1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-12 14:29:28 +00:00
freebsd/lib/libc/rpc/clnt_vc.c
Alfred Perlstein 886ee6f6a5 clnt_vc_create() has const scalar arguments that wind up being modified,
fix it (make them non-const) and update the associated documentation.

Submitted by: mbr
2002-07-14 23:35:04 +00:00

848 lines
22 KiB
C

/* $NetBSD: clnt_vc.c,v 1.4 2000/07/14 08:40:42 fvdl Exp $ */
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char *sccsid = "@(#)clnt_tcp.c 1.37 87/10/05 Copyr 1984 Sun Micro";
static char *sccsid = "@(#)clnt_tcp.c 2.2 88/08/01 4.0 RPCSRC";
static char sccsid[] = "@(#)clnt_vc.c 1.19 89/03/16 Copyr 1988 Sun Micro";
#endif
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* clnt_tcp.c, Implements a TCP/IP based, client side RPC.
*
* Copyright (C) 1984, Sun Microsystems, Inc.
*
* TCP based RPC supports 'batched calls'.
* A sequence of calls may be batched-up in a send buffer. The rpc call
* return immediately to the client even though the call was not necessarily
* sent. The batching occurs if the results' xdr routine is NULL (0) AND
* the rpc timeout value is zero (see clnt.h, rpc).
*
* Clients should NOT casually batch calls that in fact return results; that is,
* the server side should be aware that a call is batched and not produce any
* return message. Batched calls that produce many result messages can
* deadlock (netlock) the client and the server....
*
* Now go hang yourself.
*/
#include "namespace.h"
#include "reentrant.h"
#include <sys/types.h>
#include <sys/poll.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/uio.h>
#include <arpa/inet.h>
#include <assert.h>
#include <err.h>
#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <rpc/rpc.h>
#include "un-namespace.h"
#include "rpc_com.h"
#define MCALL_MSG_SIZE 24
struct cmessage {
struct cmsghdr cmsg;
struct cmsgcred cmcred;
};
static enum clnt_stat clnt_vc_call(CLIENT *, rpcproc_t, xdrproc_t, void *,
xdrproc_t, void *, struct timeval);
static void clnt_vc_geterr(CLIENT *, struct rpc_err *);
static bool_t clnt_vc_freeres(CLIENT *, xdrproc_t, void *);
static void clnt_vc_abort(CLIENT *);
static bool_t clnt_vc_control(CLIENT *, u_int, void *);
static void clnt_vc_destroy(CLIENT *);
static struct clnt_ops *clnt_vc_ops(void);
static bool_t time_not_ok(struct timeval *);
static int read_vc(void *, void *, int);
static int write_vc(void *, void *, int);
static int __msgwrite(int, void *, size_t);
static int __msgread(int, void *, size_t);
struct ct_data {
int ct_fd; /* connection's fd */
bool_t ct_closeit; /* close it on destroy */
struct timeval ct_wait; /* wait interval in milliseconds */
bool_t ct_waitset; /* wait set by clnt_control? */
struct netbuf ct_addr; /* remote addr */
struct rpc_err ct_error;
union {
char ct_mcallc[MCALL_MSG_SIZE]; /* marshalled callmsg */
u_int32_t ct_mcalli;
} ct_u;
u_int ct_mpos; /* pos after marshal */
XDR ct_xdrs; /* XDR stream */
};
/*
* This machinery implements per-fd locks for MT-safety. It is not
* sufficient to do per-CLIENT handle locks for MT-safety because a
* user may create more than one CLIENT handle with the same fd behind
* it. Therfore, we allocate an array of flags (vc_fd_locks), protected
* by the clnt_fd_lock mutex, and an array (vc_cv) of condition variables
* similarly protected. Vc_fd_lock[fd] == 1 => a call is activte on some
* CLIENT handle created for that fd.
* The current implementation holds locks across the entire RPC and reply.
* Yes, this is silly, and as soon as this code is proven to work, this
* should be the first thing fixed. One step at a time.
