1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-24 11:29:10 +00:00
freebsd/sys/ufs/ffs/ffs_vfsops.c
Pedro F. Giffuni 4896af9f55 ufs: small formatting fixes.
Cleanup some extra space.
Use of tabs vs. spaces.
No functional change.

MFC after:	3 days
Reviewed by:	mckusick
2014-03-02 02:52:34 +00:00

2248 lines
57 KiB
C

/*-
* Copyright (c) 1989, 1991, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_quota.h"
#include "opt_ufs.h"
#include "opt_ffs.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/ioccom.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <security/mac/mac_framework.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/gjournal.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include <vm/vm.h>
#include <vm/uma.h>
#include <vm/vm_page.h>
#include <geom/geom.h>
#include <geom/geom_vfs.h>
#include <ddb/ddb.h>
static uma_zone_t uma_inode, uma_ufs1, uma_ufs2;
static int ffs_mountfs(struct vnode *, struct mount *, struct thread *);
static void ffs_oldfscompat_read(struct fs *, struct ufsmount *,
ufs2_daddr_t);
static void ffs_ifree(struct ufsmount *ump, struct inode *ip);
static int ffs_sync_lazy(struct mount *mp);
static vfs_init_t ffs_init;
static vfs_uninit_t ffs_uninit;
static vfs_extattrctl_t ffs_extattrctl;
static vfs_cmount_t ffs_cmount;
static vfs_unmount_t ffs_unmount;
static vfs_mount_t ffs_mount;
static vfs_statfs_t ffs_statfs;
static vfs_fhtovp_t ffs_fhtovp;
static vfs_sync_t ffs_sync;
static struct vfsops ufs_vfsops = {
.vfs_extattrctl = ffs_extattrctl,
.vfs_fhtovp = ffs_fhtovp,
.vfs_init = ffs_init,
.vfs_mount = ffs_mount,
.vfs_cmount = ffs_cmount,
.vfs_quotactl = ufs_quotactl,
.vfs_root = ufs_root,
.vfs_statfs = ffs_statfs,
.vfs_sync = ffs_sync,
.vfs_uninit = ffs_uninit,
.vfs_unmount = ffs_unmount,
.vfs_vget = ffs_vget,
.vfs_susp_clean = process_deferred_inactive,
};
VFS_SET(ufs_vfsops, ufs, 0);
MODULE_VERSION(ufs, 1);
static b_strategy_t ffs_geom_strategy;
static b_write_t ffs_bufwrite;
static struct buf_ops ffs_ops = {
.bop_name = "FFS",
.bop_write = ffs_bufwrite,
.bop_strategy = ffs_geom_strategy,
.bop_sync = bufsync,
#ifdef NO_FFS_SNAPSHOT
.bop_bdflush = bufbdflush,
#else
.bop_bdflush = ffs_bdflush,
#endif
};
/*
* Note that userquota and groupquota options are not currently used
* by UFS/FFS code and generally mount(8) does not pass those options
* from userland, but they can be passed by loader(8) via
* vfs.root.mountfrom.options.
*/
static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr",
"noclusterw", "noexec", "export", "force", "from", "groupquota",
"multilabel", "nfsv4acls", "fsckpid", "snapshot", "nosuid", "suiddir",
"nosymfollow", "sync", "union", "userquota", NULL };
static int
ffs_mount(struct mount *mp)
{
struct vnode *devvp;
struct thread *td;
struct ufsmount *ump = NULL;
struct fs *fs;
pid_t fsckpid = 0;
int error, flags;
uint64_t mntorflags;
accmode_t accmode;
struct nameidata ndp;
char *fspec;
td = curthread;
if (vfs_filteropt(mp->mnt_optnew, ffs_opts))
return (EINVAL);
if (uma_inode == NULL) {
uma_inode = uma_zcreate("FFS inode",
sizeof(struct inode), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, 0);
uma_ufs1 = uma_zcreate("FFS1 dinode",
sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, 0);
uma_ufs2 = uma_zcreate("FFS2 dinode",
sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL,
UMA_ALIGN_PTR, 0);
}
vfs_deleteopt(mp->mnt_optnew, "groupquota");
vfs_deleteopt(mp->mnt_optnew, "userquota");
fspec = vfs_getopts(mp->mnt_optnew, "from", &error);
if (error)
return (error);
mntorflags = 0;
if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0)
mntorflags |= MNT_ACLS;
if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) {
mntorflags |= MNT_SNAPSHOT;
/*
* Once we have set the MNT_SNAPSHOT flag, do not
* persist "snapshot" in the options list.
*/
vfs_deleteopt(mp->mnt_optnew, "snapshot");
vfs_deleteopt(mp->mnt_opt, "snapshot");
}
if (vfs_getopt(mp->mnt_optnew, "fsckpid", NULL, NULL) == 0 &&
vfs_scanopt(mp->mnt_optnew, "fsckpid", "%d", &fsckpid) == 1) {
/*
* Once we have set the restricted PID, do not
* persist "fsckpid" in the options list.
*/
vfs_deleteopt(mp->mnt_optnew, "fsckpid");
vfs_deleteopt(mp->mnt_opt, "fsckpid");
if (mp->mnt_flag & MNT_UPDATE) {
if (VFSTOUFS(mp)->um_fs->fs_ronly == 0 &&
vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) {
vfs_mount_error(mp,
"Checker enable: Must be read-only");
return (EINVAL);
}
} else if (vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) {
vfs_mount_error(mp,
"Checker enable: Must be read-only");
return (EINVAL);
}
/* Set to -1 if we are done */
if (fsckpid == 0)
fsckpid = -1;
}
if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) {
if (mntorflags & MNT_ACLS) {
vfs_mount_error(mp,
"\"acls\" and \"nfsv4acls\" options "
"are mutually exclusive");
return (EINVAL);
}
mntorflags |= MNT_NFS4ACLS;
}
MNT_ILOCK(mp);
mp->mnt_flag |= mntorflags;
MNT_IUNLOCK(mp);
/*
* If updating, check whether changing from read-only to
* read/write; if there is no device name, that's all we do.
*/
if (mp->mnt_flag & MNT_UPDATE) {
ump = VFSTOUFS(mp);
fs = ump->um_fs;
devvp = ump->um_devvp;
if (fsckpid == -1 && ump->um_fsckpid > 0) {
if ((error = ffs_flushfiles(mp, WRITECLOSE, td)) != 0 ||
(error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0)
return (error);
DROP_GIANT();
g_topology_lock();
/*
* Return to normal read-only mode.
*/
error = g_access(ump->um_cp, 0, -1, 0);
g_topology_unlock();
PICKUP_GIANT();
ump->um_fsckpid = 0;
}
if (fs->fs_ronly == 0 &&
vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
/*
* Flush any dirty data and suspend filesystem.
*/
if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
return (error);
for (;;) {
vn_finished_write(mp);
if ((error = vfs_write_suspend(mp, 0)) != 0)
return (error);
MNT_ILOCK(mp);
if (mp->mnt_kern_flag & MNTK_SUSPENDED) {
/*
* Allow the secondary writes
* to proceed.
*/
mp->mnt_kern_flag &= ~(MNTK_SUSPENDED |
MNTK_SUSPEND2);
wakeup(&mp->mnt_flag);
MNT_IUNLOCK(mp);
/*
* Allow the curthread to
* ignore the suspension to
* synchronize on-disk state.
*/
td->td_pflags |= TDP_IGNSUSP;
break;
}
MNT_IUNLOCK(mp);
vn_start_write(NULL, &mp, V_WAIT);
}
/*
* Check for and optionally get rid of files open
* for writing.
