mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-15 15:06:42 +00:00
8073 lines
262 KiB
C
8073 lines
262 KiB
C
/* Reload pseudo regs into hard regs for insns that require hard regs.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
|
||
#include "machmode.h"
|
||
#include "hard-reg-set.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "obstack.h"
|
||
#include "insn-config.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "optabs.h"
|
||
#include "regs.h"
|
||
#include "basic-block.h"
|
||
#include "reload.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "real.h"
|
||
#include "toplev.h"
|
||
#include "except.h"
|
||
#include "tree.h"
|
||
|
||
/* This file contains the reload pass of the compiler, which is
|
||
run after register allocation has been done. It checks that
|
||
each insn is valid (operands required to be in registers really
|
||
are in registers of the proper class) and fixes up invalid ones
|
||
by copying values temporarily into registers for the insns
|
||
that need them.
|
||
|
||
The results of register allocation are described by the vector
|
||
reg_renumber; the insns still contain pseudo regs, but reg_renumber
|
||
can be used to find which hard reg, if any, a pseudo reg is in.
|
||
|
||
The technique we always use is to free up a few hard regs that are
|
||
called ``reload regs'', and for each place where a pseudo reg
|
||
must be in a hard reg, copy it temporarily into one of the reload regs.
|
||
|
||
Reload regs are allocated locally for every instruction that needs
|
||
reloads. When there are pseudos which are allocated to a register that
|
||
has been chosen as a reload reg, such pseudos must be ``spilled''.
|
||
This means that they go to other hard regs, or to stack slots if no other
|
||
available hard regs can be found. Spilling can invalidate more
|
||
insns, requiring additional need for reloads, so we must keep checking
|
||
until the process stabilizes.
|
||
|
||
For machines with different classes of registers, we must keep track
|
||
of the register class needed for each reload, and make sure that
|
||
we allocate enough reload registers of each class.
|
||
|
||
The file reload.c contains the code that checks one insn for
|
||
validity and reports the reloads that it needs. This file
|
||
is in charge of scanning the entire rtl code, accumulating the
|
||
reload needs, spilling, assigning reload registers to use for
|
||
fixing up each insn, and generating the new insns to copy values
|
||
into the reload registers. */
|
||
|
||
/* During reload_as_needed, element N contains a REG rtx for the hard reg
|
||
into which reg N has been reloaded (perhaps for a previous insn). */
|
||
static rtx *reg_last_reload_reg;
|
||
|
||
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
|
||
for an output reload that stores into reg N. */
|
||
static char *reg_has_output_reload;
|
||
|
||
/* Indicates which hard regs are reload-registers for an output reload
|
||
in the current insn. */
|
||
static HARD_REG_SET reg_is_output_reload;
|
||
|
||
/* Element N is the constant value to which pseudo reg N is equivalent,
|
||
or zero if pseudo reg N is not equivalent to a constant.
|
||
find_reloads looks at this in order to replace pseudo reg N
|
||
with the constant it stands for. */
|
||
rtx *reg_equiv_constant;
|
||
|
||
/* Element N is a memory location to which pseudo reg N is equivalent,
|
||
prior to any register elimination (such as frame pointer to stack
|
||
pointer). Depending on whether or not it is a valid address, this value
|
||
is transferred to either reg_equiv_address or reg_equiv_mem. */
|
||
rtx *reg_equiv_memory_loc;
|
||
|
||
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
|
||
This is used when the address is not valid as a memory address
|
||
(because its displacement is too big for the machine.) */
|
||
rtx *reg_equiv_address;
|
||
|
||
/* Element N is the memory slot to which pseudo reg N is equivalent,
|
||
or zero if pseudo reg N is not equivalent to a memory slot. */
|
||
rtx *reg_equiv_mem;
|
||
|
||
/* Widest width in which each pseudo reg is referred to (via subreg). */
|
||
static unsigned int *reg_max_ref_width;
|
||
|
||
/* Element N is the list of insns that initialized reg N from its equivalent
|
||
constant or memory slot. */
|
||
static rtx *reg_equiv_init;
|
||
|
||
/* Vector to remember old contents of reg_renumber before spilling. */
|
||
static short *reg_old_renumber;
|
||
|
||
/* During reload_as_needed, element N contains the last pseudo regno reloaded
|
||
into hard register N. If that pseudo reg occupied more than one register,
|
||
reg_reloaded_contents points to that pseudo for each spill register in
|
||
use; all of these must remain set for an inheritance to occur. */
|
||
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* During reload_as_needed, element N contains the insn for which
|
||
hard register N was last used. Its contents are significant only
|
||
when reg_reloaded_valid is set for this register. */
|
||
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
|
||
static HARD_REG_SET reg_reloaded_valid;
|
||
/* Indicate if the register was dead at the end of the reload.
|
||
This is only valid if reg_reloaded_contents is set and valid. */
|
||
static HARD_REG_SET reg_reloaded_dead;
|
||
|
||
/* Indicate whether the register's current value is one that is not
|
||
safe to retain across a call, even for registers that are normally
|
||
call-saved. */
|
||
static HARD_REG_SET reg_reloaded_call_part_clobbered;
|
||
|
||
/* Number of spill-regs so far; number of valid elements of spill_regs. */
|
||
static int n_spills;
|
||
|
||
/* In parallel with spill_regs, contains REG rtx's for those regs.
|
||
Holds the last rtx used for any given reg, or 0 if it has never
|
||
been used for spilling yet. This rtx is reused, provided it has
|
||
the proper mode. */
|
||
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* In parallel with spill_regs, contains nonzero for a spill reg
|
||
that was stored after the last time it was used.
|
||
The precise value is the insn generated to do the store. */
|
||
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This is the register that was stored with spill_reg_store. This is a
|
||
copy of reload_out / reload_out_reg when the value was stored; if
|
||
reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
|
||
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This table is the inverse mapping of spill_regs:
|
||
indexed by hard reg number,
|
||
it contains the position of that reg in spill_regs,
|
||
or -1 for something that is not in spill_regs.
|
||
|
||
?!? This is no longer accurate. */
|
||
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This reg set indicates registers that can't be used as spill registers for
|
||
the currently processed insn. These are the hard registers which are live
|
||
during the insn, but not allocated to pseudos, as well as fixed
|
||
registers. */
|
||
static HARD_REG_SET bad_spill_regs;
|
||
|
||
/* These are the hard registers that can't be used as spill register for any
|
||
insn. This includes registers used for user variables and registers that
|
||
we can't eliminate. A register that appears in this set also can't be used
|
||
to retry register allocation. */
|
||
static HARD_REG_SET bad_spill_regs_global;
|
||
|
||
/* Describes order of use of registers for reloading
|
||
of spilled pseudo-registers. `n_spills' is the number of
|
||
elements that are actually valid; new ones are added at the end.
|
||
|
||
Both spill_regs and spill_reg_order are used on two occasions:
|
||
once during find_reload_regs, where they keep track of the spill registers
|
||
for a single insn, but also during reload_as_needed where they show all
|
||
the registers ever used by reload. For the latter case, the information
|
||
is calculated during finish_spills. */
|
||
static short spill_regs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This vector of reg sets indicates, for each pseudo, which hard registers
|
||
may not be used for retrying global allocation because the register was
|
||
formerly spilled from one of them. If we allowed reallocating a pseudo to
|
||
a register that it was already allocated to, reload might not
|
||
terminate. */
|
||
static HARD_REG_SET *pseudo_previous_regs;
|
||
|
||
/* This vector of reg sets indicates, for each pseudo, which hard
|
||
registers may not be used for retrying global allocation because they
|
||
are used as spill registers during one of the insns in which the
|
||
pseudo is live. */
|
||
static HARD_REG_SET *pseudo_forbidden_regs;
|
||
|
||
/* All hard regs that have been used as spill registers for any insn are
|
||
marked in this set. */
|
||
static HARD_REG_SET used_spill_regs;
|
||
|
||
/* Index of last register assigned as a spill register. We allocate in
|
||
a round-robin fashion. */
|
||
static int last_spill_reg;
|
||
|
||
/* Nonzero if indirect addressing is supported on the machine; this means
|
||
that spilling (REG n) does not require reloading it into a register in
|
||
order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
|
||
value indicates the level of indirect addressing supported, e.g., two
|
||
means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
|
||
a hard register. */
|
||
static char spill_indirect_levels;
|
||
|
||
/* Nonzero if indirect addressing is supported when the innermost MEM is
|
||
of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
|
||
which these are valid is the same as spill_indirect_levels, above. */
|
||
char indirect_symref_ok;
|
||
|
||
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
|
||
char double_reg_address_ok;
|
||
|
||
/* Record the stack slot for each spilled hard register. */
|
||
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Width allocated so far for that stack slot. */
|
||
static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Record which pseudos needed to be spilled. */
|
||
static regset_head spilled_pseudos;
|
||
|
||
/* Used for communication between order_regs_for_reload and count_pseudo.