*/
static int *vc_fd_locks;
extern mutex_t clnt_fd_lock;
static cond_t *vc_cv;
#define release_fd_lock(fd, mask) { \
mutex_lock(&clnt_fd_lock); \
vc_fd_locks[fd] = 0; \
mutex_unlock(&clnt_fd_lock); \
thr_sigsetmask(SIG_SETMASK, &(mask), (sigset_t *) NULL); \
cond_signal(&vc_cv[fd]); \
}
static const char clnt_vc_errstr[] = "%s : %s";
static const char clnt_vc_str[] = "clnt_vc_create";
static const char clnt_read_vc_str[] = "read_vc";
static const char __no_mem_str[] = "out of memory";
/*
* Create a client handle for a connection.
* Default options are set, which the user can change using clnt_control()'s.
* The rpc/vc package does buffering similar to stdio, so the client
* must pick send and receive buffer sizes, 0 => use the default.
* NB: fd is copied into a private area.
* NB: The rpch->cl_auth is set null authentication. Caller may wish to
* set this something more useful.
*
* fd should be an open socket
*/
CLIENT *
clnt_vc_create(fd, raddr, prog, vers, sendsz, recvsz)
int fd; /* open file descriptor */
const struct netbuf *raddr; /* servers address */
const rpcprog_t prog; /* program number */
const rpcvers_t vers; /* version number */
u_int sendsz; /* buffer recv size */
u_int recvsz; /* buffer send size */
{
CLIENT *cl; /* client handle */
struct ct_data *ct = NULL; /* client handle */
struct timeval now;
struct rpc_msg call_msg;
static u_int32_t disrupt;
sigset_t mask;
sigset_t newmask;
struct sockaddr_storage ss;
socklen_t slen;
struct __rpc_sockinfo si;
if (disrupt == 0)
disrupt = (u_int32_t)(long)raddr;
cl = (CLIENT *)mem_alloc(sizeof (*cl));
ct = (struct ct_data *)mem_alloc(sizeof (*ct));
if ((cl == (CLIENT *)NULL) || (ct == (struct ct_data *)NULL)) {
(void) syslog(LOG_ERR, clnt_vc_errstr,
clnt_vc_str, __no_mem_str);
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
rpc_createerr.cf_error.re_errno = errno;
goto err;
}
ct->ct_addr.buf = NULL;
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
if (vc_fd_locks == (int *) NULL) {
int cv_allocsz, fd_allocsz;
int dtbsize = __rpc_dtbsize();
fd_allocsz = dtbsize * sizeof (int);
vc_fd_locks = (int *) mem_alloc(fd_allocsz);
if (vc_fd_locks == (int *) NULL) {
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
goto err;
} else
memset(vc_fd_locks, '\0', fd_allocsz);
assert(vc_cv == (cond_t *) NULL);
cv_allocsz = dtbsize * sizeof (cond_t);
vc_cv = (cond_t *) mem_alloc(cv_allocsz);
if (vc_cv == (cond_t *) NULL) {
mem_free(vc_fd_locks, fd_allocsz);
vc_fd_locks = (int *) NULL;
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
goto err;
} else {
int i;
for (i = 0; i < dtbsize; i++)
cond_init(&vc_cv[i], 0, (void *) 0);
}
} else
assert(vc_cv != (cond_t *) NULL);
/*
* XXX - fvdl connecting while holding a mutex?
*/
slen = sizeof ss;
if (_getpeername(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
if (errno != ENOTCONN) {
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
rpc_createerr.cf_error.re_errno = errno;
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
goto err;
}
if (_connect(fd, (struct sockaddr *)raddr->buf, raddr->len) < 0){
rpc_createerr.cf_stat = RPC_SYSTEMERROR;
rpc_createerr.cf_error.re_errno = errno;
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
goto err;
}
}
mutex_unlock(&clnt_fd_lock);
if (!__rpc_fd2sockinfo(fd, &si))
goto err;
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
ct->ct_closeit = FALSE;
/*
* Set up private data struct
*/
ct->ct_fd = fd;
ct->ct_wait.tv_usec = 0;
ct->ct_waitset = FALSE;
ct->ct_addr.buf = malloc(raddr->maxlen);
if (ct->ct_addr.buf == NULL)
goto err;
memcpy(ct->ct_addr.buf, raddr->buf, raddr->len);
ct->ct_addr.len = raddr->maxlen;
ct->ct_addr.maxlen = raddr->maxlen;
/*
* Initialize call message
*/
(void)gettimeofday(&now, NULL);
call_msg.rm_xid = ((u_int32_t)++disrupt) ^ __RPC_GETXID(&now);
call_msg.rm_direction = CALL;
call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
call_msg.rm_call.cb_prog = (u_int32_t)prog;
call_msg.rm_call.cb_vers = (u_int32_t)vers;
/*
* pre-serialize the static part of the call msg and stash it away
*/
xdrmem_create(&(ct->ct_xdrs), ct->ct_u.ct_mcallc, MCALL_MSG_SIZE,
XDR_ENCODE);
if (! xdr_callhdr(&(ct->ct_xdrs), &call_msg)) {
if (ct->ct_closeit) {
(void)_close(fd);
}
goto err;
}
ct->ct_mpos = XDR_GETPOS(&(ct->ct_xdrs));
XDR_DESTROY(&(ct->ct_xdrs));
/*
* Create a client handle which uses xdrrec for serialization
* and authnone for authentication.
