STATIC int en_dmaprobe_doit(struct en_softc *, u_int8_t *,
u_int8_t *, int);
STATIC INLINE int en_dqneed(struct en_softc *, caddr_t, u_int,
u_int) __attribute__ ((unused));
STATIC void en_init(struct en_softc *);
STATIC int en_ioctl(struct ifnet *, EN_IOCTL_CMDT, caddr_t);
STATIC INLINE int en_k2sz(int) __attribute__ ((unused));
STATIC void en_loadvc(struct en_softc *, int);
STATIC int en_mfix(struct en_softc *, struct mbuf **, struct mbuf *);
STATIC INLINE struct mbuf *en_mget(struct en_softc *, u_int,
u_int *) __attribute__ ((unused));
STATIC INLINE u_int32_t en_read(struct en_softc *,
u_int32_t) __attribute__ ((unused));
STATIC int en_rxctl(struct en_softc *, struct atm_pseudoioctl *, int);
STATIC void en_txdma(struct en_softc *, int);
STATIC void en_txlaunch(struct en_softc *, int,
struct en_launch *);
STATIC void en_service(struct en_softc *);
STATIC void en_start(struct ifnet *);
STATIC INLINE int en_sz2b(int) __attribute__ ((unused));
STATIC INLINE void en_write(struct en_softc *, u_int32_t,
u_int32_t) __attribute__ ((unused));
/*
* macros/inline
*/
/*
* raw read/write macros
*/
#define EN_READDAT(SC,R) en_read(SC,R)
#define EN_WRITEDAT(SC,R,V) en_write(SC,R,V)
/*
* cooked read/write macros
*/
#define EN_READ(SC,R) (u_int32_t)ntohl(en_read(SC,R))
#define EN_WRITE(SC,R,V) en_write(SC,R, htonl(V))
#define EN_WRAPADD(START,STOP,CUR,VAL) { \
(CUR) = (CUR) + (VAL); \
if ((CUR) >= (STOP)) \
(CUR) = (START) + ((CUR) - (STOP)); \
}
#define WORD_IDX(START, X) (((X) - (START)) / sizeof(u_int32_t))
/* we store sc->dtq and sc->drq data in the following format... */
#define EN_DQ_MK(SLOT,LEN) (((SLOT) << 20)|(LEN)|(0x80000))
/* the 0x80000 ensures we != 0 */
#define EN_DQ_SLOT(X) ((X) >> 20)
#define EN_DQ_LEN(X) ((X) & 0x3ffff)
/* format of DTQ/DRQ word 1 differs between ENI and ADP */
#if defined(MIDWAY_ENIONLY)
#define MID_MK_TXQ(SC,CNT,CHAN,END,BCODE) \
EN_WRITE((SC), (SC)->dtq_us, \
MID_MK_TXQ_ENI((CNT), (CHAN), (END), (BCODE)));
#define MID_MK_RXQ(SC,CNT,VCI,END,BCODE) \
EN_WRITE((SC), (SC)->drq_us, \
MID_MK_RXQ_ENI((CNT), (VCI), (END), (BCODE)));
#elif defined(MIDWAY_ADPONLY)
#define MID_MK_TXQ(SC,CNT,CHAN,END,JK) \
EN_WRITE((SC), (SC)->dtq_us, \
MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK)));
#define MID_MK_RXQ(SC,CNT,VCI,END,JK) \
EN_WRITE((SC), (SC)->drq_us, \
MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK)));
#else
#define MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE) { \
if ((SC)->is_adaptec) \
EN_WRITE((SC), (SC)->dtq_us, \
MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK_OR_BCODE))); \
else \
EN_WRITE((SC), (SC)->dtq_us, \
MID_MK_TXQ_ENI((CNT), (CHAN), (END), (JK_OR_BCODE))); \
}
#define MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE) { \
if ((SC)->is_adaptec) \
EN_WRITE((SC), (SC)->drq_us, \
MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK_OR_BCODE))); \
else \
EN_WRITE((SC), (SC)->drq_us, \
MID_MK_RXQ_ENI((CNT), (VCI), (END), (JK_OR_BCODE))); \
}
#endif
/* add an item to the DTQ */
#define EN_DTQADD(SC,CNT,CHAN,JK_OR_BCODE,ADDR,LEN,END) { \
if (END) \
(SC)->dtq[MID_DTQ_A2REG((SC)->dtq_us)] = EN_DQ_MK(CHAN,LEN); \
MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE); \
(SC)->dtq_us += 4; \
EN_WRITE((SC), (SC)->dtq_us, (ADDR)); \
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, (SC)->dtq_us, 4); \
(SC)->dtq_free--; \
if (END) \
EN_WRITE((SC), MID_DMA_WRTX, MID_DTQ_A2REG((SC)->dtq_us)); \
}
/* DRQ add macro */
#define EN_DRQADD(SC,CNT,VCI,JK_OR_BCODE,ADDR,LEN,SLOT,END) { \
if (END) \
(SC)->drq[MID_DRQ_A2REG((SC)->drq_us)] = EN_DQ_MK(SLOT,LEN); \
MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE); \
(SC)->drq_us += 4; \
EN_WRITE((SC), (SC)->drq_us, (ADDR)); \
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, (SC)->drq_us, 4); \
(SC)->drq_free--; \
if (END) \
EN_WRITE((SC), MID_DMA_WRRX, MID_DRQ_A2REG((SC)->drq_us)); \
}
/*
* the driver code
*
* the code is arranged in a specific way:
* [1] short/inline functions
* [2] autoconfig stuff
* [3] ioctl stuff
* [4] reset -> init -> trasmit -> intr -> receive functions
*
*/
/***********************************************************************/
/*
* en_read: read a word from the card. this is the only function
* that reads from the card.
*/
STATIC INLINE u_int32_t en_read(sc, r)
struct en_softc *sc;
u_int32_t r;
{
#ifdef EN_DEBUG_RANGE
if (r > MID_MAXOFF || (r % 4))
panic("en_read out of range, r=0x%x", r);
#endif
return(bus_space_read_4(sc->en_memt, sc->en_base, r));
}
/*
* en_write: write a word to the card. this is the only function that
* writes to the card.
*/
STATIC INLINE void en_write(sc, r, v)
struct en_softc *sc;
u_int32_t r, v;
{
#ifdef EN_DEBUG_RANGE
if (r > MID_MAXOFF || (r % 4))
panic("en_write out of range, r=0x%x", r);
#endif
bus_space_write_4(sc->en_memt, sc->en_base, r, v);
}
/*
* en_k2sz: convert KBytes to a size parameter (a log2)
*/
STATIC INLINE int en_k2sz(k)
int k;
{
switch(k) {
case 1: return(0);
case 2: return(1);
case 4: return(2);
case 8: return(3);
case 16: return(4);
case 32: return(5);
case 64: return(6);
case 128: return(7);
default: panic("en_k2sz");
}
return(0);
}
#define en_log2(X) en_k2sz(X)
/*
* en_b2sz: convert a DMA burst code to its byte size
*/
STATIC INLINE int en_b2sz(b)
int b;
{
switch (b) {
case MIDDMA_WORD: return(1*4);
case MIDDMA_2WMAYBE:
case MIDDMA_2WORD: return(2*4);
case MIDDMA_4WMAYBE:
case MIDDMA_4WORD: return(4*4);
case MIDDMA_8WMAYBE:
case MIDDMA_8WORD: return(8*4);
case MIDDMA_16WMAYBE:
case MIDDMA_16WORD: return(16*4);
default: panic("en_b2sz");
}
return(0);
}
/*
* en_sz2b: convert a burst size (bytes) to DMA burst code
*/
STATIC INLINE int en_sz2b(sz)
int sz;
{
switch (sz) {
case 1*4: return(MIDDMA_WORD);
case 2*4: return(MIDDMA_2WORD);
case 4*4: return(MIDDMA_4WORD);
case 8*4: return(MIDDMA_8WORD);
case 16*4: return(MIDDMA_16WORD);
default: panic("en_sz2b");
}
return(0);
}
/*
* en_dqneed: calculate number of DTQ/DRQ's needed for a buffer
*/
STATIC INLINE int en_dqneed(sc, data, len, tx)
struct en_softc *sc;
caddr_t data;
u_int len, tx;
{
int result, needalign, sz;
#if !defined(MIDWAY_ENIONLY)
#if !defined(MIDWAY_ADPONLY)
if (sc->is_adaptec)
#endif /* !MIDWAY_ADPONLY */
return(1); /* adaptec can DMA anything in one go */
#endif
#if !defined(MIDWAY_ADPONLY)
result = 0;
if (len < EN_MINDMA) {
if (!tx) /* XXX: conservative */
return(1); /* will copy/DMA_JK */
}
if (tx) { /* byte burst? */
needalign = (((uintptr_t) (void *) data) % sizeof(u_int32_t));
if (needalign) {
result++;
sz = min(len, sizeof(u_int32_t) - needalign);
len -= sz;
data += sz;
}
}
if (sc->alburst && len) {
needalign = (((uintptr_t) (void *) data) & sc->bestburstmask);
if (needalign) {
result++; /* alburst */
sz = min(len, sc->bestburstlen - needalign);
len -= sz;
}
}
if (len >= sc->bestburstlen) {
sz = len / sc->bestburstlen;
sz = sz * sc->bestburstlen;
len -= sz;
result++; /* best shot */
}
if (len) {
result++; /* clean up */
if (tx && (len % sizeof(u_int32_t)) != 0)
result++; /* byte cleanup */
}
return(result);
#endif /* !MIDWAY_ADPONLY */
}
/*
* en_mget: get an mbuf chain that can hold totlen bytes and return it
* (for recv) [based on am7990_get from if_le and ieget from if_ie]
* after this call the sum of all the m_len's in the chain will be totlen.
*/
STATIC INLINE struct mbuf *en_mget(sc, totlen, drqneed)
struct en_softc *sc;
u_int totlen, *drqneed;
{
struct mbuf *m;
struct mbuf *top, **mp;
*drqneed = 0;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return(NULL);
m->m_pkthdr.rcvif = &sc->enif;
m->m_pkthdr.len = totlen;
m->m_len = MHLEN;
top = NULL;
mp = &top;
/* if (top != NULL) then we've already got 1 mbuf on the chain */
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (!m) {
m_freem(top);
return(NULL); /* out of mbufs */
}
m->m_len = MLEN;
}
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m_freem(top);
return(NULL); /* out of mbuf clusters */
}
m->m_len = MCLBYTES;
}
m->m_len = min(totlen, m->m_len);
totlen -= m->m_len;
*mp = m;
mp = &m->m_next;
*drqneed += en_dqneed(sc, m->m_data, m->m_len, 0);
}
return(top);
}
/***********************************************************************/
/*
* autoconfig stuff
*/
void en_attach(sc)
struct en_softc *sc;
{
struct ifnet *ifp = &sc->enif;
int sz;
u_int32_t reg, lcv, check, ptr, sav, midvloc;
/*
* probe card to determine memory size. the stupid ENI card always
* reports to PCI that it needs 4MB of space (2MB regs and 2MB RAM).
* if it has less than 2MB RAM the addresses wrap in the RAM address space.
* (i.e. on a 512KB card addresses 0x3ffffc, 0x37fffc, and 0x2ffffc
* are aliases for 0x27fffc [note that RAM starts at offset 0x200000]).
