mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-27 16:39:08 +00:00
76039bc84f
to this event, adding if_var.h to files that do need it. Also, include all includes that now are included due to implicit pollution via if_var.h Sponsored by: Netflix Sponsored by: Nginx, Inc.
2050 lines
54 KiB
C
2050 lines
54 KiB
C
/*-
|
|
* Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_llc.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/vte/if_vtereg.h>
|
|
#include <dev/vte/if_vtevar.h>
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
MODULE_DEPEND(vte, pci, 1, 1, 1);
|
|
MODULE_DEPEND(vte, ether, 1, 1, 1);
|
|
MODULE_DEPEND(vte, miibus, 1, 1, 1);
|
|
|
|
/* Tunables. */
|
|
static int tx_deep_copy = 1;
|
|
TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
|
|
|
|
/*
|
|
* Devices supported by this driver.
|
|
*/
|
|
static const struct vte_ident vte_ident_table[] = {
|
|
{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
|
|
{ 0, 0, NULL}
|
|
};
|
|
|
|
static int vte_attach(device_t);
|
|
static int vte_detach(device_t);
|
|
static int vte_dma_alloc(struct vte_softc *);
|
|
static void vte_dma_free(struct vte_softc *);
|
|
static void vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static struct vte_txdesc *
|
|
vte_encap(struct vte_softc *, struct mbuf **);
|
|
static const struct vte_ident *
|
|
vte_find_ident(device_t);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static struct mbuf *
|
|
vte_fixup_rx(struct ifnet *, struct mbuf *);
|
|
#endif
|
|
static void vte_get_macaddr(struct vte_softc *);
|
|
static void vte_init(void *);
|
|
static void vte_init_locked(struct vte_softc *);
|
|
static int vte_init_rx_ring(struct vte_softc *);
|
|
static int vte_init_tx_ring(struct vte_softc *);
|
|
static void vte_intr(void *);
|
|
static int vte_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void vte_mac_config(struct vte_softc *);
|
|
static int vte_miibus_readreg(device_t, int, int);
|
|
static void vte_miibus_statchg(device_t);
|
|
static int vte_miibus_writereg(device_t, int, int, int);
|
|
static int vte_mediachange(struct ifnet *);
|
|
static int vte_mediachange_locked(struct ifnet *);
|
|
static void vte_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
|
|
static int vte_probe(device_t);
|
|
static void vte_reset(struct vte_softc *);
|
|
static int vte_resume(device_t);
|
|
static void vte_rxeof(struct vte_softc *);
|
|
static void vte_rxfilter(struct vte_softc *);
|
|
static int vte_shutdown(device_t);
|
|
static void vte_start(struct ifnet *);
|
|
static void vte_start_locked(struct vte_softc *);
|
|
static void vte_start_mac(struct vte_softc *);
|
|
static void vte_stats_clear(struct vte_softc *);
|
|
static void vte_stats_update(struct vte_softc *);
|
|
static void vte_stop(struct vte_softc *);
|
|
static void vte_stop_mac(struct vte_softc *);
|
|
static int vte_suspend(device_t);
|
|
static void vte_sysctl_node(struct vte_softc *);
|
|
static void vte_tick(void *);
|
|
static void vte_txeof(struct vte_softc *);
|
|
static void vte_watchdog(struct vte_softc *);
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
|
|
static int sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
|
|
|
|
static device_method_t vte_methods[] = {
|
|
/* Device interface. */
|
|
DEVMETHOD(device_probe, vte_probe),
|
|
DEVMETHOD(device_attach, vte_attach),
|
|
DEVMETHOD(device_detach, vte_detach),
|
|
DEVMETHOD(device_shutdown, vte_shutdown),
|
|
DEVMETHOD(device_suspend, vte_suspend),
|
|
DEVMETHOD(device_resume, vte_resume),
|
|
|
|
/* MII interface. */
|
|
DEVMETHOD(miibus_readreg, vte_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, vte_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, vte_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t vte_driver = {
|
|
"vte",
|
|
vte_methods,
|
|
sizeof(struct vte_softc)
|
|
};
|
|
|
|
static devclass_t vte_devclass;
|
|
|
|
DRIVER_MODULE(vte, pci, vte_driver, vte_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, vte, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static int
|
|
vte_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct vte_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
|
|
(phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
|
|
for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
|
|
DELAY(5);
|
|
if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0) {
|
|
device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
|
|
return (0);
|
|
}
|
|
|
|
return (CSR_READ_2(sc, VTE_MMRD));
|
|
}
|
|
|
|
static int
|
|
vte_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct vte_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
CSR_WRITE_2(sc, VTE_MMWD, val);
|
|
CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
|
|
(phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
|
|
for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
|
|
DELAY(5);
|
|
if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0)
|
|
device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vte_miibus_statchg(device_t dev)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
uint16_t val;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
mii = device_get_softc(sc->vte_miibus);
|
|
ifp = sc->vte_ifp;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
sc->vte_flags &= ~VTE_FLAG_LINK;
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
sc->vte_flags |= VTE_FLAG_LINK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Stop RX/TX MACs. */
|
|
vte_stop_mac(sc);
|
|
/* Program MACs with resolved duplex and flow control. */
|
|
if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
|
|
/*
|
|
* Timer waiting time : (63 + TIMER * 64) MII clock.