*/
cl->cl_ops = clnt_vc_ops();
cl->cl_private = ct;
cl->cl_auth = authnone_create();
sendsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsz);
recvsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsz);
xdrrec_create(&(ct->ct_xdrs), sendsz, recvsz,
cl->cl_private, read_vc, write_vc);
return (cl);
err:
if (cl) {
if (ct) {
if (ct->ct_addr.len)
mem_free(ct->ct_addr.buf, ct->ct_addr.len);
mem_free(ct, sizeof (struct ct_data));
}
if (cl)
mem_free(cl, sizeof (CLIENT));
}
return ((CLIENT *)NULL);
}
static enum clnt_stat
clnt_vc_call(cl, proc, xdr_args, args_ptr, xdr_results, results_ptr, timeout)
CLIENT *cl;
rpcproc_t proc;
xdrproc_t xdr_args;
void *args_ptr;
xdrproc_t xdr_results;
void *results_ptr;
struct timeval timeout;
{
struct ct_data *ct = (struct ct_data *) cl->cl_private;
XDR *xdrs = &(ct->ct_xdrs);
struct rpc_msg reply_msg;
u_int32_t x_id;
u_int32_t *msg_x_id = &ct->ct_u.ct_mcalli; /* yuk */
bool_t shipnow;
int refreshes = 2;
sigset_t mask, newmask;
int rpc_lock_value;
assert(cl != NULL);
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
while (vc_fd_locks[ct->ct_fd])
cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock);
if (__isthreaded)
rpc_lock_value = 1;
else
rpc_lock_value = 0;
vc_fd_locks[ct->ct_fd] = rpc_lock_value;
mutex_unlock(&clnt_fd_lock);
if (!ct->ct_waitset) {
/* If time is not within limits, we ignore it. */
if (time_not_ok(&timeout) == FALSE)
ct->ct_wait = timeout;
}
shipnow =
(xdr_results == NULL && timeout.tv_sec == 0
&& timeout.tv_usec == 0) ? FALSE : TRUE;
call_again:
xdrs->x_op = XDR_ENCODE;
ct->ct_error.re_status = RPC_SUCCESS;
x_id = ntohl(--(*msg_x_id));
if ((! XDR_PUTBYTES(xdrs, ct->ct_u.ct_mcallc, ct->ct_mpos)) ||
(! XDR_PUTINT32(xdrs, &proc)) ||
(! AUTH_MARSHALL(cl->cl_auth, xdrs)) ||
(! (*xdr_args)(xdrs, args_ptr))) {
if (ct->ct_error.re_status == RPC_SUCCESS)
ct->ct_error.re_status = RPC_CANTENCODEARGS;
(void)xdrrec_endofrecord(xdrs, TRUE);
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
if (! xdrrec_endofrecord(xdrs, shipnow)) {
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status = RPC_CANTSEND);
}
if (! shipnow) {
release_fd_lock(ct->ct_fd, mask);
return (RPC_SUCCESS);
}
/*
* Hack to provide rpc-based message passing
*/
if (timeout.tv_sec == 0 && timeout.tv_usec == 0) {
release_fd_lock(ct->ct_fd, mask);
return(ct->ct_error.re_status = RPC_TIMEDOUT);
}
/*
* Keep receiving until we get a valid transaction id
*/
xdrs->x_op = XDR_DECODE;
while (TRUE) {
reply_msg.acpted_rply.ar_verf = _null_auth;
reply_msg.acpted_rply.ar_results.where = NULL;
reply_msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_void;
if (! xdrrec_skiprecord(xdrs)) {
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
/* now decode and validate the response header */
