mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-24 11:29:10 +00:00
ac095af538
Suggested by: Rob Farmer <rfarmer at predatorlabs.net> MFC after: 3 days
910 lines
22 KiB
Plaintext
910 lines
22 KiB
Plaintext
/*-
|
|
* Copyright (c) 2006-2008 Joseph Koshy
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/elf32.h>
|
|
#include <sys/elf64.h>
|
|
|
|
#include <assert.h>
|
|
#include <libelf.h>
|
|
#include <osreldate.h>
|
|
#include <string.h>
|
|
|
|
#include "_libelf.h"
|
|
|
|
/* WARNING: GENERATED FROM __file__. */
|
|
|
|
/*
|
|
* Macros to swap various integral quantities.
|
|
*/
|
|
|
|
#define SWAP_HALF(X) do { \
|
|
uint16_t _x = (uint16_t) (X); \
|
|
uint16_t _t = _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
(X) = _t; \
|
|
} while (0)
|
|
#define SWAP_WORD(X) do { \
|
|
uint32_t _x = (uint32_t) (X); \
|
|
uint32_t _t = _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
(X) = _t; \
|
|
} while (0)
|
|
#define SWAP_ADDR32(X) SWAP_WORD(X)
|
|
#define SWAP_OFF32(X) SWAP_WORD(X)
|
|
#define SWAP_SWORD(X) SWAP_WORD(X)
|
|
#define SWAP_WORD64(X) do { \
|
|
uint64_t _x = (uint64_t) (X); \
|
|
uint64_t _t = _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
|
|
(X) = _t; \
|
|
} while (0)
|
|
#define SWAP_ADDR64(X) SWAP_WORD64(X)
|
|
#define SWAP_LWORD(X) SWAP_WORD64(X)
|
|
#define SWAP_OFF64(X) SWAP_WORD64(X)
|
|
#define SWAP_SXWORD(X) SWAP_WORD64(X)
|
|
#define SWAP_XWORD(X) SWAP_WORD64(X)
|
|
|
|
/*
|
|
* Write out various integral values. The destination pointer could
|
|
* be unaligned. Values are written out in native byte order. The
|
|
* destination pointer is incremented after the write.
|
|
*/
|
|
#define WRITE_BYTE(P,X) do { \
|
|
char *const _p = (char *) (P); \
|
|
_p[0] = (char) (X); \
|
|
(P) = _p + 1; \
|
|
} while (0)
|
|
#define WRITE_HALF(P,X) do { \
|
|
uint16_t _t = (X); \
|
|
char *const _p = (char *) (P); \
|
|
const char *const _q = (char *) &_t; \
|
|
_p[0] = _q[0]; \
|
|
_p[1] = _q[1]; \
|
|
(P) = _p + 2; \
|
|
} while (0)
|
|
#define WRITE_WORD(P,X) do { \
|
|
uint32_t _t = (X); \
|
|
char *const _p = (char *) (P); \
|
|
const char *const _q = (char *) &_t; \
|
|
_p[0] = _q[0]; \
|
|
_p[1] = _q[1]; \
|
|
_p[2] = _q[2]; \
|
|
_p[3] = _q[3]; \
|
|
(P) = _p + 4; \
|
|
} while (0)
|
|
#define WRITE_ADDR32(P,X) WRITE_WORD(P,X)
|
|
#define WRITE_OFF32(P,X) WRITE_WORD(P,X)
|
|
#define WRITE_SWORD(P,X) WRITE_WORD(P,X)
|
|
#define WRITE_WORD64(P,X) do { \
|
|
uint64_t _t = (X); \
|
|
char *const _p = (char *) (P); \
|
|
const char *const _q = (char *) &_t; \
|
|
_p[0] = _q[0]; \
|
|
_p[1] = _q[1]; \
|
|
_p[2] = _q[2]; \
|
|
_p[3] = _q[3]; \
|
|
_p[4] = _q[4]; \
|
|
_p[5] = _q[5]; \
|
|
_p[6] = _q[6]; \
|
|
_p[7] = _q[7]; \
|
|
(P) = _p + 8; \
|
|
} while (0)
|
|
#define WRITE_ADDR64(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_LWORD(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_OFF64(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_SXWORD(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_XWORD(P,X) WRITE_WORD64(P,X)
|
|
#define WRITE_IDENT(P,X) do { \
|
|
(void) memcpy((P), (X), sizeof((X))); \
|
|
(P) = (P) + EI_NIDENT; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Read in various integral values. The source pointer could be
|
|
* unaligned. Values are read in native byte order. The source
|
|
* pointer is incremented appropriately.