|
|
* MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
|
|
*/
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
|
|
val = 18 << VTE_IM_TIMER_SHIFT;
|
|
else
|
|
val = 1 << VTE_IM_TIMER_SHIFT;
|
|
val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
|
|
/* 48.6us for 100Mbps, 50.8us for 10Mbps */
|
|
CSR_WRITE_2(sc, VTE_MRICR, val);
|
|
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
|
|
val = 18 << VTE_IM_TIMER_SHIFT;
|
|
else
|
|
val = 1 << VTE_IM_TIMER_SHIFT;
|
|
val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
|
|
/* 48.6us for 100Mbps, 50.8us for 10Mbps */
|
|
CSR_WRITE_2(sc, VTE_MTICR, val);
|
|
|
|
vte_mac_config(sc);
|
|
vte_start_mac(sc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
VTE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
VTE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
mii = device_get_softc(sc->vte_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
VTE_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
vte_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct vte_softc *sc;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
VTE_LOCK(sc);
|
|
error = vte_mediachange_locked(ifp);
|
|
VTE_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vte_mediachange_locked(struct ifnet *ifp)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct mii_data *mii;
|
|
struct mii_softc *miisc;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->vte_miibus);
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
error = mii_mediachg(mii);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static const struct vte_ident *
|
|
vte_find_ident(device_t dev)
|
|
{
|
|
const struct vte_ident *ident;
|
|
uint16_t vendor, devid;
|
|
|
|
vendor = pci_get_vendor(dev);
|
|
devid = pci_get_device(dev);
|
|
for (ident = vte_ident_table; ident->name != NULL; ident++) {
|
|
if (vendor == ident->vendorid && devid == ident->deviceid)
|
|
return (ident);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
vte_probe(device_t dev)
|
|
{
|
|
const struct vte_ident *ident;
|
|
|
|
ident = vte_find_ident(dev);
|
|
if (ident != NULL) {
|
|
device_set_desc(dev, ident->name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static void
|
|
vte_get_macaddr(struct vte_softc *sc)
|
|
{
|
|
uint16_t mid;
|
|
|
|
/*
|
|
* It seems there is no way to reload station address and
|
|
* it is supposed to be set by BIOS.
|
|
*/
|
|
mid = CSR_READ_2(sc, VTE_MID0L);
|
|
sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
|
|
sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
|
|
mid = CSR_READ_2(sc, VTE_MID0M);
|
|
sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
|
|
sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
|
|
mid = CSR_READ_2(sc, VTE_MID0H);
|
|
sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
|
|
sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
|
|
}
|
|
|
|
static int
|
|
vte_attach(device_t dev)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint16_t macid;
|
|
int error, rid;
|
|
|
|
error = 0;
|
|
sc = device_get_softc(dev);
|
|
sc->vte_dev = dev;
|
|
|
|
mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
|
|
sc->vte_ident = vte_find_ident(dev);
|
|
|
|
/* Map the device. */
|
|
pci_enable_busmaster(dev);
|
|
sc->vte_res_id = PCIR_BAR(1);
|
|
sc->vte_res_type = SYS_RES_MEMORY;
|
|
sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
|
|
&sc->vte_res_id, RF_ACTIVE);
|
|
if (sc->vte_res == NULL) {
|
|
sc->vte_res_id = PCIR_BAR(0);
|
|
sc->vte_res_type = SYS_RES_IOPORT;
|
|
sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
|
|
&sc->vte_res_id, RF_ACTIVE);
|
|
if (sc->vte_res == NULL) {
|
|
device_printf(dev, "cannot map memory/ports.\n");
|
|
mtx_destroy(&sc->vte_mtx);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
if (bootverbose) {
|
|
device_printf(dev, "using %s space register mapping\n",
|
|
sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
|
|
device_printf(dev, "MAC Identifier : 0x%04x\n",
|
|
CSR_READ_2(sc, VTE_MACID));
|
|
macid = CSR_READ_2(sc, VTE_MACID_REV);
|
|
device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
|
|
(macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
|
|
(macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
|
|
}
|
|
|
|
rid = 0;
|
|
sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
if (sc->vte_irq == NULL) {
|
|
device_printf(dev, "cannot allocate IRQ resources.\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the ethernet controller. */
|
|
vte_reset(sc);
|
|
|
|
if ((error = vte_dma_alloc(sc) != 0))
|
|
goto fail;
|
|
|
|
/* Create device sysctl node. */
|
|
vte_sysctl_node(sc);
|
|
|
|
/* Load station address. */
|
|
vte_get_macaddr(sc);
|
|
|
|
ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "cannot allocate ifnet structure.\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = vte_ioctl;
|
|
ifp->if_start = vte_start;
|
|
ifp->if_init = vte_init;
|
|
ifp->if_snd.ifq_drv_maxlen = VTE_TX_RING_CNT - 1;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Set up MII bus.
|
|
* BIOS would have initialized VTE_MPSCCR to catch PHY
|
|
* status changes so driver may be able to extract
|
|
* configured PHY address. Since it's common to see BIOS
|
|
* fails to initialize the register(including the sample
|
|
* board I have), let mii(4) probe it. This is more
|
|
* reliable than relying on BIOS's initialization.
|
|
*
|
|
* Advertising flow control capability to mii(4) was
|
|
* intentionally disabled due to severe problems in TX
|
|
* pause frame generation. See vte_rxeof() for more
|
|
* details.