if (! xdr_replymsg(xdrs, &reply_msg)) {
if (ct->ct_error.re_status == RPC_SUCCESS)
continue;
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
if (reply_msg.rm_xid == x_id)
break;
}
/*
* process header
*/
_seterr_reply(&reply_msg, &(ct->ct_error));
if (ct->ct_error.re_status == RPC_SUCCESS) {
if (! AUTH_VALIDATE(cl->cl_auth,
&reply_msg.acpted_rply.ar_verf)) {
ct->ct_error.re_status = RPC_AUTHERROR;
ct->ct_error.re_why = AUTH_INVALIDRESP;
} else if (! (*xdr_results)(xdrs, results_ptr)) {
if (ct->ct_error.re_status == RPC_SUCCESS)
ct->ct_error.re_status = RPC_CANTDECODERES;
}
/* free verifier ... */
if (reply_msg.acpted_rply.ar_verf.oa_base != NULL) {
xdrs->x_op = XDR_FREE;
(void)xdr_opaque_auth(xdrs,
&(reply_msg.acpted_rply.ar_verf));
}
} /* end successful completion */
else {
/* maybe our credentials need to be refreshed ... */
if (refreshes-- && AUTH_REFRESH(cl->cl_auth, &reply_msg))
goto call_again;
} /* end of unsuccessful completion */
release_fd_lock(ct->ct_fd, mask);
return (ct->ct_error.re_status);
}
static void
clnt_vc_geterr(cl, errp)
CLIENT *cl;
struct rpc_err *errp;
{
struct ct_data *ct;
assert(cl != NULL);
assert(errp != NULL);
ct = (struct ct_data *) cl->cl_private;
*errp = ct->ct_error;
}
static bool_t
clnt_vc_freeres(cl, xdr_res, res_ptr)
CLIENT *cl;
xdrproc_t xdr_res;
void *res_ptr;
{
struct ct_data *ct;
XDR *xdrs;
bool_t dummy;
sigset_t mask;
sigset_t newmask;
assert(cl != NULL);
ct = (struct ct_data *)cl->cl_private;
xdrs = &(ct->ct_xdrs);
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
while (vc_fd_locks[ct->ct_fd])
cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock);
xdrs->x_op = XDR_FREE;
dummy = (*xdr_res)(xdrs, res_ptr);
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
cond_signal(&vc_cv[ct->ct_fd]);
return dummy;
}
/*ARGSUSED*/
static void
clnt_vc_abort(cl)
CLIENT *cl;
{
}
static bool_t
clnt_vc_control(cl, request, info)
CLIENT *cl;
u_int request;
void *info;
{
struct ct_data *ct;
void *infop = info;
sigset_t mask;
sigset_t newmask;
int rpc_lock_value;
assert(cl != NULL);
ct = (struct ct_data *)cl->cl_private;
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
while (vc_fd_locks[ct->ct_fd])
cond_wait(&vc_cv[ct->ct_fd], &clnt_fd_lock);
if (__isthreaded)
rpc_lock_value = 1;
else
rpc_lock_value = 0;
vc_fd_locks[ct->ct_fd] = rpc_lock_value;
mutex_unlock(&clnt_fd_lock);
switch (request) {
case CLSET_FD_CLOSE:
ct->ct_closeit = TRUE;
release_fd_lock(ct->ct_fd, mask);
return (TRUE);
case CLSET_FD_NCLOSE:
ct->ct_closeit = FALSE;
release_fd_lock(ct->ct_fd, mask);
return (TRUE);
default:
break;
}
/* for other requests which use info */
if (info == NULL) {
release_fd_lock(ct->ct_fd, mask);
return (FALSE);
}
switch (request) {
case CLSET_TIMEOUT:
if (time_not_ok((struct timeval *)info)) {