*/
flags = WRITECLOSE;
if (mp->mnt_flag & MNT_FORCE)
flags |= FORCECLOSE;
if (MOUNTEDSOFTDEP(mp)) {
error = softdep_flushfiles(mp, flags, td);
} else {
error = ffs_flushfiles(mp, flags, td);
}
if (error) {
vfs_write_resume(mp, 0);
return (error);
}
if (fs->fs_pendingblocks != 0 ||
fs->fs_pendinginodes != 0) {
printf("WARNING: %s Update error: blocks %jd "
"files %d\n", fs->fs_fsmnt,
(intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0)
fs->fs_clean = 1;
if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
fs->fs_ronly = 0;
fs->fs_clean = 0;
vfs_write_resume(mp, 0);
return (error);
}
if (MOUNTEDSOFTDEP(mp))
softdep_unmount(mp);
DROP_GIANT();
g_topology_lock();
/*
* Drop our write and exclusive access.
*/
g_access(ump->um_cp, 0, -1, -1);
g_topology_unlock();
PICKUP_GIANT();
fs->fs_ronly = 1;
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_RDONLY;
MNT_IUNLOCK(mp);
/*
* Allow the writers to note that filesystem
* is ro now.
*/
vfs_write_resume(mp, 0);
}
if ((mp->mnt_flag & MNT_RELOAD) &&
(error = ffs_reload(mp, td, 0)) != 0)
return (error);
if (fs->fs_ronly &&
!vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
/*
* If we are running a checker, do not allow upgrade.
*/
if (ump->um_fsckpid > 0) {
vfs_mount_error(mp,
"Active checker, cannot upgrade to write");
return (EINVAL);
}
/*
* If upgrade to read-write by non-root, then verify
* that user has necessary permissions on the device.
*/
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_ACCESS(devvp, VREAD | VWRITE,
td->td_ucred, td);
if (error)
error = priv_check(td, PRIV_VFS_MOUNT_PERM);
if (error) {
VOP_UNLOCK(devvp, 0);
return (error);
}
VOP_UNLOCK(devvp, 0);
fs->fs_flags &= ~FS_UNCLEAN;
if (fs->fs_clean == 0) {
fs->fs_flags |= FS_UNCLEAN;
if ((mp->mnt_flag & MNT_FORCE) ||
((fs->fs_flags &
(FS_SUJ | FS_NEEDSFSCK)) == 0 &&
(fs->fs_flags & FS_DOSOFTDEP))) {
printf("WARNING: %s was not properly "
"dismounted\n", fs->fs_fsmnt);
} else {
vfs_mount_error(mp,
"R/W mount of %s denied. %s.%s",
fs->fs_fsmnt,
"Filesystem is not clean - run fsck",
(fs->fs_flags & FS_SUJ) == 0 ? "" :
" Forced mount will invalidate"
" journal contents");
return (EPERM);
}
}
DROP_GIANT();
g_topology_lock();
/*
* Request exclusive write access.
*/
error = g_access(ump->um_cp, 0, 1, 1);
g_topology_unlock();
PICKUP_GIANT();
if (error)
return (error);
if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
return (error);
fs->fs_ronly = 0;
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_RDONLY;
MNT_IUNLOCK(mp);
fs->fs_mtime = time_second;
/* check to see if we need to start softdep */
if ((fs->fs_flags & FS_DOSOFTDEP) &&
(error = softdep_mount(devvp, mp, fs, td->td_ucred))){
vn_finished_write(mp);
return (error);
}
fs->fs_clean = 0;
if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
vn_finished_write(mp);
return (error);
}
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
vn_finished_write(mp);
}
/*
* Soft updates is incompatible with "async",
* so if we are doing softupdates stop the user
* from setting the async flag in an update.
* Softdep_mount() clears it in an initial mount
* or ro->rw remount.
*/
if (MOUNTEDSOFTDEP(mp)) {
/* XXX: Reset too late ? */
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_ASYNC;
MNT_IUNLOCK(mp);
}
/*
* Keep MNT_ACLS flag if it is stored in superblock.
*/
if ((fs->fs_flags & FS_ACLS) != 0) {
/* XXX: Set too late ? */
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_ACLS;
MNT_IUNLOCK(mp);
}
if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
/* XXX: Set too late ? */
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_NFS4ACLS;
MNT_IUNLOCK(mp);
}
/*
* If this is a request from fsck to clean up the filesystem,
* then allow the specified pid to proceed.
*/
if (fsckpid > 0) {
if (ump->um_fsckpid != 0) {
vfs_mount_error(mp,
"Active checker already running on %s",
fs->fs_fsmnt);
return (EINVAL);
}
KASSERT(MOUNTEDSOFTDEP(mp) == 0,
("soft updates enabled on read-only file system"));
DROP_GIANT();
g_topology_lock();
/*
* Request write access.
*/
error = g_access(ump->um_cp, 0, 1, 0);
g_topology_unlock();
PICKUP_GIANT();
if (error) {
vfs_mount_error(mp,
"Checker activation failed on %s",
fs->fs_fsmnt);
return (error);
}
ump->um_fsckpid = fsckpid;
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
fs->fs_mtime = time_second;
fs->fs_fmod = 1;
fs->fs_clean = 0;
(void) ffs_sbupdate(ump, MNT_WAIT, 0);
}
/*
* If this is a snapshot request, take the snapshot.
*/
if (mp->mnt_flag & MNT_SNAPSHOT)
return (ffs_snapshot(mp, fspec));
}
/*
* Not an update, or updating the name: look up the name
* and verify that it refers to a sensible disk device.
*/
NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td);
if ((error = namei(&ndp)) != 0)
return (error);
NDFREE(&ndp, NDF_ONLY_PNBUF);
devvp = ndp.ni_vp;
if (!vn_isdisk(devvp, &error)) {
vput(devvp);
return (error);
}
/*
* If mount by non-root, then verify that user has necessary
* permissions on the device.
*/
accmode = VREAD;
if ((mp->mnt_flag & MNT_RDONLY) == 0)
accmode |= VWRITE;
error = VOP_ACCESS(devvp, accmode, td->td_ucred, td);
if (error)
error = priv_check(td, PRIV_VFS_MOUNT_PERM);
if (error) {
vput(devvp);
return (error);
}
if (mp->mnt_flag & MNT_UPDATE) {
/*
* Update only
*
* If it's not the same vnode, or at least the same device
* then it's not correct.
*/
if (devvp->v_rdev != ump->um_devvp->v_rdev)
error = EINVAL; /* needs translation */
vput(devvp);
if (error)
return (error);
} else {
/*
* New mount
*
* We need the name for the mount point (also used for
* "last mounted on") copied in. If an error occurs,
* the mount point is discarded by the upper level code.
* Note that vfs_mount() populates f_mntonname for us.
*/
if ((error = ffs_mountfs(devvp, mp, td)) != 0) {
vrele(devvp);
return (error);
}
if (fsckpid > 0) {
KASSERT(MOUNTEDSOFTDEP(mp) == 0,
("soft updates enabled on read-only file system"));
ump = VFSTOUFS(mp);
fs = ump->um_fs;
DROP_GIANT();
g_topology_lock();
/*
* Request write access.
*/
error = g_access(ump->um_cp, 0, 1, 0);
g_topology_unlock();
PICKUP_GIANT();
if (error) {
printf("WARNING: %s: Checker activation "
"failed\n", fs->fs_fsmnt);
} else {
ump->um_fsckpid = fsckpid;
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
fs->fs_mtime = time_second;
fs->fs_clean = 0;
(void) ffs_sbupdate(ump, MNT_WAIT, 0);
}
}
}
vfs_mountedfrom(mp, fspec);
return (0);
}
/*
* Compatibility with old mount system call.