|
|
*/
|
|
error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
|
|
vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (error != 0) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
ether_ifattach(ifp, sc->vte_eaddr);
|
|
|
|
/* VLAN capability setup. */
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
/* Tell the upper layer we support VLAN over-sized frames. */
|
|
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, vte_intr, sc, &sc->vte_intrhand);
|
|
if (error != 0) {
|
|
device_printf(dev, "could not set up interrupt handler.\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error != 0)
|
|
vte_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vte_detach(device_t dev)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
ifp = sc->vte_ifp;
|
|
if (device_is_attached(dev)) {
|
|
VTE_LOCK(sc);
|
|
vte_stop(sc);
|
|
VTE_UNLOCK(sc);
|
|
callout_drain(&sc->vte_tick_ch);
|
|
ether_ifdetach(ifp);
|
|
}
|
|
|
|
if (sc->vte_miibus != NULL) {
|
|
device_delete_child(dev, sc->vte_miibus);
|
|
sc->vte_miibus = NULL;
|
|
}
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->vte_intrhand != NULL) {
|
|
bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
|
|
sc->vte_intrhand = NULL;
|
|
}
|
|
if (sc->vte_irq != NULL) {
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
|
|
sc->vte_irq = NULL;
|
|
}
|
|
if (sc->vte_res != NULL) {
|
|
bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
|
|
sc->vte_res);
|
|
sc->vte_res = NULL;
|
|
}
|
|
if (ifp != NULL) {
|
|
if_free(ifp);
|
|
sc->vte_ifp = NULL;
|
|
}
|
|
vte_dma_free(sc);
|
|
mtx_destroy(&sc->vte_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#define VTE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
|
|
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
|
|
|
|
static void
|
|
vte_sysctl_node(struct vte_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *child, *parent;
|
|
struct sysctl_oid *tree;
|
|
struct vte_hw_stats *stats;
|
|
int error;
|
|
|
|
stats = &sc->vte_stats;
|
|
ctx = device_get_sysctl_ctx(sc->vte_dev);
|
|
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
|
|
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
|
|
CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_rx_mod, 0,
|
|
sysctl_hw_vte_int_mod, "I", "vte RX interrupt moderation");
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
|
|
CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_tx_mod, 0,
|
|
sysctl_hw_vte_int_mod, "I", "vte TX interrupt moderation");
|
|
/* Pull in device tunables. */
|
|
sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->vte_dev),
|
|
device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
|
|
if (error == 0) {
|
|
if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
|
|
sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
|
|
device_printf(sc->vte_dev, "int_rx_mod value out of "
|
|
"range; using default: %d\n",
|
|
VTE_IM_RX_BUNDLE_DEFAULT);
|
|
sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
|
|
}
|
|
}
|
|
|
|
sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->vte_dev),
|
|
device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
|
|
if (error == 0) {
|
|
if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
|
|
sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
|
|
device_printf(sc->vte_dev, "int_tx_mod value out of "
|
|
"range; using default: %d\n",
|
|
VTE_IM_TX_BUNDLE_DEFAULT);
|
|
sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
|
|
}
|
|
}
|
|
|
|
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
|
|
NULL, "VTE statistics");
|
|
parent = SYSCTL_CHILDREN(tree);
|
|
|
|
/* RX statistics. */
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
|
|
NULL, "RX MAC statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
|
|
&stats->rx_frames, "Good frames");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
|
|
&stats->rx_bcast_frames, "Good broadcast frames");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
|
|
&stats->rx_mcast_frames, "Good multicast frames");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
|
|
&stats->rx_runts, "Too short frames");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
|
|
&stats->rx_crcerrs, "CRC errors");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
|
|
&stats->rx_long_frames,
|
|
"Frames that have longer length than maximum packet length");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
|
|
&stats->rx_fifo_full, "FIFO full");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
|
|
&stats->rx_desc_unavail, "Descriptor unavailable frames");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
|
|
&stats->rx_pause_frames, "Pause control frames");
|
|
|
|
/* TX statistics. */
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
|
|
NULL, "TX MAC statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
|
|
&stats->tx_frames, "Good frames");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
|
|
&stats->tx_underruns, "FIFO underruns");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
|
|
&stats->tx_late_colls, "Late collisions");
|
|
VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
|
|
&stats->tx_pause_frames, "Pause control frames");
|
|
}
|
|
|
|
#undef VTE_SYSCTL_STAT_ADD32
|
|
|
|
struct vte_dmamap_arg {
|
|
bus_addr_t vte_busaddr;
|
|
};
|
|
|
|
static void
|
|
vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct vte_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
ctx = (struct vte_dmamap_arg *)arg;
|
|
ctx->vte_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
vte_dma_alloc(struct vte_softc *sc)
|
|
{
|
|
struct vte_txdesc *txd;
|
|
struct vte_rxdesc *rxd;
|
|
struct vte_dmamap_arg ctx;
|
|
int error, i;
|
|
|
|
/* Create parent DMA tag. */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->vte_dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vte_cdata.vte_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not create parent DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA tag for TX descriptor ring. */
|
|
error = bus_dma_tag_create(
|
|
sc->vte_cdata.vte_parent_tag, /* parent */
|
|
VTE_TX_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
VTE_TX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
VTE_TX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vte_cdata.vte_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not create TX ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA tag for RX free descriptor ring. */
|
|
error = bus_dma_tag_create(
|
|
sc->vte_cdata.vte_parent_tag, /* parent */
|
|
VTE_RX_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
VTE_RX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
VTE_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vte_cdata.vte_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not create RX ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for TX ring. */
|
|
error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