release_fd_lock(ct->ct_fd, mask);
return (FALSE);
}
ct->ct_wait = *(struct timeval *)infop;
ct->ct_waitset = TRUE;
break;
case CLGET_TIMEOUT:
*(struct timeval *)infop = ct->ct_wait;
break;
case CLGET_SERVER_ADDR:
(void) memcpy(info, ct->ct_addr.buf, (size_t)ct->ct_addr.len);
break;
case CLGET_FD:
*(int *)info = ct->ct_fd;
break;
case CLGET_SVC_ADDR:
/* The caller should not free this memory area */
*(struct netbuf *)info = ct->ct_addr;
break;
case CLSET_SVC_ADDR: /* set to new address */
release_fd_lock(ct->ct_fd, mask);
return (FALSE);
case CLGET_XID:
/*
* use the knowledge that xid is the
* first element in the call structure
* This will get the xid of the PREVIOUS call
*/
*(u_int32_t *)info =
ntohl(*(u_int32_t *)(void *)&ct->ct_u.ct_mcalli);
break;
case CLSET_XID:
/* This will set the xid of the NEXT call */
*(u_int32_t *)(void *)&ct->ct_u.ct_mcalli =
htonl(*((u_int32_t *)info) + 1);
/* increment by 1 as clnt_vc_call() decrements once */
break;
case CLGET_VERS:
/*
* This RELIES on the information that, in the call body,
* the version number field is the fifth field from the
* begining of the RPC header. MUST be changed if the
* call_struct is changed
*/
*(u_int32_t *)info =
ntohl(*(u_int32_t *)(void *)(ct->ct_u.ct_mcallc +
4 * BYTES_PER_XDR_UNIT));
break;
case CLSET_VERS:
*(u_int32_t *)(void *)(ct->ct_u.ct_mcallc +
4 * BYTES_PER_XDR_UNIT) =
htonl(*(u_int32_t *)info);
break;
case CLGET_PROG:
/*
* This RELIES on the information that, in the call body,
* the program number field is the fourth field from the
* begining of the RPC header. MUST be changed if the
* call_struct is changed
*/
*(u_int32_t *)info =
ntohl(*(u_int32_t *)(void *)(ct->ct_u.ct_mcallc +
3 * BYTES_PER_XDR_UNIT));
break;
case CLSET_PROG:
*(u_int32_t *)(void *)(ct->ct_u.ct_mcallc +
3 * BYTES_PER_XDR_UNIT) =
htonl(*(u_int32_t *)info);
break;
default:
release_fd_lock(ct->ct_fd, mask);
return (FALSE);
}
release_fd_lock(ct->ct_fd, mask);
return (TRUE);
}
static void
clnt_vc_destroy(cl)
CLIENT *cl;
{
struct ct_data *ct = (struct ct_data *) cl->cl_private;
int ct_fd = ct->ct_fd;
sigset_t mask;
sigset_t newmask;
assert(cl != NULL);
ct = (struct ct_data *) cl->cl_private;
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&clnt_fd_lock);
while (vc_fd_locks[ct_fd])
cond_wait(&vc_cv[ct_fd], &clnt_fd_lock);
if (ct->ct_closeit && ct->ct_fd != -1) {
(void)_close(ct->ct_fd);
}
XDR_DESTROY(&(ct->ct_xdrs));
if (ct->ct_addr.buf)
free(ct->ct_addr.buf);
mem_free(ct, sizeof(struct ct_data));
mem_free(cl, sizeof(CLIENT));
mutex_unlock(&clnt_fd_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
cond_signal(&vc_cv[ct_fd]);
}
/*
* Interface between xdr serializer and tcp connection.
* Behaves like the system calls, read & write, but keeps some error state
* around for the rpc level.