*/
static int
ffs_cmount(struct mntarg *ma, void *data, uint64_t flags)
{
struct ufs_args args;
struct export_args exp;
int error;
if (data == NULL)
return (EINVAL);
error = copyin(data, &args, sizeof args);
if (error)
return (error);
vfs_oexport_conv(&args.export, &exp);
ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN);
ma = mount_arg(ma, "export", &exp, sizeof(exp));
error = kernel_mount(ma, flags);
return (error);
}
/*
* Reload all incore data for a filesystem (used after running fsck on
* the root filesystem and finding things to fix). If the 'force' flag
* is 0, the filesystem must be mounted read-only.
*
* Things to do to update the mount:
* 1) invalidate all cached meta-data.
* 2) re-read superblock from disk.
* 3) re-read summary information from disk.
* 4) invalidate all inactive vnodes.
* 5) invalidate all cached file data.
* 6) re-read inode data for all active vnodes.
*/
int
ffs_reload(struct mount *mp, struct thread *td, int force)
{
struct vnode *vp, *mvp, *devvp;
struct inode *ip;
void *space;
struct buf *bp;
struct fs *fs, *newfs;
struct ufsmount *ump;
ufs2_daddr_t sblockloc;
int i, blks, size, error;
int32_t *lp;
ump = VFSTOUFS(mp);
MNT_ILOCK(mp);
if ((mp->mnt_flag & MNT_RDONLY) == 0 && force == 0) {
MNT_IUNLOCK(mp);
return (EINVAL);
}
MNT_IUNLOCK(mp);
/*
* Step 1: invalidate all cached meta-data.
*/
devvp = VFSTOUFS(mp)->um_devvp;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
if (vinvalbuf(devvp, 0, 0, 0) != 0)
panic("ffs_reload: dirty1");
VOP_UNLOCK(devvp, 0);
/*
* Step 2: re-read superblock from disk.
*/
fs = VFSTOUFS(mp)->um_fs;
if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize,
NOCRED, &bp)) != 0)
return (error);
newfs = (struct fs *)bp->b_data;
if ((newfs->fs_magic != FS_UFS1_MAGIC &&
newfs->fs_magic != FS_UFS2_MAGIC) ||
newfs->fs_bsize > MAXBSIZE ||
newfs->fs_bsize < sizeof(struct fs)) {
brelse(bp);
return (EIO); /* XXX needs translation */
}
/*
* Copy pointer fields back into superblock before copying in XXX
* new superblock. These should really be in the ufsmount. XXX
* Note that important parameters (eg fs_ncg) are unchanged.
*/
newfs->fs_csp = fs->fs_csp;
newfs->fs_maxcluster = fs->fs_maxcluster;
newfs->fs_contigdirs = fs->fs_contigdirs;
newfs->fs_active = fs->fs_active;
newfs->fs_ronly = fs->fs_ronly;
sblockloc = fs->fs_sblockloc;
bcopy(newfs, fs, (u_int)fs->fs_sbsize);
brelse(bp);
mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen;
ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc);
UFS_LOCK(ump);
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
printf("WARNING: %s: reload pending error: blocks %jd "
"files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
UFS_UNLOCK(ump);
/*
* Step 3: re-read summary information from disk.
*/
size = fs->fs_cssize;
blks = howmany(size, fs->fs_fsize);
if (fs->fs_contigsumsize > 0)
size += fs->fs_ncg * sizeof(int32_t);
size += fs->fs_ncg * sizeof(u_int8_t);
free(fs->fs_csp, M_UFSMNT);
space = malloc((u_long)size, M_UFSMNT, M_WAITOK);
fs->fs_csp = space;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
NOCRED, &bp);
if (error)
return (error);
bcopy(bp->b_data, space, (u_int)size);
space = (char *)space + size;
brelse(bp);
}
/*
* We no longer know anything about clusters per cylinder group.
*/
if (fs->fs_contigsumsize > 0) {
fs->fs_maxcluster = lp = space;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
space = lp;
}
size = fs->fs_ncg * sizeof(u_int8_t);
fs->fs_contigdirs = (u_int8_t *)space;
bzero(fs->fs_contigdirs, size);
loop:
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
/*
* Skip syncer vnode.
*/
if (vp->v_type == VNON) {
VI_UNLOCK(vp);
continue;
}
/*
* Step 4: invalidate all cached file data.
*/
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, td)) {
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
goto loop;
}
if (vinvalbuf(vp, 0, 0, 0))
panic("ffs_reload: dirty2");
/*
* Step 5: re-read inode data for all active vnodes.
*/
ip = VTOI(vp);
error =
bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error) {
VOP_UNLOCK(vp, 0);
vrele(vp);
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
return (error);
}
ffs_load_inode(bp, ip, fs, ip->i_number);
ip->i_effnlink = ip->i_nlink;
brelse(bp);
VOP_UNLOCK(vp, 0);
vrele(vp);
}
return (0);
}
/*
* Possible superblock locations ordered from most to least likely.
*/
static int sblock_try[] = SBLOCKSEARCH;
/*
* Common code for mount and mountroot
*/
static int
ffs_mountfs(devvp, mp, td)
struct vnode *devvp;
struct mount *mp;
struct thread *td;
{
struct ufsmount *ump;
struct buf *bp;
struct fs *fs;
struct cdev *dev;
void *space;
ufs2_daddr_t sblockloc;
int error, i, blks, size, ronly;
int32_t *lp;
struct ucred *cred;
struct g_consumer *cp;
struct mount *nmp;
bp = NULL;
ump = NULL;
cred = td ? td->td_ucred : NOCRED;
ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
dev = devvp->v_rdev;
dev_ref(dev);
DROP_GIANT();
g_topology_lock();
error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1);
g_topology_unlock();
PICKUP_GIANT();
VOP_UNLOCK(devvp, 0);
if (error)
goto out;
if (devvp->v_rdev->si_iosize_max != 0)
mp->mnt_iosize_max = devvp->v_rdev->si_iosize_max;
if (mp->mnt_iosize_max > MAXPHYS)
mp->mnt_iosize_max = MAXPHYS;
devvp->v_bufobj.bo_ops = &ffs_ops;
fs = NULL;
sblockloc = 0;
/*
* Try reading the superblock in each of its possible locations.
*/
for (i = 0; sblock_try[i] != -1; i++) {
if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) {
error = EINVAL;
vfs_mount_error(mp,
"Invalid sectorsize %d for superblock size %d",
cp->provider->sectorsize, SBLOCKSIZE);
goto out;
}
if ((error = bread(devvp, btodb(sblock_try[i]), SBLOCKSIZE,
cred, &bp)) != 0)
goto out;
fs = (struct fs *)bp->b_data;
sblockloc = sblock_try[i];
if ((fs->fs_magic == FS_UFS1_MAGIC ||
(fs->fs_magic == FS_UFS2_MAGIC &&
(fs->fs_sblockloc == sblockloc ||
(fs->fs_old_flags & FS_FLAGS_UPDATED) == 0))) &&
fs->fs_bsize <= MAXBSIZE &&
fs->fs_bsize >= sizeof(struct fs))
break;
brelse(bp);
bp = NULL;
}
if (sblock_try[i] == -1) {
error = EINVAL; /* XXX needs translation */
goto out;
}
fs->fs_fmod = 0;
fs->fs_flags &= ~FS_INDEXDIRS; /* no support for directory indicies */
fs->fs_flags &= ~FS_UNCLEAN;
if (fs->fs_clean == 0) {
fs->fs_flags |= FS_UNCLEAN;
if (ronly || (mp->mnt_flag & MNT_FORCE) ||
((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 &&
(fs->fs_flags & FS_DOSOFTDEP))) {
printf("WARNING: %s was not properly dismounted\n",
fs->fs_fsmnt);
} else {
vfs_mount_error(mp, "R/W mount of %s denied. %s%s",
fs->fs_fsmnt, "Filesystem is not clean - run fsck.",
(fs->fs_flags & FS_SUJ) == 0 ? "" :
" Forced mount will invalidate journal contents");
error = EPERM;
goto out;
}
if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) &&
(mp->mnt_flag & MNT_FORCE)) {
printf("WARNING: %s: lost blocks %jd files %d\n",
fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
}
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
printf("WARNING: %s: mount pending error: blocks %jd "
"files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
if ((fs->fs_flags & FS_GJOURNAL) != 0) {
#ifdef UFS_GJOURNAL
/*
* Get journal provider name.