|
|
(void **)&sc->vte_cdata.vte_tx_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&sc->vte_cdata.vte_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not allocate DMA'able memory for TX ring.\n");
|
|
goto fail;
|
|
}
|
|
ctx.vte_busaddr = 0;
|
|
error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
|
|
sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
|
|
VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.vte_busaddr == 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not load DMA'able memory for TX ring.\n");
|
|
goto fail;
|
|
}
|
|
sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for RX ring. */
|
|
error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
|
|
(void **)&sc->vte_cdata.vte_rx_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&sc->vte_cdata.vte_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not allocate DMA'able memory for RX ring.\n");
|
|
goto fail;
|
|
}
|
|
ctx.vte_busaddr = 0;
|
|
error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
|
|
sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
|
|
VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.vte_busaddr == 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not load DMA'able memory for RX ring.\n");
|
|
goto fail;
|
|
}
|
|
sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
|
|
|
|
/* Create TX buffer parent tag. */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->vte_dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vte_cdata.vte_buffer_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not create parent buffer DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA tag for TX buffers. */
|
|
error = bus_dma_tag_create(
|
|
sc->vte_cdata.vte_buffer_tag, /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vte_cdata.vte_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA tag for RX buffers. */
|
|
error = bus_dma_tag_create(
|
|
sc->vte_cdata.vte_buffer_tag, /* parent */
|
|
VTE_RX_BUF_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vte_cdata.vte_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
/* Create DMA maps for TX buffers. */
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not create TX dmamap.\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for RX buffers. */
|
|
if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
|
|
&sc->vte_cdata.vte_rx_sparemap)) != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not create spare RX dmamap.\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < VTE_RX_RING_CNT; i++) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->vte_dev,
|
|
"could not create RX dmamap.\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vte_dma_free(struct vte_softc *sc)
|
|
{
|
|
struct vte_txdesc *txd;
|
|
struct vte_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* TX buffers. */
|
|
if (sc->vte_cdata.vte_tx_tag != NULL) {
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[i];
|
|
if (txd->tx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
|
|
sc->vte_cdata.vte_tx_tag = NULL;
|
|
}
|
|
/* RX buffers */
|
|
if (sc->vte_cdata.vte_rx_tag != NULL) {
|
|
for (i = 0; i < VTE_RX_RING_CNT; i++) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[i];
|
|
if (rxd->rx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc->vte_cdata.vte_rx_sparemap != NULL) {
|
|
bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
|
|
sc->vte_cdata.vte_rx_sparemap);
|
|
sc->vte_cdata.vte_rx_sparemap = NULL;
|
|
}
|
|
bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
|
|
sc->vte_cdata.vte_rx_tag = NULL;
|
|
}
|
|
/* TX descriptor ring. */
|
|
if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
|
|
if (sc->vte_cdata.vte_tx_ring_map != NULL)
|
|
bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
|
|
sc->vte_cdata.vte_tx_ring_map);
|
|
if (sc->vte_cdata.vte_tx_ring_map != NULL &&
|
|
sc->vte_cdata.vte_tx_ring != NULL)
|
|
bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
|
|
sc->vte_cdata.vte_tx_ring,
|
|
sc->vte_cdata.vte_tx_ring_map);
|
|
sc->vte_cdata.vte_tx_ring = NULL;
|
|
sc->vte_cdata.vte_tx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
|
|
sc->vte_cdata.vte_tx_ring_tag = NULL;
|
|
}
|
|
/* RX ring. */
|
|
if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
|
|
if (sc->vte_cdata.vte_rx_ring_map != NULL)
|
|
bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
|
|
sc->vte_cdata.vte_rx_ring_map);
|
|
if (sc->vte_cdata.vte_rx_ring_map != NULL &&
|
|
sc->vte_cdata.vte_rx_ring != NULL)
|
|
bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
|
|
sc->vte_cdata.vte_rx_ring,
|
|
sc->vte_cdata.vte_rx_ring_map);
|
|
sc->vte_cdata.vte_rx_ring = NULL;
|
|
sc->vte_cdata.vte_rx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
|
|
sc->vte_cdata.vte_rx_ring_tag = NULL;
|
|
}
|
|
if (sc->vte_cdata.vte_buffer_tag != NULL) {
|
|
bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
|
|
sc->vte_cdata.vte_buffer_tag = NULL;
|
|
}
|
|
if (sc->vte_cdata.vte_parent_tag != NULL) {
|
|
bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
|
|
sc->vte_cdata.vte_parent_tag = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
vte_shutdown(device_t dev)
|
|
{
|
|
|
|
return (vte_suspend(dev));
|
|
}
|
|
|
|
static int
|
|
vte_suspend(device_t dev)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
VTE_LOCK(sc);
|
|
ifp = sc->vte_ifp;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
vte_stop(sc);
|
|
VTE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vte_resume(device_t dev)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
VTE_LOCK(sc);
|
|
ifp = sc->vte_ifp;
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vte_init_locked(sc);
|
|
}
|
|
VTE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct vte_txdesc *
|
|
vte_encap(struct vte_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct vte_txdesc *txd;
|
|
struct mbuf *m, *n;
|
|
bus_dma_segment_t txsegs[1];
|
|
int copy, error, nsegs, padlen;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
M_ASSERTPKTHDR((*m_head));
|
|
|
|
txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
|
|
m = *m_head;
|
|
/*
|
|
* Controller doesn't auto-pad, so we have to make sure pad
|
|
* short frames out to the minimum frame length.
|
|
*/
|
|
if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
|
|
padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
|
|
else
|
|
padlen = 0;
|
|
|
|
/*
|
|
* Controller does not support multi-fragmented TX buffers.
|
|
* Controller spends most of its TX processing time in
|
|
* de-fragmenting TX buffers. Either faster CPU or more
|
|
* advanced controller DMA engine is required to speed up
|
|
* TX path processing.
|
|
* To mitigate the de-fragmenting issue, perform deep copy
|
|
* from fragmented mbuf chains to a pre-allocated mbuf
|
|
* cluster with extra cost of kernel memory. For frames
|
|
* that is composed of single TX buffer, the deep copy is
|
|
* bypassed.