*/
static int
read_vc(ctp, buf, len)
void *ctp;
void *buf;
int len;
{
struct sockaddr sa;
socklen_t sal;
struct ct_data *ct = (struct ct_data *)ctp;
struct pollfd fd;
int milliseconds = (int)((ct->ct_wait.tv_sec * 1000) +
(ct->ct_wait.tv_usec / 1000));
if (len == 0)
return (0);
fd.fd = ct->ct_fd;
fd.events = POLLIN;
for (;;) {
switch (_poll(&fd, 1, milliseconds)) {
case 0:
ct->ct_error.re_status = RPC_TIMEDOUT;
return (-1);
case -1:
if (errno == EINTR)
continue;
ct->ct_error.re_status = RPC_CANTRECV;
ct->ct_error.re_errno = errno;
return (-1);
}
break;
}
sal = sizeof(sa);
if ((_getpeername(ct->ct_fd, &sa, &sal) == 0) &&
(sa.sa_family == AF_LOCAL)) {
len = __msgread(ct->ct_fd, buf, (size_t)len);
} else {
len = _read(ct->ct_fd, buf, (size_t)len);
}
switch (len) {
case 0:
/* premature eof */
ct->ct_error.re_errno = ECONNRESET;
ct->ct_error.re_status = RPC_CANTRECV;
len = -1; /* it's really an error */
break;
case -1:
ct->ct_error.re_errno = errno;
ct->ct_error.re_status = RPC_CANTRECV;
break;
}
return (len);
}
static int
write_vc(ctp, buf, len)
void *ctp;
void *buf;
int len;
{
struct sockaddr sa;
socklen_t sal;
struct ct_data *ct = (struct ct_data *)ctp;
int i, cnt;
sal = sizeof(sa);
if ((_getpeername(ct->ct_fd, &sa, &sal) == 0) &&
(sa.sa_family == AF_LOCAL)) {
for (cnt = len; cnt > 0; cnt -= i, buf += i) {
if ((i = __msgwrite(ct->ct_fd, buf,
(size_t)cnt)) == -1) {
ct->ct_error.re_errno = errno;
ct->ct_error.re_status = RPC_CANTSEND;
return (-1);
}
}
} else {
for (cnt = len; cnt > 0; cnt -= i, buf += i) {
if ((i = _write(ct->ct_fd, buf, (size_t)cnt)) == -1) {
ct->ct_error.re_errno = errno;
ct->ct_error.re_status = RPC_CANTSEND;
return (-1);
}
}
}
return (len);
}
static struct clnt_ops *
clnt_vc_ops()
{
static struct clnt_ops ops;
extern mutex_t ops_lock;
sigset_t mask, newmask;
/* VARIABLES PROTECTED BY ops_lock: ops */
sigfillset(&newmask);
thr_sigsetmask(SIG_SETMASK, &newmask, &mask);
mutex_lock(&ops_lock);
if (ops.cl_call == NULL) {
ops.cl_call = clnt_vc_call;
ops.cl_abort = clnt_vc_abort;
ops.cl_geterr = clnt_vc_geterr;
ops.cl_freeres = clnt_vc_freeres;
ops.cl_destroy = clnt_vc_destroy;
ops.cl_control = clnt_vc_control;
}
mutex_unlock(&ops_lock);
thr_sigsetmask(SIG_SETMASK, &(mask), NULL);
return (&ops);
}
/*
* Make sure that the time is not garbage. -1 value is disallowed.
* Note this is different from time_not_ok in clnt_dg.c
*/
static bool_t
time_not_ok(t)
struct timeval *t;
{
return (t->tv_sec <= -1 || t->tv_sec > 100000000 ||
t->tv_usec <= -1 || t->tv_usec > 1000000);
}
static int
__msgread(sock, buf, cnt)
int sock;
void *buf;
size_t cnt;
{
struct iovec iov[1];
struct msghdr msg;
union {
struct cmsghdr cmsg;
char control[CMSG_SPACE(sizeof(struct cmsgcred))];
} cm;
bzero((char *)&cm, sizeof(cm));
iov[0].iov_base = buf;
iov[0].iov_len = cnt;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = (caddr_t)&cm;
msg.msg_controllen = CMSG_SPACE(sizeof(struct cmsgcred));
msg.msg_flags = 0;
return(_recvmsg(sock, &msg, 0));
}
static int
__msgwrite(sock, buf, cnt)
int sock;
void *buf;
size_t cnt;
{
struct iovec iov[1];
struct msghdr msg;
union {
struct cmsghdr cmsg;
char control[CMSG_SPACE(sizeof(struct cmsgcred))];
} cm;
bzero((char *)&cm, sizeof(cm));
iov[0].iov_base = buf;
iov[0].iov_len = cnt;
cm.cmsg.cmsg_type = SCM_CREDS;
cm.cmsg.cmsg_level = SOL_SOCKET;
cm.cmsg.cmsg_len = CMSG_LEN(sizeof(struct cmsgcred));
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = (caddr_t)&cm;
msg.msg_controllen = CMSG_SPACE(sizeof(struct cmsgcred));
msg.msg_flags = 0;
return(_sendmsg(sock, &msg, 0));
}