mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-15 15:06:42 +00:00
750 lines
14 KiB
C
750 lines
14 KiB
C
/* ET-trees data structure implementation.
|
|
Contributed by Pavel Nejedly
|
|
Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
|
|
|
This file is part of the libiberty library.
|
|
Libiberty is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
Libiberty is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with libiberty; see the file COPYING.LIB. If
|
|
not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA.
|
|
|
|
The ET-forest structure is described in:
|
|
D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
|
|
J. G'omput. System Sci., 26(3):362 381, 1983.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "et-forest.h"
|
|
#include "alloc-pool.h"
|
|
|
|
/* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
|
|
#undef DEBUG_ET
|
|
|
|
#ifdef DEBUG_ET
|
|
#include "basic-block.h"
|
|
#endif
|
|
|
|
/* The occurrence of a node in the et tree. */
|
|
struct et_occ
|
|
{
|
|
struct et_node *of; /* The node. */
|
|
|
|
struct et_occ *parent; /* Parent in the splay-tree. */
|
|
struct et_occ *prev; /* Left son in the splay-tree. */
|
|
struct et_occ *next; /* Right son in the splay-tree. */
|
|
|
|
int depth; /* The depth of the node is the sum of depth
|
|
fields on the path to the root. */
|
|
int min; /* The minimum value of the depth in the subtree
|
|
is obtained by adding sum of depth fields
|
|
on the path to the root. */
|
|
struct et_occ *min_occ; /* The occurrence in the subtree with the minimal
|
|
depth. */
|
|
};
|
|
|
|
static alloc_pool et_nodes;
|
|
static alloc_pool et_occurrences;
|
|
|
|
/* Changes depth of OCC to D. */
|
|
|
|
static inline void
|
|
set_depth (struct et_occ *occ, int d)
|
|
{
|
|
if (!occ)
|
|
return;
|
|
|
|
occ->min += d - occ->depth;
|
|
occ->depth = d;
|
|
}
|
|
|
|
/* Adds D to the depth of OCC. */
|
|
|
|
static inline void
|
|
set_depth_add (struct et_occ *occ, int d)
|
|
{
|
|
if (!occ)
|
|
return;
|
|
|
|
occ->min += d;
|
|
occ->depth += d;
|
|
}
|
|
|
|
/* Sets prev field of OCC to P. */
|
|
|
|
static inline void
|
|
set_prev (struct et_occ *occ, struct et_occ *t)
|
|
{
|
|
#ifdef DEBUG_ET
|
|
gcc_assert (occ != t);
|
|
#endif
|
|
|
|
occ->prev = t;
|
|
if (t)
|
|
t->parent = occ;
|
|
}
|
|
|
|
/* Sets next field of OCC to P. */
|
|
|
|
static inline void
|
|
set_next (struct et_occ *occ, struct et_occ *t)
|
|
{
|
|
#ifdef DEBUG_ET
|
|
gcc_assert (occ != t);
|
|
#endif
|
|
|
|
occ->next = t;
|
|
if (t)
|
|
t->parent = occ;
|
|
}
|
|
|
|
/* Recompute minimum for occurrence OCC. */
|
|
|
|
static inline void
|
|
et_recomp_min (struct et_occ *occ)
|
|
{
|
|
struct et_occ *mson = occ->prev;
|
|
|
|
if (!mson
|
|
|| (occ->next
|
|
&& mson->min > occ->next->min))
|
|
mson = occ->next;
|
|
|
|
if (mson && mson->min < 0)
|
|
{
|
|
occ->min = mson->min + occ->depth;
|
|
occ->min_occ = mson->min_occ;
|
|
}
|
|
else
|
|
{
|
|
occ->min = occ->depth;
|
|
occ->min_occ = occ;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_ET
|
|
/* Checks whether neighborhood of OCC seems sane. */