|
||
Used to avoid counting one pseudo twice. */
|
||
static regset_head pseudos_counted;
|
||
|
||
/* First uid used by insns created by reload in this function.
|
||
Used in find_equiv_reg. */
|
||
int reload_first_uid;
|
||
|
||
/* Flag set by local-alloc or global-alloc if anything is live in
|
||
a call-clobbered reg across calls. */
|
||
int caller_save_needed;
|
||
|
||
/* Set to 1 while reload_as_needed is operating.
|
||
Required by some machines to handle any generated moves differently. */
|
||
int reload_in_progress = 0;
|
||
|
||
/* These arrays record the insn_code of insns that may be needed to
|
||
perform input and output reloads of special objects. They provide a
|
||
place to pass a scratch register. */
|
||
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
|
||
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
|
||
|
||
/* This obstack is used for allocation of rtl during register elimination.
|
||
The allocated storage can be freed once find_reloads has processed the
|
||
insn. */
|
||
struct obstack reload_obstack;
|
||
|
||
/* Points to the beginning of the reload_obstack. All insn_chain structures
|
||
are allocated first. */
|
||
char *reload_startobj;
|
||
|
||
/* The point after all insn_chain structures. Used to quickly deallocate
|
||
memory allocated in copy_reloads during calculate_needs_all_insns. */
|
||
char *reload_firstobj;
|
||
|
||
/* This points before all local rtl generated by register elimination.
|
||
Used to quickly free all memory after processing one insn. */
|
||
static char *reload_insn_firstobj;
|
||
|
||
/* List of insn_chain instructions, one for every insn that reload needs to
|
||
examine. */
|
||
struct insn_chain *reload_insn_chain;
|
||
|
||
/* List of all insns needing reloads. */
|
||
static struct insn_chain *insns_need_reload;
|
||
|
||
/* This structure is used to record information about register eliminations.
|
||
Each array entry describes one possible way of eliminating a register
|
||
in favor of another. If there is more than one way of eliminating a
|
||
particular register, the most preferred should be specified first. */
|
||
|
||
struct elim_table
|
||
{
|
||
int from; /* Register number to be eliminated. */
|
||
int to; /* Register number used as replacement. */
|
||
HOST_WIDE_INT initial_offset; /* Initial difference between values. */
|
||
int can_eliminate; /* Nonzero if this elimination can be done. */
|
||
int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
|
||
insns made by reload. */
|
||
HOST_WIDE_INT offset; /* Current offset between the two regs. */
|
||
HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
|
||
int ref_outside_mem; /* "to" has been referenced outside a MEM. */
|
||
rtx from_rtx; /* REG rtx for the register to be eliminated.
|
||
We cannot simply compare the number since
|
||
we might then spuriously replace a hard
|
||
register corresponding to a pseudo
|
||
assigned to the reg to be eliminated. */
|
||
rtx to_rtx; /* REG rtx for the replacement. */
|
||
};
|
||
|
||
static struct elim_table *reg_eliminate = 0;
|
||
|
||
/* This is an intermediate structure to initialize the table. It has
|
||
exactly the members provided by ELIMINABLE_REGS. */
|
||
static const struct elim_table_1
|
||
{
|
||
const int from;
|
||
const int to;
|
||
} reg_eliminate_1[] =
|
||
|
||
/* If a set of eliminable registers was specified, define the table from it.
|
||
Otherwise, default to the normal case of the frame pointer being
|
||
replaced by the stack pointer. */
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
ELIMINABLE_REGS;
|
||
#else
|
||
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
|
||
#endif
|
||
|
||
#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
|
||
|
||
/* Record the number of pending eliminations that have an offset not equal
|
||
to their initial offset. If nonzero, we use a new copy of each
|
||
replacement result in any insns encountered. */
|
||
int num_not_at_initial_offset;
|
||
|
||
/* Count the number of registers that we may be able to eliminate. */
|
||
static int num_eliminable;
|
||
/* And the number of registers that are equivalent to a constant that
|
||
can be eliminated to frame_pointer / arg_pointer + constant. */
|
||
static int num_eliminable_invariants;
|
||
|
||
/* For each label, we record the offset of each elimination. If we reach
|
||
a label by more than one path and an offset differs, we cannot do the
|
||
elimination. This information is indexed by the difference of the
|
||
number of the label and the first label number. We can't offset the
|
||
pointer itself as this can cause problems on machines with segmented
|
||
memory. The first table is an array of flags that records whether we
|
||
have yet encountered a label and the second table is an array of arrays,
|
||
one entry in the latter array for each elimination. */
|
||
|
||
static int first_label_num;
|
||
static char *offsets_known_at;
|
||
static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
|
||
|
||
/* Number of labels in the current function. */
|
||
|
||
static int num_labels;
|
||
|
||
static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
|
||
static void maybe_fix_stack_asms (void);
|
||
static void copy_reloads (struct insn_chain *);
|
||
static void calculate_needs_all_insns (int);
|
||
static int find_reg (struct insn_chain *, int);
|
||
static void find_reload_regs (struct insn_chain *);
|
||
static void select_reload_regs (void);
|
||
static void delete_caller_save_insns (void);
|
||
|
||
static void spill_failure (rtx, enum reg_class);
|
||
static void count_spilled_pseudo (int, int, int);
|
||
static void delete_dead_insn (rtx);
|
||
static void alter_reg (int, int);
|
||
static void set_label_offsets (rtx, rtx, int);
|
||
static void check_eliminable_occurrences (rtx);
|
||
static void elimination_effects (rtx, enum machine_mode);
|
||
static int eliminate_regs_in_insn (rtx, int);
|
||
static void update_eliminable_offsets (void);
|
||
static void mark_not_eliminable (rtx, rtx, void *);
|
||
static void set_initial_elim_offsets (void);
|
||
static void verify_initial_elim_offsets (void);
|
||
static void set_initial_label_offsets (void);
|
||
static void set_offsets_for_label (rtx);
|
||
static void init_elim_table (void);
|
||
static void update_eliminables (HARD_REG_SET *);
|
||
static void spill_hard_reg (unsigned int, int);
|
||
static int finish_spills (int);
|
||
static void ior_hard_reg_set (HARD_REG_SET *, HARD_REG_SET *);
|
||
static void scan_paradoxical_subregs (rtx);
|
||
static void count_pseudo (int);
|
||
static void order_regs_for_reload (struct insn_chain *);
|
||
static void reload_as_needed (int);
|
||
static void forget_old_reloads_1 (rtx, rtx, void *);
|
||
static int reload_reg_class_lower (const void *, const void *);
|
||
static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
|
||
enum machine_mode);
|
||
static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
|
||
enum machine_mode);
|
||
static int reload_reg_free_p (unsigned int, int, enum reload_type);
|
||
static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
|
||
rtx, rtx, int, int);
|
||
static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
|
||
rtx, rtx, int, int);
|
||
static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
|
||
static int allocate_reload_reg (struct insn_chain *, int, int);
|
||
static int conflicts_with_override (rtx);
|
||
static void failed_reload (rtx, int);
|
||
static int set_reload_reg (int, int);
|
||
static void choose_reload_regs_init (struct insn_chain *, rtx *);
|
||
static void choose_reload_regs (struct insn_chain *);
|
||
static void merge_assigned_reloads (rtx);
|
||
static void emit_input_reload_insns (struct insn_chain *, struct reload *,
|
||
rtx, int);
|
||
static void emit_output_reload_insns (struct insn_chain *, struct reload *,
|
||
int);
|
||
static void do_input_reload (struct insn_chain *, struct reload *, int);
|
||
static void do_output_reload (struct insn_chain *, struct reload *, int);
|
||
static void emit_reload_insns (struct insn_chain *);
|
||
static void delete_output_reload (rtx, int, int);
|
||
static void delete_address_reloads (rtx, rtx);
|
||
static void delete_address_reloads_1 (rtx, rtx, rtx);
|
||
static rtx inc_for_reload (rtx, rtx, rtx, int);
|
||
#ifdef AUTO_INC_DEC
|
||
static void add_auto_inc_notes (rtx, rtx);
|
||
#endif
|
||
static void copy_eh_notes (rtx, rtx);
|
||
|
||
/* Initialize the reload pass once per compilation. */
