1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-15 10:17:20 +00:00
freebsd/sys/scsi/cd.c
Eivind Eklund 7b778b5e61 Make all file-system (MFS, FFS, NFS, LFS, DEVFS) related option new-style.
This introduce an xxxFS_BOOT for each of the rootable filesystems.
(Presently not required, but encouraged to allow a smooth move of option *FS
to opt_dontuse.h later.)

LFS is temporarily disabled, and will be re-enabled tomorrow.
1998-01-24 02:54:56 +00:00

1500 lines
37 KiB
C

/*
* Written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992
*
* $Id: cd.c,v 1.88 1997/12/14 00:32:33 jraynard Exp $
*/
#include "opt_bounce.h"
#include "opt_devfs.h"
#include "opt_scsi.h"
#define SPLCD splbio
#define ESUCCESS 0
#include <sys/param.h>
#include <sys/dkbad.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/buf.h>
#include <sys/cdio.h>
#include <sys/disklabel.h>
#include <sys/dkstat.h>
#include <sys/kernel.h>
#ifdef DEVFS
#include <sys/devfsext.h>
#endif /*DEVFS*/
#include <scsi/scsi_all.h>
#include <scsi/scsi_cd.h>
#include <scsi/scsi_disk.h> /* rw_big and start_stop come from there */
#include <scsi/scsiconf.h>
#include <scsi/scsi_debug.h>
#include <scsi/scsi_driver.h>
static errval cd_get_parms __P((int, int));
static u_int32_t cd_size __P((int unit, int flags));
static errval cd_get_mode __P((u_int32_t, struct cd_mode_data *, u_int32_t));
static errval cd_set_mode __P((u_int32_t unit, struct cd_mode_data *));
static errval cd_read_toc __P((u_int32_t, u_int32_t, u_int32_t, struct cd_toc_entry *,
u_int32_t));
static errval cd_pause __P((u_int32_t, u_int32_t));
static errval cd_reset __P((u_int32_t));
static errval cd_play_msf __P((u_int32_t, u_int32_t, u_int32_t, u_int32_t, u_int32_t, u_int32_t, u_int32_t));
static errval cd_play __P((u_int32_t, u_int32_t, u_int32_t));
#ifdef notyet
static errval cd_play_big __P((u_int32_t unit, u_int32_t blk, u_int32_t len));
#endif
static errval cd_play_tracks __P((u_int32_t, u_int32_t, u_int32_t, u_int32_t, u_int32_t));
static errval cd_read_subchannel __P((u_int32_t, u_int32_t, u_int32_t, int, struct cd_sub_channel_info *, u_int32_t));
static errval cd_getdisklabel __P((u_int8_t));
static d_open_t cdopen;
static d_close_t cdclose;
static d_ioctl_t cdioctl;
static d_strategy_t cdstrategy;
#define CDEV_MAJOR 15
#define BDEV_MAJOR 6
static struct cdevsw cd_cdevsw;
static struct bdevsw cd_bdevsw =
{ cdopen, cdclose, cdstrategy, cdioctl, /*6*/
nodump, nopsize, D_DISK, "cd", &cd_cdevsw, -1 };
static int32_t cdstrats, cdqueues;
#define CDUNIT(DEV) ((minor(DEV)&0xF8) >> 3) /* 5 bit unit */
#define CDSETUNIT(DEV, U) makedev(major(DEV), ((U) << 3))
#define PAGESIZ 4096
#define SECSIZE 2048 /* XXX */ /* default only */
#define CDOUTSTANDING 2
#define CDRETRIES 1
#define LEADOUT 0xaa /* leadout toc entry */
#define PARTITION(z) (minor(z) & 0x07)
#define RAW_PART 2
static void cdstart(u_int32_t unit, u_int32_t flags);
struct scsi_data {
u_int32_t flags;
#define CDINIT 0x04 /* device has been init'd */
struct cd_parms {
u_int32_t blksize;
u_long disksize; /* total number sectors */
} params;
struct disklabel disklabel;
u_int32_t partflags[MAXPARTITIONS]; /* per partition flags */
#define CDOPEN 0x01
u_int32_t openparts; /* one bit for each open partition */
u_int32_t xfer_block_wait;
struct buf_queue_head buf_queue;
int dkunit;
#ifdef DEVFS
void *ra_devfs_token;
void *rc_devfs_token;
void *a_devfs_token;
void *c_devfs_token;
void *ctl_devfs_token;
#endif
};
static int cdunit(dev_t dev) { return CDUNIT(dev); }
static dev_t cdsetunit(dev_t dev, int unit) { return CDSETUNIT(dev, unit); }
static errval cd_open(dev_t dev, int flags, int fmt, struct proc *p,
struct scsi_link *sc_link);
static errval cd_ioctl(dev_t dev, int cmd, caddr_t addr, int flag,
struct proc *p, struct scsi_link *sc_link);
static errval cd_close(dev_t dev, int flag, int fmt, struct proc *p,
struct scsi_link *sc_link);
static void cd_strategy(struct buf *bp, struct scsi_link *sc_link);
SCSI_DEVICE_ENTRIES(cd)
static struct scsi_device cd_switch =
{
NULL, /* use default error handler */
cdstart, /* we have a queue, which is started by this */
NULL, /* we do not have an async handler */
NULL, /* use default 'done' routine */
"cd", /* we are to be refered to by this name */
0, /* no device specific flags */
{0, 0},
0, /* Link flags */
cdattach,
"CD-ROM",
cdopen,
sizeof(struct scsi_data),
T_READONLY,
cdunit,
cdsetunit,
cd_open,
cd_ioctl,
cd_close,
cd_strategy,
};
#define CD_STOP 0
#define CD_START 1
#define CD_EJECT -2
static inline void
cd_registerdev(int unit)
{
if(dk_ndrive < DK_NDRIVE) {
sprintf(dk_names[dk_ndrive], "cd%d", unit);
dk_wpms[dk_ndrive] = (150*1024/2);
SCSI_DATA(&cd_switch, unit)->dkunit = dk_ndrive++;
} else {
SCSI_DATA(&cd_switch, unit)->dkunit = -1;
}
}
/*
* The routine called by the low level scsi routine when it discovers
* A device suitable for this driver
*/
static int
cdattach(struct scsi_link *sc_link)
{
u_int32_t unit;
struct cd_parms *dp;
struct scsi_data *cd = sc_link->sd;
unit = sc_link->dev_unit;
dp = &(cd->params);
bufq_init(&cd->buf_queue);
if (sc_link->opennings > CDOUTSTANDING)
sc_link->opennings = CDOUTSTANDING;
/*
* Use the subdriver to request information regarding
* the drive. We cannot use interrupts yet, so the
* request must specify this.
