1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-28 08:02:54 +00:00
freebsd/usr.bin/sort/fsort.c

364 lines
9.6 KiB
C

/* $NetBSD: fsort.c,v 1.19 2001/05/15 11:19:45 jdolecek Exp $ */
/*-
* Copyright (c) 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Peter McIlroy.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Read in the next bin. If it fits in one segment sort it;
* otherwise refine it by segment deeper by one character,
* and try again on smaller bins. Sort the final bin at this level
* of recursion to keep the head of fstack at 0.
* After PANIC passes, abort to merge sort.
*/
#include "sort.h"
#include "fsort.h"
#ifndef lint
#if 0
__RCSID("$NetBSD: fsort.c,v 1.19 2001/05/15 11:19:45 jdolecek Exp $");
__SCCSID("@(#)fsort.c 8.1 (Berkeley) 6/6/93");
#endif
#endif /* not lint */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stdlib.h>
#include <string.h>
static const u_char **keylist = 0;
u_char *buffer = 0, *linebuf = 0;
size_t bufsize = DEFBUFSIZE;
size_t linebuf_size;
struct tempfile fstack[MAXFCT];
extern char *toutpath;
#define FSORTMAX 4
int PANIC = FSORTMAX;
#define MSTART (MAXFCT - MERGE_FNUM)
#define SALIGN(n) ((n+sizeof(length_t)-1) & ~(sizeof(length_t)-1))
void
fsort(binno, depth, top, filelist, nfiles, outfp, ftbl)
int binno, depth, top;
struct filelist *filelist;
int nfiles;
FILE *outfp;
struct field *ftbl;
{
const u_char **keypos;
u_char *bufend, *tmpbuf;
u_char *weights;
int ntfiles, mfct = 0, total, i, maxb, lastb, panic = 0;
int c, nelem, base;
long sizes [NBINS+1];
get_func_t get;
struct recheader *crec;
struct field tfield[2];
FILE *prevfp, *tailfp[FSORTMAX+1];
memset(tailfp, 0, sizeof(tailfp));
prevfp = outfp;
memset(tfield, 0, sizeof(tfield));
if (ftbl[0].flags & R)
tfield[0].weights = Rascii;
else
tfield[0].weights = ascii;
tfield[0].icol.num = 1;
weights = ftbl[0].weights;
if (!buffer) {
buffer = malloc(bufsize);
keylist = malloc(MAXNUM * sizeof(u_char *));
memset(keylist, 0, MAXNUM * sizeof(u_char *));
if (!SINGL_FLD) {
linebuf_size = DEFLLEN;
if ((linebuf = malloc(linebuf_size)) == NULL)
errx(2, "cannot allocate memory");
}
}
bufend = buffer + bufsize;
if (binno >= 0) {
base = top + nfiles;
get = getnext;
} else {
base = 0;
if (SINGL_FLD)
get = makeline;
else
get = makekey;
}
for (;;) {
memset(sizes, 0, sizeof(sizes));
c = ntfiles = 0;
if (binno == weights[REC_D] &&
!(SINGL_FLD && ftbl[0].flags & F)) { /* pop */
rd_append(weights[REC_D], top,
nfiles, prevfp, buffer, bufend);
break;
} else if (binno == weights[REC_D]) {
depth = 0; /* start over on flat weights */
ftbl = tfield;
weights = ftbl[0].weights;
}
while (c != EOF) {
keypos = keylist;
nelem = 0;
crec = (RECHEADER *) buffer;
do_read:
while((c = get(binno, top, filelist, nfiles, crec,
bufend, ftbl)) == 0) {
*keypos++ = crec->data + depth;
if (++nelem == MAXNUM) {
c = BUFFEND;
break;
}
crec =(RECHEADER *) ((char *) crec +
SALIGN(crec->length) + sizeof(TRECHEADER));
}
if (c == BUFFEND && nelem < MAXNUM
&& bufsize < MAXBUFSIZE) {
const u_char **keyp;
u_char *oldb = buffer;
/* buffer was too small for data, allocate
* bigger buffer */
bufsize *= 2;
buffer = realloc(buffer, bufsize);
if (!buffer) {
err(2, "failed to realloc buffer to %ld bytes",
(unsigned long) bufsize);
}
bufend = buffer + bufsize;
/* patch up keylist[] */
for(keyp = &keypos[-1]; keyp >= keylist; keyp--)
*keyp = buffer + (*keyp - oldb);
crec = (RECHEADER *) (buffer + ((u_char *)crec - oldb));
goto do_read;
}
if (c != BUFFEND && !ntfiles && !mfct) {
/* do not push */
continue;
}
/* push */
if (panic >= PANIC) {
fstack[MSTART + mfct].fp = ftmp();
if ((stable_sort)
? sradixsort(keylist, nelem,
weights, REC_D)
: radixsort(keylist, nelem,
weights, REC_D) )
err(2, NULL);
append(keylist, nelem, depth,
fstack[MSTART + mfct].fp, putrec,
ftbl);
mfct++;
/* reduce number of open files */
if (mfct == MERGE_FNUM ||(c == EOF && ntfiles)) {
/*
* Only copy extra incomplete crec
* data if there are any.