|
|
*/
|
|
|
|
#define READ_BYTE(P,X) do { \
|
|
const char *const _p = \
|
|
(const char *) (P); \
|
|
(X) = _p[0]; \
|
|
(P) = (P) + 1; \
|
|
} while (0)
|
|
#define READ_HALF(P,X) do { \
|
|
uint16_t _t; \
|
|
char *const _q = (char *) &_t; \
|
|
const char *const _p = \
|
|
(const char *) (P); \
|
|
_q[0] = _p[0]; \
|
|
_q[1] = _p[1]; \
|
|
(P) = (P) + 2; \
|
|
(X) = _t; \
|
|
} while (0)
|
|
#define READ_WORD(P,X) do { \
|
|
uint32_t _t; \
|
|
char *const _q = (char *) &_t; \
|
|
const char *const _p = \
|
|
(const char *) (P); \
|
|
_q[0] = _p[0]; \
|
|
_q[1] = _p[1]; \
|
|
_q[2] = _p[2]; \
|
|
_q[3] = _p[3]; \
|
|
(P) = (P) + 4; \
|
|
(X) = _t; \
|
|
} while (0)
|
|
#define READ_ADDR32(P,X) READ_WORD(P,X)
|
|
#define READ_OFF32(P,X) READ_WORD(P,X)
|
|
#define READ_SWORD(P,X) READ_WORD(P,X)
|
|
#define READ_WORD64(P,X) do { \
|
|
uint64_t _t; \
|
|
char *const _q = (char *) &_t; \
|
|
const char *const _p = \
|
|
(const char *) (P); \
|
|
_q[0] = _p[0]; \
|
|
_q[1] = _p[1]; \
|
|
_q[2] = _p[2]; \
|
|
_q[3] = _p[3]; \
|
|
_q[4] = _p[4]; \
|
|
_q[5] = _p[5]; \
|
|
_q[6] = _p[6]; \
|
|
_q[7] = _p[7]; \
|
|
(P) = (P) + 8; \
|
|
(X) = _t; \
|
|
} while (0)
|
|
#define READ_ADDR64(P,X) READ_WORD64(P,X)
|
|
#define READ_LWORD(P,X) READ_WORD64(P,X)
|
|
#define READ_OFF64(P,X) READ_WORD64(P,X)
|
|
#define READ_SXWORD(P,X) READ_WORD64(P,X)
|
|
#define READ_XWORD(P,X) READ_WORD64(P,X)
|
|
#define READ_IDENT(P,X) do { \
|
|
(void) memcpy((X), (P), sizeof((X))); \
|
|
(P) = (P) + EI_NIDENT; \
|
|
} while (0)
|
|
|
|
#define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1))
|
|
|
|
divert(-1)
|
|
|
|
/*
|
|
* Generate conversion routines for converting between in-memory and
|
|
* file representations of Elf data structures.
|
|
*
|
|
* `In-memory' representations of an Elf data structure use natural
|
|
* alignments and native byte ordering. This allows arithmetic and
|
|
* casting to work as expected. On the other hand the `file'
|
|
* representation of an ELF data structure could be packed tighter
|
|
* than its `in-memory' representation, and could be of a differing
|
|
* byte order. An additional complication is that `ar' only pads data
|
|
* to even addresses and so ELF archive member data being read from
|
|
* inside an `ar' archive could end up at misaligned memory addresses.
|
|
*
|
|
* Consequently, casting the `char *' pointers that point to memory
|
|
* representations (i.e., source pointers for the *_tof() functions
|
|
* and the destination pointers for the *_tom() functions), is safe,
|
|
* as these pointers should be correctly aligned for the memory type
|
|
* already. However, pointers to file representations have to be
|
|
* treated as being potentially unaligned and no casting can be done.
