1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-02 12:20:51 +00:00
freebsd/sys/dev/snc/dp83932subr.c
Alfred Perlstein e51a25f850 Remove __P.
2002-03-20 02:08:01 +00:00

893 lines
20 KiB
C

/* $FreeBSD$ */
/* $NecBSD: dp83932subr.c,v 1.5.6.2 1999/10/09 05:47:23 kmatsuda Exp $ */
/* $NetBSD$ */
/*
* Copyright (c) 1997, 1998, 1999
* Kouichi Matsuda. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Kouichi Matsuda for
* NetBSD/pc98.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Routines of NEC PC-9801-83, 84, 103, 104, PC-9801N-25 and PC-9801N-J02, J02R
* Ethernet interface for NetBSD/pc98, ported by Kouichi Matsuda.
*
* These cards use National Semiconductor DP83934AVQB as Ethernet Controller
* and National Semiconductor NS46C46 as (64 * 16 bits) Microwire Serial EEPROM.
*/
/*
* Modified for FreeBSD(98) 4.0 from NetBSD/pc98 1.4.2 by Motomichi Matsuzaki.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#include <sys/bus.h>
#include <machine/bus.h>
#include <dev/snc/dp83932reg.h>
#include <dev/snc/dp83932var.h>
#include <dev/snc/if_sncreg.h>
#include <dev/snc/dp83932subr.h>
integrate u_int16_t snc_nec16_select_bank
(struct snc_softc *, u_int32_t, u_int32_t);
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets.
*/
int
sncsetup(sc, lladdr)
struct snc_softc *sc;
u_int8_t *lladdr;
{
u_int32_t p, pp;
int i;
int offset;
/*
* Put the pup in reset mode (sncinit() will fix it later),
* stop the timer, disable all interrupts and clear any interrupts.
*/
NIC_PUT(sc, SNCR_CR, CR_STP);
wbflush();
NIC_PUT(sc, SNCR_CR, CR_RST);
wbflush();
NIC_PUT(sc, SNCR_IMR, 0);
wbflush();
NIC_PUT(sc, SNCR_ISR, ISR_ALL);
wbflush();
/*
* because the SONIC is basically 16bit device it 'concatenates'
* a higher buffer address to a 16 bit offset--this will cause wrap
* around problems near the end of 64k !!
*/
p = pp = 0;
for (i = 0; i < NRRA; i++) {
sc->v_rra[i] = SONIC_GETDMA(p);
p += RXRSRC_SIZE(sc);
}
sc->v_rea = SONIC_GETDMA(p);
p = SOALIGN(sc, p);
sc->v_cda = SONIC_GETDMA(p);
p += CDA_SIZE(sc);
p = SOALIGN(sc, p);
for (i = 0; i < NTDA; i++) {
struct mtd *mtdp = &sc->mtda[i];
mtdp->mtd_vtxp = SONIC_GETDMA(p);
p += TXP_SIZE(sc);
}
p = SOALIGN(sc, p);
if ((p - pp) > NBPG) {
device_printf (sc->sc_dev, "sizeof RRA (%ld) + CDA (%ld) +"
"TDA (%ld) > NBPG (%d). Punt!\n",
(ulong)sc->v_cda - (ulong)sc->v_rra[0],
(ulong)sc->mtda[0].mtd_vtxp - (ulong)sc->v_cda,
(ulong)p - (ulong)sc->mtda[0].mtd_vtxp,
NBPG);
return(1);
}
p = pp + NBPG;
pp = p;
sc->sc_nrda = NBPG / RXPKT_SIZE(sc);
sc->v_rda = SONIC_GETDMA(p);
p = pp + NBPG;
for (i = 0; i < NRBA; i++) {
sc->rbuf[i] = p;
p += NBPG;
}
pp = p;
offset = TXBSIZE;
for (i = 0; i < NTDA; i++) {
struct mtd *mtdp = &sc->mtda[i];
mtdp->mtd_vbuf = SONIC_GETDMA(p);
offset += TXBSIZE;
if (offset < NBPG) {
p += TXBSIZE;
} else {
p = pp + NBPG;
pp = p;
offset = TXBSIZE;
}
}
return (0);
}
/*
* miscellaneous NEC/SONIC detect functions.