*
* XXX dufault@hda.com:
* Need to handle this better in the case of no record. Rather than
* a state driven sense handler I think we should make it so that
* the command can get the sense back so that it can selectively log
* errors.
*/
if (sc_link->quirks & CD_Q_NO_TOUCH) {
dp->disksize = 0;
} else {
cd_get_parms(unit, SCSI_NOSLEEP | SCSI_NOMASK | SCSI_SILENT);
}
if (dp->disksize) {
printf("cd present [%ld x %ld byte records]",
cd->params.disksize,
cd->params.blksize);
} else {
printf("can't get the size");
}
cd->flags |= CDINIT;
cd_registerdev(unit);
#ifdef DEVFS
#define CD_UID UID_ROOT
#define CD_GID GID_OPERATOR
cd->ra_devfs_token =
devfs_add_devswf(&cd_cdevsw, unit * 8, DV_CHR, CD_UID,
CD_GID, 0640, "rcd%da", unit);
cd->rc_devfs_token =
devfs_add_devswf(&cd_cdevsw, (unit * 8 ) + RAW_PART, DV_CHR,
CD_UID, CD_GID, 0640, "rcd%dc", unit);
cd->a_devfs_token =
devfs_add_devswf(&cd_bdevsw, unit * 8, DV_BLK, CD_UID,
CD_GID, 0640, "cd%da", unit);
cd->c_devfs_token =
devfs_add_devswf(&cd_bdevsw, (unit * 8 ) + RAW_PART, DV_BLK,
CD_UID, CD_GID, 0640, "cd%dc", unit);
cd->ctl_devfs_token =
devfs_add_devswf(&cd_cdevsw, (unit * 8) | SCSI_CONTROL_MASK,
DV_CHR,
UID_ROOT, GID_WHEEL, 0600, "rcd%d.ctl", unit);
#endif
return 0;
}
/*
* open the device. Make sure the partition info is a up-to-date as can be.
*/
static errval
cd_open(dev_t dev, int flags, int fmt, struct proc *p,
struct scsi_link *sc_link)
{
errval errcode = 0;
u_int32_t unit, part;
struct scsi_data *cd;
int n;
unit = CDUNIT(dev);
part = PARTITION(dev);
cd = sc_link->sd;
/*
* Make sure the device has been initialised
*/
if ((cd == NULL) || (!(cd->flags & CDINIT)))
return (ENXIO);
SC_DEBUG(sc_link, SDEV_DB1,
("cd_open: dev=0x%lx (unit %ld,partition %ld)\n",
dev, unit, part));
/*
* Check that it is still responding and ok.
* if the media has been changed this will result in a
* "unit attention" error which the error code will
* disregard because the SDEV_OPEN flag is not yet set.
* Makes sure that we know it if the media has been changed..
*/
scsi_test_unit_ready(sc_link, SCSI_SILENT);
/*
* If it's been invalidated, and not everybody has closed it then
* forbid re-entry. (may have changed media)
*/
if ((!(sc_link->flags & SDEV_MEDIA_LOADED))
&& (cd->openparts)) {
SC_DEBUG(sc_link, SDEV_DB2, ("unit attn, but openparts?\n"));
return (ENXIO);
}
/*
* Start the drive, and take notice of error returns.
* Some (arguably broken) drives go crazy on this attempt, we can
* handle it.
*/
if ((sc_link->quirks & CD_Q_NO_START) == 0) {
scsi_start_unit(sc_link, CD_START);
SC_DEBUG(sc_link, SDEV_DB3, ("'start' attempted "));
}
sc_link->flags |= SDEV_OPEN; /* unit attn errors are now errors */
/*
* Some drives take a long time to become ready after a disk swap
* and report 'Not Ready' rather than 'Unit in the Process of Getting
* Ready' while doing so; attempts to mount during this period will
* return ENXIO. Give them some time to come up.