|
|
*/
|
|
|
|
include(SRCDIR`/elf_types.m4')
|
|
|
|
/*
|
|
* `IGNORE'_* flags turn off generation of template code.
|
|
*/
|
|
|
|
define(`IGNORE',
|
|
`define(IGNORE_$1`'32, 1)
|
|
define(IGNORE_$1`'64, 1)')
|
|
|
|
IGNORE(MOVEP)
|
|
IGNORE(NOTE)
|
|
IGNORE(GNUHASH)
|
|
|
|
define(IGNORE_BYTE, 1) /* 'lator, leave 'em bytes alone */
|
|
define(IGNORE_GNUHASH, 1)
|
|
define(IGNORE_NOTE, 1)
|
|
define(IGNORE_SXWORD32, 1)
|
|
define(IGNORE_XWORD32, 1)
|
|
|
|
/*
|
|
* `BASE'_XXX flags cause class agnostic template functions
|
|
* to be generated.
|
|
*/
|
|
|
|
define(`BASE_BYTE', 1)
|
|
define(`BASE_HALF', 1)
|
|
define(`BASE_NOTE', 1)
|
|
define(`BASE_WORD', 1)
|
|
define(`BASE_LWORD', 1)
|
|
define(`BASE_SWORD', 1)
|
|
define(`BASE_XWORD', 1)
|
|
define(`BASE_SXWORD', 1)
|
|
|
|
/*
|
|
* `SIZEDEP'_XXX flags cause 32/64 bit variants to be generated
|
|
* for each primitive type.
|
|
*/
|
|
|
|
define(`SIZEDEP_ADDR', 1)
|
|
define(`SIZEDEP_OFF', 1)
|
|
|
|
/*
|
|
* `Primitive' ELF types are those that are an alias for an integral
|
|
* type. They have no internal structure. These can be copied using
|
|
* a `memcpy()', and byteswapped in straightforward way.
|
|
*
|
|
* Macro use:
|
|
* `$1': Name of the ELF type.
|
|
* `$2': C structure name suffix
|
|
* `$3': ELF class specifier for symbols, one of [`', `32', `64']
|
|
* `$4': ELF class specifier for types, one of [`32', `64']
|
|
*/
|
|
define(`MAKEPRIM_TO_F',`
|
|
static int
|
|
libelf_cvt_$1$3_tof(char *dst, size_t dsz, char *src, size_t count,
|
|
int byteswap)
|
|
{
|
|
Elf$4_$2 t, *s = (Elf$4_$2 *) (uintptr_t) src;
|
|
size_t c;
|
|
|
|
(void) dsz;
|
|
|
|
if (!byteswap) {
|
|
(void) memcpy(dst, src, count * sizeof(*s));
|
|
return (1);
|
|
}
|
|
|
|
for (c = 0; c < count; c++) {
|
|
t = *s++;
|
|
SWAP_$1$3(t);
|
|
WRITE_$1$3(dst,t);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
')
|
|
|
|
define(`MAKEPRIM_TO_M',`
|
|
static int
|
|
libelf_cvt_$1$3_tom(char *dst, size_t dsz, char *src, size_t count,
|
|
int byteswap)
|
|
{
|
|
Elf$4_$2 t, *d = (Elf$4_$2 *) (uintptr_t) dst;
|
|
size_t c;
|
|
|
|
if (dsz < count * sizeof(Elf$4_$2))
|
|
return (0);
|
|
|
|
if (!byteswap) {
|
|
(void) memcpy(dst, src, count * sizeof(*d));
|
|
return (1);
|
|
}
|
|
|
|
for (c = 0; c < count; c++) {
|
|
READ_$1$3(src,t);
|
|
SWAP_$1$3(t);
|
|
*d++ = t;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
')
|
|
|
|
define(`SWAP_FIELD',
|
|
`ifdef(`IGNORE_'$2,`',
|
|
`ifelse(BASE_$2,1,
|
|
`SWAP_$2(t.$1);
|
|
',
|
|
`ifelse($2,BYTE,`',
|
|
`ifelse($2,IDENT,`',
|
|
`SWAP_$2'SZ()`(t.$1);
|
|
')')')')')
|
|
define(`SWAP_MEMBERS',
|
|
`ifelse($#,1,`/**/',
|
|
`SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')')
|
|
|
|
define(`SWAP_STRUCT',
|
|
`pushdef(`SZ',$2)/* Swap an Elf$2_$1 */
|
|
SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
|
|
|
|
define(`WRITE_FIELD',
|
|
`ifelse(BASE_$2,1,
|