|
|
*/
|
|
if (tx_deep_copy != 0) {
|
|
copy = 0;
|
|
if (m->m_next != NULL)
|
|
copy++;
|
|
if (padlen > 0 && (M_WRITABLE(m) == 0 ||
|
|
padlen > M_TRAILINGSPACE(m)))
|
|
copy++;
|
|
if (copy != 0) {
|
|
/* Avoid expensive m_defrag(9) and do deep copy. */
|
|
n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
|
|
m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
|
|
n->m_pkthdr.len = m->m_pkthdr.len;
|
|
n->m_len = m->m_pkthdr.len;
|
|
m = n;
|
|
txd->tx_flags |= VTE_TXMBUF;
|
|
}
|
|
|
|
if (padlen > 0) {
|
|
/* Zero out the bytes in the pad area. */
|
|
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
|
|
m->m_pkthdr.len += padlen;
|
|
m->m_len = m->m_pkthdr.len;
|
|
}
|
|
} else {
|
|
if (M_WRITABLE(m) == 0) {
|
|
if (m->m_next != NULL || padlen > 0) {
|
|
/* Get a writable copy. */
|
|
m = m_dup(*m_head, M_NOWAIT);
|
|
/* Release original mbuf chains. */
|
|
m_freem(*m_head);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (NULL);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
}
|
|
|
|
if (m->m_next != NULL) {
|
|
m = m_defrag(*m_head, M_NOWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (NULL);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
|
|
if (padlen > 0) {
|
|
if (M_TRAILINGSPACE(m) < padlen) {
|
|
m = m_defrag(*m_head, M_NOWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (NULL);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
/* Zero out the bytes in the pad area. */
|
|
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
|
|
m->m_pkthdr.len += padlen;
|
|
m->m_len = m->m_pkthdr.len;
|
|
}
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
|
|
txd->tx_dmamap, m, txsegs, &nsegs, 0);
|
|
if (error != 0) {
|
|
txd->tx_flags &= ~VTE_TXMBUF;
|
|
return (NULL);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
|
|
txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
|
|
sc->vte_cdata.vte_tx_cnt++;
|
|
/* Update producer index. */
|
|
VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
|
|
|
|
/* Finally hand over ownership to controller. */
|
|
txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
|
|
txd->tx_m = m;
|
|
|
|
return (txd);
|
|
}
|
|
|
|
static void
|
|
vte_start(struct ifnet *ifp)
|
|
{
|
|
struct vte_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
VTE_LOCK(sc);
|
|
vte_start_locked(sc);
|
|
VTE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
vte_start_locked(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct vte_txdesc *txd;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
ifp = sc->vte_ifp;
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
|
|
return;
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
|
|
/* Reserve one free TX descriptor. */
|
|
if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if ((txd = vte_encap(sc, &m_head)) == NULL) {
|
|
if (m_head != NULL)
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
/* Free consumed TX frame. */
|
|
if ((txd->tx_flags & VTE_TXMBUF) != 0)
|
|
m_freem(m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
|
|
sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
|
|
BUS_DMASYNC_PREWRITE);
|
|
CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
|
|
sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vte_watchdog(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
|
|
return;
|
|
|
|
ifp = sc->vte_ifp;
|
|
if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
|
|
ifp->if_oerrors++;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vte_init_locked(sc);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vte_start_locked(sc);
|
|
}
|
|
|
|
static int
|
|
vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
ifr = (struct ifreq *)data;
|
|
error = 0;
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
VTE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
((ifp->if_flags ^ sc->vte_if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
|
|
vte_rxfilter(sc);
|
|
else
|
|
vte_init_locked(sc);
|
|
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
vte_stop(sc);
|
|
sc->vte_if_flags = ifp->if_flags;
|
|
VTE_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
VTE_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
vte_rxfilter(sc);
|
|
VTE_UNLOCK(sc);
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
mii = device_get_softc(sc->vte_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vte_mac_config(struct vte_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
uint16_t mcr;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->vte_miibus);
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
mcr |= MCR0_FULL_DUPLEX;
|
|
#ifdef notyet
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
|
|
mcr |= MCR0_FC_ENB;
|
|
/*
|
|
* The data sheet is not clear whether the controller
|
|
* honors received pause frames or not. The is no
|
|
* separate control bit for RX pause frame so just
|
|
* enable MCR0_FC_ENB bit.
|
|
*/
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
|
|
mcr |= MCR0_FC_ENB;
|
|
#endif
|
|
}
|
|
CSR_WRITE_2(sc, VTE_MCR0, mcr);
|
|
}
|
|
|
|
static void
|
|
vte_stats_clear(struct vte_softc *sc)
|
|
{
|
|
|
|
/* Reading counter registers clears its contents. */
|
|
CSR_READ_2(sc, VTE_CNT_RX_DONE);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT0);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT1);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT2);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT3);
|
|
CSR_READ_2(sc, VTE_CNT_TX_DONE);
|
|
CSR_READ_2(sc, VTE_CNT_MECNT4);
|
|
CSR_READ_2(sc, VTE_CNT_PAUSE);
|
|
}
|
|
|
|
static void
|
|
vte_stats_update(struct vte_softc *sc)
|
|
{
|
|
struct vte_hw_stats *stat;
|
|
struct ifnet *ifp;
|
|
uint16_t value;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vte_ifp;
|
|
stat = &sc->vte_stats;
|
|
|
|
CSR_READ_2(sc, VTE_MECISR);
|
|
/* RX stats. */
|
|
stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT0);
|
|
stat->rx_bcast_frames += (value >> 8);
|
|
stat->rx_mcast_frames += (value & 0xFF);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT1);
|
|
stat->rx_runts += (value >> 8);
|
|
stat->rx_crcerrs += (value & 0xFF);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT2);
|
|
stat->rx_long_frames += (value & 0xFF);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT3);
|
|
stat->rx_fifo_full += (value >> 8);
|
|
stat->rx_desc_unavail += (value & 0xFF);
|
|
|
|
/* TX stats. */
|
|
stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
|
|
value = CSR_READ_2(sc, VTE_CNT_MECNT4);
|
|
stat->tx_underruns += (value >> 8);
|
|
stat->tx_late_colls += (value & 0xFF);
|
|
|
|
value = CSR_READ_2(sc, VTE_CNT_PAUSE);
|
|
stat->tx_pause_frames += (value >> 8);
|
|
stat->rx_pause_frames += (value & 0xFF);
|
|
|
|
/* Update ifp counters. */
|
|
ifp->if_opackets = stat->tx_frames;
|
|
ifp->if_collisions = stat->tx_late_colls;
|
|
ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
|
|