*/
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */
for (lcv = MID_PROBEOFF; lcv <= MID_MAXOFF ; lcv += MID_PROBSIZE) {
EN_WRITE(sc, lcv, lcv); /* data[address] = address */
for (check = MID_PROBEOFF ; check < lcv ; check += MID_PROBSIZE) {
reg = EN_READ(sc, check);
if (reg != check) { /* found an alias! */
goto done_probe; /* and quit */
}
}
}
done_probe:
lcv -= MID_PROBSIZE; /* take one step back */
sc->en_obmemsz = (lcv + 4) - MID_RAMOFF;
/*
* determine the largest DMA burst supported
*/
en_dmaprobe(sc);
/*
* "hello world"
*/
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset */
for (lcv = MID_RAMOFF ; lcv < MID_RAMOFF + sc->en_obmemsz ; lcv += 4)
EN_WRITE(sc, lcv, 0); /* zero memory */
reg = EN_READ(sc, MID_RESID);
printf("%s: ATM midway v%d, board IDs %d.%d, %s%s%s, %ldKB on-board RAM\n",
sc->sc_dev.dv_xname, MID_VER(reg), MID_MID(reg), MID_DID(reg),
(MID_IS_SABRE(reg)) ? "sabre controller, " : "",
(MID_IS_SUNI(reg)) ? "SUNI" : "Utopia",
(!MID_IS_SUNI(reg) && MID_IS_UPIPE(reg)) ? " (pipelined)" : "",
(long)sc->en_obmemsz / 1024);
if (sc->is_adaptec) {
if (sc->bestburstlen == 64 && sc->alburst == 0)
printf("%s: passed 64 byte DMA test\n", sc->sc_dev.dv_xname);
else
printf("%s: FAILED DMA TEST: burst=%d, alburst=%d\n",
sc->sc_dev.dv_xname, sc->bestburstlen, sc->alburst);
} else {
printf("%s: maximum DMA burst length = %d bytes%s\n", sc->sc_dev.dv_xname,
sc->bestburstlen, (sc->alburst) ? " (must align)" : "");
}
/*
* link into network subsystem and prepare card
*/
#if defined(__NetBSD__) || defined(__OpenBSD__)
bcopy(sc->sc_dev.dv_xname, sc->enif.if_xname, IFNAMSIZ);
#endif
sc->enif.if_softc = sc;
ifp->if_flags = IFF_SIMPLEX|IFF_NOTRAILERS;
ifp->if_ioctl = en_ioctl;
ifp->if_output = atm_output;
ifp->if_start = en_start;
/*
* init softc
*/
for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
sc->rxvc2slot[lcv] = RX_NONE;
sc->txspeed[lcv] = 0; /* full */
sc->txvc2slot[lcv] = 0; /* full speed == slot 0 */
}
sz = sc->en_obmemsz - (MID_BUFOFF - MID_RAMOFF);
ptr = sav = MID_BUFOFF;
ptr = roundup(ptr, EN_TXSZ * 1024); /* align */
sz = sz - (ptr - sav);
if (EN_TXSZ*1024 * EN_NTX > sz) {
printf("%s: EN_NTX/EN_TXSZ too big\n", sc->sc_dev.dv_xname);
return;
}
for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
sc->txslot[lcv].mbsize = 0;
sc->txslot[lcv].start = ptr;
ptr += (EN_TXSZ * 1024);
sz -= (EN_TXSZ * 1024);
sc->txslot[lcv].stop = ptr;
sc->txslot[lcv].nref = 0;
bzero(&sc->txslot[lcv].indma, sizeof(sc->txslot[lcv].indma));
bzero(&sc->txslot[lcv].q, sizeof(sc->txslot[lcv].q));
#ifdef EN_DEBUG
printf("%s: tx%d: start 0x%x, stop 0x%x\n", sc->sc_dev.dv_xname, lcv,
sc->txslot[lcv].start, sc->txslot[lcv].stop);
#endif
}
sav = ptr;
ptr = roundup(ptr, EN_RXSZ * 1024); /* align */
sz = sz - (ptr - sav);
sc->en_nrx = sz / (EN_RXSZ * 1024);
if (sc->en_nrx <= 0) {
printf("%s: EN_NTX/EN_TXSZ/EN_RXSZ too big\n", sc->sc_dev.dv_xname);
return;
}
/*
* ensure that there is always one VC slot on the service list free
* so that we can tell the difference between a full and empty list.
*/
if (sc->en_nrx >= MID_N_VC)
sc->en_nrx = MID_N_VC - 1;
for (lcv = 0 ; lcv < sc->en_nrx ; lcv++) {
sc->rxslot[lcv].rxhand = NULL;
sc->rxslot[lcv].oth_flags = ENOTHER_FREE;
bzero(&sc->rxslot[lcv].indma, sizeof(sc->rxslot[lcv].indma));
bzero(&sc->rxslot[lcv].q, sizeof(sc->rxslot[lcv].q));
midvloc = sc->rxslot[lcv].start = ptr;
ptr += (EN_RXSZ * 1024);
sz -= (EN_RXSZ * 1024);
sc->rxslot[lcv].stop = ptr;
midvloc = midvloc - MID_RAMOFF;
midvloc = (midvloc & ~((EN_RXSZ*1024) - 1)) >> 2; /* mask, cvt to words */
midvloc = midvloc >> MIDV_LOCTOPSHFT; /* we only want the top 11 bits */
midvloc = (midvloc & MIDV_LOCMASK) << MIDV_LOCSHIFT;
sc->rxslot[lcv].mode = midvloc |
(en_k2sz(EN_RXSZ) << MIDV_SZSHIFT) | MIDV_TRASH;
#ifdef EN_DEBUG
printf("%s: rx%d: start 0x%x, stop 0x%x, mode 0x%x\n", sc->sc_dev.dv_xname,
lcv, sc->rxslot[lcv].start, sc->rxslot[lcv].stop, sc->rxslot[lcv].mode);
#endif
}
#ifdef EN_STAT
sc->vtrash = sc->otrash = sc->mfix = sc->txmbovr = sc->dmaovr = 0;
sc->txoutspace = sc->txdtqout = sc->launch = sc->lheader = sc->ltail = 0;
sc->hwpull = sc->swadd = sc->rxqnotus = sc->rxqus = sc->rxoutboth = 0;
sc->rxdrqout = sc->ttrash = sc->rxmbufout = sc->mfixfail = 0;
sc->headbyte = sc->tailbyte = sc->tailflush = 0;
#endif
sc->need_drqs = sc->need_dtqs = 0;
printf("%s: %d %dKB receive buffers, %d %dKB transmit buffers allocated\n",
sc->sc_dev.dv_xname, sc->en_nrx, EN_RXSZ, EN_NTX, EN_TXSZ);
printf("%s: End Station Identifier (mac address) %6D\n",
sc->sc_dev.dv_xname, sc->macaddr, ":");
/*
* final commit
*/
if_attach(ifp);
atm_ifattach(ifp);
#if NBPF > 0
BPFATTACH(ifp, DLT_ATM_RFC1483, sizeof(struct atmllc));
#endif
}
/*
* en_dmaprobe: helper function for en_attach.
*
* see how the card handles DMA by running a few DMA tests. we need
* to figure out the largest number of bytes we can DMA in one burst
* ("bestburstlen"), and if the starting address for a burst needs to
* be aligned on any sort of boundary or not ("alburst").
*
* typical findings:
* sparc1: bestburstlen=4, alburst=0 (ick, broken DMA!)
* sparc2: bestburstlen=64, alburst=1
* p166: bestburstlen=64, alburst=0
*/
#if defined(__FreeBSD__) && defined(__i386__)
#define NBURSTS 3 /* number of bursts to use for dmaprobe */
#define BOUNDARY 1024 /* test misaligned dma crossing the bounday.
should be n * 64. at least 64*(NBURSTS+1).
dell P6 with EDO DRAM has 1K bounday problem */
#endif
STATIC void en_dmaprobe(sc)
struct en_softc *sc;
{
#ifdef NBURSTS
/* be careful. kernel stack is only 8K */
u_int8_t buffer[BOUNDARY * 2 + 64 * (NBURSTS + 1)];
#else
u_int32_t srcbuf[64], dstbuf[64];
#endif
u_int8_t *sp, *dp;
int bestalgn, bestnotalgn, lcv, try;
sc->alburst = 0;
#ifdef NBURSTS
/* setup src and dst buf at the end of the boundary */
sp = (u_int8_t *)roundup((uintptr_t)(void *)buffer, 64);
while (((uintptr_t)(void *)sp & (BOUNDARY - 1)) != (BOUNDARY - 64))
sp += 64;
dp = sp + BOUNDARY;
/*
* we can't dma across page boundary so that, if buf is at a page
* boundary, move it to the next page. but still either src or dst
* will be at the boundary, which should be ok.
*/
if ((((uintptr_t)(void *)sp + 64) & PAGE_MASK) == 0)
sp += 64;
if ((((uintptr_t)(void *)dp + 64) & PAGE_MASK) == 0)
dp += 64;
#else /* !NBURSTS */
sp = (u_int8_t *) srcbuf;
while ((((unsigned long) sp) % MIDDMA_MAXBURST) != 0)
sp += 4;
dp = (u_int8_t *) dstbuf;
while ((((unsigned long) dp) % MIDDMA_MAXBURST) != 0)
dp += 4;
#endif /* !NBURSTS */
bestalgn = bestnotalgn = en_dmaprobe_doit(sc, sp, dp, 0);
for (lcv = 4 ; lcv < MIDDMA_MAXBURST ; lcv += 4) {
try = en_dmaprobe_doit(sc, sp+lcv, dp+lcv, 0);
#ifdef NBURSTS
if (try < bestnotalgn) {
bestnotalgn = try;
break;
}
#else
if (try < bestnotalgn)
bestnotalgn = try;
#endif
}
if (bestalgn != bestnotalgn) /* need bursts aligned */
sc->alburst = 1;
sc->bestburstlen = bestalgn;
sc->bestburstshift = en_log2(bestalgn);
sc->bestburstmask = sc->bestburstlen - 1; /* must be power of 2 */
sc->bestburstcode = en_sz2b(bestalgn);
#if 1 /* __FreeBSD__ */
/*
* correct pci chipsets should be able to handle misaligned-64-byte DMA.
* but there are too many broken chipsets around. we try to work around
* by finding the best workable dma size, but still some broken machines
* exhibit the problem later. so warn it here.
*/
if (bestalgn != 64 || sc->alburst != 0) {
printf("%s: WARNING: DMA test detects a broken PCI chipset!\n",
sc->sc_dev.dv_xname);
printf(" trying to work around the problem... but if this doesn't\n");
printf(" work for you, you'd better switch to a newer motherboard.\n");
}
#endif /* 1 */
return;
}
/*
* en_dmaprobe_doit: do actual testing
*/
STATIC int
en_dmaprobe_doit(sc, sp, dp, wmtry)
struct en_softc *sc;
u_int8_t *sp, *dp;
int wmtry;
{
int lcv, retval = 4, cnt, count;
u_int32_t reg, bcode, midvloc;
/*
* set up a 1k buffer at MID_BUFOFF
*/
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */
midvloc = ((MID_BUFOFF - MID_RAMOFF) / sizeof(u_int32_t)) >> MIDV_LOCTOPSHFT;
EN_WRITE(sc, MIDX_PLACE(0), MIDX_MKPLACE(en_k2sz(1), midvloc));
EN_WRITE(sc, MID_VC(0), (midvloc << MIDV_LOCSHIFT)
| (en_k2sz(1) << MIDV_SZSHIFT) | MIDV_TRASH);
EN_WRITE(sc, MID_DST_RP(0), 0);
EN_WRITE(sc, MID_WP_ST_CNT(0), 0);
#ifdef NBURSTS
for (lcv = 0 ; lcv < 64*NBURSTS; lcv++) /* set up sample data */
#else
for (lcv = 0 ; lcv < 68 ; lcv++) /* set up sample data */
#endif
sp[lcv] = lcv+1;
EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* enable DMA (only) */
sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX));
sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX));
/*
* try it now . . . DMA it out, then DMA it back in and compare
*
* note: in order to get the dma stuff to reverse directions it wants
* the "end" flag set! since we are not dma'ing valid data we may
* get an ident mismatch interrupt (which we will ignore).