|
||
|
||
void
|
||
init_reload (void)
|
||
{
|
||
int i;
|
||
|
||
/* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
|
||
Set spill_indirect_levels to the number of levels such addressing is
|
||
permitted, zero if it is not permitted at all. */
|
||
|
||
rtx tem
|
||
= gen_rtx_MEM (Pmode,
|
||
gen_rtx_PLUS (Pmode,
|
||
gen_rtx_REG (Pmode,
|
||
LAST_VIRTUAL_REGISTER + 1),
|
||
GEN_INT (4)));
|
||
spill_indirect_levels = 0;
|
||
|
||
while (memory_address_p (QImode, tem))
|
||
{
|
||
spill_indirect_levels++;
|
||
tem = gen_rtx_MEM (Pmode, tem);
|
||
}
|
||
|
||
/* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
|
||
|
||
tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
|
||
indirect_symref_ok = memory_address_p (QImode, tem);
|
||
|
||
/* See if reg+reg is a valid (and offsettable) address. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
tem = gen_rtx_PLUS (Pmode,
|
||
gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
|
||
gen_rtx_REG (Pmode, i));
|
||
|
||
/* This way, we make sure that reg+reg is an offsettable address. */
|
||
tem = plus_constant (tem, 4);
|
||
|
||
if (memory_address_p (QImode, tem))
|
||
{
|
||
double_reg_address_ok = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Initialize obstack for our rtl allocation. */
|
||
gcc_obstack_init (&reload_obstack);
|
||
reload_startobj = obstack_alloc (&reload_obstack, 0);
|
||
|
||
INIT_REG_SET (&spilled_pseudos);
|
||
INIT_REG_SET (&pseudos_counted);
|
||
}
|
||
|
||
/* List of insn chains that are currently unused. */
|
||
static struct insn_chain *unused_insn_chains = 0;
|
||
|
||
/* Allocate an empty insn_chain structure. */
|
||
struct insn_chain *
|
||
new_insn_chain (void)
|
||
{
|
||
struct insn_chain *c;
|
||
|
||
if (unused_insn_chains == 0)
|
||
{
|
||
c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
|
||
INIT_REG_SET (&c->live_throughout);
|
||
INIT_REG_SET (&c->dead_or_set);
|
||
}
|
||
else
|
||
{
|
||
c = unused_insn_chains;
|
||
unused_insn_chains = c->next;
|
||
}
|
||
c->is_caller_save_insn = 0;
|
||
c->need_operand_change = 0;
|
||
c->need_reload = 0;
|
||
c->need_elim = 0;
|
||
return c;
|
||
}
|
||
|
||
/* Small utility function to set all regs in hard reg set TO which are
|
||
allocated to pseudos in regset FROM. */
|
||
|
||
void
|
||
compute_use_by_pseudos (HARD_REG_SET *to, regset from)
|
||
{
|
||
unsigned int regno;
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(from, FIRST_PSEUDO_REGISTER, regno,
|
||
{
|
||
int r = reg_renumber[regno];
|
||
int nregs;
|
||
|
||
if (r < 0)
|
||
{
|
||
/* reload_combine uses the information from
|
||
BASIC_BLOCK->global_live_at_start, which might still
|
||
contain registers that have not actually been allocated
|
||
since they have an equivalence. */
|
||
if (! reload_completed)
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
|
||
while (nregs-- > 0)
|
||
SET_HARD_REG_BIT (*to, r + nregs);
|
||
}
|
||
});
|
||
}
|
||
|
||
/* Replace all pseudos found in LOC with their corresponding
|
||
equivalences. */
|
||
|
||
static void
|
||
replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
|
||
{
|
||
rtx x = *loc;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
int i, j;
|
||
|
||
if (! x)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
if (code == REG)
|
||
{
|
||
unsigned int regno = REGNO (x);
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
return;
|
||
|
||
x = eliminate_regs (x, mem_mode, usage);
|
||
if (x != *loc)
|
||
{
|
||
*loc = x;
|
||
replace_pseudos_in (loc, mem_mode, usage);
|
||
return;
|
||
}
|
||
|
||
if (reg_equiv_constant[regno])
|
||
*loc = reg_equiv_constant[regno];
|
||
else if (reg_equiv_mem[regno])
|
||
*loc = reg_equiv_mem[regno];
|
||
else if (reg_equiv_address[regno])
|
||
*loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
|
||
else if (GET_CODE (regno_reg_rtx[regno]) != REG
|
||
|| REGNO (regno_reg_rtx[regno]) != regno)
|
||
*loc = regno_reg_rtx[regno];
|
||
else
|
||
abort ();
|
||
|
||
return;
|
||
}
|
||
else if (code == MEM)
|
||
{
|
||
replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
|
||
return;
|
||
}
|
||
|
||
/* Process each of our operands recursively. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
if (*fmt == 'e')
|
||
replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
|
||
else if (*fmt == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
|
||
}
|
||
|
||
|
||
/* Global variables used by reload and its subroutines. */
|
||
|
||
/* Set during calculate_needs if an insn needs register elimination. */
|
||
static int something_needs_elimination;
|
||
/* Set during calculate_needs if an insn needs an operand changed. */
|
||
int something_needs_operands_changed;
|
||
|
||
/* Nonzero means we couldn't get enough spill regs. */
|
||
static int failure;
|
||
|
||
/* Main entry point for the reload pass.
|
||
|
||
FIRST is the first insn of the function being compiled.
|
||
|
||
GLOBAL nonzero means we were called from global_alloc
|
||
and should attempt to reallocate any pseudoregs that we
|
||
displace from hard regs we will use for reloads.
|
||
If GLOBAL is zero, we do not have enough information to do that,
|
||
so any pseudo reg that is spilled must go to the stack.
|
||
|
||
Return value is nonzero if reload failed
|
||
and we must not do any more for this function. */
|
||
|
||
int
|
||
reload (rtx first, int global)
|
||
{
|
||
int i;
|
||
rtx insn;
|
||
struct elim_table *ep;
|
||
basic_block bb;
|
||
|
||
/* Make sure even insns with volatile mem refs are recognizable. */
|
||
init_recog ();
|
||
|
||
failure = 0;
|
||
|
||
reload_firstobj = obstack_alloc (&reload_obstack, 0);
|
||
|
||
/* Make sure that the last insn in the chain
|
||
is not something that needs reloading. */
|
||
emit_note (NOTE_INSN_DELETED);
|
||
|
||
/* Enable find_equiv_reg to distinguish insns made by reload. */
|
||
reload_first_uid = get_max_uid ();
|
||
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
/* Initialize the secondary memory table. */
|
||
clear_secondary_mem ();
|
||
#endif
|
||
|
||
/* We don't have a stack slot for any spill reg yet. */
|
||
memset (spill_stack_slot, 0, sizeof spill_stack_slot);
|
||
memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
|
||
|
||
/* Initialize the save area information for caller-save, in case some
|
||
are needed. */
|
||
init_save_areas ();
|
||
|
||
/* Compute which hard registers are now in use
|
||
as homes for pseudo registers.
|
||
This is done here rather than (eg) in global_alloc
|
||
because this point is reached even if not optimizing. */
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
mark_home_live (i);
|
||
|
||
/* A function that receives a nonlocal goto must save all call-saved
|
||
registers. */
|
||
if (current_function_has_nonlocal_label)
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
|
||
regs_ever_live[i] = 1;
|
||
|
||
#ifdef NON_SAVING_SETJMP
|
||
/* A function that calls setjmp should save and restore all the
|
||
call-saved registers on a system where longjmp clobbers them. */
|
||
if (NON_SAVING_SETJMP && current_function_calls_setjmp)
|
||
{
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (! call_used_regs[i])
|
||
regs_ever_live[i] = 1;
|
||
}
|
||
#endif
|
||
|
||
/* Find all the pseudo registers that didn't get hard regs
|
||
but do have known equivalent constants or memory slots.
|
||
These include parameters (known equivalent to parameter slots)
|
||
and cse'd or loop-moved constant memory addresses.
|
||
|
||
Record constant equivalents in reg_equiv_constant
|
||
so they will be substituted by find_reloads.
|
||
Record memory equivalents in reg_mem_equiv so they can
|
||
be substituted eventually by altering the REG-rtx's. */
|
||
|
||
reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
|
||
reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
|
||
reg_equiv_init = xcalloc (max_regno, sizeof (rtx));
|
||
reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
|
||
reg_max_ref_width = xcalloc (max_regno, sizeof (int));
|
||
reg_old_renumber = xcalloc (max_regno, sizeof (short));
|
||
memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
|
||
pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
|
||
pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
|
||
|
||
CLEAR_HARD_REG_SET (bad_spill_regs_global);
|
||
|
||
/* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
|
||
Also find all paradoxical subregs and find largest such for each pseudo.