*/
for (n = 0; scsi_test_unit_ready(sc_link, SCSI_SILENT) && n != 12; n++)
tsleep(cd, PRIBIO | PCATCH, "cdrdy", hz);
/* If still not ready, give up */
if (scsi_test_unit_ready(sc_link, SCSI_SILENT) != 0) {
SC_DEBUG(sc_link, SDEV_DB3, ("not ready\n"));
errcode = ENXIO;
goto bad;
}
SC_DEBUG(sc_link, SDEV_DB3, ("Device present\n"));
scsi_prevent(sc_link, PR_PREVENT, SCSI_SILENT);
/*
* Load the physical device parameters
*/
if (cd_get_parms(unit, 0)) {
errcode = ENXIO;
goto bad;
}
SC_DEBUG(sc_link, SDEV_DB3, ("Params loaded "));
/*
* Make up some partition information
*/
cd_getdisklabel(unit);
SC_DEBUG(sc_link, SDEV_DB3, ("Disklabel fabricated "));
/*
* Check the partition is legal
*/
if(part != RAW_PART) {
/*
* Check that the partition CAN exist
*/
if (part >= cd->disklabel.d_npartitions) {
SC_DEBUG(sc_link, SDEV_DB3, ("partition %ld > %d\n", part
,cd->disklabel.d_npartitions));
errcode = ENXIO;
goto bad;
}
/*
* and that it DOES exist
*/
if (cd->disklabel.d_partitions[part].p_fstype == FS_UNUSED) {
SC_DEBUG(sc_link, SDEV_DB3,
("part %ld type UNUSED\n", part));
errcode = ENXIO;
goto bad;
}
}
cd->partflags[part] |= CDOPEN;
cd->openparts |= (1 << part);
SC_DEBUG(sc_link, SDEV_DB3, ("open complete\n"));
sc_link->flags |= SDEV_MEDIA_LOADED;
return 0;
bad:
/*
* if we would have been the only open
* then leave things back as they were
*/
if (!(cd->openparts)) {
sc_link->flags &= ~SDEV_OPEN;
scsi_prevent(sc_link, PR_ALLOW, SCSI_SILENT);
}
return (errcode);
}
/*
* close the device.. only called if we are the LAST
* occurence of an open device
*/
static errval
cd_close(dev_t dev, int flag, int fmt, struct proc *p,
struct scsi_link *sc_link)
{
u_int8_t unit, part;
struct scsi_data *cd;
unit = CDUNIT(dev);
part = PARTITION(dev);
cd = sc_link->sd;
SC_DEBUG(sc_link, SDEV_DB2, ("cd%d: closing part %d\n", unit, part));
cd->partflags[part] &= ~CDOPEN;
cd->openparts &= ~(1 << part);
/*
* If we were the last open of the entire device, release it.
*/
if (!(cd->openparts)) {
scsi_prevent(sc_link, PR_ALLOW, SCSI_SILENT);
sc_link->flags &= ~SDEV_OPEN;
}
return (0);
}
/*
* Actually translate the requested transfer into one the physical driver can
* understand. The transfer is described by a buf and will include only one
* physical transfer.
*/
static void
cd_strategy(struct buf *bp, struct scsi_link *sc_link)
{
u_int32_t opri;
u_int32_t unit = CDUNIT((bp->b_dev));
struct scsi_data *cd = sc_link->sd;
cdstrats++;
/*
* If the device has been made invalid, error out
* maybe the media changed
*/
if (!(sc_link->flags & SDEV_MEDIA_LOADED)) {
bp->b_error = EIO;
goto bad;
}
/*
* can't ever write to a CD
*/
if ((bp->b_flags & B_READ) == 0) {
bp->b_error = EROFS;
goto bad;
}
/*
* Decide which unit and partition we are talking about
*/
if (PARTITION(bp->b_dev) != RAW_PART) {
/*
* do bounds checking, adjust transfer. if error, process.
* if end of partition, just return
*/
if (bounds_check_with_label(bp, &cd->disklabel, 1) <= 0)
goto done;
/* otherwise, process transfer request */
} else {
bp->b_pblkno = bp->b_blkno;
bp->b_resid = 0;
}
opri = SPLCD();
/*
* Use a bounce buffer if necessary
*/
#ifdef BOUNCE_BUFFERS
if (sc_link->flags & SDEV_BOUNCE)
vm_bounce_alloc(bp);
#endif
/*
* Place it in the queue of disk activities for this disk
*/
bufq_insert_tail(&cd->buf_queue, bp);
/*
* Tell the device to get going on the transfer if it's
* not doing anything, otherwise just wait for completion
*/
cdstart(unit, 0);
splx(opri);
return;
bad:
bp->b_flags |= B_ERROR;
done:
/*
* Correctly set the buf to indicate a completed xfer
*/
bp->b_resid = bp->b_bcount;
biodone(bp);
return;
}
/*
* cdstart looks to see if there is a buf waiting for the device
* and that the device is not already busy. If both are true,
* It deques the buf and creates a scsi command to perform the
* transfer in the buf. The transfer request will call scsi_done
* on completion, which will in turn call this routine again
* so that the next queued transfer is performed.