*
* note: we've got two different tests rolled up in the same loop
* if (wmtry)
* then we are doing a wmaybe test and wmtry is a byte count
* else we are doing a burst test
*/
for (lcv = 8 ; lcv <= MIDDMA_MAXBURST ; lcv = lcv * 2) {
#ifdef EN_DEBUG
printf("DMA test lcv=%d, sp=0x%lx, dp=0x%lx, wmtry=%d\n",
lcv, (unsigned long)sp, (unsigned long)dp, wmtry);
#endif
/* zero SRAM and dest buffer */
for (cnt = 0 ; cnt < 1024; cnt += 4)
EN_WRITE(sc, MID_BUFOFF+cnt, 0); /* zero memory */
#ifdef NBURSTS
for (cnt = 0 ; cnt < 64*NBURSTS; cnt++)
#else
for (cnt = 0 ; cnt < 68 ; cnt++)
#endif
dp[cnt] = 0;
if (wmtry) {
count = (sc->bestburstlen - sizeof(u_int32_t)) / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = wmtry >> en_dmaplan[count].divshift;
} else {
bcode = en_sz2b(lcv);
count = 1;
}
#ifdef NBURSTS
/* build lcv-byte-DMA x NBURSTS */
if (sc->is_adaptec)
EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ADP(lcv*NBURSTS, 0, MID_DMA_END, 0));
else
EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ENI(count*NBURSTS, 0, MID_DMA_END, bcode));
EN_WRITE(sc, sc->dtq_chip+4, vtophys(sp));
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8);
EN_WRITE(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip));
cnt = 1000;
while (EN_READ(sc, MID_DMA_RDTX) != MID_DTQ_A2REG(sc->dtq_chip)) {
DELAY(1);
cnt--;
if (cnt == 0) {
printf("%s: unexpected timeout in tx DMA test\n", sc->sc_dev.dv_xname);
/*
printf(" alignment=0x%x, burst size=%d, dma addr reg=0x%x\n",
(u_long)sp & 63, lcv, EN_READ(sc, MID_DMA_ADDR));
*/
return(retval); /* timeout, give up */
}
}
#else /* !NBURSTS */
if (sc->is_adaptec)
EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ADP(lcv, 0, MID_DMA_END, 0));
else
EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ENI(count, 0, MID_DMA_END, bcode));
EN_WRITE(sc, sc->dtq_chip+4, vtophys(sp));
EN_WRITE(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip+8));
cnt = 1000;
while (EN_READ(sc, MID_DMA_RDTX) == MID_DTQ_A2REG(sc->dtq_chip)) {
DELAY(1);
cnt--;
if (cnt == 0) {
printf("%s: unexpected timeout in tx DMA test\n", sc->sc_dev.dv_xname);
return(retval); /* timeout, give up */
}
}
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8);
#endif /* !NBURSTS */
reg = EN_READ(sc, MID_INTACK);
if ((reg & MID_INT_DMA_TX) != MID_INT_DMA_TX) {
printf("%s: unexpected status in tx DMA test: 0x%x\n",
sc->sc_dev.dv_xname, reg);
return(retval);
}
EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */
/* "return to sender..." address is known ... */
#ifdef NBURSTS
/* build lcv-byte-DMA x NBURSTS */
if (sc->is_adaptec)
EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ADP(lcv*NBURSTS, 0, MID_DMA_END, 0));
else
EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ENI(count*NBURSTS, 0, MID_DMA_END, bcode));
EN_WRITE(sc, sc->drq_chip+4, vtophys(dp));
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8);
EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
cnt = 1000;
while (EN_READ(sc, MID_DMA_RDRX) != MID_DRQ_A2REG(sc->drq_chip)) {
DELAY(1);
cnt--;
if (cnt == 0) {
printf("%s: unexpected timeout in rx DMA test\n", sc->sc_dev.dv_xname);
return(retval); /* timeout, give up */
}
}
#else /* !NBURSTS */
if (sc->is_adaptec)
EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ADP(lcv, 0, MID_DMA_END, 0));
else
EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ENI(count, 0, MID_DMA_END, bcode));
EN_WRITE(sc, sc->drq_chip+4, vtophys(dp));
EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip+8));
cnt = 1000;
while (EN_READ(sc, MID_DMA_RDRX) == MID_DRQ_A2REG(sc->drq_chip)) {
DELAY(1);
cnt--;
if (cnt == 0) {
printf("%s: unexpected timeout in rx DMA test\n", sc->sc_dev.dv_xname);
return(retval); /* timeout, give up */
}
}
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8);
#endif /* !NBURSTS */
reg = EN_READ(sc, MID_INTACK);
if ((reg & MID_INT_DMA_RX) != MID_INT_DMA_RX) {
printf("%s: unexpected status in rx DMA test: 0x%x\n",
sc->sc_dev.dv_xname, reg);
return(retval);
}
EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */
if (wmtry) {
return(bcmp(sp, dp, wmtry)); /* wmtry always exits here, no looping */
}
#ifdef NBURSTS
if (bcmp(sp, dp, lcv * NBURSTS)) {
/* printf("DMA test failed! lcv=%d, sp=0x%x, dp=0x%x\n", lcv, sp, dp); */
return(retval); /* failed, use last value */
}
#else
if (bcmp(sp, dp, lcv))
return(retval); /* failed, use last value */
#endif
retval = lcv;
}
return(retval); /* studly 64 byte DMA present! oh baby!! */
}
/***********************************************************************/
/*
* en_ioctl: handle ioctl requests
*
* NOTE: if you add an ioctl to set txspeed, you should choose a new
* TX channel/slot. Choose the one with the lowest sc->txslot[slot].nref
* value, subtract one from sc->txslot[0].nref, add one to the
* sc->txslot[slot].nref, set sc->txvc2slot[vci] = slot, and then set
* txspeed[vci].
*/
STATIC int en_ioctl(ifp, cmd, data)
struct ifnet *ifp;
EN_IOCTL_CMDT cmd;
caddr_t data;
{
struct en_softc *sc = (struct en_softc *) ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *) data;
struct ifreq *ifr = (struct ifreq *) data;
struct atm_pseudoioctl *api = (struct atm_pseudoioctl *)data;
#ifdef NATM
struct atm_rawioctl *ario = (struct atm_rawioctl *)data;
int slot;
#endif
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCATMENA: /* enable circuit for recv */
error = en_rxctl(sc, api, 1);
break;
case SIOCATMDIS: /* disable circuit for recv */
error = en_rxctl(sc, api, 0);
break;
#ifdef NATM
case SIOCXRAWATM:
if ((slot = sc->rxvc2slot[ario->npcb->npcb_vci]) == RX_NONE) {
error = EINVAL;
break;
}
if (ario->rawvalue > EN_RXSZ*1024)
ario->rawvalue = EN_RXSZ*1024;
if (ario->rawvalue) {
sc->rxslot[slot].oth_flags |= ENOTHER_RAW;
sc->rxslot[slot].raw_threshold = ario->rawvalue;
} else {
sc->rxslot[slot].oth_flags &= (~ENOTHER_RAW);
sc->rxslot[slot].raw_threshold = 0;
}
#ifdef EN_DEBUG
printf("%s: rxvci%d: turn %s raw (boodi) mode\n",
sc->sc_dev.dv_xname, ario->npcb->npcb_vci,
(ario->rawvalue) ? "on" : "off");
#endif
break;
#endif
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
#if defined(INET) || defined(INET6)
if (ifa->ifa_addr->sa_family == AF_INET
|| ifa->ifa_addr->sa_family == AF_INET6) {
en_reset(sc);
en_init(sc);
ifa->ifa_rtrequest = atm_rtrequest; /* ??? */
break;
}
#endif /* INET */
/* what to do if not INET? */
en_reset(sc);
en_init(sc);
break;
case SIOCGIFADDR:
error = EINVAL;
break;
case SIOCSIFFLAGS:
error = EINVAL;
break;
#if defined(SIOCSIFMTU) /* ??? copied from if_de */
#if !defined(ifr_mtu)
#define ifr_mtu ifr_metric
#endif
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
#ifdef notsure
if (ifr->ifr_mtu > ATMMTU) {
error = EINVAL;
break;
}
#endif
ifp->if_mtu = ifr->ifr_mtu;
/* XXXCDC: do we really need to reset on MTU size change? */
en_reset(sc);
en_init(sc);
break;
#endif /* SIOCSIFMTU */
default:
error = EINVAL;
break;
}
splx(s);
return error;
}
/*
* en_rxctl: turn on and off VCs for recv.
*/
STATIC int en_rxctl(sc, pi, on)
struct en_softc *sc;
struct atm_pseudoioctl *pi;
int on;
{
u_int s, vci, flags, slot;
u_int32_t oldmode, newmode;
vci = ATM_PH_VCI(&pi->aph);
flags = ATM_PH_FLAGS(&pi->aph);
#ifdef EN_DEBUG
printf("%s: %s vpi=%d, vci=%d, flags=%d\n", sc->sc_dev.dv_xname,
(on) ? "enable" : "disable", ATM_PH_VPI(&pi->aph), vci, flags);
#endif
if (ATM_PH_VPI(&pi->aph) || vci >= MID_N_VC)
return(EINVAL);
/*
* turn on VCI!
*/
if (on) {
if (sc->rxvc2slot[vci] != RX_NONE)
return(EINVAL);
for (slot = 0 ; slot < sc->en_nrx ; slot++)
if (sc->rxslot[slot].oth_flags & ENOTHER_FREE)
break;
if (slot == sc->en_nrx)
return(ENOSPC);
sc->rxvc2slot[vci] = slot;
sc->rxslot[slot].rxhand = NULL;
oldmode = sc->rxslot[slot].mode;
newmode = (flags & ATM_PH_AAL5) ? MIDV_AAL5 : MIDV_NOAAL;
sc->rxslot[slot].mode = MIDV_SETMODE(oldmode, newmode);
sc->rxslot[slot].atm_vci = vci;
sc->rxslot[slot].atm_flags = flags;
sc->rxslot[slot].oth_flags = 0;
sc->rxslot[slot].rxhand = pi->rxhand;
if (sc->rxslot[slot].indma.ifq_head || sc->rxslot[slot].q.ifq_head)
panic("en_rxctl: left over mbufs on enable");
sc->txspeed[vci] = 0; /* full speed to start */
sc->txvc2slot[vci] = 0; /* init value */
sc->txslot[0].nref++; /* bump reference count */
en_loadvc(sc, vci); /* does debug printf for us */
return(0);
}
/*
* turn off VCI
*/
if (sc->rxvc2slot[vci] == RX_NONE)
return(EINVAL);
slot = sc->rxvc2slot[vci];
if ((sc->rxslot[slot].oth_flags & (ENOTHER_FREE|ENOTHER_DRAIN)) != 0)
return(EINVAL);
s = splimp(); /* block out enintr() */
oldmode = EN_READ(sc, MID_VC(vci));
newmode = MIDV_SETMODE(oldmode, MIDV_TRASH) & ~MIDV_INSERVICE;
EN_WRITE(sc, MID_VC(vci), (newmode | (oldmode & MIDV_INSERVICE)));
/* halt in tracks, be careful to preserve inserivce bit */
DELAY(27);
sc->rxslot[slot].rxhand = NULL;
sc->rxslot[slot].mode = newmode;
sc->txslot[sc->txvc2slot[vci]].nref--;
sc->txspeed[vci] = 0;
sc->txvc2slot[vci] = 0;
/* if stuff is still going on we are going to have to drain it out */
if (sc->rxslot[slot].indma.ifq_head ||
sc->rxslot[slot].q.ifq_head ||
(sc->rxslot[slot].oth_flags & ENOTHER_SWSL) != 0) {
sc->rxslot[slot].oth_flags |= ENOTHER_DRAIN;
} else {
sc->rxslot[slot].oth_flags = ENOTHER_FREE;
sc->rxslot[slot].atm_vci = RX_NONE;
sc->rxvc2slot[vci] = RX_NONE;
}
splx(s); /* enable enintr() */
#ifdef EN_DEBUG
printf("%s: rx%d: VCI %d is now %s\n", sc->sc_dev.dv_xname, slot, vci,
(sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) ? "draining" : "free");
#endif
return(0);
}
/***********************************************************************/
/*
* en_reset: reset the board, throw away work in progress.
* must en_init to recover.
*/
void en_reset(sc)
struct en_softc *sc;
{
struct mbuf *m;
int lcv, slot;
#ifdef EN_DEBUG
printf("%s: reset\n", sc->sc_dev.dv_xname);
#endif
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset hardware */
/*
* recv: dump any mbufs we are dma'ing into, if DRAINing, then a reset
* will free us!
*/
for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
if (sc->rxvc2slot[lcv] == RX_NONE)
continue;
slot = sc->rxvc2slot[lcv];
while (1) {
_IF_DEQUEUE(&sc->rxslot[slot].indma, m);
if (m == NULL)
break; /* >>> exit 'while(1)' here <<< */
m_freem(m);
}
while (1) {
_IF_DEQUEUE(&sc->rxslot[slot].q, m);
if (m == NULL)
break; /* >>> exit 'while(1)' here <<< */
m_freem(m);
}
sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) {
sc->rxslot[slot].oth_flags = ENOTHER_FREE;
sc->rxvc2slot[lcv] = RX_NONE;
#ifdef EN_DEBUG
printf("%s: rx%d: VCI %d is now free\n", sc->sc_dev.dv_xname, slot, lcv);
#endif
}
}
/*
* xmit: dump everything
*/
for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
while (1) {
_IF_DEQUEUE(&sc->txslot[lcv].indma, m);
if (m == NULL)
break; /* >>> exit 'while(1)' here <<< */
m_freem(m);
}
while (1) {
_IF_DEQUEUE(&sc->txslot[lcv].q, m);
if (m == NULL)
break; /* >>> exit 'while(1)' here <<< */
m_freem(m);
}
sc->txslot[lcv].mbsize = 0;
}
return;
}
/*
* en_init: init board and sync the card with the data in the softc.
*/
STATIC void en_init(sc)
struct en_softc *sc;
{
int vc, slot;
u_int32_t loc;
if ((sc->enif.if_flags & IFF_UP) == 0) {
#ifdef EN_DEBUG
printf("%s: going down\n", sc->sc_dev.dv_xname);
#endif
en_reset(sc); /* to be safe */
sc->enif.if_flags &= ~IFF_RUNNING; /* disable */
return;
}
#ifdef EN_DEBUG
printf("%s: going up\n", sc->sc_dev.dv_xname);
#endif
sc->enif.if_flags |= IFF_RUNNING; /* enable */
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset */
/*
* init obmem data structures: vc tab, dma q's, slist.
*
* note that we set drq_free/dtq_free to one less than the total number
* of DTQ/DRQs present. we do this because the card uses the condition
* (drq_chip == drq_us) to mean "list is empty"... but if you allow the
* circular list to be completely full then (drq_chip == drq_us) [i.e.
* the drq_us pointer will wrap all the way around]. by restricting
* the number of active requests to (N - 1) we prevent the list from
* becoming completely full. note that the card will sometimes give
* us an interrupt for a DTQ/DRQ we have already processes... this helps
* keep that interrupt from messing us up.