*/
size = 1024;
mp->mnt_gjprovider = malloc(size, M_UFSMNT, M_WAITOK);
if (g_io_getattr("GJOURNAL::provider", cp, &size,
mp->mnt_gjprovider) == 0) {
mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, size,
M_UFSMNT, M_WAITOK);
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_GJOURNAL;
MNT_IUNLOCK(mp);
} else {
printf("WARNING: %s: GJOURNAL flag on fs "
"but no gjournal provider below\n",
mp->mnt_stat.f_mntonname);
free(mp->mnt_gjprovider, M_UFSMNT);
mp->mnt_gjprovider = NULL;
}
#else
printf("WARNING: %s: GJOURNAL flag on fs but no "
"UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname);
#endif
} else {
mp->mnt_gjprovider = NULL;
}
ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
ump->um_cp = cp;
ump->um_bo = &devvp->v_bufobj;
ump->um_fs = malloc((u_long)fs->fs_sbsize, M_UFSMNT, M_WAITOK);
if (fs->fs_magic == FS_UFS1_MAGIC) {
ump->um_fstype = UFS1;
ump->um_balloc = ffs_balloc_ufs1;
} else {
ump->um_fstype = UFS2;
ump->um_balloc = ffs_balloc_ufs2;
}
ump->um_blkatoff = ffs_blkatoff;
ump->um_truncate = ffs_truncate;
ump->um_update = ffs_update;
ump->um_valloc = ffs_valloc;
ump->um_vfree = ffs_vfree;
ump->um_ifree = ffs_ifree;
ump->um_rdonly = ffs_rdonly;
ump->um_snapgone = ffs_snapgone;
mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF);
bcopy(bp->b_data, ump->um_fs, (u_int)fs->fs_sbsize);
if (fs->fs_sbsize < SBLOCKSIZE)
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
bp = NULL;
fs = ump->um_fs;
ffs_oldfscompat_read(fs, ump, sblockloc);
fs->fs_ronly = ronly;
size = fs->fs_cssize;
blks = howmany(size, fs->fs_fsize);
if (fs->fs_contigsumsize > 0)
size += fs->fs_ncg * sizeof(int32_t);
size += fs->fs_ncg * sizeof(u_int8_t);
space = malloc((u_long)size, M_UFSMNT, M_WAITOK);
fs->fs_csp = space;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
if ((error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
cred, &bp)) != 0) {
free(fs->fs_csp, M_UFSMNT);
goto out;
}
bcopy(bp->b_data, space, (u_int)size);
space = (char *)space + size;
brelse(bp);
bp = NULL;
}
if (fs->fs_contigsumsize > 0) {
fs->fs_maxcluster = lp = space;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
space = lp;
}
size = fs->fs_ncg * sizeof(u_int8_t);
fs->fs_contigdirs = (u_int8_t *)space;
bzero(fs->fs_contigdirs, size);
fs->fs_active = NULL;
mp->mnt_data = ump;
mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0];
mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1];
nmp = NULL;
if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 ||
(nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) {
if (nmp)
vfs_rel(nmp);
vfs_getnewfsid(mp);
}
mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen;
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_LOCAL;
MNT_IUNLOCK(mp);
if ((fs->fs_flags & FS_MULTILABEL) != 0) {
#ifdef MAC
MNT_ILOCK(mp);
mp->mnt_flag |= MNT_MULTILABEL;
MNT_IUNLOCK(mp);
#else
printf("WARNING: %s: multilabel flag on fs but "
"no MAC support\n", mp->mnt_stat.f_mntonname);
#endif
}
if ((fs->fs_flags & FS_ACLS) != 0) {
#ifdef UFS_ACL
MNT_ILOCK(mp);
if (mp->mnt_flag & MNT_NFS4ACLS)
printf("WARNING: %s: ACLs flag on fs conflicts with "
"\"nfsv4acls\" mount option; option ignored\n",
mp->mnt_stat.f_mntonname);
mp->mnt_flag &= ~MNT_NFS4ACLS;
mp->mnt_flag |= MNT_ACLS;
MNT_IUNLOCK(mp);
#else
printf("WARNING: %s: ACLs flag on fs but no ACLs support\n",
mp->mnt_stat.f_mntonname);
#endif
}
if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
#ifdef UFS_ACL
MNT_ILOCK(mp);
if (mp->mnt_flag & MNT_ACLS)
printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts "
"with \"acls\" mount option; option ignored\n",
mp->mnt_stat.f_mntonname);
mp->mnt_flag &= ~MNT_ACLS;
mp->mnt_flag |= MNT_NFS4ACLS;
MNT_IUNLOCK(mp);
#else
printf("WARNING: %s: NFSv4 ACLs flag on fs but no "
"ACLs support\n", mp->mnt_stat.f_mntonname);
#endif
}
if ((fs->fs_flags & FS_TRIM) != 0) {
size = sizeof(int);
if (g_io_getattr("GEOM::candelete", cp, &size,
&ump->um_candelete) == 0) {
if (!ump->um_candelete)
printf("WARNING: %s: TRIM flag on fs but disk "
"does not support TRIM\n",
mp->mnt_stat.f_mntonname);
} else {
printf("WARNING: %s: TRIM flag on fs but disk does "
"not confirm that it supports TRIM\n",
mp->mnt_stat.f_mntonname);
ump->um_candelete = 0;
}
}
ump->um_mountp = mp;
ump->um_dev = dev;
ump->um_devvp = devvp;
ump->um_nindir = fs->fs_nindir;
ump->um_bptrtodb = fs->fs_fsbtodb;
ump->um_seqinc = fs->fs_frag;
for (i = 0; i < MAXQUOTAS; i++)
ump->um_quotas[i] = NULLVP;
#ifdef UFS_EXTATTR
ufs_extattr_uepm_init(&ump->um_extattr);
#endif
/*
* Set FS local "last mounted on" information (NULL pad)
*/
bzero(fs->fs_fsmnt, MAXMNTLEN);
strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN);
mp->mnt_stat.f_iosize = fs->fs_bsize;
if (mp->mnt_flag & MNT_ROOTFS) {
/*
* Root mount; update timestamp in mount structure.
* this will be used by the common root mount code
* to update the system clock.
*/
mp->mnt_time = fs->fs_time;
}
if (ronly == 0) {
fs->fs_mtime = time_second;
if ((fs->fs_flags & FS_DOSOFTDEP) &&
(error = softdep_mount(devvp, mp, fs, cred)) != 0) {
free(fs->fs_csp, M_UFSMNT);
ffs_flushfiles(mp, FORCECLOSE, td);
goto out;
}
if (devvp->v_type == VCHR && devvp->v_rdev != NULL)
devvp->v_rdev->si_mountpt = mp;
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
fs->fs_fmod = 1;
fs->fs_clean = 0;
(void) ffs_sbupdate(ump, MNT_WAIT, 0);
}
/*
* Initialize filesystem stat information in mount struct.
*/
MNT_ILOCK(mp);
mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED |
MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS;
MNT_IUNLOCK(mp);
#ifdef UFS_EXTATTR
#ifdef UFS_EXTATTR_AUTOSTART
/*
*
* Auto-starting does the following:
* - check for /.attribute in the fs, and extattr_start if so
* - for each file in .attribute, enable that file with
* an attribute of the same name.