*/
/*
* check if a specified irq is acceptable.
*/
u_int8_t
snc_nec16_validate_irq(irq)
int irq;
{
const u_int8_t encoded_irq[16] = {
-1, -1, -1, 0, -1, 1, 2, -1, -1, 3, 4, -1, 5, 6, -1, -1
};
return encoded_irq[irq];
}
/*
* specify irq to board.
*/
int
snc_nec16_register_irq(sc, irq)
struct snc_softc *sc;
int irq;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t encoded_irq;
encoded_irq = snc_nec16_validate_irq(irq);
if (encoded_irq == (u_int8_t) -1) {
printf("snc_nec16_register_irq: unsupported irq (%d)\n", irq);
return 0;
}
/* select SNECR_IRQSEL register */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_IRQSEL);
/* write encoded irq value */
bus_space_write_1(iot, ioh, SNEC_CTRLB, encoded_irq);
return 1;
}
/*
* check if a specified memory base address is acceptable.
*/
int
snc_nec16_validate_mem(maddr)
int maddr;
{
/* Check on Normal mode with max range, only */
if ((maddr & ~0x1E000) != 0xC0000) {
printf("snc_nec16_validate_mem: "
"unsupported window base (0x%x)\n", maddr);
return 0;
}
return 1;
}
/*
* specify memory base address to board and map to first bank.
*/
int
snc_nec16_register_mem(sc, maddr)
struct snc_softc *sc;
int maddr;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
if (snc_nec16_validate_mem(maddr) == 0)
return 0;
/* select SNECR_MEMSEL register */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_MEMSEL);
/* write encoded memory base select value */
bus_space_write_1(iot, ioh, SNEC_CTRLB, SNECR_MEMSEL_PHYS2EN(maddr));
/*
* set current bank to 0 (bottom) and map
*/
/* select SNECR_MEMBS register */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_MEMBS);
/* select new bank */
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_MEMBS_B2EB(0) | SNECR_MEMBS_BSEN);
/* set current bank to 0 */
sc->curbank = 0;
return 1;
}
int
snc_nec16_check_memory(iot, ioh, memt, memh)
bus_space_tag_t iot;
bus_space_handle_t ioh;
bus_space_tag_t memt;
bus_space_handle_t memh;
{
u_int16_t val;
int i, j;
val = 0;
for (i = 0; i < SNEC_NBANK; i++) {
/* select new bank */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_MEMBS);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_MEMBS_B2EB(i) | SNECR_MEMBS_BSEN);
/* write test pattern */
for (j = 0; j < SNEC_NMEMS / 2; j++) {
bus_space_write_2(memt, memh, j * 2, val + j);
}
val += 0x1000;
}
val = 0;
for (i = 0; i < SNEC_NBANK; i++) {
/* select new bank */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_MEMBS);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_MEMBS_B2EB(i) | SNECR_MEMBS_BSEN);
/* read test pattern */
for (j = 0; j < SNEC_NMEMS / 2; j++) {
if (bus_space_read_2(memt, memh, j * 2) != val + j)
break;
}
if (j < SNEC_NMEMS / 2) {
printf("snc_nec16_check_memory: "
"memory check failed at 0x%04x%04x"
"val 0x%04x != expected 0x%04x\n", i, j,
bus_space_read_2(memt, memh, j * 2),
val + j);
return 0;
}
val += 0x1000;
}
/* zero clear mem */
for (i = 0; i < SNEC_NBANK; i++) {