ifp->if_ipackets = stat->rx_frames;
|
|
ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
|
|
stat->rx_long_frames + stat->rx_fifo_full;
|
|
}
|
|
|
|
static void
|
|
vte_intr(void *arg)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint16_t status;
|
|
int n;
|
|
|
|
sc = (struct vte_softc *)arg;
|
|
VTE_LOCK(sc);
|
|
|
|
ifp = sc->vte_ifp;
|
|
/* Reading VTE_MISR acknowledges interrupts. */
|
|
status = CSR_READ_2(sc, VTE_MISR);
|
|
if ((status & VTE_INTRS) == 0) {
|
|
/* Not ours. */
|
|
VTE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, VTE_MIER, 0);
|
|
for (n = 8; (status & VTE_INTRS) != 0;) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
|
|
MISR_RX_FIFO_FULL)) != 0)
|
|
vte_rxeof(sc);
|
|
if ((status & MISR_TX_DONE) != 0)
|
|
vte_txeof(sc);
|
|
if ((status & MISR_EVENT_CNT_OFLOW) != 0)
|
|
vte_stats_update(sc);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vte_start_locked(sc);
|
|
if (--n > 0)
|
|
status = CSR_READ_2(sc, VTE_MISR);
|
|
else
|
|
break;
|
|
}
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
|
|
}
|
|
VTE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
vte_txeof(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct vte_txdesc *txd;
|
|
uint16_t status;
|
|
int cons, prog;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vte_ifp;
|
|
|
|
if (sc->vte_cdata.vte_tx_cnt == 0)
|
|
return;
|
|
bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
|
|
sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
|
|
BUS_DMASYNC_POSTWRITE);
|
|
cons = sc->vte_cdata.vte_tx_cons;
|
|
/*
|
|
* Go through our TX list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[cons];
|
|
status = le16toh(txd->tx_desc->dtst);
|
|
if ((status & VTE_DTST_TX_OWN) != 0)
|
|
break;
|
|
sc->vte_cdata.vte_tx_cnt--;
|
|
/* Reclaim transmitted mbufs. */
|
|
bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
|
|
if ((txd->tx_flags & VTE_TXMBUF) == 0)
|
|
m_freem(txd->tx_m);
|
|
txd->tx_flags &= ~VTE_TXMBUF;
|
|
txd->tx_m = NULL;
|
|
prog++;
|
|
VTE_DESC_INC(cons, VTE_TX_RING_CNT);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->vte_cdata.vte_tx_cons = cons;
|
|
/*
|
|
* Unarm watchdog timer only when there is no pending
|
|
* frames in TX queue.
|
|
*/
|
|
if (sc->vte_cdata.vte_tx_cnt == 0)
|
|
sc->vte_watchdog_timer = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
|
|
{
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, sizeof(uint32_t));
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
|
|
sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
|
|
sc->vte_cdata.vte_rx_sparemap = map;
|
|
bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
|
|
rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
|
|
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* It's not supposed to see this controller on strict-alignment
|
|
* architectures but make it work for completeness.
|
|
*/
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static struct mbuf *
|
|
vte_fixup_rx(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
uint16_t *src, *dst;
|
|
int i;
|
|
|
|
src = mtod(m, uint16_t *);
|
|
dst = src - 1;
|
|
|
|
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
|
|
*dst++ = *src++;
|
|
m->m_data -= ETHER_ALIGN;
|
|
return (m);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
vte_rxeof(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct vte_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
uint16_t status, total_len;
|
|
int cons, prog;
|
|
|
|
bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
|
|
sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
|
|
BUS_DMASYNC_POSTWRITE);
|
|
cons = sc->vte_cdata.vte_rx_cons;
|
|
ifp = sc->vte_ifp;
|
|
for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; prog++,
|
|
VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[cons];
|
|
status = le16toh(rxd->rx_desc->drst);
|
|
if ((status & VTE_DRST_RX_OWN) != 0)
|
|
break;
|
|
total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
|
|
m = rxd->rx_m;
|
|
if ((status & VTE_DRST_RX_OK) == 0) {
|
|
/* Discard errored frame. */
|
|
rxd->rx_desc->drlen =
|
|
htole16(MCLBYTES - sizeof(uint32_t));
|
|
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
|
|
continue;
|
|
}
|
|
if (vte_newbuf(sc, rxd) != 0) {
|
|
ifp->if_iqdrops++;
|
|
rxd->rx_desc->drlen =
|
|
htole16(MCLBYTES - sizeof(uint32_t));
|
|
rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* It seems there is no way to strip FCS bytes.
|
|
*/
|
|
m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
vte_fixup_rx(ifp, m);
|
|
#endif
|
|
VTE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
VTE_LOCK(sc);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
/* Update the consumer index. */
|
|
sc->vte_cdata.vte_rx_cons = cons;
|
|
/*
|
|
* Sync updated RX descriptors such that controller see
|
|
* modified RX buffer addresses.
|
|
*/
|
|
bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
|
|
sc->vte_cdata.vte_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
#ifdef notyet
|
|
/*
|
|
* Update residue counter. Controller does not
|
|
* keep track of number of available RX descriptors
|
|
* such that driver should have to update VTE_MRDCR
|
|
* to make controller know how many free RX
|
|
* descriptors were added to controller. This is
|
|
* a similar mechanism used in VIA velocity
|
|
* controllers and it indicates controller just
|
|
* polls OWN bit of current RX descriptor pointer.
|
|
* A couple of severe issues were seen on sample
|
|
* board where the controller continuously emits TX
|
|
* pause frames once RX pause threshold crossed.
|
|
* Once triggered it never recovered form that
|
|
* state, I couldn't find a way to make it back to
|
|
* work at least. This issue effectively
|
|
* disconnected the system from network. Also, the
|
|
* controller used 00:00:00:00:00:00 as source
|
|
* station address of TX pause frame. Probably this
|
|
* is one of reason why vendor recommends not to
|
|
* enable flow control on R6040 controller.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MRDCR, prog |
|
|
(((VTE_RX_RING_CNT * 2) / 10) <<
|
|
VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
vte_tick(void *arg)
|
|
{
|
|
struct vte_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = (struct vte_softc *)arg;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->vte_miibus);
|
|
mii_tick(mii);
|
|
vte_stats_update(sc);
|
|
vte_txeof(sc);
|
|
vte_watchdog(sc);
|
|
callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
|
|
}
|
|
|
|
static void
|
|
vte_reset(struct vte_softc *sc)
|
|
{
|
|
uint16_t mcr;
|
|
int i;
|
|
|
|
mcr = CSR_READ_2(sc, VTE_MCR1);
|
|
CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
|
|
for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
|
|
DELAY(10);
|
|
if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
|
|
/*
|
|
* Follow the guide of vendor recommended way to reset MAC.