* Not clear how to report errors -- probably eat them.
* This would all happen while the filesystem was busy/not
* available, so would effectively be "atomic".
*/
(void) ufs_extattr_autostart(mp, td);
#endif /* !UFS_EXTATTR_AUTOSTART */
#endif /* !UFS_EXTATTR */
return (0);
out:
if (bp)
brelse(bp);
if (cp != NULL) {
DROP_GIANT();
g_topology_lock();
g_vfs_close(cp);
g_topology_unlock();
PICKUP_GIANT();
}
if (ump) {
mtx_destroy(UFS_MTX(ump));
if (mp->mnt_gjprovider != NULL) {
free(mp->mnt_gjprovider, M_UFSMNT);
mp->mnt_gjprovider = NULL;
}
free(ump->um_fs, M_UFSMNT);
free(ump, M_UFSMNT);
mp->mnt_data = NULL;
}
dev_rel(dev);
return (error);
}
#include <sys/sysctl.h>
static int bigcgs = 0;
SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, "");
/*
* Sanity checks for loading old filesystem superblocks.
* See ffs_oldfscompat_write below for unwound actions.
*
* XXX - Parts get retired eventually.
* Unfortunately new bits get added.
*/
static void
ffs_oldfscompat_read(fs, ump, sblockloc)
struct fs *fs;
struct ufsmount *ump;
ufs2_daddr_t sblockloc;
{
off_t maxfilesize;
/*
* If not yet done, update fs_flags location and value of fs_sblockloc.
*/
if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
fs->fs_flags = fs->fs_old_flags;
fs->fs_old_flags |= FS_FLAGS_UPDATED;
fs->fs_sblockloc = sblockloc;
}
/*
* If not yet done, update UFS1 superblock with new wider fields.
*/
if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) {
fs->fs_maxbsize = fs->fs_bsize;
fs->fs_time = fs->fs_old_time;
fs->fs_size = fs->fs_old_size;
fs->fs_dsize = fs->fs_old_dsize;
fs->fs_csaddr = fs->fs_old_csaddr;
fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
}
if (fs->fs_magic == FS_UFS1_MAGIC &&
fs->fs_old_inodefmt < FS_44INODEFMT) {
fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1;
fs->fs_qbmask = ~fs->fs_bmask;
fs->fs_qfmask = ~fs->fs_fmask;
}
if (fs->fs_magic == FS_UFS1_MAGIC) {
ump->um_savedmaxfilesize = fs->fs_maxfilesize;
maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1;
if (fs->fs_maxfilesize > maxfilesize)
fs->fs_maxfilesize = maxfilesize;
}
/* Compatibility for old filesystems */
if (fs->fs_avgfilesize <= 0)
fs->fs_avgfilesize = AVFILESIZ;
if (fs->fs_avgfpdir <= 0)
fs->fs_avgfpdir = AFPDIR;
if (bigcgs) {
fs->fs_save_cgsize = fs->fs_cgsize;
fs->fs_cgsize = fs->fs_bsize;
}
}
/*
* Unwinding superblock updates for old filesystems.
* See ffs_oldfscompat_read above for details.
*
* XXX - Parts get retired eventually.
* Unfortunately new bits get added.
*/
void
ffs_oldfscompat_write(fs, ump)
struct fs *fs;
struct ufsmount *ump;
{
/*
* Copy back UFS2 updated fields that UFS1 inspects.
*/
if (fs->fs_magic == FS_UFS1_MAGIC) {
fs->fs_old_time = fs->fs_time;
fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
fs->fs_maxfilesize = ump->um_savedmaxfilesize;
}
if (bigcgs) {
fs->fs_cgsize = fs->fs_save_cgsize;
fs->fs_save_cgsize = 0;
}
}
/*
* unmount system call
*/
static int
ffs_unmount(mp, mntflags)
struct mount *mp;
int mntflags;
{
struct thread *td;
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs;
int error, flags, susp;
#ifdef UFS_EXTATTR
int e_restart;
#endif
flags = 0;
td = curthread;
fs = ump->um_fs;
susp = 0;
if (mntflags & MNT_FORCE) {
flags |= FORCECLOSE;
susp = fs->fs_ronly != 0;
}
#ifdef UFS_EXTATTR
if ((error = ufs_extattr_stop(mp, td))) {
if (error != EOPNOTSUPP)
printf("WARNING: unmount %s: ufs_extattr_stop "
"returned errno %d\n", mp->mnt_stat.f_mntonname,
error);
e_restart = 0;
} else {
ufs_extattr_uepm_destroy(&ump->um_extattr);
e_restart = 1;
}
#endif
if (susp) {
/*
* dounmount already called vn_start_write().
*/
for (;;) {
vn_finished_write(mp);
if ((error = vfs_write_suspend(mp, 0)) != 0)
return (error);
MNT_ILOCK(mp);
if (mp->mnt_kern_flag & MNTK_SUSPENDED) {
mp->mnt_kern_flag &= ~(MNTK_SUSPENDED |
MNTK_SUSPEND2);
wakeup(&mp->mnt_flag);
MNT_IUNLOCK(mp);
td->td_pflags |= TDP_IGNSUSP;
break;
}
MNT_IUNLOCK(mp);
vn_start_write(NULL, &mp, V_WAIT);
}
}
if (MOUNTEDSOFTDEP(mp))
error = softdep_flushfiles(mp, flags, td);
else
error = ffs_flushfiles(mp, flags, td);
if (error != 0 && error != ENXIO)
goto fail;
UFS_LOCK(ump);
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
printf("WARNING: unmount %s: pending error: blocks %jd "
"files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
fs->fs_pendinginodes);
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
UFS_UNLOCK(ump);
if (MOUNTEDSOFTDEP(mp))
softdep_unmount(mp);
if (fs->fs_ronly == 0 || ump->um_fsckpid > 0) {
fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1;
error = ffs_sbupdate(ump, MNT_WAIT, 0);
if (error && error != ENXIO) {
fs->fs_clean = 0;
goto fail;
}
}
if (susp)
vfs_write_resume(mp, VR_START_WRITE);
DROP_GIANT();
g_topology_lock();
if (ump->um_fsckpid > 0) {
/*
* Return to normal read-only mode.
*/
error = g_access(ump->um_cp, 0, -1, 0);
ump->um_fsckpid = 0;
}
g_vfs_close(ump->um_cp);
g_topology_unlock();
PICKUP_GIANT();
if (ump->um_devvp->v_type == VCHR && ump->um_devvp->v_rdev != NULL)
ump->um_devvp->v_rdev->si_mountpt = NULL;
vrele(ump->um_devvp);
dev_rel(ump->um_dev);
mtx_destroy(UFS_MTX(ump));
if (mp->mnt_gjprovider != NULL) {
free(mp->mnt_gjprovider, M_UFSMNT);
mp->mnt_gjprovider = NULL;
}
free(fs->fs_csp, M_UFSMNT);
free(fs, M_UFSMNT);
free(ump, M_UFSMNT);
mp->mnt_data = NULL;
MNT_ILOCK(mp);
mp->mnt_flag &= ~MNT_LOCAL;
MNT_IUNLOCK(mp);
return (error);
fail:
if (susp)
vfs_write_resume(mp, VR_START_WRITE);
#ifdef UFS_EXTATTR
if (e_restart) {
ufs_extattr_uepm_init(&ump->um_extattr);
#ifdef UFS_EXTATTR_AUTOSTART
(void) ufs_extattr_autostart(mp, td);
#endif
}
#endif
return (error);
}
/*
* Flush out all the files in a filesystem.