/* select new bank */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_MEMBS);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_MEMBS_B2EB(i) | SNECR_MEMBS_BSEN);
bus_space_set_region_4(memt, memh, 0, 0, SNEC_NMEMS >> 2);
}
/* again read test if these are 0 */
for (i = 0; i < SNEC_NBANK; i++) {
/* select new bank */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_MEMBS);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_MEMBS_B2EB(i) | SNECR_MEMBS_BSEN);
/* check if cleared */
for (j = 0; j < SNEC_NMEMS; j += 2) {
if (bus_space_read_2(memt, memh, j) != 0)
break;
}
if (j != SNEC_NMEMS) {
printf("snc_nec16_check_memory: "
"memory zero clear failed at 0x%04x%04x\n", i, j);
return 0;
}
}
return 1;
}
int
snc_nec16_detectsubr(iot, ioh, memt, memh, irq, maddr, type)
bus_space_tag_t iot;
bus_space_handle_t ioh;
bus_space_tag_t memt;
bus_space_handle_t memh;
int irq;
int maddr;
u_int8_t type;
{
u_int16_t cr;
u_int8_t ident;
int rv = 0;
if (snc_nec16_validate_irq(irq) == (u_int8_t) -1)
return 0;
/* XXX: maddr already checked */
if (snc_nec16_validate_mem(maddr) == 0)
return 0;
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_IDENT);
ident = bus_space_read_1(iot, ioh, SNEC_CTRLB);
if (ident == 0xff || ident == 0x00) {
/* not found */
return 0;
}
switch (type) {
case SNEC_TYPE_LEGACY:
rv = (ident == SNECR_IDENT_LEGACY_CBUS);
break;
case SNEC_TYPE_PNP:
rv = ((ident == SNECR_IDENT_PNP_CBUS) ||
(ident == SNECR_IDENT_PNP_PCMCIABUS));
break;
default:
break;
}
if (rv == 0) {
printf("snc_nec16_detectsubr: parent bus mismatch\n");
return 0;
}
/* select SONIC register SNCR_CR */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNCR_CR);
bus_space_write_2(iot, ioh, SNEC_CTRL, CR_RXDIS | CR_STP | CR_RST);
delay(400);
cr = bus_space_read_2(iot, ioh, SNEC_CTRL);
if (cr != (CR_RXDIS | CR_STP | CR_RST)) {
#ifdef DIAGNOSTIC
printf("snc_nec16_detectsubr: card reset failed, cr = 0x%04x\n",
cr);
#endif
return 0;
}
if (snc_nec16_check_memory(iot, ioh, memt, memh) == 0)
return 0;
return 1;
}
/* XXX */
#define SNC_VENDOR_NEC 0x00004c
#define SNC_NEC_SERIES_LEGACY_CBUS 0xa5
#define SNC_NEC_SERIES_PNP_PCMCIA 0xd5
#define SNC_NEC_SERIES_PNP_PCMCIA2 0x6d /* XXX */
#define SNC_NEC_SERIES_PNP_CBUS 0x0d
#define SNC_NEC_SERIES_PNP_CBUS2 0x3d
u_int8_t *
snc_nec16_detect_type(myea)
u_int8_t *myea;
{
u_int32_t vendor = (myea[0] << 16) | (myea[1] << 8) | myea[2];
u_int8_t series = myea[3];
u_int8_t type = myea[4] & 0x80;
u_int8_t *typestr;
switch (vendor) {
case SNC_VENDOR_NEC:
switch (series) {
case SNC_NEC_SERIES_LEGACY_CBUS:
if (type)
typestr = "NEC PC-9801-84";
else
typestr = "NEC PC-9801-83";
break;
case SNC_NEC_SERIES_PNP_CBUS:
case SNC_NEC_SERIES_PNP_CBUS2:
if (type)
typestr = "NEC PC-9801-104";
else
typestr = "NEC PC-9801-103";
break;
case SNC_NEC_SERIES_PNP_PCMCIA:
case SNC_NEC_SERIES_PNP_PCMCIA2:
/* XXX: right ? */
if (type)
typestr = "NEC PC-9801N-J02R";
else