*/
for (vc = 0 ; vc < MID_N_VC ; vc++)
en_loadvc(sc, vc);
bzero(&sc->drq, sizeof(sc->drq));
sc->drq_free = MID_DRQ_N - 1; /* N - 1 */
sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX));
EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
/* ensure zero queue */
sc->drq_us = sc->drq_chip;
bzero(&sc->dtq, sizeof(sc->dtq));
sc->dtq_free = MID_DTQ_N - 1; /* N - 1 */
sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX));
EN_WRITE(sc, MID_DMA_WRTX, MID_DRQ_A2REG(sc->dtq_chip));
/* ensure zero queue */
sc->dtq_us = sc->dtq_chip;
sc->hwslistp = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE));
sc->swsl_size = sc->swsl_head = sc->swsl_tail = 0;
#ifdef EN_DEBUG
printf("%s: drq free/chip: %d/0x%x, dtq free/chip: %d/0x%x, hwslist: 0x%x\n",
sc->sc_dev.dv_xname, sc->drq_free, sc->drq_chip,
sc->dtq_free, sc->dtq_chip, sc->hwslistp);
#endif
for (slot = 0 ; slot < EN_NTX ; slot++) {
sc->txslot[slot].bfree = EN_TXSZ * 1024;
EN_WRITE(sc, MIDX_READPTR(slot), 0);
EN_WRITE(sc, MIDX_DESCSTART(slot), 0);
loc = sc->txslot[slot].cur = sc->txslot[slot].start;
loc = loc - MID_RAMOFF;
loc = (loc & ~((EN_TXSZ*1024) - 1)) >> 2; /* mask, cvt to words */
loc = loc >> MIDV_LOCTOPSHFT; /* top 11 bits */
EN_WRITE(sc, MIDX_PLACE(slot), MIDX_MKPLACE(en_k2sz(EN_TXSZ), loc));
#ifdef EN_DEBUG
printf("%s: tx%d: place 0x%x\n", sc->sc_dev.dv_xname, slot,
(u_int)EN_READ(sc, MIDX_PLACE(slot)));
#endif
}
/*
* enable!
*/
EN_WRITE(sc, MID_INTENA, MID_INT_TX|MID_INT_DMA_OVR|MID_INT_IDENT|
MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_DMA_RX|MID_INT_DMA_TX|
MID_INT_SERVICE| /* >>> MID_INT_SUNI| XXXCDC<<< */ MID_INT_STATS);
EN_WRITE(sc, MID_MAST_CSR, MID_SETIPL(sc->ipl)|MID_MCSR_ENDMA|
MID_MCSR_ENTX|MID_MCSR_ENRX);
}
/*
* en_loadvc: load a vc tab entry from a slot
*/
STATIC void en_loadvc(sc, vc)
struct en_softc *sc;
int vc;
{
int slot;
u_int32_t reg = EN_READ(sc, MID_VC(vc));
reg = MIDV_SETMODE(reg, MIDV_TRASH);
EN_WRITE(sc, MID_VC(vc), reg);
DELAY(27);
if ((slot = sc->rxvc2slot[vc]) == RX_NONE)
return;
/* no need to set CRC */
EN_WRITE(sc, MID_DST_RP(vc), 0); /* read pointer = 0, desc. start = 0 */
EN_WRITE(sc, MID_WP_ST_CNT(vc), 0); /* write pointer = 0 */
EN_WRITE(sc, MID_VC(vc), sc->rxslot[slot].mode); /* set mode, size, loc */
sc->rxslot[slot].cur = sc->rxslot[slot].start;
#ifdef EN_DEBUG
printf("%s: rx%d: assigned to VCI %d\n", sc->sc_dev.dv_xname, slot, vc);
#endif
}
/*
* en_start: start transmitting the next packet that needs to go out
* if there is one. note that atm_output() has already splimp()'d us.
*/
STATIC void en_start(ifp)
struct ifnet *ifp;
{
struct en_softc *sc = (struct en_softc *) ifp->if_softc;
struct ifqueue *ifq = &ifp->if_snd; /* if INPUT QUEUE */
struct mbuf *m, *lastm, *prev;
struct atm_pseudohdr *ap, *new_ap;
int txchan, mlen, got, need, toadd, cellcnt, first;
u_int32_t atm_vpi, atm_vci, atm_flags, *dat, aal;
u_int8_t *cp;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
/*
* remove everything from interface queue since we handle all queueing
* locally ...
*/
while (1) {
IF_DEQUEUE(ifq, m);
if (m == NULL)
return; /* EMPTY: >>> exit here <<< */
/*
* calculate size of packet (in bytes)
* also, if we are not doing transmit DMA we eliminate all stupid
* (non-word) alignments here using en_mfix(). calls to en_mfix()
* seem to be due to tcp retransmits for the most part.
*
* after this loop mlen total length of mbuf chain (including atm_ph),
* and lastm is a pointer to the last mbuf on the chain.
*/
lastm = m;
mlen = 0;
prev = NULL;
while (1) {
/* no DMA? */
if ((!sc->is_adaptec && EN_ENIDMAFIX) || EN_NOTXDMA || !en_dma) {
if ( ((uintptr_t)mtod(lastm, void *) % sizeof(u_int32_t)) != 0 ||
((lastm->m_len % sizeof(u_int32_t)) != 0 && lastm->m_next)) {
first = (lastm == m);
if (en_mfix(sc, &lastm, prev) == 0) { /* failed? */
m_freem(m);
m = NULL;
break;
}
if (first)
m = lastm; /* update */
}
prev = lastm;
}
mlen += lastm->m_len;
if (lastm->m_next == NULL)
break;
lastm = lastm->m_next;
}
if (m == NULL) /* happens only if mfix fails */
continue;
ap = mtod(m, struct atm_pseudohdr *);
atm_vpi = ATM_PH_VPI(ap);
atm_vci = ATM_PH_VCI(ap);
atm_flags = ATM_PH_FLAGS(ap) & ~(EN_OBHDR|EN_OBTRL);
aal = ((atm_flags & ATM_PH_AAL5) != 0)
? MID_TBD_AAL5 : MID_TBD_NOAAL5;
/*
* check that vpi/vci is one we can use
*/
if (atm_vpi || atm_vci > MID_N_VC) {
printf("%s: output vpi=%d, vci=%d out of card range, dropping...\n",
sc->sc_dev.dv_xname, atm_vpi, atm_vci);
m_freem(m);
continue;
}
/*
* computing how much padding we need on the end of the mbuf, then
* see if we can put the TBD at the front of the mbuf where the
* link header goes (well behaved protocols will reserve room for us).
* last, check if room for PDU tail.
*
* got = number of bytes of data we have
* cellcnt = number of cells in this mbuf
* need = number of bytes of data + padding we need (excludes TBD)
* toadd = number of bytes of data we need to add to end of mbuf,
* [including AAL5 PDU, if AAL5]
*/
got = mlen - sizeof(struct atm_pseudohdr);
toadd = (aal == MID_TBD_AAL5) ? MID_PDU_SIZE : 0; /* PDU */
cellcnt = (got + toadd + (MID_ATMDATASZ - 1)) / MID_ATMDATASZ;
need = cellcnt * MID_ATMDATASZ;
toadd = need - got; /* recompute, including zero padding */
#ifdef EN_DEBUG
printf("%s: txvci%d: mlen=%d, got=%d, need=%d, toadd=%d, cell#=%d\n",
sc->sc_dev.dv_xname, atm_vci, mlen, got, need, toadd, cellcnt);
printf(" leading_space=%d, trailing_space=%d\n",
(int)M_LEADINGSPACE(m), (int)M_TRAILINGSPACE(lastm));
#endif
#ifdef EN_MBUF_OPT
/*
* note: external storage (M_EXT) can be shared between mbufs
* to avoid copying (see m_copym()). this means that the same
* data buffer could be shared by several mbufs, and thus it isn't
* a good idea to try and write TBDs or PDUs to M_EXT data areas.
*/
if (M_LEADINGSPACE(m) >= MID_TBD_SIZE && (m->m_flags & M_EXT) == 0) {
m->m_data -= MID_TBD_SIZE;
m->m_len += MID_TBD_SIZE;
mlen += MID_TBD_SIZE;
new_ap = mtod(m, struct atm_pseudohdr *);
*new_ap = *ap; /* move it back */
ap = new_ap;
dat = ((u_int32_t *) ap) + 1;
/* make sure the TBD is in proper byte order */
*dat++ = htonl(MID_TBD_MK1(aal, sc->txspeed[atm_vci], cellcnt));
*dat = htonl(MID_TBD_MK2(atm_vci, 0, 0));
atm_flags |= EN_OBHDR;
}
if (toadd && (lastm->m_flags & M_EXT) == 0 &&
M_TRAILINGSPACE(lastm) >= toadd) {
cp = mtod(lastm, u_int8_t *) + lastm->m_len;
lastm->m_len += toadd;
mlen += toadd;
if (aal == MID_TBD_AAL5) {
bzero(cp, toadd - MID_PDU_SIZE);
dat = (u_int32_t *)(cp + toadd - MID_PDU_SIZE);
/* make sure the PDU is in proper byte order */
*dat = htonl(MID_PDU_MK1(0, 0, got));
} else {
bzero(cp, toadd);
}
atm_flags |= EN_OBTRL;
}
ATM_PH_FLAGS(ap) = atm_flags; /* update EN_OBHDR/EN_OBTRL bits */
#endif /* EN_MBUF_OPT */
/*
* get assigned channel (will be zero unless txspeed[atm_vci] is set)
*/
txchan = sc->txvc2slot[atm_vci];
if (sc->txslot[txchan].mbsize > EN_TXHIWAT) {
EN_COUNT(sc->txmbovr);
m_freem(m);
#ifdef EN_DEBUG
printf("%s: tx%d: buffer space shortage\n", sc->sc_dev.dv_xname,
txchan);
#endif
continue;
}
sc->txslot[txchan].mbsize += mlen;
#ifdef EN_DEBUG
printf("%s: tx%d: VPI=%d, VCI=%d, FLAGS=0x%x, speed=0x%x\n",
sc->sc_dev.dv_xname, txchan, atm_vpi, atm_vci, atm_flags,
sc->txspeed[atm_vci]);
printf(" adjusted mlen=%d, mbsize=%d\n", mlen,
sc->txslot[txchan].mbsize);
#endif
_IF_ENQUEUE(&sc->txslot[txchan].q, m);
en_txdma(sc, txchan);
}
/*NOTREACHED*/
}
/*
* en_mfix: fix a stupid mbuf
*/
#ifndef __FreeBSD__
STATIC int en_mfix(sc, mm, prev)
struct en_softc *sc;
struct mbuf **mm, *prev;
{
struct mbuf *m, *new;
u_char *d, *cp;
int off;
struct mbuf *nxt;
m = *mm;
EN_COUNT(sc->mfix); /* count # of calls */
#ifdef EN_DEBUG
printf("%s: mfix mbuf m_data=%p, m_len=%d\n", sc->sc_dev.dv_xname,
m->m_data, m->m_len);
#endif
d = mtod(m, u_char *);
off = ((unsigned long) d) % sizeof(u_int32_t);
if (off) {
if ((m->m_flags & M_EXT) == 0) {
bcopy(d, d - off, m->m_len); /* ALIGN! (with costly data copy...) */
d -= off;
m->m_data = (caddr_t)d;
} else {
/* can't write to an M_EXT mbuf since it may be shared */
MGET(new, M_DONTWAIT, MT_DATA);
if (!new) {
EN_COUNT(sc->mfixfail);
return(0);
}
MCLGET(new, M_DONTWAIT);
if ((new->m_flags & M_EXT) == 0) {
m_free(new);
EN_COUNT(sc->mfixfail);
return(0);
}
bcopy(d, new->m_data, m->m_len); /* ALIGN! (with costly data copy...) */
new->m_len = m->m_len;
new->m_next = m->m_next;
if (prev)
prev->m_next = new;
m_free(m);
*mm = m = new; /* note: 'd' now invalid */
}
}
off = m->m_len % sizeof(u_int32_t);
if (off == 0)
return(1);
d = mtod(m, u_char *) + m->m_len;
off = sizeof(u_int32_t) - off;
nxt = m->m_next;
while (off--) {
for ( ; nxt != NULL && nxt->m_len == 0 ; nxt = nxt->m_next)
/*null*/;
if (nxt == NULL) { /* out of data, zero fill */
*d++ = 0;
continue; /* next "off" */
}
cp = mtod(nxt, u_char *);
*d++ = *cp++;
m->m_len++;
nxt->m_len--;
nxt->m_data = (caddr_t)cp;
}
return(1);
}
#else /* __FreeBSD__ */
STATIC int en_makeexclusive(struct en_softc *, struct mbuf **, struct mbuf *);
STATIC int en_makeexclusive(sc, mm, prev)
struct en_softc *sc;
struct mbuf **mm, *prev;
{
struct mbuf *m, *new;
m = *mm;
if (m->m_flags & M_EXT) {
if (m->m_ext.ext_type != EXT_CLUSTER) {
/* external buffer isn't an ordinary mbuf cluster! */
printf("%s: mfix: special buffer! can't make a copy!\n",
sc->sc_dev.dv_xname);
return (0);
}
if (MEXT_IS_REF(m)) {
/* make a real copy of the M_EXT mbuf since it is shared */
MGET(new, M_DONTWAIT, MT_DATA);
if (!new) {
EN_COUNT(sc->mfixfail);
return(0);
}
if (m->m_flags & M_PKTHDR)
M_MOVE_PKTHDR(new, m);
MCLGET(new, M_DONTWAIT);
if ((new->m_flags & M_EXT) == 0) {
m_free(new);
EN_COUNT(sc->mfixfail);
return(0);
}
bcopy(m->m_data, new->m_data, m->m_len);
new->m_len = m->m_len;
new->m_next = m->m_next;
if (prev)
prev->m_next = new;
m_free(m);
*mm = new;
}
else {
/* the buffer is not shared, align the data offset using
this buffer. */
u_char *d = mtod(m, u_char *);
int off = ((uintptr_t)(void *)d) % sizeof(u_int32_t);
if (off > 0) {
bcopy(d, d - off, m->m_len);
m->m_data = (caddr_t)d - off;
}
}
}
return (1);
}
STATIC int en_mfix(sc, mm, prev)
struct en_softc *sc;
struct mbuf **mm, *prev;
{
struct mbuf *m;
u_char *d, *cp;
int off;
struct mbuf *nxt;
m = *mm;
EN_COUNT(sc->mfix); /* count # of calls */
#ifdef EN_DEBUG
printf("%s: mfix mbuf m_data=%p, m_len=%d\n", sc->sc_dev.dv_xname,
m->m_data, m->m_len);
#endif
d = mtod(m, u_char *);
off = ((uintptr_t) (void *) d) % sizeof(u_int32_t);
if (off) {
if ((m->m_flags & M_EXT) == 0) {
bcopy(d, d - off, m->m_len); /* ALIGN! (with costly data copy...) */
d -= off;
m->m_data = (caddr_t)d;
} else {
/* can't write to an M_EXT mbuf since it may be shared */
if (en_makeexclusive(sc, &m, prev) == 0)
return (0);
*mm = m; /* note: 'd' now invalid */
}
}
off = m->m_len % sizeof(u_int32_t);
if (off == 0)
return(1);
if (m->m_flags & M_EXT) {
/* can't write to an M_EXT mbuf since it may be shared */
if (en_makeexclusive(sc, &m, prev) == 0)
return (0);
*mm = m; /* note: 'd' now invalid */
}
d = mtod(m, u_char *) + m->m_len;
off = sizeof(u_int32_t) - off;
nxt = m->m_next;
while (off--) {
if (nxt != NULL && nxt->m_len == 0) {
/* remove an empty mbuf. this avoids odd byte padding to an empty
last mbuf. */
m->m_next = nxt = m_free(nxt);
}
if (nxt == NULL) { /* out of data, zero fill */
*d++ = 0;
continue; /* next "off" */
}
cp = mtod(nxt, u_char *);
*d++ = *cp++;
m->m_len++;
nxt->m_len--;
nxt->m_data = (caddr_t)cp;
}
if (nxt != NULL && nxt->m_len == 0)
m->m_next = m_free(nxt);
return(1);
}
#endif /* __FreeBSD__ */
/*
* en_txdma: start trasmit DMA, if possible
*/
STATIC void en_txdma(sc, chan)
struct en_softc *sc;
int chan;
{
struct mbuf *tmp;
struct atm_pseudohdr *ap;
struct en_launch launch;
int datalen = 0, dtqneed, len, ncells;
u_int8_t *cp;
struct ifnet *ifp;
#ifdef EN_DEBUG
printf("%s: tx%d: starting...\n", sc->sc_dev.dv_xname, chan);
#endif
/*
* note: now that txlaunch handles non-word aligned/sized requests
* the only time you can safely set launch.nodma is if you've en_mfix()'d
* the mbuf chain. this happens only if EN_NOTXDMA || !en_dma.