*/
int
ffs_flushfiles(mp, flags, td)
struct mount *mp;
int flags;
struct thread *td;
{
struct ufsmount *ump;
int qerror, error;
ump = VFSTOUFS(mp);
qerror = 0;
#ifdef QUOTA
if (mp->mnt_flag & MNT_QUOTA) {
int i;
error = vflush(mp, 0, SKIPSYSTEM|flags, td);
if (error)
return (error);
for (i = 0; i < MAXQUOTAS; i++) {
error = quotaoff(td, mp, i);
if (error != 0) {
if ((flags & EARLYFLUSH) == 0)
return (error);
else
qerror = error;
}
}
/*
* Here we fall through to vflush again to ensure that
* we have gotten rid of all the system vnodes, unless
* quotas must not be closed.
*/
}
#endif
ASSERT_VOP_LOCKED(ump->um_devvp, "ffs_flushfiles");
if (ump->um_devvp->v_vflag & VV_COPYONWRITE) {
if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0)
return (error);
ffs_snapshot_unmount(mp);
flags |= FORCECLOSE;
/*
* Here we fall through to vflush again to ensure
* that we have gotten rid of all the system vnodes.
*/
}
/*
* Do not close system files if quotas were not closed, to be
* able to sync the remaining dquots. The freeblks softupdate
* workitems might hold a reference on a dquot, preventing
* quotaoff() from completing. Next round of
* softdep_flushworklist() iteration should process the
* blockers, allowing the next run of quotaoff() to finally
* flush held dquots.
*
* Otherwise, flush all the files.
*/
if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0)
return (error);
/*
* Flush filesystem metadata.
*/
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td);
VOP_UNLOCK(ump->um_devvp, 0);
return (error);
}
/*
* Get filesystem statistics.
*/
static int
ffs_statfs(mp, sbp)
struct mount *mp;
struct statfs *sbp;
{
struct ufsmount *ump;
struct fs *fs;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_statfs");
sbp->f_version = STATFS_VERSION;
sbp->f_bsize = fs->fs_fsize;
sbp->f_iosize = fs->fs_bsize;
sbp->f_blocks = fs->fs_dsize;
UFS_LOCK(ump);
sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag +
fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
sbp->f_bavail = freespace(fs, fs->fs_minfree) +
dbtofsb(fs, fs->fs_pendingblocks);
sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO;
sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
UFS_UNLOCK(ump);
sbp->f_namemax = NAME_MAX;
return (0);
}
/*
* For a lazy sync, we only care about access times, quotas and the
* superblock. Other filesystem changes are already converted to
* cylinder group blocks or inode blocks updates and are written to
* disk by syncer.
*/
static int
ffs_sync_lazy(mp)
struct mount *mp;
{
struct vnode *mvp, *vp;
struct inode *ip;
struct thread *td;
int allerror, error;
allerror = 0;
td = curthread;
if ((mp->mnt_flag & MNT_NOATIME) != 0)
goto qupdate;
MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
if (vp->v_type == VNON) {
VI_UNLOCK(vp);
continue;
}
ip = VTOI(vp);
/*
* The IN_ACCESS flag is converted to IN_MODIFIED by
* ufs_close() and ufs_getattr() by the calls to
* ufs_itimes_locked(), without subsequent UFS_UPDATE().
* Test also all the other timestamp flags too, to pick up
* any other cases that could be missed.
*/
if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED |
IN_UPDATE)) == 0) {
VI_UNLOCK(vp);
continue;
}
if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
td)) != 0)
continue;
error = ffs_update(vp, 0);
if (error != 0)
allerror = error;
vput(vp);
}
qupdate:
#ifdef QUOTA
qsync(mp);
#endif
if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 &&
(error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0)
allerror = error;
return (allerror);
}
/*
* Go through the disk queues to initiate sandbagged IO;
* go through the inodes to write those that have been modified;
* initiate the writing of the super block if it has been modified.
*
* Note: we are always called with the filesystem marked busy using
* vfs_busy().
*/
static int
ffs_sync(mp, waitfor)
struct mount *mp;
int waitfor;
{
struct vnode *mvp, *vp, *devvp;
struct thread *td;
struct inode *ip;
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs;
int error, count, wait, lockreq, allerror = 0;
int suspend;
int suspended;
int secondary_writes;
int secondary_accwrites;
int softdep_deps;
int softdep_accdeps;
struct bufobj *bo;
wait = 0;
suspend = 0;
suspended = 0;
td = curthread;
fs = ump->um_fs;
if (fs->fs_fmod != 0 && fs->fs_ronly != 0 && ump->um_fsckpid == 0)
panic("%s: ffs_sync: modification on read-only filesystem",
fs->fs_fsmnt);
if (waitfor == MNT_LAZY)
return (ffs_sync_lazy(mp));
/*
* Write back each (modified) inode.
*/
lockreq = LK_EXCLUSIVE | LK_NOWAIT;
if (waitfor == MNT_SUSPEND) {
suspend = 1;
waitfor = MNT_WAIT;
}
if (waitfor == MNT_WAIT) {
wait = 1;
lockreq = LK_EXCLUSIVE;
}
lockreq |= LK_INTERLOCK | LK_SLEEPFAIL;
loop:
/* Grab snapshot of secondary write counts */
MNT_ILOCK(mp);
secondary_writes = mp->mnt_secondary_writes;
secondary_accwrites = mp->mnt_secondary_accwrites;
MNT_IUNLOCK(mp);
/* Grab snapshot of softdep dependency counts */
softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps);
MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
/*
* Depend on the vnode interlock to keep things stable enough
* for a quick test. Since there might be hundreds of
* thousands of vnodes, we cannot afford even a subroutine
* call unless there's a good chance that we have work to do.
*/
if (vp->v_type == VNON) {
VI_UNLOCK(vp);
continue;
}
ip = VTOI(vp);
if ((ip->i_flag &
(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 &&
vp->v_bufobj.bo_dirty.bv_cnt == 0) {
VI_UNLOCK(vp);
continue;
}
if ((error = vget(vp, lockreq, td)) != 0) {
if (error == ENOENT || error == ENOLCK) {
MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
goto loop;
}
continue;
}
if ((error = ffs_syncvnode(vp, waitfor, 0)) != 0)
allerror = error;
vput(vp);
}
/*
* Force stale filesystem control information to be flushed.
*/
if (waitfor == MNT_WAIT) {
if ((error = softdep_flushworklist(ump->um_mountp, &count, td)))
allerror = error;
/* Flushed work items may create new vnodes to clean */
if (allerror == 0 && count)
goto loop;
}
#ifdef QUOTA
qsync(mp);
#endif
devvp = ump->um_devvp;
bo = &devvp->v_bufobj;
BO_LOCK(bo);
if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
BO_UNLOCK(bo);
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
if ((error = VOP_FSYNC(devvp, waitfor, td)) != 0)
allerror = error;
VOP_UNLOCK(devvp, 0);
if (allerror == 0 && waitfor == MNT_WAIT)
goto loop;
} else if (suspend != 0) {
if (softdep_check_suspend(mp,
devvp,
softdep_deps,
softdep_accdeps,
secondary_writes,
secondary_accwrites) != 0) {
MNT_IUNLOCK(mp);
goto loop; /* More work needed */
}
mtx_assert(MNT_MTX(mp), MA_OWNED);
mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED;
MNT_IUNLOCK(mp);
suspended = 1;
} else
BO_UNLOCK(bo);
/*
* Write back modified superblock.