typestr = "NEC PC-9801N-J02";
break;
default:
typestr = "NEC unknown (PC-9801N-25?)";
break;
}
break;
default:
typestr = "unknown (3rd vendor?)";
break;
}
return typestr;
}
int
snc_nec16_get_enaddr(iot, ioh, myea)
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int8_t *myea;
{
u_int8_t eeprom[SNEC_EEPROM_SIZE];
u_int8_t rom_sum, sum = 0x00;
int i;
snc_nec16_read_eeprom(iot, ioh, eeprom);
for (i = SNEC_EEPROM_KEY0; i < SNEC_EEPROM_CKSUM; i++) {
sum = sum ^ eeprom[i];
}
rom_sum = eeprom[SNEC_EEPROM_CKSUM];
if (sum != rom_sum) {
printf("snc_nec16_get_enaddr: "
"checksum mismatch; calculated %02x != read %02x",
sum, rom_sum);
return 0;
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
myea[i] = eeprom[SNEC_EEPROM_SA0 + i];
return 1;
}
/*
* read from NEC/SONIC NIC register.
*/
u_int16_t
snc_nec16_nic_get(sc, reg)
struct snc_softc *sc;
u_int8_t reg;
{
u_int16_t val;
/* select SONIC register */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, SNEC_ADDR, reg);
val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, SNEC_CTRL);
return val;
}
/*
* write to NEC/SONIC NIC register.
*/
void
snc_nec16_nic_put(sc, reg, val)
struct snc_softc *sc;
u_int8_t reg;
u_int16_t val;
{
/* select SONIC register */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, SNEC_ADDR, reg);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, SNEC_CTRL, val);
}
/*
* select memory bank and map
* where exists specified (internal buffer memory) offset.
*/
integrate u_int16_t
snc_nec16_select_bank(sc, base, offset)
struct snc_softc *sc;
u_int32_t base;
u_int32_t offset;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t bank;
u_int16_t noffset;
/* bitmode is fixed to 16 bit. */
bank = (base + offset * 2) >> 13;
noffset = (base + offset * 2) & (SNEC_NMEMS - 1);
#ifdef SNCDEBUG
if (noffset % 2) {
device_printf(sc->sc_dev, "noffset is odd (0x%04x)\n",
noffset);
}
#endif /* SNCDEBUG */
if (sc->curbank != bank) {
/* select SNECR_MEMBS register */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_MEMBS);
/* select new bank */
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_MEMBS_B2EB(bank) | SNECR_MEMBS_BSEN);
/* update current bank */
sc->curbank = bank;
}
return noffset;
}
/*
* write to SONIC descriptors.
*/
void
snc_nec16_writetodesc(sc, base, offset, val)
struct snc_softc *sc;
u_int32_t base;
u_int32_t offset;
u_int16_t val;
{
bus_space_tag_t memt = sc->sc_memt;
bus_space_handle_t memh = sc->sc_memh;
u_int16_t noffset;
noffset = snc_nec16_select_bank(sc, base, offset);
bus_space_write_2(memt, memh, noffset, val);
}
/*
* read from SONIC descriptors.
*/
u_int16_t
snc_nec16_readfromdesc(sc, base, offset)
struct snc_softc *sc;
u_int32_t base;
u_int32_t offset;
{
bus_space_tag_t memt = sc->sc_memt;
bus_space_handle_t memh = sc->sc_memh;
u_int16_t noffset;
noffset = snc_nec16_select_bank(sc, base, offset);
return bus_space_read_2(memt, memh, noffset);
}
/*
* read from SONIC data buffer.