|
|
|
|
static void
|
|
et_check_occ_sanity (struct et_occ *occ)
|
|
{
|
|
if (!occ)
|
|
return;
|
|
|
|
gcc_assert (occ->parent != occ);
|
|
gcc_assert (occ->prev != occ);
|
|
gcc_assert (occ->next != occ);
|
|
gcc_assert (!occ->next || occ->next != occ->prev);
|
|
|
|
if (occ->next)
|
|
{
|
|
gcc_assert (occ->next != occ->parent);
|
|
gcc_assert (occ->next->parent == occ);
|
|
}
|
|
|
|
if (occ->prev)
|
|
{
|
|
gcc_assert (occ->prev != occ->parent);
|
|
gcc_assert (occ->prev->parent == occ);
|
|
}
|
|
|
|
gcc_assert (!occ->parent
|
|
|| occ->parent->prev == occ
|
|
|| occ->parent->next == occ);
|
|
}
|
|
|
|
/* Checks whether tree rooted at OCC is sane. */
|
|
|
|
static void
|
|
et_check_sanity (struct et_occ *occ)
|
|
{
|
|
et_check_occ_sanity (occ);
|
|
if (occ->prev)
|
|
et_check_sanity (occ->prev);
|
|
if (occ->next)
|
|
et_check_sanity (occ->next);
|
|
}
|
|
|
|
/* Checks whether tree containing OCC is sane. */
|
|
|
|
static void
|
|
et_check_tree_sanity (struct et_occ *occ)
|
|
{
|
|
while (occ->parent)
|
|
occ = occ->parent;
|
|
|
|
et_check_sanity (occ);
|
|
}
|
|
|
|
/* For recording the paths. */
|
|
|
|
/* An ad-hoc constant; if the function has more blocks, this won't work,
|
|
but since it is used for debugging only, it does not matter. */
|
|
#define MAX_NODES 100000
|
|
|
|
static int len;
|
|
static void *datas[MAX_NODES];
|
|
static int depths[MAX_NODES];
|
|
|
|
/* Records the path represented by OCC, with depth incremented by DEPTH. */
|
|
|
|
static int
|
|
record_path_before_1 (struct et_occ *occ, int depth)
|
|
{
|
|
int mn, m;
|
|
|
|
depth += occ->depth;
|
|
mn = depth;
|
|
|
|
if (occ->prev)
|
|
{
|
|
m = record_path_before_1 (occ->prev, depth);
|
|
if (m < mn)
|
|
mn = m;
|
|
}
|
|
|
|
fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
|
|
|
|
gcc_assert (len < MAX_NODES);
|
|
|
|
depths[len] = depth;
|
|
datas[len] = occ->of;
|
|
len++;
|
|
|
|
if (occ->next)
|
|
{
|
|
m = record_path_before_1 (occ->next, depth);
|
|
if (m < mn)
|
|
mn = m;
|
|
}
|
|
|
|
gcc_assert (mn == occ->min + depth - occ->depth);
|
|
|
|
return mn;
|
|
}
|
|
|
|
/* Records the path represented by a tree containing OCC. */
|
|
|
|
static void
|
|
record_path_before (struct et_occ *occ)
|
|
{
|
|
while (occ->parent)
|
|
occ = occ->parent;
|
|
|
|
len = 0;
|
|
record_path_before_1 (occ, 0);
|
|
fprintf (stderr, "\n");
|
|
}
|
|
|
|
/* Checks whether the path represented by OCC, with depth incremented by DEPTH,
|
|
was not changed since the last recording. */
|
|
|
|
static int
|
|
check_path_after_1 (struct et_occ *occ, int depth)
|
|
{
|
|
int mn, m;
|
|
|
|
depth += occ->depth;
|
|
mn = depth;
|
|
|
|
if (occ->next)
|
|
{
|
|
m = check_path_after_1 (occ->next, depth);
|
|
if (m < mn)
|
|
mn = m;
|
|
}
|
|
|
|
len--;
|
|
gcc_assert (depths[len] == depth && datas[len] == occ->of);
|
|
|
|
if (occ->prev)
|
|
{
|
|
m = check_path_after_1 (occ->prev, depth);
|
|
if (m < mn)
|
|
mn = m;
|
|
}
|
|
|
|
gcc_assert (mn == occ->min + depth - occ->depth);
|
|
|
|
return mn;
|
|
}
|
|
|
|