|
||
On machines with small register classes, record hard registers that
|
||
are used for user variables. These can never be used for spills. */
|
||
|
||
num_eliminable_invariants = 0;
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
/* We may introduce USEs that we want to remove at the end, so
|
||
we'll mark them with QImode. Make sure there are no
|
||
previously-marked insns left by say regmove. */
|
||
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
|
||
&& GET_MODE (insn) != VOIDmode)
|
||
PUT_MODE (insn, VOIDmode);
|
||
|
||
if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
|
||
{
|
||
rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
if (note
|
||
#ifdef LEGITIMATE_PIC_OPERAND_P
|
||
&& (! function_invariant_p (XEXP (note, 0))
|
||
|| ! flag_pic
|
||
/* A function invariant is often CONSTANT_P but may
|
||
include a register. We promise to only pass
|
||
CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
|
||
|| (CONSTANT_P (XEXP (note, 0))
|
||
&& LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
|
||
#endif
|
||
)
|
||
{
|
||
rtx x = XEXP (note, 0);
|
||
i = REGNO (SET_DEST (set));
|
||
if (i > LAST_VIRTUAL_REGISTER)
|
||
{
|
||
/* It can happen that a REG_EQUIV note contains a MEM
|
||
that is not a legitimate memory operand. As later
|
||
stages of reload assume that all addresses found
|
||
in the reg_equiv_* arrays were originally legitimate,
|
||
we ignore such REG_EQUIV notes.
|
||
|
||
It also can happen that a REG_EQUIV note contains a MEM
|
||
that carries the /u flag, for example when GCSE turns
|
||
the load of a constant into a move from a pseudo that
|
||
already contains the constant and attaches a REG_EQUAL
|
||
note to the insn, which is later promoted to REQ_EQUIV
|
||
by local-alloc. If the destination pseudo happens not
|
||
to be assigned to a hard reg, it will be replaced by
|
||
the MEM as the destination of the move, thus generating
|
||
a store to a possibly read-only memory location. */
|
||
if (memory_operand (x, VOIDmode) && ! RTX_UNCHANGING_P (x))
|
||
{
|
||
/* Always unshare the equivalence, so we can
|
||
substitute into this insn without touching the
|
||
equivalence. */
|
||
reg_equiv_memory_loc[i] = copy_rtx (x);
|
||
}
|
||
else if (function_invariant_p (x))
|
||
{
|
||
if (GET_CODE (x) == PLUS)
|
||
{
|
||
/* This is PLUS of frame pointer and a constant,
|
||
and might be shared. Unshare it. */
|
||
reg_equiv_constant[i] = copy_rtx (x);
|
||
num_eliminable_invariants++;
|
||
}
|
||
else if (x == frame_pointer_rtx
|
||
|| x == arg_pointer_rtx)
|
||
{
|
||
reg_equiv_constant[i] = x;
|
||
num_eliminable_invariants++;
|
||
}
|
||
else if (LEGITIMATE_CONSTANT_P (x))
|
||
reg_equiv_constant[i] = x;
|
||
else
|
||
{
|
||
reg_equiv_memory_loc[i]
|
||
= force_const_mem (GET_MODE (SET_DEST (set)), x);
|
||
if (!reg_equiv_memory_loc[i])
|
||
continue;
|
||
}
|
||
}
|
||
else
|
||
continue;
|
||
|
||
/* If this register is being made equivalent to a MEM
|
||
and the MEM is not SET_SRC, the equivalencing insn
|
||
is one with the MEM as a SET_DEST and it occurs later.
|
||
So don't mark this insn now. */
|
||
if (GET_CODE (x) != MEM
|
||
|| rtx_equal_p (SET_SRC (set), x))
|
||
reg_equiv_init[i]
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this insn is setting a MEM from a register equivalent to it,
|
||
this is the equivalencing insn. */
|
||
else if (set && GET_CODE (SET_DEST (set)) == MEM
|
||
&& GET_CODE (SET_SRC (set)) == REG
|
||
&& reg_equiv_memory_loc[REGNO (SET_SRC (set))]
|
||
&& rtx_equal_p (SET_DEST (set),
|
||
reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
|
||
reg_equiv_init[REGNO (SET_SRC (set))]
|
||
= gen_rtx_INSN_LIST (VOIDmode, insn,
|
||
reg_equiv_init[REGNO (SET_SRC (set))]);
|
||
|
||
if (INSN_P (insn))
|
||
scan_paradoxical_subregs (PATTERN (insn));
|
||
}
|
||
|
||
init_elim_table ();
|
||
|
||
first_label_num = get_first_label_num ();
|
||
num_labels = max_label_num () - first_label_num;
|
||
|
||
/* Allocate the tables used to store offset information at labels. */
|
||
/* We used to use alloca here, but the size of what it would try to
|
||
allocate would occasionally cause it to exceed the stack limit and
|
||
cause a core dump. */
|
||
offsets_known_at = xmalloc (num_labels);
|
||
offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
|
||
|
||
/* Alter each pseudo-reg rtx to contain its hard reg number.
|
||
Assign stack slots to the pseudos that lack hard regs or equivalents.
|
||
Do not touch virtual registers. */
|
||
|
||
for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
|
||
alter_reg (i, -1);
|
||
|
||
/* If we have some registers we think can be eliminated, scan all insns to
|
||
see if there is an insn that sets one of these registers to something
|
||
other than itself plus a constant. If so, the register cannot be
|
||
eliminated. Doing this scan here eliminates an extra pass through the
|
||
main reload loop in the most common case where register elimination
|
||
cannot be done. */
|
||
for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|
||
|| GET_CODE (insn) == CALL_INSN)
|
||
note_stores (PATTERN (insn), mark_not_eliminable, NULL);
|
||
|
||
maybe_fix_stack_asms ();
|
||
|
||
insns_need_reload = 0;
|
||
something_needs_elimination = 0;
|
||
|
||
/* Initialize to -1, which means take the first spill register. */
|
||
last_spill_reg = -1;
|
||
|
||
/* Spill any hard regs that we know we can't eliminate. */
|
||
CLEAR_HARD_REG_SET (used_spill_regs);
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (! ep->can_eliminate)
|
||
spill_hard_reg (ep->from, 1);
|
||
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
if (frame_pointer_needed)
|
||
spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
|
||
#endif
|
||
finish_spills (global);
|
||
|
||
/* From now on, we may need to generate moves differently. We may also
|
||
allow modifications of insns which cause them to not be recognized.
|
||
Any such modifications will be cleaned up during reload itself. */
|
||
reload_in_progress = 1;
|
||
|
||
/* This loop scans the entire function each go-round
|
||
and repeats until one repetition spills no additional hard regs. */
|
||
for (;;)
|
||
{
|
||
int something_changed;
|
||
int did_spill;
|
||
|
||
HOST_WIDE_INT starting_frame_size;
|
||
|
||
/* Round size of stack frame to stack_alignment_needed. This must be done
|
||
here because the stack size may be a part of the offset computation
|
||
for register elimination, and there might have been new stack slots
|
||
created in the last iteration of this loop. */
|
||
if (cfun->stack_alignment_needed)
|
||
assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
|
||
|
||
starting_frame_size = get_frame_size ();
|
||
|
||
set_initial_elim_offsets ();
|
||
set_initial_label_offsets ();
|
||
|
||
/* For each pseudo register that has an equivalent location defined,
|
||
try to eliminate any eliminable registers (such as the frame pointer)
|
||
assuming initial offsets for the replacement register, which
|
||
is the normal case.
|
||
|
||
If the resulting location is directly addressable, substitute
|
||
the MEM we just got directly for the old REG.
|
||
|
||
If it is not addressable but is a constant or the sum of a hard reg
|
||
and constant, it is probably not addressable because the constant is
|
||
out of range, in that case record the address; we will generate
|
||
hairy code to compute the address in a register each time it is
|
||
needed. Similarly if it is a hard register, but one that is not
|
||
valid as an address register.
|
||
|
||
If the location is not addressable, but does not have one of the
|
||
above forms, assign a stack slot. We have to do this to avoid the
|
||
potential of producing lots of reloads if, e.g., a location involves
|
||
a pseudo that didn't get a hard register and has an equivalent memory
|
||
location that also involves a pseudo that didn't get a hard register.
|
||
|
||
Perhaps at some point we will improve reload_when_needed handling
|
||
so this problem goes away. But that's very hairy. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
|
||
{
|
||
rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
|
||
|
||
if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
|
||
XEXP (x, 0)))
|
||
reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
|
||
else if (CONSTANT_P (XEXP (x, 0))
|
||
|| (GET_CODE (XEXP (x, 0)) == REG
|
||
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
|
||
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
|
||
&& (REGNO (XEXP (XEXP (x, 0), 0))
|
||
< FIRST_PSEUDO_REGISTER)
|
||
&& CONSTANT_P (XEXP (XEXP (x, 0), 1))))
|
||
reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
|
||
else
|
||
{
|
||
/* Make a new stack slot. Then indicate that something
|
||
changed so we go back and recompute offsets for
|
||
eliminable registers because the allocation of memory
|
||
below might change some offset. reg_equiv_{mem,address}
|
||
will be set up for this pseudo on the next pass around
|
||
the loop. */
|
||
reg_equiv_memory_loc[i] = 0;
|
||
reg_equiv_init[i] = 0;
|
||
alter_reg (i, -1);
|
||
}
|
||
}
|
||
|
||
if (caller_save_needed)
|
||
setup_save_areas ();
|
||
|
||
/* If we allocated another stack slot, redo elimination bookkeeping. */
|
||
if (starting_frame_size != get_frame_size ())
|
||
continue;
|
||
|
||
if (caller_save_needed)
|
||
{
|
||
save_call_clobbered_regs ();
|
||
/* That might have allocated new insn_chain structures. */
|
||
reload_firstobj = obstack_alloc (&reload_obstack, 0);
|
||
}
|
||
|
||
calculate_needs_all_insns (global);
|
||
|
||
CLEAR_REG_SET (&spilled_pseudos);
|
||
did_spill = 0;
|
||
|
||
something_changed = 0;
|
||
|
||
/* If we allocated any new memory locations, make another pass
|
||
since it might have changed elimination offsets. */
|
||
if (starting_frame_size != get_frame_size ())
|
||
something_changed = 1;
|
||
|
||
{
|
||
HARD_REG_SET to_spill;
|
||
CLEAR_HARD_REG_SET (to_spill);
|
||
update_eliminables (&to_spill);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (to_spill, i))
|
||
{
|
||
spill_hard_reg (i, 1);
|
||
did_spill = 1;
|
||
|
||
/* Regardless of the state of spills, if we previously had
|
||
a register that we thought we could eliminate, but now can
|
||
not eliminate, we must run another pass.