*/
if (fs->fs_fmod != 0 &&
(error = ffs_sbupdate(ump, waitfor, suspended)) != 0)
allerror = error;
return (allerror);
}
int
ffs_vget(mp, ino, flags, vpp)
struct mount *mp;
ino_t ino;
int flags;
struct vnode **vpp;
{
return (ffs_vgetf(mp, ino, flags, vpp, 0));
}
int
ffs_vgetf(mp, ino, flags, vpp, ffs_flags)
struct mount *mp;
ino_t ino;
int flags;
struct vnode **vpp;
int ffs_flags;
{
struct fs *fs;
struct inode *ip;
struct ufsmount *ump;
struct buf *bp;
struct vnode *vp;
struct cdev *dev;
int error;
error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL);
if (error || *vpp != NULL)
return (error);
/*
* We must promote to an exclusive lock for vnode creation. This
* can happen if lookup is passed LOCKSHARED.
*/
if ((flags & LK_TYPE_MASK) == LK_SHARED) {
flags &= ~LK_TYPE_MASK;
flags |= LK_EXCLUSIVE;
}
/*
* We do not lock vnode creation as it is believed to be too
* expensive for such rare case as simultaneous creation of vnode
* for same ino by different processes. We just allow them to race
* and check later to decide who wins. Let the race begin!
*/
ump = VFSTOUFS(mp);
dev = ump->um_dev;
fs = ump->um_fs;
ip = uma_zalloc(uma_inode, M_WAITOK | M_ZERO);
/* Allocate a new vnode/inode. */
if (fs->fs_magic == FS_UFS1_MAGIC)
error = getnewvnode("ufs", mp, &ffs_vnodeops1, &vp);
else
error = getnewvnode("ufs", mp, &ffs_vnodeops2, &vp);
if (error) {
*vpp = NULL;
uma_zfree(uma_inode, ip);
return (error);
}
/*
* FFS supports recursive locking.
*/
lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
VN_LOCK_AREC(vp);
vp->v_data = ip;
vp->v_bufobj.bo_bsize = fs->fs_bsize;
ip->i_vnode = vp;
ip->i_ump = ump;
ip->i_fs = fs;
ip->i_dev = dev;
ip->i_number = ino;
ip->i_ea_refs = 0;
#ifdef QUOTA
{
int i;
for (i = 0; i < MAXQUOTAS; i++)
ip->i_dquot[i] = NODQUOT;
}
#endif
if (ffs_flags & FFSV_FORCEINSMQ)
vp->v_vflag |= VV_FORCEINSMQ;
error = insmntque(vp, mp);
if (error != 0) {
uma_zfree(uma_inode, ip);
*vpp = NULL;
return (error);
}
vp->v_vflag &= ~VV_FORCEINSMQ;
error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL);
if (error || *vpp != NULL)
return (error);
/* Read in the disk contents for the inode, copy into the inode. */
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error) {
/*
* The inode does not contain anything useful, so it would
* be misleading to leave it on its hash chain. With mode
* still zero, it will be unlinked and returned to the free
* list by vput().
*/
brelse(bp);
vput(vp);
*vpp = NULL;
return (error);
}
if (ip->i_ump->um_fstype == UFS1)
ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK);
else
ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK);
ffs_load_inode(bp, ip, fs, ino);
if (DOINGSOFTDEP(vp))
softdep_load_inodeblock(ip);
else
ip->i_effnlink = ip->i_nlink;
bqrelse(bp);
/*
* Initialize the vnode from the inode, check for aliases.
* Note that the underlying vnode may have changed.
*/
if (ip->i_ump->um_fstype == UFS1)
error = ufs_vinit(mp, &ffs_fifoops1, &vp);
else
error = ufs_vinit(mp, &ffs_fifoops2, &vp);
if (error) {
vput(vp);
*vpp = NULL;
return (error);
}
/*
* Finish inode initialization.
*/
if (vp->v_type != VFIFO) {
/* FFS supports shared locking for all files except fifos. */
VN_LOCK_ASHARE(vp);
}
/*
* Set up a generation number for this inode if it does not
* already have one. This should only happen on old filesystems.
*/
if (ip->i_gen == 0) {
ip->i_gen = arc4random() / 2 + 1;
if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
ip->i_flag |= IN_MODIFIED;
DIP_SET(ip, i_gen, ip->i_gen);
}
}
#ifdef MAC
if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) {
/*
* If this vnode is already allocated, and we're running
* multi-label, attempt to perform a label association
* from the extended attributes on the inode.
*/
error = mac_vnode_associate_extattr(mp, vp);
if (error) {
/* ufs_inactive will release ip->i_devvp ref. */
vput(vp);
*vpp = NULL;
return (error);
}
}
#endif
*vpp = vp;
return (0);
}
/*
* File handle to vnode
*
* Have to be really careful about stale file handles:
* - check that the inode number is valid
* - call ffs_vget() to get the locked inode
* - check for an unallocated inode (i_mode == 0)
* - check that the given client host has export rights and return
* those rights via. exflagsp and credanonp
*/
static int
ffs_fhtovp(mp, fhp, flags, vpp)
struct mount *mp;
struct fid *fhp;
int flags;
struct vnode **vpp;
{
struct ufid *ufhp;
struct fs *fs;
ufhp = (struct ufid *)fhp;
fs = VFSTOUFS(mp)->um_fs;
if (ufhp->ufid_ino < ROOTINO ||
ufhp->ufid_ino >= fs->fs_ncg * fs->fs_ipg)
return (ESTALE);
return (ufs_fhtovp(mp, ufhp, flags, vpp));
}
/*
* Initialize the filesystem.
*/
static int
ffs_init(vfsp)
struct vfsconf *vfsp;
{
ffs_susp_initialize();
softdep_initialize();
return (ufs_init(vfsp));
}
/*
* Undo the work of ffs_init().
*/
static int
ffs_uninit(vfsp)
struct vfsconf *vfsp;
{
int ret;
ret = ufs_uninit(vfsp);
softdep_uninitialize();
ffs_susp_uninitialize();
return (ret);
}
/*
* Write a superblock and associated information back to disk.
*/
int
ffs_sbupdate(ump, waitfor, suspended)
struct ufsmount *ump;
int waitfor;
int suspended;
{
struct fs *fs = ump->um_fs;
struct buf *sbbp;
struct buf *bp;
int blks;
void *space;
int i, size, error, allerror = 0;
if (fs->fs_ronly == 1 &&
(ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) !=
(MNT_RDONLY | MNT_UPDATE) && ump->um_fsckpid == 0)
panic("ffs_sbupdate: write read-only filesystem");
/*
* We use the superblock's buf to serialize calls to ffs_sbupdate().
*/
sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
(int)fs->fs_sbsize, 0, 0, 0);
/*
* First write back the summary information.
*/
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = fs->fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
bp = getblk(ump->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
size, 0, 0, 0);
bcopy(space, bp->b_data, (u_int)size);
space = (char *)space + size;
if (suspended)
bp->b_flags |= B_VALIDSUSPWRT;
if (waitfor != MNT_WAIT)
bawrite(bp);
else if ((error = bwrite(bp)) != 0)
allerror = error;
}
/*
* Now write back the superblock itself. If any errors occurred
* up to this point, then fail so that the superblock avoids
* being written out as clean.
*/
if (allerror) {
brelse(sbbp);
return (allerror);
}
bp = sbbp;
if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 &&
(fs->fs_flags & FS_FLAGS_UPDATED) == 0) {
printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1);
fs->fs_sblockloc = SBLOCK_UFS1;
}
if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 &&
(fs->fs_flags & FS_FLAGS_UPDATED) == 0) {
printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2);
fs->fs_sblockloc = SBLOCK_UFS2;
}
fs->fs_fmod = 0;
fs->fs_time = time_second;
if (MOUNTEDSOFTDEP(ump->um_mountp))
softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp);
bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
if (suspended)
bp->b_flags |= B_VALIDSUSPWRT;
if (waitfor != MNT_WAIT)
bawrite(bp);
else if ((error = bwrite(bp)) != 0)
allerror = error;
return (allerror);
}
static int
ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp,
int attrnamespace, const char *attrname)
{
#ifdef UFS_EXTATTR
return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace,
attrname));
#else
return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace,
attrname));
#endif
}
static void
ffs_ifree(struct ufsmount *ump, struct inode *ip)
{
if (ump->um_fstype == UFS1 && ip->i_din1 != NULL)
uma_zfree(uma_ufs1, ip->i_din1);
else if (ip->i_din2 != NULL)
uma_zfree(uma_ufs2, ip->i_din2);
uma_zfree(uma_inode, ip);
}
static int dobkgrdwrite = 1;
SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
"Do background writes (honoring the BV_BKGRDWRITE flag)?");
/*
* Complete a background write started from bwrite.