* The bufs are queued by the strategy routine (cdstrategy)
*
* This routine is also called after other non-queued requests
* have been made of the scsi driver, to ensure that the queue
* continues to be drained.
*
* must be called at the correct (highish) spl level
* cdstart() is called at SPLCD from cdstrategy and scsi_done
*/
static void
cdstart(unit, flags)
u_int32_t unit;
u_int32_t flags;
{
register struct buf *bp = 0;
struct scsi_rw_big cmd;
u_int32_t blkno, nblk;
struct partition *p;
struct scsi_link *sc_link = SCSI_LINK(&cd_switch, unit);
struct scsi_data *cd = sc_link->sd;
SC_DEBUG(sc_link, SDEV_DB2, ("cdstart%ld ", unit));
/*
* See if there is a buf to do and we are not already
* doing one
*/
if (!sc_link->opennings) {
return; /* no room for us, unit already underway */
}
if (sc_link->flags & SDEV_WAITING) { /* is room, but a special waits */
return; /* give the special that's waiting a chance to run */
}
bp = bufq_first(&cd->buf_queue);
if (bp == NULL) { /* yes, an assign */
return;
}
bufq_remove(&cd->buf_queue, bp);
/*
* Should reject all queued entries if SDEV_MEDIA_LOADED is not true.
*/
if (!(sc_link->flags & SDEV_MEDIA_LOADED)) {
goto bad; /* no I/O.. media changed or something */
}
/*
* We have a buf, now we should make a command
*
* First, translate the block to absolute and put it in terms of the
* logical blocksize of the device. Really a bit silly until we have
* real partitions, but.
*/
blkno = bp->b_blkno / (cd->params.blksize / 512);
if (PARTITION(bp->b_dev) != RAW_PART) {
p = cd->disklabel.d_partitions + PARTITION(bp->b_dev);
blkno += p->p_offset;
}
nblk = (bp->b_bcount + (cd->params.blksize - 1)) / (cd->params.blksize);
/* what if something asks for 512 bytes not on a 2k boundary? *//*XXX */
/*
* Fill out the scsi command
*/
bzero(&cmd, sizeof(cmd));
cmd.op_code = READ_BIG;
cmd.addr_3 = (blkno & 0xff000000UL) >> 24;
cmd.addr_2 = (blkno & 0xff0000) >> 16;
cmd.addr_1 = (blkno & 0xff00) >> 8;
cmd.addr_0 = blkno & 0xff;
cmd.length2 = (nblk & 0xff00) >> 8;
cmd.length1 = (nblk & 0xff);
/*
* Call the routine that chats with the adapter.
* Note: we cannot sleep as we may be an interrupt
*/
if (scsi_scsi_cmd(sc_link,
(struct scsi_generic *) &cmd,
sizeof(cmd),
(u_char *) bp->b_data,
bp->b_bcount,
CDRETRIES,
30000,
bp,
flags | ((bp->b_flags & B_READ) ?
SCSI_DATA_IN : SCSI_DATA_OUT))
!= SUCCESSFULLY_QUEUED) {
bad:
printf("cd%ld: oops not queued\n", unit);
bp->b_error = EIO;
bp->b_flags |= B_ERROR;
biodone(bp);
return;
}
cdqueues++;
if(cd->dkunit >= 0) {
dk_xfer[cd->dkunit]++;
dk_seek[cd->dkunit]++; /* don't know */
dk_wds[cd->dkunit] += bp->b_bcount >> 6;
}
}
/*
* Perform special action on behalf of the user.
* Knows about the internals of this device
*/
static errval
cd_ioctl(dev_t dev, int cmd, caddr_t addr, int flag, struct proc *p,
struct scsi_link *sc_link)
{
errval error = 0;
u_int8_t unit, part;
register struct scsi_data *cd;
/*
* Find the device that the user is talking about
*/
unit = CDUNIT(dev);
part = PARTITION(dev);
cd = sc_link->sd;
SC_DEBUG(sc_link, SDEV_DB2, ("cdioctl 0x%x ", cmd));
/*
* If the device is not valid.. abandon ship
*/
if (!(sc_link->flags & SDEV_MEDIA_LOADED))
return (EIO);
switch (cmd) {
case DIOCSBAD:
error = EINVAL;
break;
case DIOCGDINFO:
*(struct disklabel *) addr = cd->disklabel;
break;
case DIOCGPART:
((struct partinfo *) addr)->disklab = &cd->disklabel;
((struct partinfo *) addr)->part =
&cd->disklabel.d_partitions[PARTITION(dev)];
break;
/*
* a bit silly, but someone might want to test something on a
* section of cdrom.