|
||
|
||
Consider pseudos which have an entry in reg_equiv_* which
|
||
reference an eliminable register. We must make another pass
|
||
to update reg_equiv_* so that we do not substitute in the
|
||
old value from when we thought the elimination could be
|
||
performed. */
|
||
something_changed = 1;
|
||
}
|
||
}
|
||
|
||
select_reload_regs ();
|
||
if (failure)
|
||
goto failed;
|
||
|
||
if (insns_need_reload != 0 || did_spill)
|
||
something_changed |= finish_spills (global);
|
||
|
||
if (! something_changed)
|
||
break;
|
||
|
||
if (caller_save_needed)
|
||
delete_caller_save_insns ();
|
||
|
||
obstack_free (&reload_obstack, reload_firstobj);
|
||
}
|
||
|
||
/* If global-alloc was run, notify it of any register eliminations we have
|
||
done. */
|
||
if (global)
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->can_eliminate)
|
||
mark_elimination (ep->from, ep->to);
|
||
|
||
/* If a pseudo has no hard reg, delete the insns that made the equivalence.
|
||
If that insn didn't set the register (i.e., it copied the register to
|
||
memory), just delete that insn instead of the equivalencing insn plus
|
||
anything now dead. If we call delete_dead_insn on that insn, we may
|
||
delete the insn that actually sets the register if the register dies
|
||
there and that is incorrect. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
|
||
{
|
||
rtx list;
|
||
for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
|
||
{
|
||
rtx equiv_insn = XEXP (list, 0);
|
||
|
||
/* If we already deleted the insn or if it may trap, we can't
|
||
delete it. The latter case shouldn't happen, but can
|
||
if an insn has a variable address, gets a REG_EH_REGION
|
||
note added to it, and then gets converted into an load
|
||
from a constant address. */
|
||
if (GET_CODE (equiv_insn) == NOTE
|
||
|| can_throw_internal (equiv_insn))
|
||
;
|
||
else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
|
||
delete_dead_insn (equiv_insn);
|
||
else
|
||
{
|
||
PUT_CODE (equiv_insn, NOTE);
|
||
NOTE_SOURCE_FILE (equiv_insn) = 0;
|
||
NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Use the reload registers where necessary
|
||
by generating move instructions to move the must-be-register
|
||
values into or out of the reload registers. */
|
||
|
||
if (insns_need_reload != 0 || something_needs_elimination
|
||
|| something_needs_operands_changed)
|
||
{
|
||
HOST_WIDE_INT old_frame_size = get_frame_size ();
|
||
|
||
reload_as_needed (global);
|
||
|
||
if (old_frame_size != get_frame_size ())
|
||
abort ();
|
||
|
||
if (num_eliminable)
|
||
verify_initial_elim_offsets ();
|
||
}
|
||
|
||
/* If we were able to eliminate the frame pointer, show that it is no
|
||
longer live at the start of any basic block. If it ls live by
|
||
virtue of being in a pseudo, that pseudo will be marked live
|
||
and hence the frame pointer will be known to be live via that
|
||
pseudo. */
|
||
|
||
if (! frame_pointer_needed)
|
||
FOR_EACH_BB (bb)
|
||
CLEAR_REGNO_REG_SET (bb->global_live_at_start,
|
||
HARD_FRAME_POINTER_REGNUM);
|
||
|
||
/* Come here (with failure set nonzero) if we can't get enough spill regs
|
||
and we decide not to abort about it. */
|
||
failed:
|
||
|
||
CLEAR_REG_SET (&spilled_pseudos);
|
||
reload_in_progress = 0;
|
||
|
||
/* Now eliminate all pseudo regs by modifying them into
|
||
their equivalent memory references.
|
||
The REG-rtx's for the pseudos are modified in place,
|
||
so all insns that used to refer to them now refer to memory.
|
||
|
||
For a reg that has a reg_equiv_address, all those insns
|
||
were changed by reloading so that no insns refer to it any longer;
|
||
but the DECL_RTL of a variable decl may refer to it,
|
||
and if so this causes the debugging info to mention the variable. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
rtx addr = 0;
|
||
|
||
if (reg_equiv_mem[i])
|
||
addr = XEXP (reg_equiv_mem[i], 0);
|
||
|
||
if (reg_equiv_address[i])
|
||
addr = reg_equiv_address[i];
|
||
|
||
if (addr)
|
||
{
|
||
if (reg_renumber[i] < 0)
|
||
{
|
||
rtx reg = regno_reg_rtx[i];
|
||
|
||
REG_USERVAR_P (reg) = 0;
|
||
PUT_CODE (reg, MEM);
|
||
XEXP (reg, 0) = addr;
|
||
if (reg_equiv_memory_loc[i])
|
||
MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
|
||
else
|
||
{
|
||
RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
|
||
= MEM_SCALAR_P (reg) = 0;
|
||
MEM_ATTRS (reg) = 0;
|
||
}
|
||
}
|
||
else if (reg_equiv_mem[i])
|
||
XEXP (reg_equiv_mem[i], 0) = addr;
|
||
}
|
||
}
|
||
|
||
/* We must set reload_completed now since the cleanup_subreg_operands call
|
||
below will re-recognize each insn and reload may have generated insns
|
||
which are only valid during and after reload. */
|
||
reload_completed = 1;
|
||
|
||
/* Make a pass over all the insns and delete all USEs which we inserted
|
||
only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
|
||
notes. Delete all CLOBBER insns, except those that refer to the return
|
||
value and the special mem:BLK CLOBBERs added to prevent the scheduler
|
||
from misarranging variable-array code, and simplify (subreg (reg))
|
||
operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
|
||
are no longer useful or accurate. Strip and regenerate REG_INC notes
|
||
that may have been moved around. */
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
{
|
||
rtx *pnote;
|
||
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
|
||
VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
|
||
|
||
if ((GET_CODE (PATTERN (insn)) == USE
|
||
/* We mark with QImode USEs introduced by reload itself. */
|
||
&& (GET_MODE (insn) == QImode
|
||
|| find_reg_note (insn, REG_EQUAL, NULL_RTX)))
|
||
|| (GET_CODE (PATTERN (insn)) == CLOBBER
|
||
&& (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
|
||
|| GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
|
||
|| (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
|
||
&& XEXP (XEXP (PATTERN (insn), 0), 0)
|
||
!= stack_pointer_rtx))
|
||
&& (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
|
||
|| ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
|
||
{
|
||
delete_insn (insn);
|
||
continue;
|
||
}
|
||
|
||
/* Some CLOBBERs may survive until here and still reference unassigned
|
||
pseudos with const equivalent, which may in turn cause ICE in later
|
||
passes if the reference remains in place. */
|
||
if (GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
replace_pseudos_in (& XEXP (PATTERN (insn), 0),
|
||
VOIDmode, PATTERN (insn));
|
||
|
||
pnote = ®_NOTES (insn);
|
||
while (*pnote != 0)
|
||
{
|
||
if (REG_NOTE_KIND (*pnote) == REG_DEAD
|
||
|| REG_NOTE_KIND (*pnote) == REG_UNUSED
|
||
|| REG_NOTE_KIND (*pnote) == REG_INC
|
||
|| REG_NOTE_KIND (*pnote) == REG_RETVAL
|
||
|| REG_NOTE_KIND (*pnote) == REG_LIBCALL)
|
||
*pnote = XEXP (*pnote, 1);
|
||
else
|
||
pnote = &XEXP (*pnote, 1);
|
||
}
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
add_auto_inc_notes (insn, PATTERN (insn));
|
||
#endif
|
||
|
||
/* And simplify (subreg (reg)) if it appears as an operand. */
|
||
cleanup_subreg_operands (insn);
|
||
}
|
||
|
||
/* If we are doing stack checking, give a warning if this function's
|
||
frame size is larger than we expect. */
|
||
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
|
||
{
|
||
HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
|
||
static int verbose_warned = 0;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
|
||
size += UNITS_PER_WORD;
|
||
|
||
if (size > STACK_CHECK_MAX_FRAME_SIZE)
|
||
{
|
||
warning ("frame size too large for reliable stack checking");
|
||
if (! verbose_warned)
|
||
{
|
||
warning ("try reducing the number of local variables");
|
||
verbose_warned = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Indicate that we no longer have known memory locations or constants. */
|
||
if (reg_equiv_constant)
|
||
free (reg_equiv_constant);
|
||
reg_equiv_constant = 0;
|
||
if (reg_equiv_memory_loc)
|
||
free (reg_equiv_memory_loc);
|
||
reg_equiv_memory_loc = 0;
|
||
|
||
if (offsets_known_at)
|
||
free (offsets_known_at);
|
||
if (offsets_at)
|
||
free (offsets_at);
|
||
|
||
free (reg_equiv_mem);
|
||
free (reg_equiv_init);
|
||
free (reg_equiv_address);
|
||
free (reg_max_ref_width);
|
||
free (reg_old_renumber);
|
||
free (pseudo_previous_regs);
|
||
free (pseudo_forbidden_regs);
|
||
|
||
CLEAR_HARD_REG_SET (used_spill_regs);
|
||
for (i = 0; i < n_spills; i++)
|
||
SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
|
||
|
||
/* Free all the insn_chain structures at once. */
|
||
obstack_free (&reload_obstack, reload_startobj);
|
||
unused_insn_chains = 0;
|
||
fixup_abnormal_edges ();
|
||
|
||
/* Replacing pseudos with their memory equivalents might have
|
||
created shared rtx. Subsequent passes would get confused
|
||
by this, so unshare everything here. */
|
||
unshare_all_rtl_again (first);
|
||
|
||
#ifdef STACK_BOUNDARY
|
||
/* init_emit has set the alignment of the hard frame pointer
|
||
to STACK_BOUNDARY. It is very likely no longer valid if
|
||
the hard frame pointer was used for register allocation. */
|
||
if (!frame_pointer_needed)
|
||
REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
|
||
#endif
|
||
|
||
return failure;
|
||
}
|
||
|
||
/* Yet another special case. Unfortunately, reg-stack forces people to
|
||
write incorrect clobbers in asm statements. These clobbers must not
|
||
cause the register to appear in bad_spill_regs, otherwise we'll call
|
||
fatal_insn later. We clear the corresponding regnos in the live
|
||
register sets to avoid this.