|
`WRITE_$2(dst,t.$1);
|
|
',
|
|
`ifelse($2,IDENT,
|
|
`WRITE_$2(dst,t.$1);
|
|
',
|
|
`WRITE_$2'SZ()`(dst,t.$1);
|
|
')')')
|
|
define(`WRITE_MEMBERS',
|
|
`ifelse($#,1,`/**/',
|
|
`WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')')
|
|
|
|
define(`WRITE_STRUCT',
|
|
`pushdef(`SZ',$2)/* Write an Elf$2_$1 */
|
|
WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
|
|
|
|
define(`READ_FIELD',
|
|
`ifelse(BASE_$2,1,
|
|
`READ_$2(s,t.$1);
|
|
',
|
|
`ifelse($2,IDENT,
|
|
`READ_$2(s,t.$1);
|
|
',
|
|
`READ_$2'SZ()`(s,t.$1);
|
|
')')')
|
|
|
|
define(`READ_MEMBERS',
|
|
`ifelse($#,1,`/**/',
|
|
`READ_FIELD($1)READ_MEMBERS(shift($@))')')
|
|
|
|
define(`READ_STRUCT',
|
|
`pushdef(`SZ',$2)/* Read an Elf$2_$1 */
|
|
READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
|
|
|
|
/*
|
|
* Converters for non-integral ELF data structures.
|
|
*
|
|
* When converting data to file representation, the source pointer
|
|
* will be naturally aligned for a data structure's in-memory
|
|
* representation. When converting data to memory, the destination
|
|
* pointer will be similarly aligned.
|
|
*
|
|
* For in-place conversions, when converting to file representations,
|
|
* the source buffer is large enough to hold `file' data. When
|
|
* converting from file to memory, we need to be careful to work
|
|
* `backwards', to avoid overwriting unconverted data.
|
|
*
|
|
* Macro use:
|
|
* `$1': Name of the ELF type.
|
|
* `$2': C structure name suffix.
|
|
* `$3': ELF class specifier, one of [`', `32', `64']
|
|
*/
|
|
|
|
define(`MAKE_TO_F',
|
|
`ifdef(`IGNORE_'$1$3,`',`
|
|
static int
|
|
libelf_cvt$3_$1_tof(char *dst, size_t dsz, char *src, size_t count,
|
|
int byteswap)
|
|
{
|
|
Elf$3_$2 t, *s;
|
|
size_t c;
|
|
|
|
(void) dsz;
|
|
|
|
s = (Elf$3_$2 *) (uintptr_t) src;
|
|
for (c = 0; c < count; c++) {
|
|
t = *s++;
|
|
if (byteswap) {
|
|
SWAP_STRUCT($2,$3)
|
|
}
|
|
WRITE_STRUCT($2,$3)
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
')')
|
|
|
|
define(`MAKE_TO_M',
|
|
`ifdef(`IGNORE_'$1$3,`',`
|
|
static int
|
|
libelf_cvt$3_$1_tom(char *dst, size_t dsz, char *src, size_t count,
|
|
int byteswap)
|
|
{
|
|
Elf$3_$2 t, *d;
|
|
char *s,*s0;
|
|
size_t fsz;
|
|
|
|
fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT);
|
|
d = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1);
|
|
s0 = (char *) src + (count - 1) * fsz;
|
|
|
|
if (dsz < count * sizeof(Elf$3_$2))
|
|
return (0);
|
|
|
|
while (count--) {
|
|
s = s0;
|
|
READ_STRUCT($2,$3)
|
|
if (byteswap) {
|
|
SWAP_STRUCT($2,$3)
|
|
}
|
|
*d-- = t; s0 -= fsz;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
')')
|
|
|
|
/*
|
|
* Make type convertor functions from the type definition
|
|
* of the ELF type:
|
|
* - if the type is a base (i.e., `primitive') type:
|
|
* - if it is marked as to be ignored (i.e., `IGNORE_'TYPE)
|
|
* is defined, we skip the code generation step.