/* Checks whether the path represented by a tree containing OCC was
|
|
not changed since the last recording. */
|
|
|
|
static void
|
|
check_path_after (struct et_occ *occ)
|
|
{
|
|
while (occ->parent)
|
|
occ = occ->parent;
|
|
|
|
check_path_after_1 (occ, 0);
|
|
gcc_assert (!len);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Splay the occurrence OCC to the root of the tree. */
|
|
|
|
static void
|
|
et_splay (struct et_occ *occ)
|
|
{
|
|
struct et_occ *f, *gf, *ggf;
|
|
int occ_depth, f_depth, gf_depth;
|
|
|
|
#ifdef DEBUG_ET
|
|
record_path_before (occ);
|
|
et_check_tree_sanity (occ);
|
|
#endif
|
|
|
|
while (occ->parent)
|
|
{
|
|
occ_depth = occ->depth;
|
|
|
|
f = occ->parent;
|
|
f_depth = f->depth;
|
|
|
|
gf = f->parent;
|
|
|
|
if (!gf)
|
|
{
|
|
set_depth_add (occ, f_depth);
|
|
occ->min_occ = f->min_occ;
|
|
occ->min = f->min;
|
|
|
|
if (f->prev == occ)
|
|
{
|
|
/* zig */
|
|
set_prev (f, occ->next);
|
|
set_next (occ, f);
|
|
set_depth_add (f->prev, occ_depth);
|
|
}
|
|
else
|
|
{
|
|
/* zag */
|
|
set_next (f, occ->prev);
|
|
set_prev (occ, f);
|
|
set_depth_add (f->next, occ_depth);
|
|
}
|
|
set_depth (f, -occ_depth);
|
|
occ->parent = NULL;
|
|
|
|
et_recomp_min (f);
|
|
#ifdef DEBUG_ET
|
|
et_check_tree_sanity (occ);
|
|
check_path_after (occ);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
gf_depth = gf->depth;
|
|
|
|
set_depth_add (occ, f_depth + gf_depth);
|
|
occ->min_occ = gf->min_occ;
|
|
occ->min = gf->min;
|
|
|
|
ggf = gf->parent;
|
|
|
|
if (gf->prev == f)
|
|
{
|
|
if (f->prev == occ)
|
|
{
|
|
/* zig zig */
|
|
set_prev (gf, f->next);
|
|
set_prev (f, occ->next);
|
|
set_next (occ, f);
|
|
set_next (f, gf);
|
|
|
|
set_depth (f, -occ_depth);
|
|
set_depth_add (f->prev, occ_depth);
|
|
set_depth (gf, -f_depth);
|
|
set_depth_add (gf->prev, f_depth);
|
|
}
|
|
else
|
|
{
|
|
/* zag zig */
|
|
set_prev (gf, occ->next);
|
|
set_next (f, occ->prev);
|
|
set_prev (occ, f);
|
|
set_next (occ, gf);
|
|
|
|
set_depth (f, -occ_depth);
|
|
set_depth_add (f->next, occ_depth);
|
|
set_depth (gf, -occ_depth - f_depth);
|
|
set_depth_add (gf->prev, occ_depth + f_depth);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (f->prev == occ)
|
|
{
|
|
/* zig zag */
|
|
set_next (gf, occ->prev);
|
|
set_prev (f, occ->next);
|
|
set_prev (occ, gf);
|
|
set_next (occ, f);
|
|
|
|
set_depth (f, -occ_depth);
|
|
set_depth_add (f->prev, occ_depth);
|
|
set_depth (gf, -occ_depth - f_depth);
|
|
set_depth_add (gf->next, occ_depth + f_depth);
|
|
}
|
|
else
|
|
{
|
|
/* zag zag */
|
|
set_next (gf, f->prev);
|
|
set_next (f, occ->prev);
|
|
set_prev (occ, f);
|
|
set_prev (f, gf);
|
|
|
|
set_depth (f, -occ_depth);
|
|
set_depth_add (f->next, occ_depth);
|
|
set_depth (gf, -f_depth);
|
|
set_depth_add (gf->next, f_depth);
|
|
}
|
|
}
|
|
|
|
occ->parent = ggf;
|
|
if (ggf)
|
|
{
|
|
if (ggf->prev == gf)
|
|
ggf->prev = occ;
|
|
else
|
|
ggf->next = occ;
|
|
}
|
|
|
|
et_recomp_min (gf);
|
|
et_recomp_min (f);
|
|
#ifdef DEBUG_ET
|
|
et_check_tree_sanity (occ);
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG_ET