*/
case DIOCWDINFO:
case DIOCSDINFO:
if ((flag & FWRITE) == 0)
error = EBADF;
else
error = setdisklabel(&cd->disklabel,
(struct disklabel *) addr, 0);
if (error == 0)
break;
case DIOCWLABEL:
error = EBADF;
break;
case CDIOCPLAYTRACKS:
{
struct ioc_play_track *args
= (struct ioc_play_track *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.flags &= ~CD_PA_SOTC;
data.page.audio.flags |= CD_PA_IMMED;
error = cd_set_mode(unit, &data);
if (error)
break;
if (sc_link->quirks & CD_Q_BCD_TRACKS) {
args->start_track = bin2bcd(args->start_track);
args->end_track = bin2bcd(args->end_track);
}
return (cd_play_tracks(unit
,args->start_track
,args->start_index
,args->end_track
,args->end_index
));
}
break;
case CDIOCPLAYMSF:
{
struct ioc_play_msf *args
= (struct ioc_play_msf *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.flags &= ~CD_PA_SOTC;
data.page.audio.flags |= CD_PA_IMMED;
error = cd_set_mode(unit, &data);
if (error)
break;
return (cd_play_msf(unit
,args->start_m
,args->start_s
,args->start_f
,args->end_m
,args->end_s
,args->end_f
));
}
break;
case CDIOCPLAYBLOCKS:
{
struct ioc_play_blocks *args
= (struct ioc_play_blocks *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.flags &= ~CD_PA_SOTC;
data.page.audio.flags |= CD_PA_IMMED;
error = cd_set_mode(unit, &data);
if (error)
break;
return (cd_play(unit, args->blk, args->len));
}
break;
case CDIOCREADSUBCHANNEL:
{
struct ioc_read_subchannel *args
= (struct ioc_read_subchannel *) addr;
struct cd_sub_channel_info data;
u_int32_t len = args->data_len;
if (len > sizeof(data) ||
len < sizeof(struct cd_sub_channel_header)) {
error = EINVAL;
break;
}
if (sc_link->quirks & CD_Q_BCD_TRACKS)
args->track = bin2bcd(args->track);
error = cd_read_subchannel(unit, args->address_format,
args->data_format, args->track, &data, len);
if (error)
break;
if (sc_link->quirks & CD_Q_BCD_TRACKS)
data.what.track_info.track_number =
bcd2bin(data.what.track_info.track_number);
len = min(len, ((data.header.data_len[0] << 8) +
data.header.data_len[1] +
sizeof(struct cd_sub_channel_header)));
if (copyout(&data, args->data, len) != 0) {
error = EFAULT;
}
}
break;
case CDIOREADTOCHEADER:
{
struct ioc_toc_header th;
error = cd_read_toc(unit, 0, 0,
(struct cd_toc_entry *)&th, sizeof th);
if (error)
break;
if (sc_link->quirks & CD_Q_BCD_TRACKS) {
/* we are going to have to convert the BCD
* encoding on the cd to what is expected
*/
th.starting_track = bcd2bin(th.starting_track);
th.ending_track = bcd2bin(th.ending_track);
}
NTOHS(th.len);
bcopy(&th, addr, sizeof th);
}
break;
case CDIOREADTOCENTRYS:
{
struct {
struct ioc_toc_header header;
struct cd_toc_entry entries[100];
} data;
struct {
struct ioc_toc_header header;
struct cd_toc_entry entry;
} lead;
struct ioc_read_toc_entry *te =
(struct ioc_read_toc_entry *) addr;
struct ioc_toc_header *th;
u_int32_t len, readlen, idx, num;
u_int32_t starting_track = te->starting_track;
if ( te->data_len < sizeof(struct cd_toc_entry)
|| (te->data_len % sizeof(struct cd_toc_entry)) != 0
|| te->address_format != CD_MSF_FORMAT
&& te->address_format != CD_LBA_FORMAT
) {
error = EINVAL;
break;
}
th = &data.header;
error = cd_read_toc(unit, 0, 0,
(struct cd_toc_entry *)th, sizeof (*th));
if (error)
break;
if (sc_link->quirks & CD_Q_BCD_TRACKS) {
/* we are going to have to convert the BCD
* encoding on the cd to what is expected
*/
th->starting_track =
bcd2bin(th->starting_track);
th->ending_track = bcd2bin(th->ending_track);
}
if (starting_track == 0)
starting_track = th->starting_track;
else if (starting_track == LEADOUT)
starting_track = th->ending_track + 1;
else if (starting_track < th->starting_track ||
starting_track > th->ending_track + 1) {
error = EINVAL;
break;
}
/* calculate reading length without leadout entry */
readlen = (th->ending_track - starting_track + 1) *
sizeof(struct cd_toc_entry);
/* and with leadout entry */
len = readlen + sizeof(struct cd_toc_entry);
if (te->data_len < len) {
len = te->data_len;
if (readlen > len)
readlen = len;
}
if (len > sizeof(data.entries)) {
error = EINVAL;
break;
}
num = len / sizeof(struct cd_toc_entry);
if (readlen > 0) {
error = cd_read_toc(unit, te->address_format,
starting_track,
(struct cd_toc_entry *)&data,
readlen + sizeof (*th));
if (error)
break;
}
/* make leadout entry if needed */
idx = starting_track + num - 1;
if (sc_link->quirks & CD_Q_BCD_TRACKS)
th->ending_track = bcd2bin(th->ending_track);
if (idx == th->ending_track + 1) {
error = cd_read_toc(unit, te->address_format,
LEADOUT,
(struct cd_toc_entry *)&lead,
sizeof(lead));
if (error)
break;
data.entries[idx - starting_track] = lead.entry;
}
if (sc_link->quirks & CD_Q_BCD_TRACKS) {
for (idx = 0; idx < num - 1; idx++) {
data.entries[idx].track =
bcd2bin(data.entries[idx].track);
}
}
error = copyout(data.entries, te->data, len);
}
break;
case CDIOREADTOCENTRY:
{
struct {
struct ioc_toc_header header;