|
|
* - if the type is declared as `SIZEDEP', then 32 and 64 bit
|
|
* variants of the conversion functions are generated.
|
|
* - otherwise a 32 bit variant is generated.
|
|
* - if the type is a structure type, we generate 32 and 64 bit
|
|
* variants of the conversion functions.
|
|
*/
|
|
|
|
define(`MAKE_TYPE_CONVERTER',
|
|
`#if __FreeBSD_version >= $3 /* $1 */
|
|
ifdef(`BASE'_$1,
|
|
`ifdef(`IGNORE_'$1,`',
|
|
`MAKEPRIM_TO_F($1,$2,`',64)
|
|
MAKEPRIM_TO_M($1,$2,`',64)')',
|
|
`ifdef(`SIZEDEP_'$1,
|
|
`MAKEPRIM_TO_F($1,$2,32,32)dnl
|
|
MAKEPRIM_TO_M($1,$2,32,32)dnl
|
|
MAKEPRIM_TO_F($1,$2,64,64)dnl
|
|
MAKEPRIM_TO_M($1,$2,64,64)',
|
|
`MAKE_TO_F($1,$2,32)dnl
|
|
MAKE_TO_F($1,$2,64)dnl
|
|
MAKE_TO_M($1,$2,32)dnl
|
|
MAKE_TO_M($1,$2,64)')')
|
|
#endif /* $1 */
|
|
')
|
|
|
|
define(`MAKE_TYPE_CONVERTERS',
|
|
`ifelse($#,1,`',
|
|
`MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')')
|
|
|
|
divert(0)
|
|
|
|
/*
|
|
* Sections of type ELF_T_BYTE are never byteswapped, consequently a
|
|
* simple memcpy suffices for both directions of conversion.
|
|
*/
|
|
|
|
static int
|
|
libelf_cvt_BYTE_tox(char *dst, size_t dsz, char *src, size_t count,
|
|
int byteswap)
|
|
{
|
|
(void) byteswap;
|
|
if (dsz < count)
|
|
return (0);
|
|
if (dst != src)
|
|
(void) memcpy(dst, src, count);
|
|
return (1);
|
|
}
|
|
|
|
MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST)
|
|
|
|
#if __FreeBSD_version >= 800062
|
|
/*
|
|
* Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit
|
|
* words. Bloom filter data comes next, followed by hash buckets and the
|
|
* hash chain.
|
|
*
|
|
* Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit
|
|
* wide on ELFCLASS32 objects. The other objects in this section are 32
|
|
* bits wide.
|
|
*
|
|
* Argument `srcsz' denotes the number of bytes to be converted. In the
|
|
* 32-bit case we need to translate `srcsz' to a count of 32-bit words.
|
|
*/
|
|
|
|
static int
|
|
libelf_cvt32_GNUHASH_tom(char *dst, size_t dsz, char *src, size_t srcsz,
|
|
int byteswap)
|
|
{
|
|
return (libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t),
|
|
byteswap));
|
|
}
|
|
|
|
static int
|
|
libelf_cvt32_GNUHASH_tof(char *dst, size_t dsz, char *src, size_t srcsz,
|
|
int byteswap)
|
|
{
|
|
return (libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t),
|
|
byteswap));
|
|
}
|
|
|
|
static int
|
|
libelf_cvt64_GNUHASH_tom(char *dst, size_t dsz, char *src, size_t srcsz,
|
|
int byteswap)
|
|
{
|
|
size_t sz;
|
|
uint64_t t64, *bloom64;
|
|
Elf_GNU_Hash_Header *gh;
|
|
uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32;
|
|
uint32_t *buckets, *chains;
|
|
|
|
sz = 4 * sizeof(uint32_t); /* File header is 4 words long. */
|
|
if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz)
|
|
return (0);
|
|
|
|
/* Read in the section header and byteswap if needed. */
|
|
READ_WORD(src, nbuckets);
|
|
READ_WORD(src, symndx);
|
|
READ_WORD(src, maskwords);
|
|
READ_WORD(src, shift2);
|
|
|
|
srcsz -= sz;
|
|
|
|
if (byteswap) {
|
|
SWAP_WORD(nbuckets);
|
|
SWAP_WORD(symndx);
|
|
SWAP_WORD(maskwords);
|
|
SWAP_WORD(shift2);
|
|
}
|
|
|
|
/* Check source buffer and destination buffer sizes. */
|
|
sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t);
|
|