*/
launch.nodma = (EN_NOTXDMA || !en_dma);
again:
/*
* get an mbuf waiting for DMA
*/
launch.t = sc->txslot[chan].q.ifq_head; /* peek at head of queue */
if (launch.t == NULL) {
#ifdef EN_DEBUG
printf("%s: tx%d: ...done!\n", sc->sc_dev.dv_xname, chan);
#endif
return; /* >>> exit here if no data waiting for DMA <<< */
}
/*
* get flags, vci
*
* note: launch.need = # bytes we need to get on the card
* dtqneed = # of DTQs we need for this packet
* launch.mlen = # of bytes in in mbuf chain (<= launch.need)
*/
ap = mtod(launch.t, struct atm_pseudohdr *);
launch.atm_vci = ATM_PH_VCI(ap);
launch.atm_flags = ATM_PH_FLAGS(ap);
launch.aal = ((launch.atm_flags & ATM_PH_AAL5) != 0) ?
MID_TBD_AAL5 : MID_TBD_NOAAL5;
/*
* XXX: have to recompute the length again, even though we already did
* it in en_start(). might as well compute dtqneed here as well, so
* this isn't that bad.
*/
if ((launch.atm_flags & EN_OBHDR) == 0) {
dtqneed = 1; /* header still needs to be added */
launch.need = MID_TBD_SIZE; /* not includeded with mbuf */
} else {
dtqneed = 0; /* header on-board, dma with mbuf */
launch.need = 0;
}
launch.mlen = 0;
for (tmp = launch.t ; tmp != NULL ; tmp = tmp->m_next) {
len = tmp->m_len;
launch.mlen += len;
cp = mtod(tmp, u_int8_t *);
if (tmp == launch.t) {
len -= sizeof(struct atm_pseudohdr); /* don't count this! */
cp += sizeof(struct atm_pseudohdr);
}
launch.need += len;
if (len == 0)
continue; /* atm_pseudohdr alone in first mbuf */
dtqneed += en_dqneed(sc, (caddr_t) cp, len, 1);
}
if ((launch.need % sizeof(u_int32_t)) != 0)
dtqneed++; /* need DTQ to FLUSH internal buffer */
if ((launch.atm_flags & EN_OBTRL) == 0) {
if (launch.aal == MID_TBD_AAL5) {
datalen = launch.need - MID_TBD_SIZE;
launch.need += MID_PDU_SIZE; /* AAL5: need PDU tail */
}
dtqneed++; /* need to work on the end a bit */
}
/*
* finish calculation of launch.need (need to figure out how much padding
* we will need). launch.need includes MID_TBD_SIZE, but we need to
* remove that to so we can round off properly. we have to add
* MID_TBD_SIZE back in after calculating ncells.
*/
launch.need = roundup(launch.need - MID_TBD_SIZE, MID_ATMDATASZ);
ncells = launch.need / MID_ATMDATASZ;
launch.need += MID_TBD_SIZE;
if (launch.need > EN_TXSZ * 1024) {
printf("%s: tx%d: packet larger than xmit buffer (%d > %d)\n",
sc->sc_dev.dv_xname, chan, launch.need, EN_TXSZ * 1024);
goto dequeue_drop;
}
/*
* note: don't use the entire buffer space. if WRTX becomes equal
* to RDTX, the transmitter stops assuming the buffer is empty! --kjc
*/
if (launch.need >= sc->txslot[chan].bfree) {
EN_COUNT(sc->txoutspace);
#ifdef EN_DEBUG
printf("%s: tx%d: out of transmit space\n", sc->sc_dev.dv_xname, chan);
#endif
return; /* >>> exit here if out of obmem buffer space <<< */
}
/*
* ensure we have enough dtqs to go, if not, wait for more.
*/
if (launch.nodma) {
dtqneed = 1;
}
if (dtqneed > sc->dtq_free) {
sc->need_dtqs = 1;
EN_COUNT(sc->txdtqout);
#ifdef EN_DEBUG
printf("%s: tx%d: out of transmit DTQs\n", sc->sc_dev.dv_xname, chan);
#endif
return; /* >>> exit here if out of dtqs <<< */
}
/*
* it is a go, commit! dequeue mbuf start working on the xfer.
*/
_IF_DEQUEUE(&sc->txslot[chan].q, tmp);
#ifdef EN_DIAG
if (launch.t != tmp)
panic("en dequeue");
#endif /* EN_DIAG */
/*
* launch!
*/
EN_COUNT(sc->launch);
ifp = &sc->enif;
ifp->if_opackets++;
if ((launch.atm_flags & EN_OBHDR) == 0) {
EN_COUNT(sc->lheader);
/* store tbd1/tbd2 in host byte order */
launch.tbd1 = MID_TBD_MK1(launch.aal, sc->txspeed[launch.atm_vci], ncells);
launch.tbd2 = MID_TBD_MK2(launch.atm_vci, 0, 0);
}
if ((launch.atm_flags & EN_OBTRL) == 0 && launch.aal == MID_TBD_AAL5) {
EN_COUNT(sc->ltail);
launch.pdu1 = MID_PDU_MK1(0, 0, datalen); /* host byte order */
}
en_txlaunch(sc, chan, &launch);
#if NBPF > 0
if (ifp->if_bpf) {
/*
* adjust the top of the mbuf to skip the pseudo atm header
* (and TBD, if present) before passing the packet to bpf,
* restore it afterwards.
*/
int size = sizeof(struct atm_pseudohdr);
if (launch.atm_flags & EN_OBHDR)
size += MID_TBD_SIZE;
launch.t->m_data += size;
launch.t->m_len -= size;
BPF_MTAP(ifp, launch.t);
launch.t->m_data -= size;
launch.t->m_len += size;
}
#endif /* NBPF > 0 */
/*
* do some housekeeping and get the next packet
*/
sc->txslot[chan].bfree -= launch.need;
_IF_ENQUEUE(&sc->txslot[chan].indma, launch.t);
goto again;
/*
* END of txdma loop!
*/
/*
* error handles
*/
dequeue_drop:
_IF_DEQUEUE(&sc->txslot[chan].q, tmp);
if (launch.t != tmp)
panic("en dequeue drop");
m_freem(launch.t);
sc->txslot[chan].mbsize -= launch.mlen;
goto again;
}
/*
* en_txlaunch: launch an mbuf into the dma pool!
*/
STATIC void en_txlaunch(sc, chan, l)
struct en_softc *sc;
int chan;
struct en_launch *l;
{
struct mbuf *tmp;
u_int32_t cur = sc->txslot[chan].cur,
start = sc->txslot[chan].start,
stop = sc->txslot[chan].stop,
dma, *data, *datastop, count, bcode;
int pad, addtail, need, len, needalign, cnt, end, mx;
/*
* vars:
* need = # bytes card still needs (decr. to zero)
* len = # of bytes left in current mbuf
* cur = our current pointer
* dma = last place we programmed into the DMA
* data = pointer into data area of mbuf that needs to go next
* cnt = # of bytes to transfer in this DTQ
* bcode/count = DMA burst code, and chip's version of cnt
*
* a single buffer can require up to 5 DTQs depending on its size
* and alignment requirements. the 5 possible requests are:
* [1] 1, 2, or 3 byte DMA to align src data pointer to word boundary
* [2] alburst DMA to align src data pointer to bestburstlen
* [3] 1 or more bestburstlen DMAs
* [4] clean up burst (to last word boundary)
* [5] 1, 2, or 3 byte final clean up DMA
*/
need = l->need;
dma = cur;
addtail = (l->atm_flags & EN_OBTRL) == 0; /* add a tail? */
#ifdef EN_DIAG
if ((need - MID_TBD_SIZE) % MID_ATMDATASZ)
printf("%s: tx%d: bogus trasmit needs (%d)\n", sc->sc_dev.dv_xname, chan,
need);
#endif
#ifdef EN_DEBUG
printf("%s: tx%d: launch mbuf %p! cur=0x%x[%d], need=%d, addtail=%d\n",
sc->sc_dev.dv_xname, chan, l->t, cur, (cur-start)/4, need, addtail);
count = EN_READ(sc, MIDX_PLACE(chan));
printf(" HW: base_address=0x%x, size=%d, read=%d, descstart=%d\n",
(u_int)MIDX_BASE(count), MIDX_SZ(count),
(int)EN_READ(sc, MIDX_READPTR(chan)),
(int)EN_READ(sc, MIDX_DESCSTART(chan)));
#endif
/*
* do we need to insert the TBD by hand?
* note that tbd1/tbd2/pdu1 are in host byte order.
*/
if ((l->atm_flags & EN_OBHDR) == 0) {
#ifdef EN_DEBUG
printf("%s: tx%d: insert header 0x%x 0x%x\n", sc->sc_dev.dv_xname,
chan, l->tbd1, l->tbd2);
#endif
EN_WRITE(sc, cur, l->tbd1);
EN_WRAPADD(start, stop, cur, 4);
EN_WRITE(sc, cur, l->tbd2);
EN_WRAPADD(start, stop, cur, 4);
need -= 8;
}
/*
* now do the mbufs...
*/
for (tmp = l->t ; tmp != NULL ; tmp = tmp->m_next) {
/* get pointer to data and length */
data = mtod(tmp, u_int32_t *);
len = tmp->m_len;
if (tmp == l->t) {
data += sizeof(struct atm_pseudohdr)/sizeof(u_int32_t);
len -= sizeof(struct atm_pseudohdr);
}
/* now, determine if we should copy it */
if (l->nodma || (len < EN_MINDMA &&
(len % 4) == 0 && ((uintptr_t) (void *) data % 4) == 0 &&
(cur % 4) == 0)) {
/*
* roundup len: the only time this will change the value of len
* is when l->nodma is true, tmp is the last mbuf, and there is
* a non-word number of bytes to transmit. in this case it is
* safe to round up because we've en_mfix'd the mbuf (so the first
* byte is word aligned there must be enough free bytes at the end
* to round off to the next word boundary)...