|
||
The whole thing is rather sick, I'm afraid. */
|
||
|
||
static void
|
||
maybe_fix_stack_asms (void)
|
||
{
|
||
#ifdef STACK_REGS
|
||
const char *constraints[MAX_RECOG_OPERANDS];
|
||
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
|
||
struct insn_chain *chain;
|
||
|
||
for (chain = reload_insn_chain; chain != 0; chain = chain->next)
|
||
{
|
||
int i, noperands;
|
||
HARD_REG_SET clobbered, allowed;
|
||
rtx pat;
|
||
|
||
if (! INSN_P (chain->insn)
|
||
|| (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
|
||
continue;
|
||
pat = PATTERN (chain->insn);
|
||
if (GET_CODE (pat) != PARALLEL)
|
||
continue;
|
||
|
||
CLEAR_HARD_REG_SET (clobbered);
|
||
CLEAR_HARD_REG_SET (allowed);
|
||
|
||
/* First, make a mask of all stack regs that are clobbered. */
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx t = XVECEXP (pat, 0, i);
|
||
if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
|
||
SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
|
||
}
|
||
|
||
/* Get the operand values and constraints out of the insn. */
|
||
decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
|
||
constraints, operand_mode);
|
||
|
||
/* For every operand, see what registers are allowed. */
|
||
for (i = 0; i < noperands; i++)
|
||
{
|
||
const char *p = constraints[i];
|
||
/* For every alternative, we compute the class of registers allowed
|
||
for reloading in CLS, and merge its contents into the reg set
|
||
ALLOWED. */
|
||
int cls = (int) NO_REGS;
|
||
|
||
for (;;)
|
||
{
|
||
char c = *p;
|
||
|
||
if (c == '\0' || c == ',' || c == '#')
|
||
{
|
||
/* End of one alternative - mark the regs in the current
|
||
class, and reset the class. */
|
||
IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
|
||
cls = NO_REGS;
|
||
p++;
|
||
if (c == '#')
|
||
do {
|
||
c = *p++;
|
||
} while (c != '\0' && c != ',');
|
||
if (c == '\0')
|
||
break;
|
||
continue;
|
||
}
|
||
|
||
switch (c)
|
||
{
|
||
case '=': case '+': case '*': case '%': case '?': case '!':
|
||
case '0': case '1': case '2': case '3': case '4': case 'm':
|
||
case '<': case '>': case 'V': case 'o': case '&': case 'E':
|
||
case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
|
||
case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
|
||
case 'P':
|
||
break;
|
||
|
||
case 'p':
|
||
cls = (int) reg_class_subunion[cls]
|
||
[(int) MODE_BASE_REG_CLASS (VOIDmode)];
|
||
break;
|
||
|
||
case 'g':
|
||
case 'r':
|
||
cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
|
||
break;
|
||
|
||
default:
|
||
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
|
||
cls = (int) reg_class_subunion[cls]
|
||
[(int) MODE_BASE_REG_CLASS (VOIDmode)];
|
||
else
|
||
cls = (int) reg_class_subunion[cls]
|
||
[(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
|
||
}
|
||
p += CONSTRAINT_LEN (c, p);
|
||
}
|
||
}
|
||
/* Those of the registers which are clobbered, but allowed by the
|
||
constraints, must be usable as reload registers. So clear them
|
||
out of the life information. */
|
||
AND_HARD_REG_SET (allowed, clobbered);
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (allowed, i))
|
||
{
|
||
CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
|
||
CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
|
||
}
|
||
}
|
||
|
||
#endif
|
||
}
|
||
|
||
/* Copy the global variables n_reloads and rld into the corresponding elts
|
||
of CHAIN. */
|
||
static void
|
||
copy_reloads (struct insn_chain *chain)
|
||
{
|
||
chain->n_reloads = n_reloads;
|
||
chain->rld = obstack_alloc (&reload_obstack,
|
||
n_reloads * sizeof (struct reload));
|
||
memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
|
||
reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
|
||
}
|
||
|
||
/* Walk the chain of insns, and determine for each whether it needs reloads
|
||
and/or eliminations. Build the corresponding insns_need_reload list, and
|
||
set something_needs_elimination as appropriate. */
|
||
static void
|
||
calculate_needs_all_insns (int global)
|
||
{
|
||
struct insn_chain **pprev_reload = &insns_need_reload;
|
||
struct insn_chain *chain, *next = 0;
|
||
|
||
something_needs_elimination = 0;
|
||
|
||
reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
|
||
for (chain = reload_insn_chain; chain != 0; chain = next)
|
||
{
|
||
rtx insn = chain->insn;
|
||
|
||
next = chain->next;
|
||
|
||
/* Clear out the shortcuts. */
|
||
chain->n_reloads = 0;
|
||
chain->need_elim = 0;
|
||
chain->need_reload = 0;
|
||
chain->need_operand_change = 0;
|
||
|
||
/* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
|
||
include REG_LABEL), we need to see what effects this has on the
|
||
known offsets at labels. */
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
|
||
|| (INSN_P (insn) && REG_NOTES (insn) != 0))
|
||
set_label_offsets (insn, insn, 0);
|
||
|
||
if (INSN_P (insn))
|
||
{
|
||
rtx old_body = PATTERN (insn);
|
||
int old_code = INSN_CODE (insn);
|
||
rtx old_notes = REG_NOTES (insn);
|
||
int did_elimination = 0;
|
||
int operands_changed = 0;
|
||
rtx set = single_set (insn);
|
||
|
||
/* Skip insns that only set an equivalence. */
|
||
if (set && GET_CODE (SET_DEST (set)) == REG
|
||
&& reg_renumber[REGNO (SET_DEST (set))] < 0
|
||
&& reg_equiv_constant[REGNO (SET_DEST (set))])
|
||
continue;
|
||
|
||
/* If needed, eliminate any eliminable registers. */
|
||
if (num_eliminable || num_eliminable_invariants)
|
||
did_elimination = eliminate_regs_in_insn (insn, 0);
|
||
|
||
/* Analyze the instruction. */
|
||
operands_changed = find_reloads (insn, 0, spill_indirect_levels,
|
||
global, spill_reg_order);
|
||
|
||
/* If a no-op set needs more than one reload, this is likely
|
||
to be something that needs input address reloads. We
|
||
can't get rid of this cleanly later, and it is of no use
|
||
anyway, so discard it now.