struct cd_toc_entry entry;
} data;
struct ioc_read_toc_single_entry *te =
(struct ioc_read_toc_single_entry *) addr;
struct ioc_toc_header *th;
u_int32_t track;
if (te->address_format != CD_MSF_FORMAT
&& te->address_format != CD_LBA_FORMAT) {
error = EINVAL;
break;
}
th = &data.header;
error = cd_read_toc(unit, 0, 0,
(struct cd_toc_entry *)th, sizeof (*th));
if (error)
break;
if (sc_link->quirks & CD_Q_BCD_TRACKS) {
/* we are going to have to convert the BCD
* encoding on the cd to what is expected
*/
th->starting_track =
bcd2bin(th->starting_track);
th->ending_track = bcd2bin(th->ending_track);
}
track = te->track;
if (track == 0)
track = th->starting_track;
else if (track == LEADOUT)
/* OK */;
else if (track < th->starting_track ||
track > th->ending_track + 1) {
error = EINVAL;
break;
}
error = cd_read_toc(unit, te->address_format,
track,
(struct cd_toc_entry *)&data,
sizeof data);
if (error)
break;
if (sc_link->quirks & CD_Q_BCD_TRACKS)
data.entry.track = bcd2bin(data.entry.track);
bcopy(&data.entry, &te->entry,
sizeof(struct cd_toc_entry));
}
break;
case CDIOCSETPATCH:
{
struct ioc_patch *arg = (struct ioc_patch *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = arg->patch[0];
data.page.audio.port[RIGHT_PORT].channels = arg->patch[1];
data.page.audio.port[2].channels = arg->patch[2];
data.page.audio.port[3].channels = arg->patch[3];
error = cd_set_mode(unit, &data);
if (error)
break; /* eh? */
}
break;
case CDIOCGETVOL:
{
struct ioc_vol *arg = (struct ioc_vol *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
arg->vol[LEFT_PORT] = data.page.audio.port[LEFT_PORT].volume;
arg->vol[RIGHT_PORT] = data.page.audio.port[RIGHT_PORT].volume;
arg->vol[2] = data.page.audio.port[2].volume;
arg->vol[3] = data.page.audio.port[3].volume;
}
break;
case CDIOCSETVOL:
{
struct ioc_vol *arg = (struct ioc_vol *) addr;
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = CHANNEL_0;
data.page.audio.port[LEFT_PORT].volume = arg->vol[LEFT_PORT];
data.page.audio.port[RIGHT_PORT].channels = CHANNEL_1;
data.page.audio.port[RIGHT_PORT].volume = arg->vol[RIGHT_PORT];
data.page.audio.port[2].volume = arg->vol[2];
data.page.audio.port[3].volume = arg->vol[3];
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETMONO:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL;
data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETSTEREO:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL;
data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETMUTE:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = 0;
data.page.audio.port[RIGHT_PORT].channels = 0;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETLEFT:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL;
data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCSETRIGHT:
{
struct cd_mode_data data;
error = cd_get_mode(unit, &data, AUDIO_PAGE);
if (error)
break;
data.page.audio.port[LEFT_PORT].channels = RIGHT_CHANNEL;
data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL;
data.page.audio.port[2].channels = 0;
data.page.audio.port[3].channels = 0;
error = cd_set_mode(unit, &data);
if (error)
break;
}
break;
case CDIOCRESUME:
error = cd_pause(unit, 1);
break;
case CDIOCPAUSE:
error = cd_pause(unit, 0);
break;
case CDIOCSTART:
error = scsi_start_unit(sc_link, 0);
break;
case CDIOCSTOP:
error = scsi_stop_unit(sc_link, 0, 0);
break;
case CDIOCEJECT:
error = scsi_stop_unit(sc_link, 1, 0);
break;
case CDIOCALLOW:
error = scsi_prevent(sc_link, PR_ALLOW, 0);
break;
case CDIOCPREVENT:
error = scsi_prevent(sc_link, PR_PREVENT, 0);
break;
case CDIOCSETDEBUG:
sc_link->flags |= (SDEV_DB1 | SDEV_DB2);
break;
case CDIOCCLRDEBUG:
sc_link->flags &= ~(SDEV_DB1 | SDEV_DB2);
break;
case CDIOCRESET:
return (cd_reset(unit));
break;
default:
if(part == RAW_PART)
error = scsi_do_ioctl(dev, cmd, addr, flag, p, sc_link);
else
error = ENOTTY;
break;
}
return (error);
}
/*
* Load the label information on the named device
* Actually fabricate a disklabel
*
* EVENTUALLY take information about different
* data tracks from the TOC and put it in the disklabel
*/
static errval
cd_getdisklabel(unit)
u_int8_t unit;
{
/*unsigned int n, m; */
struct scsi_data *cd;
cd = SCSI_DATA(&cd_switch, unit);
bzero(&cd->disklabel, sizeof(struct disklabel));
/*
* make partition 0 the whole disk
*/
strncpy(cd->disklabel.d_typename, "scsi cd_rom", 16);
strncpy(cd->disklabel.d_packname, "ficticious", 16);
cd->disklabel.d_secsize = cd->params.blksize; /* as long as it's not 0 */
cd->disklabel.d_nsectors = 100;
cd->disklabel.d_ntracks = 1;
cd->disklabel.d_ncylinders = (cd->params.disksize / 100) + 1;
cd->disklabel.d_secpercyl = 100;
cd->disklabel.d_secperunit = cd->params.disksize;
cd->disklabel.d_rpm = 300;
cd->disklabel.d_interleave = 1;
cd->disklabel.d_flags = D_REMOVABLE;
/*
* remember that comparisons with the partition are done
* assuming the blocks are 512 bytes so fudge it.