if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header))
|
|
return (0);
|
|
|
|
gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst;
|
|
gh->gh_nbuckets = nbuckets;
|
|
gh->gh_symndx = symndx;
|
|
gh->gh_maskwords = maskwords;
|
|
gh->gh_shift2 = shift2;
|
|
|
|
dsz -= sizeof(Elf_GNU_Hash_Header);
|
|
dst += sizeof(Elf_GNU_Hash_Header);
|
|
|
|
bloom64 = (uint64_t *) (uintptr_t) dst;
|
|
|
|
/* Copy bloom filter data. */
|
|
for (n = 0; n < maskwords; n++) {
|
|
READ_XWORD(src, t64);
|
|
if (byteswap)
|
|
SWAP_XWORD(t64);
|
|
bloom64[n] = t64;
|
|
}
|
|
|
|
/* The hash buckets follows the bloom filter. */
|
|
dst += maskwords * sizeof(uint64_t);
|
|
buckets = (uint32_t *) (uintptr_t) dst;
|
|
|
|
for (n = 0; n < nbuckets; n++) {
|
|
READ_WORD(src, t32);
|
|
if (byteswap)
|
|
SWAP_WORD(t32);
|
|
buckets[n] = t32;
|
|
}
|
|
|
|
dst += nbuckets * sizeof(uint32_t);
|
|
|
|
/* The hash chain follows the hash buckets. */
|
|
dsz -= sz;
|
|
srcsz -= sz;
|
|
|
|
if (dsz < srcsz) /* Destination lacks space. */
|
|
return (0);
|
|
|
|
nchains = srcsz / sizeof(uint32_t);
|
|
chains = (uint32_t *) (uintptr_t) dst;
|
|
|
|
for (n = 0; n < nchains; n++) {
|
|
READ_WORD(src, t32);
|
|
if (byteswap)
|
|
SWAP_WORD(t32);
|
|
*chains++ = t32;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
libelf_cvt64_GNUHASH_tof(char *dst, size_t dsz, char *src, size_t srcsz,
|
|
int byteswap)
|
|
{
|
|
uint32_t *s32;
|
|
size_t sz, hdrsz;
|
|
uint64_t *s64, t64;
|
|
Elf_GNU_Hash_Header *gh;
|
|
uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32;
|
|
|
|
hdrsz = 4 * sizeof(uint32_t); /* Header is 4x32 bits. */
|
|
if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header))
|
|
return (0);
|
|
|
|
gh = (Elf_GNU_Hash_Header *) (uintptr_t) src;
|
|
|
|
t0 = nbuckets = gh->gh_nbuckets;
|
|
t1 = gh->gh_symndx;
|
|
t2 = maskwords = gh->gh_maskwords;
|
|
t3 = gh->gh_shift2;
|
|
|
|
src += sizeof(Elf_GNU_Hash_Header);
|
|
srcsz -= sizeof(Elf_GNU_Hash_Header);
|
|
dsz -= hdrsz;
|
|
|
|
sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords *
|
|
sizeof(uint64_t);
|
|
|
|
if (srcsz < sz || dsz < sz)
|
|
return (0);
|
|
|
|
/* Write out the header. */
|
|
if (byteswap) {
|
|
SWAP_WORD(t0);
|
|
SWAP_WORD(t1);
|
|
SWAP_WORD(t2);
|
|
SWAP_WORD(t3);
|
|
}
|
|
|
|
WRITE_WORD(dst, t0);
|
|
WRITE_WORD(dst, t1);
|
|
WRITE_WORD(dst, t2);
|
|
WRITE_WORD(dst, t3);
|
|
|
|
/* Copy the bloom filter and the hash table. */
|
|
s64 = (uint64_t *) (uintptr_t) src;
|
|
for (n = 0; n < maskwords; n++) {
|
|
t64 = *s64++;
|
|
if (byteswap)
|
|
SWAP_XWORD(t64);
|
|
WRITE_WORD64(dst, t64);
|
|
}
|
|
|
|
s32 = (uint32_t *) s64;
|
|
for (n = 0; n < nbuckets; n++) {
|
|
t32 = *s32++;
|
|
if (byteswap)
|
|
SWAP_WORD(t32);
|
|
WRITE_WORD(dst, t32);
|
|
}
|
|
|
|
srcsz -= sz;
|
|
dsz -= sz;
|
|
|
|
/* Copy out the hash chains. */
|
|
if (dsz < srcsz)
|
|
return (0);
|
|
|
|
nchains = srcsz / sizeof(uint32_t);
|
|
for (n = 0; n < nchains; n++) {
|
|
t32 = *s32++;
|
|
if (byteswap)
|
|
SWAP_WORD(t32);
|
|
WRITE_WORD(dst, t32);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Elf_Note structures comprise a fixed size header followed by variable
|
|
* length strings. The fixed size header needs to be byte swapped, but
|
|
* not the strings.