|
||
We only do this when expensive_optimizations is enabled,
|
||
since this complements reload inheritance / output
|
||
reload deletion, and it can make debugging harder. */
|
||
if (flag_expensive_optimizations && n_reloads > 1)
|
||
{
|
||
rtx set = single_set (insn);
|
||
if (set
|
||
&& SET_SRC (set) == SET_DEST (set)
|
||
&& GET_CODE (SET_SRC (set)) == REG
|
||
&& REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
delete_insn (insn);
|
||
/* Delete it from the reload chain. */
|
||
if (chain->prev)
|
||
chain->prev->next = next;
|
||
else
|
||
reload_insn_chain = next;
|
||
if (next)
|
||
next->prev = chain->prev;
|
||
chain->next = unused_insn_chains;
|
||
unused_insn_chains = chain;
|
||
continue;
|
||
}
|
||
}
|
||
if (num_eliminable)
|
||
update_eliminable_offsets ();
|
||
|
||
/* Remember for later shortcuts which insns had any reloads or
|
||
register eliminations. */
|
||
chain->need_elim = did_elimination;
|
||
chain->need_reload = n_reloads > 0;
|
||
chain->need_operand_change = operands_changed;
|
||
|
||
/* Discard any register replacements done. */
|
||
if (did_elimination)
|
||
{
|
||
obstack_free (&reload_obstack, reload_insn_firstobj);
|
||
PATTERN (insn) = old_body;
|
||
INSN_CODE (insn) = old_code;
|
||
REG_NOTES (insn) = old_notes;
|
||
something_needs_elimination = 1;
|
||
}
|
||
|
||
something_needs_operands_changed |= operands_changed;
|
||
|
||
if (n_reloads != 0)
|
||
{
|
||
copy_reloads (chain);
|
||
*pprev_reload = chain;
|
||
pprev_reload = &chain->next_need_reload;
|
||
}
|
||
}
|
||
}
|
||
*pprev_reload = 0;
|
||
}
|
||
|
||
/* Comparison function for qsort to decide which of two reloads
|
||
should be handled first. *P1 and *P2 are the reload numbers. */
|
||
|
||
static int
|
||
reload_reg_class_lower (const void *r1p, const void *r2p)
|
||
{
|
||
int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
|
||
int t;
|
||
|
||
/* Consider required reloads before optional ones. */
|
||
t = rld[r1].optional - rld[r2].optional;
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Count all solitary classes before non-solitary ones. */
|
||
t = ((reg_class_size[(int) rld[r2].class] == 1)
|
||
- (reg_class_size[(int) rld[r1].class] == 1));
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Aside from solitaires, consider all multi-reg groups first. */
|
||
t = rld[r2].nregs - rld[r1].nregs;
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Consider reloads in order of increasing reg-class number. */
|
||
t = (int) rld[r1].class - (int) rld[r2].class;
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* If reloads are equally urgent, sort by reload number,
|
||
so that the results of qsort leave nothing to chance. */
|
||
return r1 - r2;
|
||
}
|
||
|
||
/* The cost of spilling each hard reg. */
|
||
static int spill_cost[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* When spilling multiple hard registers, we use SPILL_COST for the first
|
||
spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
|
||
only the first hard reg for a multi-reg pseudo. */
|
||
static int spill_add_cost[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Update the spill cost arrays, considering that pseudo REG is live. */
|
||
|
||
static void
|
||
count_pseudo (int reg)
|
||
{
|
||
int freq = REG_FREQ (reg);
|
||
int r = reg_renumber[reg];
|
||
int nregs;
|
||
|
||
if (REGNO_REG_SET_P (&pseudos_counted, reg)
|
||
|| REGNO_REG_SET_P (&spilled_pseudos, reg))
|
||
return;
|
||
|
||
SET_REGNO_REG_SET (&pseudos_counted, reg);
|
||
|
||
if (r < 0)
|
||
abort ();
|
||
|
||
spill_add_cost[r] += freq;
|
||
|
||
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
|
||
while (nregs-- > 0)
|
||
spill_cost[r + nregs] += freq;
|
||
}
|
||
|
||
/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
|
||
contents of BAD_SPILL_REGS for the insn described by CHAIN. */
|
||
|
||
static void
|
||
order_regs_for_reload (struct insn_chain *chain)
|
||
{
|
||
int i;
|
||
HARD_REG_SET used_by_pseudos;
|
||
HARD_REG_SET used_by_pseudos2;
|
||
|
||
COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
|
||
|
||
memset (spill_cost, 0, sizeof spill_cost);
|
||
memset (spill_add_cost, 0, sizeof spill_add_cost);
|
||
|
||
/* Count number of uses of each hard reg by pseudo regs allocated to it
|
||
and then order them by decreasing use. First exclude hard registers
|
||
that are live in or across this insn. */
|
||
|
||
REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
|
||
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
|
||
IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
|
||
IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
|
||
|
||
/* Now find out which pseudos are allocated to it, and update
|
||
hard_reg_n_uses. */
|
||
CLEAR_REG_SET (&pseudos_counted);
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
count_pseudo (i);
|
||
});
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
count_pseudo (i);
|
||
});
|
||
CLEAR_REG_SET (&pseudos_counted);
|
||
}
|
||
|
||
/* Vector of reload-numbers showing the order in which the reloads should
|
||
be processed. */
|
||
static short reload_order[MAX_RELOADS];
|
||
|
||
/* This is used to keep track of the spill regs used in one insn. */
|
||
static HARD_REG_SET used_spill_regs_local;
|
||
|
||
/* We decided to spill hard register SPILLED, which has a size of
|
||
SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
|
||
is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
|
||
update SPILL_COST/SPILL_ADD_COST. */
|
||
|
||
static void
|
||
count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
|
||
{
|
||
int r = reg_renumber[reg];
|
||
int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
|
||
|
||
if (REGNO_REG_SET_P (&spilled_pseudos, reg)
|
||
|| spilled + spilled_nregs <= r || r + nregs <= spilled)
|
||
return;
|
||
|
||
SET_REGNO_REG_SET (&spilled_pseudos, reg);
|
||
|
||
spill_add_cost[r] -= REG_FREQ (reg);
|
||
while (nregs-- > 0)
|
||
spill_cost[r + nregs] -= REG_FREQ (reg);
|
||
}
|
||
|
||
/* Find reload register to use for reload number ORDER. */
|
||
|
||
static int
|
||
find_reg (struct insn_chain *chain, int order)
|
||
{
|
||
int rnum = reload_order[order];
|
||
struct reload *rl = rld + rnum;
|
||
int best_cost = INT_MAX;
|
||
int best_reg = -1;
|
||
unsigned int i, j;
|
||
int k;
|
||
HARD_REG_SET not_usable;
|
||
HARD_REG_SET used_by_other_reload;
|
||
|
||
COPY_HARD_REG_SET (not_usable, bad_spill_regs);
|
||
IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
|
||
IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
|
||
|
||
CLEAR_HARD_REG_SET (used_by_other_reload);
|
||
for (k = 0; k < order; k++)
|
||
{
|
||
int other = reload_order[k];
|
||
|
||
if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
|
||
for (j = 0; j < rld[other].nregs; j++)
|
||
SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
|
||
}
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
unsigned int regno = i;
|
||
|
||
if (! TEST_HARD_REG_BIT (not_usable, regno)
|
||
&& ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
|
||
&& HARD_REGNO_MODE_OK (regno, rl->mode))
|
||
{
|
||
int this_cost = spill_cost[regno];
|
||
int ok = 1;
|
||
unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
|
||
|
||
for (j = 1; j < this_nregs; j++)
|
||
{
|
||
this_cost += spill_add_cost[regno + j];
|
||
if ((TEST_HARD_REG_BIT (not_usable, regno + j))
|
||
|| TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
|
||
ok = 0;
|
||
}
|
||
if (! ok)
|
||
continue;
|
||
if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
|
||
this_cost--;
|
||
if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
|
||
this_cost--;
|
||
if (this_cost < best_cost
|
||
/* Among registers with equal cost, prefer caller-saved ones, or
|
||
use REG_ALLOC_ORDER if it is defined. */
|
||
|| (this_cost == best_cost
|
||
#ifdef REG_ALLOC_ORDER
|
||
&& (inv_reg_alloc_order[regno]
|
||
< inv_reg_alloc_order[best_reg])
|
||
#else
|
||
&& call_used_regs[regno]
|
||
&& ! call_used_regs[best_reg]
|
||
#endif
|
||
))
|
||
{
|
||
best_reg = regno;
|
||
best_cost = this_cost;
|
||
}
|
||
}
|
||
}
|
||
if (best_reg == -1)
|
||
return 0;
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
|
||
|
||
rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
|
||
rl->regno = best_reg;
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
|
||
{
|
||
count_spilled_pseudo (best_reg, rl->nregs, j);
|
||
});
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
|
||
{
|
||
count_spilled_pseudo (best_reg, rl->nregs, j);
|
||
});
|
||
|
||
for (i = 0; i < rl->nregs; i++)
|
||
{
|
||
if (spill_cost[best_reg + i] != 0
|
||
|| spill_add_cost[best_reg + i] != 0)
|
||
abort ();
|
||
SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Find more reload regs to satisfy the remaining need of an insn, which
|
||
is given by CHAIN.