*/
void
snc_nec16_copyfrombuf(sc, dst, offset, size)
struct snc_softc *sc;
void *dst;
u_int32_t offset;
size_t size;
{
bus_space_tag_t memt = sc->sc_memt;
bus_space_handle_t memh = sc->sc_memh;
u_int16_t noffset;
u_int8_t* bptr = dst;
noffset = snc_nec16_select_bank(sc, offset, 0);
/* XXX: should check if offset + size < 0x2000. */
bus_space_barrier(memt, memh, noffset, size,
BUS_SPACE_BARRIER_READ);
if (size > 3) {
if (noffset & 3) {
size_t asize = (~noffset & 3);
bus_space_read_region_1(memt, memh, noffset,
bptr, asize);
bptr += asize;
noffset += asize;
size -= asize;
}
bus_space_read_region_4(memt, memh, noffset,
(u_int32_t *) bptr, size >> 2);
bptr += size & ~3;
noffset += size & ~3;
size &= 3;
}
if (size)
bus_space_read_region_1(memt, memh, noffset, bptr, size);
}
/*
* write to SONIC data buffer.
*/
void
snc_nec16_copytobuf(sc, src, offset, size)
struct snc_softc *sc;
void *src;
u_int32_t offset;
size_t size;
{
bus_space_tag_t memt = sc->sc_memt;
bus_space_handle_t memh = sc->sc_memh;
u_int16_t noffset, onoffset;
size_t osize = size;
u_int8_t* bptr = src;
noffset = snc_nec16_select_bank(sc, offset, 0);
onoffset = noffset;
/* XXX: should check if offset + size < 0x2000. */
if (size > 3) {
if (noffset & 3) {
size_t asize = (~noffset & 3);
bus_space_write_region_1(memt, memh, noffset,
bptr, asize);
bptr += asize;
noffset += asize;
size -= asize;
}
bus_space_write_region_4(memt, memh, noffset,
(u_int32_t *)bptr, size >> 2);
bptr += size & ~3;
noffset += size & ~3;
size -= size & ~3;
}
if (size)
bus_space_write_region_1(memt, memh, noffset, bptr, size);
bus_space_barrier(memt, memh, onoffset, osize,
BUS_SPACE_BARRIER_WRITE);
}
/*
* write (fill) 0 to SONIC data buffer.
*/
void
snc_nec16_zerobuf(sc, offset, size)
struct snc_softc *sc;
u_int32_t offset;
size_t size;
{
bus_space_tag_t memt = sc->sc_memt;
bus_space_handle_t memh = sc->sc_memh;
u_int16_t noffset, onoffset;
size_t osize = size;
noffset = snc_nec16_select_bank(sc, offset, 0);
onoffset = noffset;
/* XXX: should check if offset + size < 0x2000. */
if (size > 3) {
if (noffset & 3) {
size_t asize = (~noffset & 3);
bus_space_set_region_1(memt, memh, noffset, 0, asize);
noffset += asize;
size -= asize;
}
bus_space_set_region_4(memt, memh, noffset, 0, size >> 2);
noffset += size & ~3;
size -= size & ~3;
}
if (size)
bus_space_set_region_1(memt, memh, noffset, 0, size);
bus_space_barrier(memt, memh, onoffset, osize,
BUS_SPACE_BARRIER_WRITE);
}
/*
* Routines to read bytes sequentially from EEPROM through NEC PC-9801-83,
* 84, 103, 104, PC-9801N-25 and PC-9801N-J02, J02R for NetBSD/pc98.
* Ported by Kouichi Matsuda.
*
* This algorism is generic to read data sequentially from 4-Wire
* Microwire Serial EEPROM.