|
|
et_check_sanity (occ);
|
|
check_path_after (occ);
|
|
#endif
|
|
}
|
|
|
|
/* Create a new et tree occurrence of NODE. */
|
|
|
|
static struct et_occ *
|
|
et_new_occ (struct et_node *node)
|
|
{
|
|
struct et_occ *nw;
|
|
|
|
if (!et_occurrences)
|
|
et_occurrences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
|
|
nw = pool_alloc (et_occurrences);
|
|
|
|
nw->of = node;
|
|
nw->parent = NULL;
|
|
nw->prev = NULL;
|
|
nw->next = NULL;
|
|
|
|
nw->depth = 0;
|
|
nw->min_occ = nw;
|
|
nw->min = 0;
|
|
|
|
return nw;
|
|
}
|
|
|
|
/* Create a new et tree containing DATA. */
|
|
|
|
struct et_node *
|
|
et_new_tree (void *data)
|
|
{
|
|
struct et_node *nw;
|
|
|
|
if (!et_nodes)
|
|
et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
|
|
nw = pool_alloc (et_nodes);
|
|
|
|
nw->data = data;
|
|
nw->father = NULL;
|
|
nw->left = NULL;
|
|
nw->right = NULL;
|
|
nw->son = NULL;
|
|
|
|
nw->rightmost_occ = et_new_occ (nw);
|
|
nw->parent_occ = NULL;
|
|
|
|
return nw;
|
|
}
|
|
|
|
/* Releases et tree T. */
|
|
|
|
void
|
|
et_free_tree (struct et_node *t)
|
|
{
|
|
while (t->son)
|
|
et_split (t->son);
|
|
|
|
if (t->father)
|
|
et_split (t);
|
|
|
|
pool_free (et_occurrences, t->rightmost_occ);
|
|
pool_free (et_nodes, t);
|
|
}
|
|
|
|
/* Releases et tree T without maintaining other nodes. */
|
|
|
|
void
|
|
et_free_tree_force (struct et_node *t)
|
|
{
|
|
pool_free (et_occurrences, t->rightmost_occ);
|
|
if (t->parent_occ)
|
|
pool_free (et_occurrences, t->parent_occ);
|
|
pool_free (et_nodes, t);
|
|
}
|
|
|
|
/* Release the alloc pools, if they are empty. */
|
|
|
|
void
|
|
et_free_pools (void)
|
|
{
|
|
free_alloc_pool_if_empty (&et_occurrences);
|
|
free_alloc_pool_if_empty (&et_nodes);
|
|
}
|
|
|
|
/* Sets father of et tree T to FATHER. */
|
|
|
|
void
|
|
et_set_father (struct et_node *t, struct et_node *father)
|
|
{
|
|
struct et_node *left, *right;
|
|
struct et_occ *rmost, *left_part, *new_f_occ, *p;
|
|
|
|
/* Update the path represented in the splay tree. */
|
|
new_f_occ = et_new_occ (father);
|
|
|
|
rmost = father->rightmost_occ;
|
|
et_splay (rmost);
|
|
|
|
left_part = rmost->prev;
|
|
|
|
p = t->rightmost_occ;
|
|
et_splay (p);
|
|
|
|
set_prev (new_f_occ, left_part);
|
|
set_next (new_f_occ, p);
|
|
|
|
p->depth++;
|
|
p->min++;
|
|
et_recomp_min (new_f_occ);
|
|
|
|
set_prev (rmost, new_f_occ);
|
|
|
|
if (new_f_occ->min + rmost->depth < rmost->min)
|
|
{
|
|
rmost->min = new_f_occ->min + rmost->depth;
|
|
rmost->min_occ = new_f_occ->min_occ;
|
|
}
|
|
|
|
t->parent_occ = new_f_occ;
|
|
|
|
/* Update the tree. */
|
|
t->father = father;
|
|
right = father->son;
|
|
if (right)
|
|
left = right->left;
|
|
else
|
|
left = right = t;
|
|
|
|
left->right = t;
|
|
right->left = t;
|
|
t->left = left;
|
|
t->right = right;
|
|
|
|
father->son = t;
|
|
|
|
#ifdef DEBUG_ET
|
|
et_check_tree_sanity (rmost);
|
|
record_path_before (rmost);
|
|
#endif
|
|
}
|
|
|
|
/* Splits the edge from T to its father. */
|
|
|
|
void
|
|
et_split (struct et_node *t)
|
|
{
|
|
struct et_node *father = t->father;