*/
len = roundup(len, sizeof(u_int32_t));
datastop = data + (len / sizeof(u_int32_t));
/* copy loop: preserve byte order!!! use WRITEDAT */
while (data != datastop) {
EN_WRITEDAT(sc, cur, *data);
data++;
EN_WRAPADD(start, stop, cur, 4);
}
need -= len;
#ifdef EN_DEBUG
printf("%s: tx%d: copied %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, len, need, cur);
#endif
continue; /* continue on to next mbuf */
}
/* going to do DMA, first make sure the dtq is in sync. */
if (dma != cur) {
EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0, 0, 0);
#ifdef EN_DEBUG
printf("%s: tx%d: dtq_sync: advance pointer to %d\n",
sc->sc_dev.dv_xname, chan, cur);
#endif
}
/*
* if this is the last buffer, and it looks like we are going to need to
* flush the internal buffer, can we extend the length of this mbuf to
* avoid the FLUSH?
*/
if (tmp->m_next == NULL) {
cnt = (need - len) % sizeof(u_int32_t);
if (cnt && M_TRAILINGSPACE(tmp) >= cnt)
len += cnt; /* pad for FLUSH */
}
#if !defined(MIDWAY_ENIONLY)
/*
* the adaptec DMA engine is smart and handles everything for us.
*/
if (sc->is_adaptec) {
/* need to DMA "len" bytes out to card */
need -= len;
EN_WRAPADD(start, stop, cur, len);
#ifdef EN_DEBUG
printf("%s: tx%d: adp_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, len, need, cur);
#endif
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, len, chan, 0, vtophys(data), l->mlen, end);
if (end)
goto done;
dma = cur; /* update dma pointer */
continue;
}
#endif /* !MIDWAY_ENIONLY */
#if !defined(MIDWAY_ADPONLY)
/*
* the ENI DMA engine is not so smart and need more help from us
*/
/* do we need to do a DMA op to align to word boundary? */
needalign = (uintptr_t) (void *) data % sizeof(u_int32_t);
if (needalign) {
EN_COUNT(sc->headbyte);
cnt = sizeof(u_int32_t) - needalign;
if (cnt == 2 && len >= cnt) {
count = 1;
bcode = MIDDMA_2BYTE;
} else {
cnt = min(cnt, len); /* prevent overflow */
count = cnt;
bcode = MIDDMA_BYTE;
}
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
printf("%s: tx%d: small al_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, cnt, need, cur);
#endif
len -= cnt;
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
data = (u_int32_t *) ((u_char *)data + cnt);
}
/* do we need to do a DMA op to align? */
if (sc->alburst &&
(needalign = (((uintptr_t) (void *) data) & sc->bestburstmask)) != 0
&& len >= sizeof(u_int32_t)) {
cnt = sc->bestburstlen - needalign;
mx = len & ~(sizeof(u_int32_t)-1); /* don't go past end */
if (cnt > mx) {
cnt = mx;
count = cnt / sizeof(u_int32_t);
bcode = MIDDMA_WORD;
} else {
count = cnt / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
printf("%s: tx%d: al_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, cnt, need, cur);
#endif
len -= cnt;
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
data = (u_int32_t *) ((u_char *)data + cnt);
}
/* do we need to do a max-sized burst? */
if (len >= sc->bestburstlen) {
count = len >> sc->bestburstshift;
cnt = count << sc->bestburstshift;
bcode = sc->bestburstcode;
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
printf("%s: tx%d: best_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, cnt, need, cur);
#endif
len -= cnt;
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
data = (u_int32_t *) ((u_char *)data + cnt);
}
/* do we need to do a cleanup burst? */
cnt = len & ~(sizeof(u_int32_t)-1);
if (cnt) {
count = cnt / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
printf("%s: tx%d: cleanup_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, cnt, need, cur);
#endif
len -= cnt;
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
data = (u_int32_t *) ((u_char *)data + cnt);
}
/* any word fragments left? */
if (len) {
EN_COUNT(sc->tailbyte);
if (len == 2) {
count = 1;
bcode = MIDDMA_2BYTE; /* use 2byte mode */
} else {
count = len;
bcode = MIDDMA_BYTE; /* use 1 byte mode */
}
need -= len;
EN_WRAPADD(start, stop, cur, len);
#ifdef EN_DEBUG
printf("%s: tx%d: byte cleanup_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, len, need, cur);
#endif
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
}
dma = cur; /* update dma pointer */
#endif /* !MIDWAY_ADPONLY */
} /* next mbuf, please */
/*
* all mbuf data has been copied out to the obmem (or set up to be DMAd).
* if the trailer or padding needs to be put in, do it now.
*
* NOTE: experimental results reveal the following fact:
* if you DMA "X" bytes to the card, where X is not a multiple of 4,
* then the card will internally buffer the last (X % 4) bytes (in
* hopes of getting (4 - (X % 4)) more bytes to make a complete word).
* it is imporant to make sure we don't leave any important data in
* this internal buffer because it is discarded on the last (end) DTQ.
* one way to do this is to DMA in (4 - (X % 4)) more bytes to flush
* the darn thing out.
*/
if (addtail) {
pad = need % sizeof(u_int32_t);
if (pad) {
/*
* FLUSH internal data buffer. pad out with random data from the front
* of the mbuf chain...
*/
bcode = (sc->is_adaptec) ? 0 : MIDDMA_BYTE;
EN_COUNT(sc->tailflush);
EN_WRAPADD(start, stop, cur, pad);
EN_DTQADD(sc, pad, chan, bcode, vtophys(l->t->m_data), 0, 0);
need -= pad;
#ifdef EN_DEBUG
printf("%s: tx%d: pad/FLUSH dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, pad, need, cur);
#endif
}
/* copy data */
pad = need / sizeof(u_int32_t); /* round *down* */
if (l->aal == MID_TBD_AAL5)
pad -= 2;
#ifdef EN_DEBUG
printf("%s: tx%d: padding %d bytes (cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, (int)(pad * sizeof(u_int32_t)), cur);
#endif
while (pad--) {
EN_WRITEDAT(sc, cur, 0); /* no byte order issues with zero */
EN_WRAPADD(start, stop, cur, 4);
}
if (l->aal == MID_TBD_AAL5) {
EN_WRITE(sc, cur, l->pdu1); /* in host byte order */
EN_WRAPADD(start, stop, cur, 8);
}
}
if (addtail || dma != cur) {
/* write final descritor */
EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0,
l->mlen, MID_DMA_END);
/* dma = cur; */ /* not necessary since we are done */
}
done:
/* update current pointer */
sc->txslot[chan].cur = cur;
#ifdef EN_DEBUG
printf("%s: tx%d: DONE! cur now = 0x%x\n",
sc->sc_dev.dv_xname, chan, cur);
#endif
return;
}
/*
* interrupt handler
*/
EN_INTR_TYPE en_intr(arg)
void *arg;
{
struct en_softc *sc = (struct en_softc *) arg;
struct mbuf *m;
struct atm_pseudohdr ah;
struct ifnet *ifp;
u_int32_t reg, kick, val, mask, chip, vci, slot, dtq, drq;
int lcv, idx, need_softserv = 0;
reg = EN_READ(sc, MID_INTACK);
if ((reg & MID_INT_ANY) == 0)
EN_INTR_RET(0); /* not us */
#ifdef EN_DEBUG
printf("%s: interrupt=0x%b\n", sc->sc_dev.dv_xname, reg, MID_INTBITS);
#endif
/*
* unexpected errors that need a reset
*/
if ((reg & (MID_INT_IDENT|MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_SUNI)) != 0) {
printf("%s: unexpected interrupt=0x%b, resetting card\n",
sc->sc_dev.dv_xname, reg, MID_INTBITS);
#ifdef EN_DEBUG
#ifdef DDB
#ifdef __FreeBSD__
Debugger("en: unexpected error");
#else
Debugger();
#endif
#endif /* DDB */
sc->enif.if_flags &= ~IFF_RUNNING; /* FREEZE! */
#else
en_reset(sc);
en_init(sc);
#endif
EN_INTR_RET(1); /* for us */
}
/*******************
* xmit interrupts *
******************/
kick = 0; /* bitmask of channels to kick */
if (reg & MID_INT_TX) { /* TX done! */
/*
* check for tx complete, if detected then this means that some space
* has come free on the card. we must account for it and arrange to
* kick the channel to life (in case it is stalled waiting on the card).
*/
for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) {
if (reg & MID_TXCHAN(lcv)) {
kick = kick | mask; /* want to kick later */
val = EN_READ(sc, MIDX_READPTR(lcv)); /* current read pointer */
val = (val * sizeof(u_int32_t)) + sc->txslot[lcv].start;
/* convert to offset */
if (val > sc->txslot[lcv].cur)
sc->txslot[lcv].bfree = val - sc->txslot[lcv].cur;
else
sc->txslot[lcv].bfree = (val + (EN_TXSZ*1024)) - sc->txslot[lcv].cur;
#ifdef EN_DEBUG
printf("%s: tx%d: trasmit done. %d bytes now free in buffer\n",
sc->sc_dev.dv_xname, lcv, sc->txslot[lcv].bfree);
#endif
}
}
}
if (reg & MID_INT_DMA_TX) { /* TX DMA done! */
/*
* check for TX DMA complete, if detected then this means that some DTQs
* are now free. it also means some indma mbufs can be freed.
* if we needed DTQs, kick all channels.
*/
val = EN_READ(sc, MID_DMA_RDTX); /* chip's current location */
idx = MID_DTQ_A2REG(sc->dtq_chip);/* where we last saw chip */
if (sc->need_dtqs) {
kick = MID_NTX_CH - 1; /* assume power of 2, kick all! */
sc->need_dtqs = 0; /* recalculated in "kick" loop below */
#ifdef EN_DEBUG
printf("%s: cleared need DTQ condition\n", sc->sc_dev.dv_xname);
#endif
}
while (idx != val) {
sc->dtq_free++;
if ((dtq = sc->dtq[idx]) != 0) {
sc->dtq[idx] = 0; /* don't forget to zero it out when done */
slot = EN_DQ_SLOT(dtq);
_IF_DEQUEUE(&sc->txslot[slot].indma, m);
if (!m) panic("enintr: dtqsync");
sc->txslot[slot].mbsize -= EN_DQ_LEN(dtq);
#ifdef EN_DEBUG
printf("%s: tx%d: free %d dma bytes, mbsize now %d\n",
sc->sc_dev.dv_xname, slot, EN_DQ_LEN(dtq),
sc->txslot[slot].mbsize);
#endif
m_freem(m);
}
EN_WRAPADD(0, MID_DTQ_N, idx, 1);
};
sc->dtq_chip = MID_DTQ_REG2A(val); /* sync softc */
}
/*
* kick xmit channels as needed
*/
if (kick) {
#ifdef EN_DEBUG
printf("%s: tx kick mask = 0x%x\n", sc->sc_dev.dv_xname, kick);
#endif
for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) {
if ((kick & mask) && sc->txslot[lcv].q.ifq_head) {
en_txdma(sc, lcv); /* kick it! */
}
} /* for each slot */
} /* if kick */
/*******************
* recv interrupts *
******************/
/*
* check for RX DMA complete, and pass the data "upstairs"
*/
if (reg & MID_INT_DMA_RX) {
val = EN_READ(sc, MID_DMA_RDRX); /* chip's current location */
idx = MID_DRQ_A2REG(sc->drq_chip);/* where we last saw chip */
while (idx != val) {
sc->drq_free++;
if ((drq = sc->drq[idx]) != 0) {
sc->drq[idx] = 0; /* don't forget to zero it out when done */
slot = EN_DQ_SLOT(drq);
if (EN_DQ_LEN(drq) == 0) { /* "JK" trash DMA? */
m = NULL;
} else {
_IF_DEQUEUE(&sc->rxslot[slot].indma, m);
if (!m)
panic("enintr: drqsync: %s: lost mbuf in slot %d!",
sc->sc_dev.dv_xname, slot);
}
/* do something with this mbuf */
if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) { /* drain? */
if (m)
m_freem(m);
vci = sc->rxslot[slot].atm_vci;
if (sc->rxslot[slot].indma.ifq_head == NULL &&
sc->rxslot[slot].q.ifq_head == NULL &&
(EN_READ(sc, MID_VC(vci)) & MIDV_INSERVICE) == 0 &&
(sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
sc->rxslot[slot].oth_flags = ENOTHER_FREE; /* done drain */
sc->rxslot[slot].atm_vci = RX_NONE;
sc->rxvc2slot[vci] = RX_NONE;
#ifdef EN_DEBUG
printf("%s: rx%d: VCI %d now free\n", sc->sc_dev.dv_xname,
slot, vci);
#endif
}
} else if (m != NULL) {
ATM_PH_FLAGS(&ah) = sc->rxslot[slot].atm_flags;
ATM_PH_VPI(&ah) = 0;
ATM_PH_SETVCI(&ah, sc->rxslot[slot].atm_vci);
#ifdef EN_DEBUG
printf("%s: rx%d: rxvci%d: atm_input, mbuf %p, len %d, hand %p\n",
sc->sc_dev.dv_xname, slot, sc->rxslot[slot].atm_vci, m,
EN_DQ_LEN(drq), sc->rxslot[slot].rxhand);
#endif
ifp = &sc->enif;
ifp->if_ipackets++;
#if NBPF > 0
if (ifp->if_bpf)
BPF_MTAP(ifp, m);
#endif
atm_input(ifp, &ah, m, sc->rxslot[slot].rxhand);
}
}
EN_WRAPADD(0, MID_DRQ_N, idx, 1);
};
sc->drq_chip = MID_DRQ_REG2A(val); /* sync softc */
if (sc->need_drqs) { /* true if we had a DRQ shortage */
need_softserv = 1;
sc->need_drqs = 0;
#ifdef EN_DEBUG
printf("%s: cleared need DRQ condition\n", sc->sc_dev.dv_xname);
#endif
}
}
/*
* handle service interrupts
*/
if (reg & MID_INT_SERVICE) {
chip = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE));
while (sc->hwslistp != chip) {
/* fetch and remove it from hardware service list */
vci = EN_READ(sc, sc->hwslistp);
EN_WRAPADD(MID_SLOFF, MID_SLEND, sc->hwslistp, 4);/* advance hw ptr */
slot = sc->rxvc2slot[vci];
if (slot == RX_NONE) {
#ifdef EN_DEBUG
printf("%s: unexpected rx interrupt on VCI %d\n",
sc->sc_dev.dv_xname, vci);
#endif
EN_WRITE(sc, MID_VC(vci), MIDV_TRASH); /* rx off, damn it! */
continue; /* next */
}
EN_WRITE(sc, MID_VC(vci), sc->rxslot[slot].mode); /* remove from hwsl */
EN_COUNT(sc->hwpull);
#ifdef EN_DEBUG
printf("%s: pulled VCI %d off hwslist\n", sc->sc_dev.dv_xname, vci);
#endif
/* add it to the software service list (if needed) */
if ((sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
EN_COUNT(sc->swadd);
need_softserv = 1;
sc->rxslot[slot].oth_flags |= ENOTHER_SWSL;
sc->swslist[sc->swsl_tail] = slot;
EN_WRAPADD(0, MID_SL_N, sc->swsl_tail, 1);
sc->swsl_size++;
#ifdef EN_DEBUG
printf("%s: added VCI %d to swslist\n", sc->sc_dev.dv_xname, vci);
#endif
}
};
}
/*
* now service (function too big to include here)
*/
if (need_softserv)
en_service(sc);
/*
* keep our stats
*/
if (reg & MID_INT_DMA_OVR) {
EN_COUNT(sc->dmaovr);
#ifdef EN_DEBUG
printf("%s: MID_INT_DMA_OVR\n", sc->sc_dev.dv_xname);
#endif
}
reg = EN_READ(sc, MID_STAT);
#ifdef EN_STAT
sc->otrash += MID_OTRASH(reg);
sc->vtrash += MID_VTRASH(reg);
#endif
EN_INTR_RET(1); /* for us */
}
/*
* en_service: handle a service interrupt
*
* Q: why do we need a software service list?