|
|
*
|
|
* Argument `count' denotes the total number of bytes to be converted.
|
|
* The destination buffer needs to be at least `count' bytes in size.
|
|
*/
|
|
static int
|
|
libelf_cvt_NOTE_tom(char *dst, size_t dsz, char *src, size_t count,
|
|
int byteswap)
|
|
{
|
|
uint32_t namesz, descsz, type;
|
|
Elf_Note *en;
|
|
size_t sz, hdrsz;
|
|
|
|
if (dsz < count) /* Destination buffer is too small. */
|
|
return (0);
|
|
|
|
hdrsz = 3 * sizeof(uint32_t);
|
|
if (count < hdrsz) /* Source too small. */
|
|
return (0);
|
|
|
|
if (!byteswap) {
|
|
(void) memcpy(dst, src, count);
|
|
return (1);
|
|
}
|
|
|
|
/* Process all notes in the section. */
|
|
while (count > hdrsz) {
|
|
/* Read the note header. */
|
|
READ_WORD(src, namesz);
|
|
READ_WORD(src, descsz);
|
|
READ_WORD(src, type);
|
|
|
|
/* Translate. */
|
|
SWAP_WORD(namesz);
|
|
SWAP_WORD(descsz);
|
|
SWAP_WORD(type);
|
|
|
|
/* Copy out the translated note header. */
|
|
en = (Elf_Note *) (uintptr_t) dst;
|
|
en->n_namesz = namesz;
|
|
en->n_descsz = descsz;
|
|
en->n_type = type;
|
|
|
|
dsz -= sizeof(Elf_Note);
|
|
dst += sizeof(Elf_Note);
|
|
count -= hdrsz;
|
|
|
|
ROUNDUP2(namesz, 4);
|
|
ROUNDUP2(descsz, 4);
|
|
|
|
sz = namesz + descsz;
|
|
|
|
if (count < sz || dsz < sz) /* Buffers are too small. */
|
|
return (0);
|
|
|
|
(void) memcpy(dst, src, sz);
|
|
|
|
src += sz;
|
|
dst += sz;
|
|
|
|
count -= sz;
|
|
dsz -= sz;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
libelf_cvt_NOTE_tof(char *dst, size_t dsz, char *src, size_t count,
|
|
int byteswap)
|
|
{
|
|
uint32_t namesz, descsz, type;
|
|
Elf_Note *en;
|
|
size_t sz;
|
|
|
|
if (dsz < count)
|
|
return (0);
|
|
|
|
if (!byteswap) {
|
|
(void) memcpy(dst, src, count);
|
|
return (1);
|
|
}
|
|
|
|
while (count > sizeof(Elf_Note)) {
|
|
|
|
en = (Elf_Note *) (uintptr_t) src;
|
|
namesz = en->n_namesz;
|
|
descsz = en->n_descsz;
|
|
type = en->n_type;
|
|
|
|
SWAP_WORD(namesz);
|
|
SWAP_WORD(descsz);
|
|
SWAP_WORD(type);
|
|
|
|
WRITE_WORD(dst, namesz);
|
|
WRITE_WORD(dst, descsz);
|
|
WRITE_WORD(dst, type);
|
|
|
|
src += sizeof(Elf_Note);
|
|
|
|
ROUNDUP2(namesz, 4);
|
|
ROUNDUP2(descsz, 4);
|
|
|
|
sz = namesz + descsz;
|
|
|
|
if (count < sz)
|
|
sz = count;
|
|
|
|
(void) memcpy(dst, src, sz);
|
|
|
|
src += sz;
|
|
dst += sz;
|
|
count -= sz;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