|
|
* Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
|
|
* not reliable so manually reset internal state machine.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
|
|
CSR_WRITE_2(sc, VTE_MACSM, 0);
|
|
DELAY(5000);
|
|
}
|
|
|
|
static void
|
|
vte_init(void *xsc)
|
|
{
|
|
struct vte_softc *sc;
|
|
|
|
sc = (struct vte_softc *)xsc;
|
|
VTE_LOCK(sc);
|
|
vte_init_locked(sc);
|
|
VTE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
vte_init_locked(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
bus_addr_t paddr;
|
|
uint8_t *eaddr;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vte_ifp;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
vte_stop(sc);
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
vte_reset(sc);
|
|
|
|
/* Initialize RX descriptors. */
|
|
if (vte_init_rx_ring(sc) != 0) {
|
|
device_printf(sc->vte_dev, "no memory for RX buffers.\n");
|
|
vte_stop(sc);
|
|
return;
|
|
}
|
|
if (vte_init_tx_ring(sc) != 0) {
|
|
device_printf(sc->vte_dev, "no memory for TX buffers.\n");
|
|
vte_stop(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Reprogram the station address. Controller supports up
|
|
* to 4 different station addresses so driver programs the
|
|
* first station address as its own ethernet address and
|
|
* configure the remaining three addresses as perfect
|
|
* multicast addresses.
|
|
*/
|
|
eaddr = IF_LLADDR(sc->vte_ifp);
|
|
CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
|
|
CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
|
|
CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
|
|
|
|
/* Set TX descriptor base addresses. */
|
|
paddr = sc->vte_cdata.vte_tx_ring_paddr;
|
|
CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
|
|
CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
|
|
/* Set RX descriptor base addresses. */
|
|
paddr = sc->vte_cdata.vte_rx_ring_paddr;
|
|
CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
|
|
CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
|
|
/*
|
|
* Initialize RX descriptor residue counter and set RX
|
|
* pause threshold to 20% of available RX descriptors.
|
|
* See comments on vte_rxeof() for details on flow control
|
|
* issues.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
|
|
(((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
|
|
|
|
/*
|
|
* Always use maximum frame size that controller can
|
|
* support. Otherwise received frames that has longer
|
|
* frame length than vte(4) MTU would be silently dropped
|
|
* in controller. This would break path-MTU discovery as
|
|
* sender wouldn't get any responses from receiver. The
|
|
* RX buffer size should be multiple of 4.
|
|
* Note, jumbo frames are silently ignored by controller
|
|
* and even MAC counters do not detect them.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
|
|
|
|
/* Configure FIFO. */
|
|
CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
|
|
MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
|
|
MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
|
|
|
|
/*
|
|
* Configure TX/RX MACs. Actual resolved duplex and flow
|
|
* control configuration is done after detecting a valid
|
|
* link. Note, we don't generate early interrupt here
|
|
* as well since FreeBSD does not have interrupt latency
|
|
* problems like Windows.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
|
|
/*
|
|
* We manually keep track of PHY status changes to
|
|
* configure resolved duplex and flow control since only
|
|
* duplex configuration can be automatically reflected to
|
|
* MCR0.
|
|
*/
|
|
CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
|
|
MCR1_EXCESS_COL_RETRY_16);
|
|
|
|
/* Initialize RX filter. */
|
|
vte_rxfilter(sc);
|
|
|
|
/* Disable TX/RX interrupt moderation control. */
|
|
CSR_WRITE_2(sc, VTE_MRICR, 0);
|
|
CSR_WRITE_2(sc, VTE_MTICR, 0);
|
|
|
|
/* Enable MAC event counter interrupts. */
|
|
CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
|
|
/* Clear MAC statistics. */
|
|
vte_stats_clear(sc);
|
|
|
|
/* Acknowledge all pending interrupts and clear it. */
|
|
CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
|
|
CSR_WRITE_2(sc, VTE_MISR, 0);
|
|
|
|
sc->vte_flags &= ~VTE_FLAG_LINK;
|
|
/* Switch to the current media. */
|
|
vte_mediachange_locked(ifp);
|
|
|
|
callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
}
|
|
|
|
static void
|
|
vte_stop(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct vte_txdesc *txd;
|
|
struct vte_rxdesc *rxd;
|
|
int i;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp = sc->vte_ifp;
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc->vte_flags &= ~VTE_FLAG_LINK;
|
|
callout_stop(&sc->vte_tick_ch);
|
|
sc->vte_watchdog_timer = 0;
|
|
vte_stats_update(sc);
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, VTE_MIER, 0);
|
|
CSR_WRITE_2(sc, VTE_MECIER, 0);
|
|
/* Stop RX/TX MACs. */
|
|
vte_stop_mac(sc);
|
|
/* Clear interrupts. */
|
|
CSR_READ_2(sc, VTE_MISR);
|
|
/*
|
|
* Free TX/RX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < VTE_RX_RING_CNT; i++) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
|
|
txd->tx_dmamap);
|
|
if ((txd->tx_flags & VTE_TXMBUF) == 0)
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
txd->tx_flags &= ~VTE_TXMBUF;
|
|
}
|
|
}
|
|
/* Free TX mbuf pools used for deep copy. */
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
|
|
m_freem(sc->vte_cdata.vte_txmbufs[i]);
|
|
sc->vte_cdata.vte_txmbufs[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vte_start_mac(struct vte_softc *sc)
|
|
{
|
|
uint16_t mcr;
|
|
int i;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
/* Enable RX/TX MACs. */
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
|
|
(MCR0_RX_ENB | MCR0_TX_ENB)) {