*
* A: if we remove a VCI from the hardware list and we find that we are
* out of DRQs we must defer processing until some DRQs become free.
* so we must remember to look at this RX VCI/slot later, but we can't
* put it back on the hardware service list (since that isn't allowed).
* so we instead save it on the software service list. it would be nice
* if we could peek at the VCI on top of the hwservice list without removing
* it, however this leads to a race condition: if we peek at it and
* decide we are done with it new data could come in before we have a
* chance to remove it from the hwslist. by the time we get it out of
* the list the interrupt for the new data will be lost. oops!
*
*/
STATIC void en_service(sc)
struct en_softc *sc;
{
struct mbuf *m, *tmp;
u_int32_t cur, dstart, rbd, pdu, *sav, dma, bcode, count, *data, *datastop;
u_int32_t start, stop, cnt, needalign;
int slot, raw, aal5, llc, vci, fill, mlen, tlen, drqneed, need, needfill, end;
aal5 = 0; /* Silence gcc */
next_vci:
if (sc->swsl_size == 0) {
#ifdef EN_DEBUG
printf("%s: en_service done\n", sc->sc_dev.dv_xname);
#endif
return; /* >>> exit here if swsl now empty <<< */
}
/*
* get slot/vci to service
*/
slot = sc->swslist[sc->swsl_head];
vci = sc->rxslot[slot].atm_vci;
#ifdef EN_DIAG
if (sc->rxvc2slot[vci] != slot) panic("en_service rx slot/vci sync");
#endif
/*
* determine our mode and if we've got any work to do
*/
raw = sc->rxslot[slot].oth_flags & ENOTHER_RAW;
start= sc->rxslot[slot].start;
stop= sc->rxslot[slot].stop;
cur = sc->rxslot[slot].cur;
#ifdef EN_DEBUG
printf("%s: rx%d: service vci=%d raw=%d start/stop/cur=0x%x 0x%x 0x%x\n",
sc->sc_dev.dv_xname, slot, vci, raw, start, stop, cur);
#endif
same_vci:
dstart = MIDV_DSTART(EN_READ(sc, MID_DST_RP(vci)));
dstart = (dstart * sizeof(u_int32_t)) + start;
/* check to see if there is any data at all */
if (dstart == cur) {
defer: /* defer processing */
EN_WRAPADD(0, MID_SL_N, sc->swsl_head, 1);
sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
sc->swsl_size--;
/* >>> remove from swslist <<< */
#ifdef EN_DEBUG
printf("%s: rx%d: remove vci %d from swslist\n",
sc->sc_dev.dv_xname, slot, vci);
#endif
goto next_vci;
}
/*
* figure out how many bytes we need
* [mlen = # bytes to go in mbufs, fill = # bytes to dump (MIDDMA_JK)]
*/
if (raw) {
/* raw mode (aka boodi mode) */
fill = 0;
if (dstart > cur)
mlen = dstart - cur;
else
mlen = (dstart + (EN_RXSZ*1024)) - cur;
if (mlen < sc->rxslot[slot].raw_threshold)
goto defer; /* too little data to deal with */
} else {
/* normal mode */
aal5 = (sc->rxslot[slot].atm_flags & ATM_PH_AAL5);
llc = (aal5 && (sc->rxslot[slot].atm_flags & ATM_PH_LLCSNAP)) ? 1 : 0;
rbd = EN_READ(sc, cur);
if (MID_RBD_ID(rbd) != MID_RBD_STDID)
panic("en_service: id mismatch");
if (rbd & MID_RBD_T) {
mlen = 0; /* we've got trash */
fill = MID_RBD_SIZE;
EN_COUNT(sc->ttrash);
#ifdef EN_DEBUG
printf("RX overflow lost %d cells!\n", MID_RBD_CNT(rbd));
#endif
} else if (!aal5) {
mlen = MID_RBD_SIZE + MID_CHDR_SIZE + MID_ATMDATASZ; /* 1 cell (ick!) */
fill = 0;
} else {
struct ifnet *ifp;
tlen = (MID_RBD_CNT(rbd) * MID_ATMDATASZ) + MID_RBD_SIZE;
pdu = cur + tlen - MID_PDU_SIZE;
if (pdu >= stop)
pdu -= (EN_RXSZ*1024);
pdu = EN_READ(sc, pdu); /* get PDU in correct byte order */
fill = tlen - MID_RBD_SIZE - MID_PDU_LEN(pdu);
if (fill < 0 || (rbd & MID_RBD_CRCERR) != 0) {
static int first = 1;
if (first) {
printf("%s: %s, dropping frame\n", sc->sc_dev.dv_xname,
(rbd & MID_RBD_CRCERR) ?
"CRC error" : "invalid AAL5 PDU length");
printf("%s: got %d cells (%d bytes), AAL5 len is %d bytes (pdu=0x%x)\n",
sc->sc_dev.dv_xname, MID_RBD_CNT(rbd),
tlen - MID_RBD_SIZE, MID_PDU_LEN(pdu), pdu);
#ifndef EN_DEBUG
printf("CRC error report disabled from now on!\n");
first = 0;
#endif
}
fill = tlen;
ifp = &sc->enif;
ifp->if_ierrors++;
}
mlen = tlen - fill;
}
}
/*
* now allocate mbufs for mlen bytes of data, if out of mbufs, trash all
*
* notes:
* 1. it is possible that we've already allocated an mbuf for this pkt
* but ran out of DRQs, in which case we saved the allocated mbuf on
* "q".
* 2. if we save an mbuf in "q" we store the "cur" (pointer) in the front
* of the mbuf as an identity (that we can check later), and we also
* store drqneed (so we don't have to recompute it).
* 3. after this block of code, if m is still NULL then we ran out of mbufs
*/
m = sc->rxslot[slot].q.ifq_head;
drqneed = 1;
if (m) {
sav = mtod(m, u_int32_t *);
if (sav[0] != cur) {
#ifdef EN_DEBUG
printf("%s: rx%d: q'ed mbuf %p not ours\n",
sc->sc_dev.dv_xname, slot, m);
#endif
m = NULL; /* wasn't ours */
EN_COUNT(sc->rxqnotus);
} else {
EN_COUNT(sc->rxqus);
_IF_DEQUEUE(&sc->rxslot[slot].q, m);
drqneed = sav[1];
#ifdef EN_DEBUG
printf("%s: rx%d: recovered q'ed mbuf %p (drqneed=%d)\n",
sc->sc_dev.dv_xname, slot, m, drqneed);
#endif
}
}
if (mlen != 0 && m == NULL) {
m = en_mget(sc, mlen, &drqneed); /* allocate! */
if (m == NULL) {
fill += mlen;
mlen = 0;
EN_COUNT(sc->rxmbufout);
#ifdef EN_DEBUG
printf("%s: rx%d: out of mbufs\n", sc->sc_dev.dv_xname, slot);
#endif
}
#ifdef EN_DEBUG
printf("%s: rx%d: allocate mbuf %p, mlen=%d, drqneed=%d\n",
sc->sc_dev.dv_xname, slot, m, mlen, drqneed);
#endif
}
#ifdef EN_DEBUG
printf("%s: rx%d: VCI %d, mbuf_chain %p, mlen %d, fill %d\n",
sc->sc_dev.dv_xname, slot, vci, m, mlen, fill);
#endif
/*
* now check to see if we've got the DRQs needed. if we are out of
* DRQs we must quit (saving our mbuf, if we've got one).
*/
needfill = (fill) ? 1 : 0;
if (drqneed + needfill > sc->drq_free) {
sc->need_drqs = 1; /* flag condition */
if (m == NULL) {
EN_COUNT(sc->rxoutboth);
#ifdef EN_DEBUG
printf("%s: rx%d: out of DRQs *and* mbufs!\n", sc->sc_dev.dv_xname, slot);
#endif
return; /* >>> exit here if out of both mbufs and DRQs <<< */
}
sav = mtod(m, u_int32_t *);
sav[0] = cur;
sav[1] = drqneed;
_IF_ENQUEUE(&sc->rxslot[slot].q, m);
EN_COUNT(sc->rxdrqout);
#ifdef EN_DEBUG
printf("%s: rx%d: out of DRQs\n", sc->sc_dev.dv_xname, slot);
#endif
return; /* >>> exit here if out of DRQs <<< */
}
/*
* at this point all resources have been allocated and we are commited
* to servicing this slot.
*
* dma = last location we told chip about
* cur = current location
* mlen = space in the mbuf we want
* need = bytes to xfer in (decrs to zero)
* fill = how much fill we need
* tlen = how much data to transfer to this mbuf
* cnt/bcode/count = <same as xmit>
*
* 'needfill' not used after this point
*/
dma = cur; /* dma = last location we told chip about */
need = roundup(mlen, sizeof(u_int32_t));
fill = fill - (need - mlen); /* note: may invalidate 'needfill' */
for (tmp = m ; tmp != NULL && need > 0 ; tmp = tmp->m_next) {
tlen = roundup(tmp->m_len, sizeof(u_int32_t)); /* m_len set by en_mget */
data = mtod(tmp, u_int32_t *);
#ifdef EN_DEBUG
printf("%s: rx%d: load mbuf %p, m_len=%d, m_data=%p, tlen=%d\n",
sc->sc_dev.dv_xname, slot, tmp, tmp->m_len, tmp->m_data, tlen);
#endif
/* copy data */
if (EN_NORXDMA || !en_dma || tlen < EN_MINDMA) {
datastop = (u_int32_t *)((u_char *) data + tlen);
/* copy loop: preserve byte order!!! use READDAT */
while (data != datastop) {
*data = EN_READDAT(sc, cur);
data++;
EN_WRAPADD(start, stop, cur, 4);
}
need -= tlen;
#ifdef EN_DEBUG
printf("%s: rx%d: vci%d: copied %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, tlen, need);
#endif
continue;
}
/* DMA data (check to see if we need to sync DRQ first) */
if (dma != cur) {
EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, 0, 0, 0);
#ifdef EN_DEBUG
printf("%s: rx%d: vci%d: drq_sync: advance pointer to %d\n",
sc->sc_dev.dv_xname, slot, vci, cur);
#endif
}
#if !defined(MIDWAY_ENIONLY)
/*
* the adaptec DMA engine is smart and handles everything for us.