*/
cd->disklabel.d_npartitions = 1;
cd->disklabel.d_partitions[0].p_offset = 0;
cd->disklabel.d_partitions[0].p_size
= cd->params.disksize * (cd->params.blksize / 512);
cd->disklabel.d_partitions[0].p_fstype = 9;
cd->disklabel.d_magic = DISKMAGIC;
cd->disklabel.d_magic2 = DISKMAGIC;
cd->disklabel.d_checksum = dkcksum(&(cd->disklabel));
/*
* Signal to other users and routines that we now have a
* disklabel that represents the media (maybe)
*/
return (ESUCCESS);
}
/*
* Find out from the device what it's capacity is
*/
static u_int32_t
cd_size(unit, flags)
int unit;
int flags;
{
struct scsi_read_cd_cap_data rdcap;
struct scsi_read_cd_capacity scsi_cmd;
u_int32_t size;
u_int32_t blksize;
struct scsi_link *sc_link = SCSI_LINK(&cd_switch, unit);
struct scsi_data *cd = sc_link->sd;
/*
* make up a scsi command and ask the scsi driver to do
* it for you.
*/
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = READ_CD_CAPACITY;
/*
* If the command works, interpret the result as a 4 byte
* number of blocks and a blocksize
*/
if (scsi_scsi_cmd(sc_link,
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
(u_char *) & rdcap,
sizeof(rdcap),
CDRETRIES,
20000, /* might be a disk-changer */
NULL,
SCSI_DATA_IN | flags) != 0) {
return (0);
} else {
size = rdcap.addr_0 + 1;
size += rdcap.addr_1 << 8;
size += rdcap.addr_2 << 16;
size += rdcap.addr_3 << 24;
blksize = rdcap.length_0;
blksize += rdcap.length_1 << 8;
blksize += rdcap.length_2 << 16;
blksize += rdcap.length_3 << 24;
}
if (blksize < 512)
blksize = 2048; /* some drives lie ! */
if (size < 100)
size = 400000; /* ditto */
SC_DEBUG(sc_link, SDEV_DB3, ("cd%d: %ld %ld byte blocks\n"
,unit, size, blksize));
cd->params.disksize = size;
cd->params.blksize = blksize;
return (size);
}
/*
* Get the requested page into the buffer given
*/
static errval
cd_get_mode(unit, data, page)
u_int32_t unit;
struct cd_mode_data *data;
u_int32_t page;
{
struct scsi_mode_sense scsi_cmd;
errval retval;
bzero(&scsi_cmd, sizeof(scsi_cmd));
bzero(data, sizeof(*data));
scsi_cmd.op_code = MODE_SENSE;
scsi_cmd.page = page;
scsi_cmd.length = sizeof(*data) & 0xff;
retval = scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
(u_char *) data,
sizeof(*data),
CDRETRIES,
20000, /* should be immed */
NULL,
SCSI_DATA_IN);
return (retval);
}
/*
* Get the requested page into the buffer given
*/
static errval
cd_set_mode(unit, data)
u_int32_t unit;
struct cd_mode_data *data;
{
struct scsi_mode_select scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = MODE_SELECT;
scsi_cmd.byte2 |= SMS_PF;
scsi_cmd.length = sizeof(*data) & 0xff;
data->header.data_length = 0;
/*
* SONY drives do not allow a mode select with a medium_type
* value that has just been returned by a mode sense; use a
* medium_type of 0 (Default) instead.