*/
int nodata = (bufend >= (u_char *)crec
&& bufend <= crec->data);
if (!nodata) {
tmpbuf = malloc(bufend -
crec->data);
memmove(tmpbuf, crec->data,
bufend - crec->data);
}
fstack[base + ntfiles].fp = ftmp();
fmerge(0, MSTART, filelist,
mfct, geteasy, fstack[base].fp,
putrec, ftbl);
ntfiles++;
mfct = 0;
if (!nodata) {
memmove(crec->data, tmpbuf,
bufend - crec->data);
free(tmpbuf);
}
}
} else {
fstack[base + ntfiles].fp= ftmp();
onepass(keylist, depth, nelem, sizes,
weights, fstack[base + ntfiles].fp);
ntfiles++;
}
}
if (!ntfiles && !mfct) { /* everything in memory--pop */
if (nelem > 1
&& ((stable_sort)
? sradixsort(keylist, nelem, weights, REC_D)
: radixsort(keylist, nelem, weights, REC_D) ))
err(2, NULL);
if (nelem > 0)
append(keylist, nelem, depth, outfp, putline, ftbl);
break; /* pop */
}
if (panic >= PANIC) {
if (!ntfiles)
fmerge(0, MSTART, filelist, mfct, geteasy,
outfp, putline, ftbl);
else
fmerge(0, base, filelist, ntfiles, geteasy,
outfp, putline, ftbl);
break;
}
total = maxb = lastb = 0; /* find if one bin dominates */
for (i = 0; i < NBINS; i++)
if (sizes[i]) {
if (sizes[i] > sizes[maxb])
maxb = i;
lastb = i;
total += sizes[i];
}
if (sizes[maxb] < max((total / 2) , BUFSIZE))
maxb = lastb; /* otherwise pop after last bin */
fstack[base].lastb = lastb;
fstack[base].maxb = maxb;
/* start refining next level. */
getnext(-1, base, NULL, ntfiles, crec, bufend, 0); /* rewind */
for (i = 0; i < maxb; i++) {
if (!sizes[i]) /* bin empty; step ahead file offset */
getnext(i, base, NULL,ntfiles, crec, bufend, 0);
else
fsort(i, depth+1, base, filelist, ntfiles,
outfp, ftbl);
}
get = getnext;
if (lastb != maxb) {
if (prevfp != outfp)
tailfp[panic] = prevfp;
prevfp = ftmp();
for (i = maxb+1; i <= lastb; i++)
if (!sizes[i])
getnext(i, base, NULL, ntfiles, crec,
bufend,0);
else
fsort(i, depth+1, base, filelist,
ntfiles, prevfp, ftbl);
}
/* sort biggest (or last) bin at this level */
depth++;
panic++;
binno = maxb;
top = base;
nfiles = ntfiles; /* so overwrite them */
}
if (prevfp != outfp) {
concat(outfp, prevfp);
fclose(prevfp);
}
for (i = panic; i >= 0; --i)
if (tailfp[i]) {
concat(outfp, tailfp[i]);
fclose(tailfp[i]);
}
/* If on top level, free our structures */
if (depth == 0) {
free(keylist), keylist = NULL;
free(buffer), buffer = NULL;
}
}
/*
* This is one pass of radix exchange, dumping the bins to disk.
*/
#define swap(a, b, t) t = a, a = b, b = t
void
onepass(a, depth, n, sizes, tr, fp)
const u_char **a;
int depth;
long n, sizes[];
u_char *tr;
FILE *fp;
{
size_t tsizes[NBINS+1];
const u_char **bin[257], ***bp, ***bpmax, **top[256], ***tp;
static int histo[256];
int *hp;
int c;
const u_char **an, *t, **aj;
const u_char **ak, *r;
memset(tsizes, 0, sizeof(tsizes));
depth += sizeof(TRECHEADER);
an = &a[n];
for (ak = a; ak < an; ak++) {
histo[c = tr[**ak]]++;
tsizes[c] += ((const RECHEADER *) (*ak -= depth))->length;
}
bin[0] = a;
bpmax = bin + 256;
tp = top, hp = histo;
for (bp = bin; bp < bpmax; bp++) {
*tp++ = *(bp+1) = *bp + (c = *hp);
*hp++ = 0;
if (c <= 1)
continue;
}
for (aj = a; aj < an; *aj = r, aj = bin[c+1])
for (r = *aj; aj < (ak = --top[c = tr[r[depth]]]) ;)
swap(*ak, r, t);
for (ak = a, c = 0; c < 256; c++) {
an = bin[c+1];
n = an - ak;
tsizes[c] += n * sizeof(TRECHEADER);
/* tell getnext how many elements in this bin, this segment. */
EWRITE(&tsizes[c], sizeof(size_t), 1, fp);
sizes[c] += tsizes[c];
for (; ak < an; ++ak)
putrec((const RECHEADER *) *ak, fp);
}
}