*/
if (sc->is_adaptec) {
need -= tlen;
EN_WRAPADD(start, stop, cur, tlen);
#ifdef EN_DEBUG
printf("%s: rx%d: vci%d: adp_dma %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, tlen, need);
#endif
end = (need == 0 && !fill) ? MID_DMA_END : 0;
EN_DRQADD(sc, tlen, vci, 0, vtophys(data), mlen, slot, end);
if (end)
goto done;
dma = cur; /* update dma pointer */
continue;
}
#endif /* !MIDWAY_ENIONLY */
#if !defined(MIDWAY_ADPONLY)
/*
* the ENI DMA engine is not so smart and need more help from us
*/
/* do we need to do a DMA op to align? */
if (sc->alburst &&
(needalign = (((uintptr_t) (void *) data) & sc->bestburstmask)) != 0) {
cnt = sc->bestburstlen - needalign;
if (cnt > tlen) {
cnt = tlen;
count = cnt / sizeof(u_int32_t);
bcode = MIDDMA_WORD;
} else {
count = cnt / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
printf("%s: rx%d: vci%d: al_dma %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, cnt, need);
#endif
tlen -= cnt;
end = (need == 0 && !fill) ? MID_DMA_END : 0;
EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
if (end)
goto done;
data = (u_int32_t *)((u_char *) data + cnt);
}
/* do we need a max-sized burst? */
if (tlen >= sc->bestburstlen) {
count = tlen >> sc->bestburstshift;
cnt = count << sc->bestburstshift;
bcode = sc->bestburstcode;
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
printf("%s: rx%d: vci%d: best_dma %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, cnt, need);
#endif
tlen -= cnt;
end = (need == 0 && !fill) ? MID_DMA_END : 0;
EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
if (end)
goto done;
data = (u_int32_t *)((u_char *) data + cnt);
}
/* do we need to do a cleanup burst? */
if (tlen) {
count = tlen / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = tlen >> en_dmaplan[count].divshift;
need -= tlen;
EN_WRAPADD(start, stop, cur, tlen);
#ifdef EN_DEBUG
printf("%s: rx%d: vci%d: cleanup_dma %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, tlen, need);
#endif
end = (need == 0 && !fill) ? MID_DMA_END : 0;
EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
if (end)
goto done;
}
dma = cur; /* update dma pointer */
#endif /* !MIDWAY_ADPONLY */
}
/* skip the end */
if (fill || dma != cur) {
#ifdef EN_DEBUG
if (fill)
printf("%s: rx%d: vci%d: skipping %d bytes of fill\n",
sc->sc_dev.dv_xname, slot, vci, fill);
else
printf("%s: rx%d: vci%d: syncing chip from 0x%x to 0x%x [cur]\n",
sc->sc_dev.dv_xname, slot, vci, dma, cur);
#endif
EN_WRAPADD(start, stop, cur, fill);
EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, mlen,
slot, MID_DMA_END);
/* dma = cur; */ /* not necessary since we are done */
}
/*
* done, remove stuff we don't want to pass up:
* raw mode (boodi mode): pass everything up for later processing
* aal5: remove RBD
* aal0: remove RBD + cell header
*/
done:
if (m) {
if (!raw) {
cnt = MID_RBD_SIZE;
if (!aal5) cnt += MID_CHDR_SIZE;
m->m_len -= cnt; /* chop! */
m->m_pkthdr.len -= cnt;
m->m_data += cnt;
}
_IF_ENQUEUE(&sc->rxslot[slot].indma, m);
}
sc->rxslot[slot].cur = cur; /* update master copy of 'cur' */
#ifdef EN_DEBUG
printf("%s: rx%d: vci%d: DONE! cur now =0x%x\n",
sc->sc_dev.dv_xname, slot, vci, cur);
#endif
goto same_vci; /* get next packet in this slot */
}
#ifdef EN_DDBHOOK
/*
* functions we can call from ddb
*/
/*
* en_dump: dump the state
*/
#define END_SWSL 0x00000040 /* swsl state */
#define END_DRQ 0x00000020 /* drq state */
#define END_DTQ 0x00000010 /* dtq state */
#define END_RX 0x00000008 /* rx state */
#define END_TX 0x00000004 /* tx state */
#define END_MREGS 0x00000002 /* registers */
#define END_STATS 0x00000001 /* dump stats */
#define END_BITS "\20\7SWSL\6DRQ\5DTQ\4RX\3TX\2MREGS\1STATS"
/* Do not staticize - meant for calling from DDB! */
int en_dump(unit, level)
int unit, level;
{
struct en_softc *sc;
int lcv, cnt, slot;
u_int32_t ptr, reg;
#ifdef __FreeBSD__
devclass_t dc;
int maxunit;
dc = devclass_find("en");
if (dc == NULL) {
printf("en_dump: can't find devclass!\n");
return 0;
}
maxunit = devclass_get_maxunit(dc);
for (lcv = 0 ; lcv < maxunit ; lcv++) {
sc = devclass_get_softc(dc, lcv);
#else
for (lcv = 0 ; lcv < en_cd.cd_ndevs ; lcv++) {
sc = (struct en_softc *) en_cd.cd_devs[lcv];
#endif
if (sc == NULL) continue;
if (unit != -1 && unit != lcv)
continue;
printf("dumping device %s at level 0x%b\n", sc->sc_dev.dv_xname, level,
END_BITS);
if (sc->dtq_us == 0) {
printf("<hasn't been en_init'd yet>\n");
continue;
}
if (level & END_STATS) {
printf(" en_stats:\n");
printf(" %d mfix (%d failed); %d/%d head/tail byte DMAs, %d flushes\n",
sc->mfix, sc->mfixfail, sc->headbyte, sc->tailbyte, sc->tailflush);
printf(" %d rx dma overflow interrupts\n", sc->dmaovr);
printf(" %d times we ran out of TX space and stalled\n",
sc->txoutspace);
printf(" %d times we ran out of DTQs\n", sc->txdtqout);
printf(" %d times we launched a packet\n", sc->launch);
printf(" %d times we launched without on-board header\n", sc->lheader);
printf(" %d times we launched without on-board tail\n", sc->ltail);
printf(" %d times we pulled the hw service list\n", sc->hwpull);
printf(" %d times we pushed a vci on the sw service list\n",
sc->swadd);
printf(" %d times RX pulled an mbuf from Q that wasn't ours\n",
sc->rxqnotus);
printf(" %d times RX pulled a good mbuf from Q\n", sc->rxqus);
printf(" %d times we ran out of mbufs *and* DRQs\n", sc->rxoutboth);
printf(" %d times we ran out of DRQs\n", sc->rxdrqout);
printf(" %d trasmit packets dropped due to mbsize\n", sc->txmbovr);
printf(" %d cells trashed due to turned off rxvc\n", sc->vtrash);
printf(" %d cells trashed due to totally full buffer\n", sc->otrash);
printf(" %d cells trashed due almost full buffer\n", sc->ttrash);
printf(" %d rx mbuf allocation failures\n", sc->rxmbufout);
#ifdef NATM
printf(" %d drops at natmintrq\n", natmintrq.ifq_drops);
#ifdef NATM_STAT
printf(" natmintr so_rcv: ok/drop cnt: %d/%d, ok/drop bytes: %d/%d\n",
natm_sookcnt, natm_sodropcnt, natm_sookbytes, natm_sodropbytes);
#endif
#endif
}
if (level & END_MREGS) {
printf("mregs:\n");
printf("resid = 0x%x\n", EN_READ(sc, MID_RESID));
printf("interrupt status = 0x%b\n",
(int)EN_READ(sc, MID_INTSTAT), MID_INTBITS);
printf("interrupt enable = 0x%b\n",
(int)EN_READ(sc, MID_INTENA), MID_INTBITS);
printf("mcsr = 0x%b\n", (int)EN_READ(sc, MID_MAST_CSR), MID_MCSRBITS);
printf("serv_write = [chip=%u] [us=%u]\n", EN_READ(sc, MID_SERV_WRITE),
MID_SL_A2REG(sc->hwslistp));
printf("dma addr = 0x%x\n", EN_READ(sc, MID_DMA_ADDR));
printf("DRQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX)),
MID_DRQ_REG2A(EN_READ(sc, MID_DMA_WRRX)), sc->drq_chip, sc->drq_us);
printf("DTQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX)),
MID_DTQ_REG2A(EN_READ(sc, MID_DMA_WRTX)), sc->dtq_chip, sc->dtq_us);
printf(" unusal txspeeds: ");
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
if (sc->txspeed[cnt])
printf(" vci%d=0x%x", cnt, sc->txspeed[cnt]);
printf("\n");
printf(" rxvc slot mappings: ");
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
if (sc->rxvc2slot[cnt] != RX_NONE)
printf(" %d->%d", cnt, sc->rxvc2slot[cnt]);
printf("\n");
}
if (level & END_TX) {
printf("tx:\n");
for (slot = 0 ; slot < EN_NTX; slot++) {
printf("tx%d: start/stop/cur=0x%x/0x%x/0x%x [%d] ", slot,
sc->txslot[slot].start, sc->txslot[slot].stop, sc->txslot[slot].cur,
(sc->txslot[slot].cur - sc->txslot[slot].start)/4);
printf("mbsize=%d, bfree=%d\n", sc->txslot[slot].mbsize,
sc->txslot[slot].bfree);
printf("txhw: base_address=0x%x, size=%u, read=%u, descstart=%u\n",
(u_int)MIDX_BASE(EN_READ(sc, MIDX_PLACE(slot))),
MIDX_SZ(EN_READ(sc, MIDX_PLACE(slot))),
EN_READ(sc, MIDX_READPTR(slot)), EN_READ(sc, MIDX_DESCSTART(slot)));
}
}
if (level & END_RX) {
printf(" recv slots:\n");
for (slot = 0 ; slot < sc->en_nrx; slot++) {
printf("rx%d: vci=%d: start/stop/cur=0x%x/0x%x/0x%x ", slot,
sc->rxslot[slot].atm_vci, sc->rxslot[slot].start,
sc->rxslot[slot].stop, sc->rxslot[slot].cur);
printf("mode=0x%x, atm_flags=0x%x, oth_flags=0x%x\n",
sc->rxslot[slot].mode, sc->rxslot[slot].atm_flags,
sc->rxslot[slot].oth_flags);
printf("RXHW: mode=0x%x, DST_RP=0x%x, WP_ST_CNT=0x%x\n",
EN_READ(sc, MID_VC(sc->rxslot[slot].atm_vci)),
EN_READ(sc, MID_DST_RP(sc->rxslot[slot].atm_vci)),
EN_READ(sc, MID_WP_ST_CNT(sc->rxslot[slot].atm_vci)));
}
}
if (level & END_DTQ) {
printf(" dtq [need_dtqs=%d,dtq_free=%d]:\n",
sc->need_dtqs, sc->dtq_free);
ptr = sc->dtq_chip;
while (ptr != sc->dtq_us) {
reg = EN_READ(sc, ptr);
printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
sc->dtq[MID_DTQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_TXCHAN(reg),
(reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4));
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, ptr, 8);
}
}
if (level & END_DRQ) {
printf(" drq [need_drqs=%d,drq_free=%d]:\n",
sc->need_drqs, sc->drq_free);
ptr = sc->drq_chip;
while (ptr != sc->drq_us) {
reg = EN_READ(sc, ptr);
printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
sc->drq[MID_DRQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_RXVCI(reg),
(reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4));
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, ptr, 8);
}
}
if (level & END_SWSL) {
printf(" swslist [size=%d]: ", sc->swsl_size);
for (cnt = sc->swsl_head ; cnt != sc->swsl_tail ;
cnt = (cnt + 1) % MID_SL_N)
printf("0x%x ", sc->swslist[cnt]);
printf("\n");
}
}
return(0);
}
/*
* en_dumpmem: dump the memory
*/
/* Do not staticize - meant for calling from DDB! */
int en_dumpmem(unit, addr, len)
int unit, addr, len;
{
struct en_softc *sc;
u_int32_t reg;
#ifdef __FreeBSD__
devclass_t dc;
dc = devclass_find("en");
if (dc == NULL) {
printf("en_dumpmem: can't find devclass!\n");
return 0;
}
sc = devclass_get_softc(dc, unit);
#else
if (unit < 0 || unit > en_cd.cd_ndevs ||
(sc = (struct en_softc *) en_cd.cd_devs[unit]) == NULL) {
printf("invalid unit number: %d\n", unit);
return(0);
}
#endif
addr = addr & ~3;
if (addr < MID_RAMOFF || addr + len*4 > MID_MAXOFF || len <= 0) {
printf("invalid addr/len number: %d, %d\n", addr, len);
return(0);
}
printf("dumping %d words starting at offset 0x%x\n", len, addr);
while (len--) {
reg = EN_READ(sc, addr);
printf("mem[0x%x] = 0x%x\n", addr, reg);
addr += 4;
}
return(0);
}
#endif