*/
data->header.medium_type = 0;
return (scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
(u_char *) data,
sizeof(*data),
CDRETRIES,
20000, /* should be immed */
NULL,
SCSI_DATA_OUT));
}
/*
* Get scsi driver to send a "start playing" command
*/
static errval
cd_play(unit, blk, len)
u_int32_t unit, blk, len;
{
struct scsi_play scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PLAY;
scsi_cmd.blk_addr[0] = (blk >> 24) & 0xff;
scsi_cmd.blk_addr[1] = (blk >> 16) & 0xff;
scsi_cmd.blk_addr[2] = (blk >> 8) & 0xff;
scsi_cmd.blk_addr[3] = blk & 0xff;
scsi_cmd.xfer_len[0] = (len >> 8) & 0xff;
scsi_cmd.xfer_len[1] = len & 0xff;
return (scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
200000, /* should be immed */
NULL,
0));
}
#ifdef notyet
/*
* Get scsi driver to send a "start playing" command
*/
static errval
cd_play_big(unit, blk, len)
u_int32_t unit, blk, len;
{
struct scsi_play_big scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PLAY_BIG;
scsi_cmd.blk_addr[0] = (blk >> 24) & 0xff;
scsi_cmd.blk_addr[1] = (blk >> 16) & 0xff;
scsi_cmd.blk_addr[2] = (blk >> 8) & 0xff;
scsi_cmd.blk_addr[3] = blk & 0xff;
scsi_cmd.xfer_len[0] = (len >> 24) & 0xff;
scsi_cmd.xfer_len[1] = (len >> 16) & 0xff;
scsi_cmd.xfer_len[2] = (len >> 8) & 0xff;
scsi_cmd.xfer_len[3] = len & 0xff;
return (scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
20000, /* should be immed */
NULL,
0));
}
#endif
/*
* Get scsi driver to send a "start playing" command
*/
static errval
cd_play_tracks(unit, strack, sindex, etrack, eindex)
u_int32_t unit, strack, sindex, etrack, eindex;
{
struct scsi_play_track scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PLAY_TRACK;
scsi_cmd.start_track = strack;
scsi_cmd.start_index = sindex;
scsi_cmd.end_track = etrack;
scsi_cmd.end_index = eindex;
return (scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
20000, /* should be immed */
NULL,
0));
}
/*
* Get scsi driver to send a "play msf" command
*/
static errval
cd_play_msf(unit, startm, starts, startf, endm, ends, endf)
u_int32_t unit, startm, starts, startf, endm, ends, endf;
{
struct scsi_play_msf scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PLAY_MSF;
scsi_cmd.start_m = startm;
scsi_cmd.start_s = starts;
scsi_cmd.start_f = startf;
scsi_cmd.end_m = endm;
scsi_cmd.end_s = ends;
scsi_cmd.end_f = endf;
return (scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
2000,
NULL,
0));
}
/*
* Get scsi driver to send a "start up" command
*/
static errval
cd_pause(unit, go)
u_int32_t unit, go;
{
struct scsi_pause scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = PAUSE;
scsi_cmd.resume = go;
return (scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(scsi_cmd),
0,
0,
CDRETRIES,
2000,
NULL,
0));
}
/*
* Get scsi driver to send a "RESET" command
*/
static errval
cd_reset(unit)
u_int32_t unit;
{
return scsi_reset_target(SCSI_LINK(&cd_switch, unit));
}
/*
* Read subchannel
*/
static errval
cd_read_subchannel(unit, mode, format, track, data, len)
u_int32_t unit, mode, format;
int track;
struct cd_sub_channel_info *data;
u_int32_t len;
{
struct scsi_read_subchannel scsi_cmd;
bzero(&scsi_cmd, sizeof(scsi_cmd));
scsi_cmd.op_code = READ_SUBCHANNEL;
if (mode == CD_MSF_FORMAT)
scsi_cmd.byte2 |= CD_MSF;
scsi_cmd.byte3 = SRS_SUBQ;
scsi_cmd.subchan_format = format;
scsi_cmd.track = track;
scsi_cmd.data_len[0] = (len) >> 8;
scsi_cmd.data_len[1] = (len) & 0xff;
return (scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(struct scsi_read_subchannel),
(u_char *) data,
len,
CDRETRIES,
5000,
NULL,
SCSI_DATA_IN));
}
/*
* Read table of contents
*/
static errval
cd_read_toc(unit, mode, start, data, len)
u_int32_t unit, mode, start;
struct cd_toc_entry *data;
u_int32_t len;
{
struct scsi_read_toc scsi_cmd;
u_int32_t ntoc;
bzero(&scsi_cmd, sizeof(scsi_cmd));
/*if(len!=sizeof(struct ioc_toc_header))
* ntoc=((len)-sizeof(struct ioc_toc_header))/sizeof(struct cd_toc_entry);
* else */
ntoc = len;
scsi_cmd.op_code = READ_TOC;
if (mode == CD_MSF_FORMAT)
scsi_cmd.byte2 |= CD_MSF;
scsi_cmd.from_track = start;
scsi_cmd.data_len[0] = (ntoc) >> 8;
scsi_cmd.data_len[1] = (ntoc) & 0xff;
return (scsi_scsi_cmd(SCSI_LINK(&cd_switch, unit),
(struct scsi_generic *) &scsi_cmd,
sizeof(struct scsi_read_toc),
(u_char *) data,
len,
CDRETRIES,
5000,
NULL,
SCSI_DATA_IN));
}
#define b2tol(a) (((unsigned)(a##_1) << 8) + (unsigned)a##_0 )
/*
* Get the scsi driver to send a full inquiry to the device and use the
* results to fill out the disk parameter structure.
*/
static errval
cd_get_parms(unit, flags)
int unit;
int flags;
{
struct scsi_link *sc_link = SCSI_LINK(&cd_switch, unit);
/*
* First check if we have it all loaded
*/
if (sc_link->flags & SDEV_MEDIA_LOADED)
return (0);
/*
* give a number of sectors so that sec * trks * cyls
* is <= disk_size
*/
if (cd_size(unit, flags)) {
sc_link->flags |= SDEV_MEDIA_LOADED;
return (0);
} else {
return (ENXIO);
}
}
static cd_devsw_installed = 0;
static void cd_drvinit(void *unused)
{
if( ! cd_devsw_installed ) {
bdevsw_add_generic(BDEV_MAJOR, CDEV_MAJOR, &cd_bdevsw);
cd_devsw_installed = 1;
}
}
SYSINIT(cddev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,cd_drvinit,NULL)