|
|
mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
|
|
CSR_WRITE_2(sc, VTE_MCR0, mcr);
|
|
for (i = VTE_TIMEOUT; i > 0; i--) {
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
|
|
(MCR0_RX_ENB | MCR0_TX_ENB))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->vte_dev,
|
|
"could not enable RX/TX MAC(0x%04x)!\n", mcr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vte_stop_mac(struct vte_softc *sc)
|
|
{
|
|
uint16_t mcr;
|
|
int i;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
/* Disable RX/TX MACs. */
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
|
|
mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
|
|
CSR_WRITE_2(sc, VTE_MCR0, mcr);
|
|
for (i = VTE_TIMEOUT; i > 0; i--) {
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->vte_dev,
|
|
"could not disable RX/TX MAC(0x%04x)!\n", mcr);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vte_init_tx_ring(struct vte_softc *sc)
|
|
{
|
|
struct vte_tx_desc *desc;
|
|
struct vte_txdesc *txd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
sc->vte_cdata.vte_tx_prod = 0;
|
|
sc->vte_cdata.vte_tx_cons = 0;
|
|
sc->vte_cdata.vte_tx_cnt = 0;
|
|
|
|
/* Pre-allocate TX mbufs for deep copy. */
|
|
if (tx_deep_copy != 0) {
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
|
|
MT_DATA, M_PKTHDR);
|
|
if (sc->vte_cdata.vte_txmbufs[i] == NULL)
|
|
return (ENOBUFS);
|
|
sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
|
|
sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
|
|
}
|
|
}
|
|
desc = sc->vte_cdata.vte_tx_ring;
|
|
bzero(desc, VTE_TX_RING_SZ);
|
|
for (i = 0; i < VTE_TX_RING_CNT; i++) {
|
|
txd = &sc->vte_cdata.vte_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
if (i != VTE_TX_RING_CNT - 1)
|
|
addr = sc->vte_cdata.vte_tx_ring_paddr +
|
|
sizeof(struct vte_tx_desc) * (i + 1);
|
|
else
|
|
addr = sc->vte_cdata.vte_tx_ring_paddr +
|
|
sizeof(struct vte_tx_desc) * 0;
|
|
desc = &sc->vte_cdata.vte_tx_ring[i];
|
|
desc->dtnp = htole32(addr);
|
|
txd->tx_desc = desc;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
|
|
sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
|
|
BUS_DMASYNC_PREWRITE);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vte_init_rx_ring(struct vte_softc *sc)
|
|
{
|
|
struct vte_rx_desc *desc;
|
|
struct vte_rxdesc *rxd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
sc->vte_cdata.vte_rx_cons = 0;
|
|
desc = sc->vte_cdata.vte_rx_ring;
|
|
bzero(desc, VTE_RX_RING_SZ);
|
|
for (i = 0; i < VTE_RX_RING_CNT; i++) {
|
|
rxd = &sc->vte_cdata.vte_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
if (i != VTE_RX_RING_CNT - 1)
|
|
addr = sc->vte_cdata.vte_rx_ring_paddr +
|
|
sizeof(struct vte_rx_desc) * (i + 1);
|
|
else
|
|
addr = sc->vte_cdata.vte_rx_ring_paddr +
|
|
sizeof(struct vte_rx_desc) * 0;
|
|
desc = &sc->vte_cdata.vte_rx_ring[i];
|
|
desc->drnp = htole32(addr);
|
|
rxd->rx_desc = desc;
|
|
if (vte_newbuf(sc, rxd) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
|
|
sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vte_rxfilter(struct vte_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
uint8_t *eaddr;
|
|
uint32_t crc;
|
|
uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
|
|
uint16_t mchash[4], mcr;
|
|
int i, nperf;
|
|
|
|
VTE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vte_ifp;
|
|
|
|
bzero(mchash, sizeof(mchash));
|
|
for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
|
|
rxfilt_perf[i][0] = 0xFFFF;
|
|
rxfilt_perf[i][1] = 0xFFFF;
|
|
rxfilt_perf[i][2] = 0xFFFF;
|
|
}
|
|
|
|
mcr = CSR_READ_2(sc, VTE_MCR0);
|
|
mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
|
|
mcr |= MCR0_BROADCAST_DIS;
|
|
if ((ifp->if_flags & IFF_BROADCAST) != 0)
|
|
mcr &= ~MCR0_BROADCAST_DIS;
|
|
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
mcr |= MCR0_PROMISC;
|
|
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
|
|
mcr |= MCR0_MULTICAST;
|
|
mchash[0] = 0xFFFF;
|
|
mchash[1] = 0xFFFF;
|
|
mchash[2] = 0xFFFF;
|
|
mchash[3] = 0xFFFF;
|
|
goto chipit;
|
|
}
|
|
|
|
nperf = 0;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &sc->vte_ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
/*
|
|
* Program the first 3 multicast groups into
|
|
* the perfect filter. For all others, use the
|
|
* hash table.
|
|
*/
|
|
if (nperf < VTE_RXFILT_PERFECT_CNT) {
|
|
eaddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
|
|
rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
|
|
rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
|
|
rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
|
|
nperf++;
|
|
continue;
|
|
}
|
|
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
|
|
mchash[3] != 0)
|
|
mcr |= MCR0_MULTICAST;
|
|
|
|
chipit:
|
|
/* Program multicast hash table. */
|
|
CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
|
|
CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
|
|
CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
|
|
CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
|
|
/* Program perfect filter table. */
|
|
for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
|
|
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
|
|
rxfilt_perf[i][0]);
|
|
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
|
|
rxfilt_perf[i][1]);
|
|
CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
|
|
rxfilt_perf[i][2]);
|
|
}
|
|
CSR_WRITE_2(sc, VTE_MCR0, mcr);
|
|
CSR_READ_2(sc, VTE_MCR0);
|
|
}
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (arg1 == NULL)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || req->newptr == NULL)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
return (sysctl_int_range(oidp, arg1, arg2, req,
|
|
VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
|
|
}
|