*/
#define SNEC_EEP_DELAY 1000
void
snc_nec16_read_eeprom(iot, ioh, data)
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int8_t *data;
{
u_int8_t n, val, bit;
/* Read bytes from EEPROM; two bytes per an iteration. */
for (n = 0; n < SNEC_EEPROM_SIZE / 2; n++) {
/* select SNECR_EEP */
bus_space_write_1(iot, ioh, SNEC_ADDR, SNECR_EEP);
bus_space_write_1(iot, ioh, SNEC_CTRLB, 0x00);
delay(SNEC_EEP_DELAY);
/* Start EEPROM access. */
bus_space_write_1(iot, ioh, SNEC_CTRLB, SNECR_EEP_CS);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_SK);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_DI);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_SK | SNECR_EEP_DI);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_DI);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_SK | SNECR_EEP_DI);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB, SNECR_EEP_CS);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_SK);
delay(SNEC_EEP_DELAY);
/* Pass the iteration count to the chip. */
for (bit = 0x20; bit != 0x00; bit >>= 1) {
bus_space_write_1(iot, ioh, SNEC_CTRLB, SNECR_EEP_CS |
((n & bit) ? SNECR_EEP_DI : 0x00));
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_SK |
((n & bit) ? SNECR_EEP_DI : 0x00));
delay(SNEC_EEP_DELAY);
}
bus_space_write_1(iot, ioh, SNEC_CTRLB, SNECR_EEP_CS);
(void) bus_space_read_1(iot, ioh, SNEC_CTRLB); /* ACK */
delay(SNEC_EEP_DELAY);
/* Read a byte. */
val = 0;
for (bit = 0x80; bit != 0x00; bit >>= 1) {
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_SK);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB, SNECR_EEP_CS);
if (bus_space_read_1(iot, ioh, SNEC_CTRLB) & SNECR_EEP_DO)
val |= bit;
}
*data++ = val;
/* Read one more byte. */
val = 0;
for (bit = 0x80; bit != 0x00; bit >>= 1) {
bus_space_write_1(iot, ioh, SNEC_CTRLB,
SNECR_EEP_CS | SNECR_EEP_SK);
delay(SNEC_EEP_DELAY);
bus_space_write_1(iot, ioh, SNEC_CTRLB, SNECR_EEP_CS);
if (bus_space_read_1(iot, ioh, SNEC_CTRLB) & SNECR_EEP_DO)
val |= bit;
}
*data++ = val;
bus_space_write_1(iot, ioh, SNEC_CTRLB, 0x00);
delay(SNEC_EEP_DELAY);
}
#ifdef SNCDEBUG
/* Report what we got. */
data -= SNEC_EEPROM_SIZE;
log(LOG_INFO, "%s: EEPROM:"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x\n",
"snc_nec16_read_eeprom",
data[ 0], data[ 1], data[ 2], data[ 3],
data[ 4], data[ 5], data[ 6], data[ 7],
data[ 8], data[ 9], data[10], data[11],
data[12], data[13], data[14], data[15],
data[16], data[17], data[18], data[19],
data[20], data[21], data[22], data[23],
data[24], data[25], data[26], data[27],
data[28], data[29], data[30], data[31]);
#endif
}
#ifdef SNCDEBUG
void
snc_nec16_dump_reg(iot, ioh)
bus_space_tag_t iot;
bus_space_handle_t ioh;
{
u_int8_t n;
u_int16_t val;
printf("SONIC registers (word):");
for (n = 0; n < SNC_NREGS; n++) {
/* select required SONIC register */
bus_space_write_1(iot, ioh, SNEC_ADDR, n);
delay(10);
val = bus_space_read_2(iot, ioh, SNEC_CTRL);
if ((n % 0x10) == 0)
printf("\n%04x ", val);
else
printf("%04x ", val);
}
printf("\n");
printf("NEC/SONIC registers (byte):\n");
for (n = SNECR_MEMBS; n <= SNECR_IDENT; n += 2) {
/* select required SONIC register */
bus_space_write_1(iot, ioh, SNEC_ADDR, n);
delay(10);
val = (u_int16_t) bus_space_read_1(iot, ioh, SNEC_CTRLB);
printf("%04x ", val);
}
printf("\n");
}
#endif /* SNCDEBUG */