|
|
struct et_occ *r, *l, *rmost, *p_occ;
|
|
|
|
/* Update the path represented by the splay tree. */
|
|
rmost = t->rightmost_occ;
|
|
et_splay (rmost);
|
|
|
|
for (r = rmost->next; r->prev; r = r->prev)
|
|
continue;
|
|
et_splay (r);
|
|
|
|
r->prev->parent = NULL;
|
|
p_occ = t->parent_occ;
|
|
et_splay (p_occ);
|
|
t->parent_occ = NULL;
|
|
|
|
l = p_occ->prev;
|
|
p_occ->next->parent = NULL;
|
|
|
|
set_prev (r, l);
|
|
|
|
et_recomp_min (r);
|
|
|
|
et_splay (rmost);
|
|
rmost->depth = 0;
|
|
rmost->min = 0;
|
|
|
|
pool_free (et_occurrences, p_occ);
|
|
|
|
/* Update the tree. */
|
|
if (father->son == t)
|
|
father->son = t->right;
|
|
if (father->son == t)
|
|
father->son = NULL;
|
|
else
|
|
{
|
|
t->left->right = t->right;
|
|
t->right->left = t->left;
|
|
}
|
|
t->left = t->right = NULL;
|
|
t->father = NULL;
|
|
|
|
#ifdef DEBUG_ET
|
|
et_check_tree_sanity (rmost);
|
|
record_path_before (rmost);
|
|
|
|
et_check_tree_sanity (r);
|
|
record_path_before (r);
|
|
#endif
|
|
}
|
|
|
|
/* Finds the nearest common ancestor of the nodes N1 and N2. */
|
|
|
|
struct et_node *
|
|
et_nca (struct et_node *n1, struct et_node *n2)
|
|
{
|
|
struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
|
|
struct et_occ *l, *r, *ret;
|
|
int mn;
|
|
|
|
if (n1 == n2)
|
|
return n1;
|
|
|
|
et_splay (o1);
|
|
l = o1->prev;
|
|
r = o1->next;
|
|
if (l)
|
|
l->parent = NULL;
|
|
if (r)
|
|
r->parent = NULL;
|
|
et_splay (o2);
|
|
|
|
if (l == o2 || (l && l->parent != NULL))
|
|
{
|
|
ret = o2->next;
|
|
|
|
set_prev (o1, o2);
|
|
if (r)
|
|
r->parent = o1;
|
|
}
|
|
else
|
|
{
|
|
ret = o2->prev;
|
|
|
|
set_next (o1, o2);
|
|
if (l)
|
|
l->parent = o1;
|
|
}
|
|
|
|
if (0 < o2->depth)
|
|
{
|
|
om = o1;
|
|
mn = o1->depth;
|
|
}
|
|
else
|
|
{
|
|
om = o2;
|
|
mn = o2->depth + o1->depth;
|
|
}
|
|
|
|
#ifdef DEBUG_ET
|
|
et_check_tree_sanity (o2);
|
|
#endif
|
|
|
|
if (ret && ret->min + o1->depth + o2->depth < mn)
|
|
return ret->min_occ->of;
|
|
else
|
|
return om->of;
|
|
}
|
|
|
|
/* Checks whether the node UP is an ancestor of the node DOWN. */
|
|
|
|
bool
|
|
et_below (struct et_node *down, struct et_node *up)
|
|
{
|
|
struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
|
|
struct et_occ *l, *r;
|
|
|
|
if (up == down)
|
|
return true;
|
|
|
|
et_splay (u);
|
|
l = u->prev;
|
|
r = u->next;
|
|
|
|
if (!l)
|
|
return false;
|
|
|
|
l->parent = NULL;
|
|
|
|
if (r)
|
|
r->parent = NULL;
|
|
|
|
et_splay (d);
|
|
|
|
if (l == d || l->parent != NULL)
|
|
{
|
|
if (r)
|
|
r->parent = u;
|
|
set_prev (u, d);
|
|
#ifdef DEBUG_ET
|
|
et_check_tree_sanity (u);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
l->parent = u;
|
|
|
|
/* In case O1 and O2 are in two different trees, we must just restore the
|
|
original state. */
|
|
if (r && r->parent != NULL)
|
|
set_next (u, d);
|
|
else
|
|
set_next (u, r);
|
|
|
|
#ifdef DEBUG_ET
|
|
et_check_tree_sanity (u);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
if (0 >= d->depth)
|
|
return false;
|
|
|
|
return !d->next || d->next->min + d->depth >= 0;
|
|
}
|