struct converters {
|
|
int (*tof32)(char *dst, size_t dsz, char *src, size_t cnt,
|
|
int byteswap);
|
|
int (*tom32)(char *dst, size_t dsz, char *src, size_t cnt,
|
|
int byteswap);
|
|
int (*tof64)(char *dst, size_t dsz, char *src, size_t cnt,
|
|
int byteswap);
|
|
int (*tom64)(char *dst, size_t dsz, char *src, size_t cnt,
|
|
int byteswap);
|
|
};
|
|
|
|
divert(-1)
|
|
define(`CONV',
|
|
`ifdef(`IGNORE_'$1$2,
|
|
`.$3$2 = NULL',
|
|
`ifdef(`BASE_'$1,
|
|
`.$3$2 = libelf_cvt_$1_$3',
|
|
`ifdef(`SIZEDEP_'$1,
|
|
`.$3$2 = libelf_cvt_$1$2_$3',
|
|
`.$3$2 = libelf_cvt$2_$1_$3')')')')
|
|
|
|
define(`CONVERTER_NAME',
|
|
`ifdef(`IGNORE_'$1,`',
|
|
`#if __FreeBSD_version >= $3
|
|
[ELF_T_$1] = {
|
|
CONV($1,32,tof), CONV($1,32,tom),
|
|
CONV($1,64,tof), CONV($1,64,tom) },
|
|
#endif
|
|
')')
|
|
|
|
define(`CONVERTER_NAMES',
|
|
`ifelse($#,1,`',
|
|
`CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')')
|
|
|
|
undefine(`IGNORE_BYTE32', `IGNORE_BYTE64')
|
|
divert(0)
|
|
|
|
static struct converters cvt[ELF_T_NUM] = {
|
|
CONVERTER_NAMES(ELF_TYPE_LIST)
|
|
|
|
/*
|
|
* Types that needs hand-coded converters follow.
|
|
*/
|
|
|
|
[ELF_T_BYTE] = {
|
|
.tof32 = libelf_cvt_BYTE_tox,
|
|
.tom32 = libelf_cvt_BYTE_tox,
|
|
.tof64 = libelf_cvt_BYTE_tox,
|
|
.tom64 = libelf_cvt_BYTE_tox
|
|
},
|
|
|
|
#if __FreeBSD_version >= 800062
|
|
[ELF_T_GNUHASH] = {
|
|
.tof32 = libelf_cvt32_GNUHASH_tof,
|
|
.tom32 = libelf_cvt32_GNUHASH_tom,
|
|
.tof64 = libelf_cvt64_GNUHASH_tof,
|
|
.tom64 = libelf_cvt64_GNUHASH_tom
|
|
},
|
|
#endif
|
|
|
|
[ELF_T_NOTE] = {
|
|
.tof32 = libelf_cvt_NOTE_tof,
|
|
.tom32 = libelf_cvt_NOTE_tom,
|
|
.tof64 = libelf_cvt_NOTE_tof,
|
|
.tom64 = libelf_cvt_NOTE_tom
|
|
}
|
|
};
|
|
|
|
int (*_libelf_get_translator(Elf_Type t, int direction, int elfclass))
|
|
(char *_dst, size_t dsz, char *_src, size_t _cnt, int _byteswap)
|
|
{
|
|
assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64);
|
|
assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY);
|
|
|
|
if (t >= ELF_T_NUM ||
|
|
(elfclass != ELFCLASS32 && elfclass != ELFCLASS64) ||
|
|
(direction != ELF_TOFILE && direction != ELF_TOMEMORY))
|
|
return (NULL);
|
|
|
|
return ((elfclass == ELFCLASS32) ?
|
|
(direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) :
|
|
(direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64));
|
|
}
|