*/
static void
ffs_backgroundwritedone(struct buf *bp)
{
struct bufobj *bufobj;
struct buf *origbp;
/*
* Find the original buffer that we are writing.
*/
bufobj = bp->b_bufobj;
BO_LOCK(bufobj);
if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
panic("backgroundwritedone: lost buffer");
BO_UNLOCK(bufobj);
/*
* Process dependencies then return any unfinished ones.
*/
pbrelvp(bp);
if (!LIST_EMPTY(&bp->b_dep))
buf_complete(bp);
#ifdef SOFTUPDATES
if (!LIST_EMPTY(&bp->b_dep))
softdep_move_dependencies(bp, origbp);
#endif
/*
* This buffer is marked B_NOCACHE so when it is released
* by biodone it will be tossed.
*/
bp->b_flags |= B_NOCACHE;
bp->b_flags &= ~B_CACHE;
bufdone(bp);
BO_LOCK(bufobj);
/*
* Clear the BV_BKGRDINPROG flag in the original buffer
* and awaken it if it is waiting for the write to complete.
* If BV_BKGRDINPROG is not set in the original buffer it must
* have been released and re-instantiated - which is not legal.
*/
KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
("backgroundwritedone: lost buffer2"));
origbp->b_vflags &= ~BV_BKGRDINPROG;
if (origbp->b_vflags & BV_BKGRDWAIT) {
origbp->b_vflags &= ~BV_BKGRDWAIT;
wakeup(&origbp->b_xflags);
}
BO_UNLOCK(bufobj);
}
/*
* Write, release buffer on completion. (Done by iodone
* if async). Do not bother writing anything if the buffer
* is invalid.
*
* Note that we set B_CACHE here, indicating that buffer is
* fully valid and thus cacheable. This is true even of NFS
* now so we set it generally. This could be set either here
* or in biodone() since the I/O is synchronous. We put it
* here.
*/
static int
ffs_bufwrite(struct buf *bp)
{
struct buf *newbp;
int oldflags;
CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
if (bp->b_flags & B_INVAL) {
brelse(bp);
return (0);
}
oldflags = bp->b_flags;
if (!BUF_ISLOCKED(bp))
panic("bufwrite: buffer is not busy???");
/*
* If a background write is already in progress, delay
* writing this block if it is asynchronous. Otherwise
* wait for the background write to complete.
*/
BO_LOCK(bp->b_bufobj);
if (bp->b_vflags & BV_BKGRDINPROG) {
if (bp->b_flags & B_ASYNC) {
BO_UNLOCK(bp->b_bufobj);
bdwrite(bp);
return (0);
}
bp->b_vflags |= BV_BKGRDWAIT;
msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO,
"bwrbg", 0);
if (bp->b_vflags & BV_BKGRDINPROG)
panic("bufwrite: still writing");
}
BO_UNLOCK(bp->b_bufobj);
/*
* If this buffer is marked for background writing and we
* do not have to wait for it, make a copy and write the
* copy so as to leave this buffer ready for further use.
*
* This optimization eats a lot of memory. If we have a page
* or buffer shortfall we can't do it.
*/
if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
(bp->b_flags & B_ASYNC) &&
!vm_page_count_severe() &&
!buf_dirty_count_severe()) {
KASSERT(bp->b_iodone == NULL,
("bufwrite: needs chained iodone (%p)", bp->b_iodone));
/* get a new block */
newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD);
if (newbp == NULL)
goto normal_write;
KASSERT((bp->b_flags & B_UNMAPPED) == 0, ("Unmapped cg"));
memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
BO_LOCK(bp->b_bufobj);
bp->b_vflags |= BV_BKGRDINPROG;
BO_UNLOCK(bp->b_bufobj);
newbp->b_xflags |= BX_BKGRDMARKER;
newbp->b_lblkno = bp->b_lblkno;
newbp->b_blkno = bp->b_blkno;
newbp->b_offset = bp->b_offset;
newbp->b_iodone = ffs_backgroundwritedone;
newbp->b_flags |= B_ASYNC;
newbp->b_flags &= ~B_INVAL;
pbgetvp(bp->b_vp, newbp);
#ifdef SOFTUPDATES
/*
* Move over the dependencies. If there are rollbacks,
* leave the parent buffer dirtied as it will need to
* be written again.
*/
if (LIST_EMPTY(&bp->b_dep) ||
softdep_move_dependencies(bp, newbp) == 0)
bundirty(bp);
#else
bundirty(bp);
#endif
/*
* Initiate write on the copy, release the original. The
* BKGRDINPROG flag prevents it from going away until
* the background write completes.
*/
bqrelse(bp);
bp = newbp;
} else
/* Mark the buffer clean */
bundirty(bp);
/* Let the normal bufwrite do the rest for us */
normal_write:
return (bufwrite(bp));
}
static void
ffs_geom_strategy(struct bufobj *bo, struct buf *bp)
{
struct vnode *vp;
int error;
struct buf *tbp;
int nocopy;
vp = bo->__bo_vnode;
if (bp->b_iocmd == BIO_WRITE) {
if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
(bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
panic("ffs_geom_strategy: bad I/O");
nocopy = bp->b_flags & B_NOCOPY;
bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY);
if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 &&
vp->v_rdev->si_snapdata != NULL) {
if ((bp->b_flags & B_CLUSTER) != 0) {
runningbufwakeup(bp);
TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
b_cluster.cluster_entry) {
error = ffs_copyonwrite(vp, tbp);
if (error != 0 &&
error != EOPNOTSUPP) {
bp->b_error = error;
bp->b_ioflags |= BIO_ERROR;
bufdone(bp);
return;
}
}
bp->b_runningbufspace = bp->b_bufsize;
atomic_add_long(&runningbufspace,
bp->b_runningbufspace);
} else {
error = ffs_copyonwrite(vp, bp);
if (error != 0 && error != EOPNOTSUPP) {
bp->b_error = error;
bp->b_ioflags |= BIO_ERROR;
bufdone(bp);
return;
}
}
}
#ifdef SOFTUPDATES
if ((bp->b_flags & B_CLUSTER) != 0) {
TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
b_cluster.cluster_entry) {
if (!LIST_EMPTY(&tbp->b_dep))
buf_start(tbp);
}
} else {
if (!LIST_EMPTY(&bp->b_dep))
buf_start(bp);
}
#endif
}
g_vfs_strategy(bo, bp);
}
int
ffs_own_mount(const struct mount *mp)
{
if (mp->mnt_op == &ufs_vfsops)
return (1);
return (0);
}
#ifdef DDB
#ifdef SOFTUPDATES
/* defined in ffs_softdep.c */
extern void db_print_ffs(struct ufsmount *ump);
DB_SHOW_COMMAND(ffs, db_show_ffs)
{
struct mount *mp;
struct ufsmount *ump;
if (have_addr) {
ump = VFSTOUFS((struct mount *)addr);
db_print_ffs(ump);
return;
}
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name))
db_print_ffs(VFSTOUFS(mp));
}
}
#endif /* SOFTUPDATES */
#endif /* DDB */