|
||
Do it by ascending class number, since otherwise a reg
|
||
might be spilled for a big class and might fail to count
|
||
for a smaller class even though it belongs to that class. */
|
||
|
||
static void
|
||
find_reload_regs (struct insn_chain *chain)
|
||
{
|
||
int i;
|
||
|
||
/* In order to be certain of getting the registers we need,
|
||
we must sort the reloads into order of increasing register class.
|
||
Then our grabbing of reload registers will parallel the process
|
||
that provided the reload registers. */
|
||
for (i = 0; i < chain->n_reloads; i++)
|
||
{
|
||
/* Show whether this reload already has a hard reg. */
|
||
if (chain->rld[i].reg_rtx)
|
||
{
|
||
int regno = REGNO (chain->rld[i].reg_rtx);
|
||
chain->rld[i].regno = regno;
|
||
chain->rld[i].nregs
|
||
= HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
|
||
}
|
||
else
|
||
chain->rld[i].regno = -1;
|
||
reload_order[i] = i;
|
||
}
|
||
|
||
n_reloads = chain->n_reloads;
|
||
memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
|
||
|
||
CLEAR_HARD_REG_SET (used_spill_regs_local);
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
|
||
|
||
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
|
||
|
||
/* Compute the order of preference for hard registers to spill. */
|
||
|
||
order_regs_for_reload (chain);
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
int r = reload_order[i];
|
||
|
||
/* Ignore reloads that got marked inoperative. */
|
||
if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
|
||
&& ! rld[r].optional
|
||
&& rld[r].regno == -1)
|
||
if (! find_reg (chain, i))
|
||
{
|
||
spill_failure (chain->insn, rld[r].class);
|
||
failure = 1;
|
||
return;
|
||
}
|
||
}
|
||
|
||
COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
|
||
IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
|
||
|
||
memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
|
||
}
|
||
|
||
static void
|
||
select_reload_regs (void)
|
||
{
|
||
struct insn_chain *chain;
|
||
|
||
/* Try to satisfy the needs for each insn. */
|
||
for (chain = insns_need_reload; chain != 0;
|
||
chain = chain->next_need_reload)
|
||
find_reload_regs (chain);
|
||
}
|
||
|
||
/* Delete all insns that were inserted by emit_caller_save_insns during
|
||
this iteration. */
|
||
static void
|
||
delete_caller_save_insns (void)
|
||
{
|
||
struct insn_chain *c = reload_insn_chain;
|
||
|
||
while (c != 0)
|
||
{
|
||
while (c != 0 && c->is_caller_save_insn)
|
||
{
|
||
struct insn_chain *next = c->next;
|
||
rtx insn = c->insn;
|
||
|
||
if (c == reload_insn_chain)
|
||
reload_insn_chain = next;
|
||
delete_insn (insn);
|
||
|
||
if (next)
|
||
next->prev = c->prev;
|
||
if (c->prev)
|
||
c->prev->next = next;
|
||
c->next = unused_insn_chains;
|
||
unused_insn_chains = c;
|
||
c = next;
|
||
}
|
||
if (c != 0)
|
||
c = c->next;
|
||
}
|
||
}
|
||
|
||
/* Handle the failure to find a register to spill.
|
||
INSN should be one of the insns which needed this particular spill reg. */
|
||
|
||
static void
|
||
spill_failure (rtx insn, enum reg_class class)
|
||
{
|
||
static const char *const reg_class_names[] = REG_CLASS_NAMES;
|
||
if (asm_noperands (PATTERN (insn)) >= 0)
|
||
error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
|
||
reg_class_names[class]);
|
||
else
|
||
{
|
||
error ("unable to find a register to spill in class `%s'",
|
||
reg_class_names[class]);
|
||
fatal_insn ("this is the insn:", insn);
|
||
}
|
||
}
|
||
|
||
/* Delete an unneeded INSN and any previous insns who sole purpose is loading
|
||
data that is dead in INSN. */
|
||
|
||
static void
|
||
delete_dead_insn (rtx insn)
|
||
{
|
||
rtx prev = prev_real_insn (insn);
|
||
rtx prev_dest;
|
||
|
||
/* If the previous insn sets a register that dies in our insn, delete it
|
||
too. */
|
||
if (prev && GET_CODE (PATTERN (prev)) == SET
|
||
&& (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
|
||
&& reg_mentioned_p (prev_dest, PATTERN (insn))
|
||
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
|
||
&& ! side_effects_p (SET_SRC (PATTERN (prev))))
|
||
delete_dead_insn (prev);
|
||
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
}
|
||
|
||
/* Modify the home of pseudo-reg I.
|
||
The new home is present in reg_renumber[I].
|
||
|
||
FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
|
||
or it may be -1, meaning there is none or it is not relevant.
|
||
This is used so that all pseudos spilled from a given hard reg
|
||
can share one stack slot. */
|
||
|
||
static void
|
||
alter_reg (int i, int from_reg)
|
||
{
|
||
/* When outputting an inline function, this can happen
|
||
for a reg that isn't actually used. */
|
||
if (regno_reg_rtx[i] == 0)
|
||
return;
|
||
|
||
/* If the reg got changed to a MEM at rtl-generation time,
|
||
ignore it. */
|
||
if (GET_CODE (regno_reg_rtx[i]) != REG)
|
||
return;
|
||
|
||
/* Modify the reg-rtx to contain the new hard reg
|
||
number or else to contain its pseudo reg number. */
|
||
REGNO (regno_reg_rtx[i])
|
||
= reg_renumber[i] >= 0 ? reg_renumber[i] : i;
|
||
|
||
/* If we have a pseudo that is needed but has no hard reg or equivalent,
|
||
allocate a stack slot for it. */
|
||
|
||
if (reg_renumber[i] < 0
|
||
&& REG_N_REFS (i) > 0
|
||
&& reg_equiv_constant[i] == 0
|
||
&& reg_equiv_memory_loc[i] == 0)
|
||
{
|
||
rtx x;
|
||
unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
|
||
unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
|
||
int adjust = 0;
|
||
|
||
/* Each pseudo reg has an inherent size which comes from its own mode,
|
||
and a total size which provides room for paradoxical subregs
|
||
which refer to the pseudo reg in wider modes.
|
||
|
||
We can use a slot already allocated if it provides both
|
||
enough inherent space and enough total space.
|
||
Otherwise, we allocate a new slot, making sure that it has no less
|
||
inherent space, and no less total space, then the previous slot. */
|
||
if (from_reg == -1)
|
||
{
|
||
/* No known place to spill from => no slot to reuse. */
|
||
x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
|
||
inherent_size == total_size ? 0 : -1);
|
||
if (BYTES_BIG_ENDIAN)
|
||
/* Cancel the big-endian correction done in assign_stack_local.
|
||
Get the address of the beginning of the slot.
|
||
This is so we can do a big-endian correction unconditionally
|
||
below. */
|
||
adjust = inherent_size - total_size;
|
||
|
||
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
|
||
|
||
/* Nothing can alias this slot except this pseudo. */
|
||
set_mem_alias_set (x, new_alias_set ());
|
||
}
|
||
|
||
/* Reuse a stack slot if possible. */
|
||
else if (spill_stack_slot[from_reg] != 0
|
||
&& spill_stack_slot_width[from_reg] >= total_size
|
||
&& (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
|
||
>= inherent_size))
|
||
x = spill_stack_slot[from_reg];
|
||
|
||
/* Allocate a bigger slot. */
|
||
else
|
||
{
|
||
/* Compute maximum size needed, both for inherent size
|
||
and for total size. */
|
||
enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
|
||
rtx stack_slot;
|
||
|
||
if (spill_stack_slot[from_reg])
|
||
{
|
||
if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
|
||
> inherent_size)
|
||
mode = GET_MODE (spill_stack_slot[from_reg]);
|
||
if (spill_stack_slot_width[from_reg] > total_size)
|
||
total_size = spill_stack_slot_width[from_reg];
|
||
}
|
||
|
||
/* Make a slot with that size. */
|
||
x = assign_stack_local (mode, total_size,
|
||
inherent_size == total_size ? 0 : -1);
|
||
stack_slot = x;
|
||
|
||
/* All pseudos mapped to this slot can alias each other. */
|
||
if (spill_stack_slot[from_reg])
|
||
set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
|
||
else
|
||
set_mem_alias_set (x, new_alias_set ());
|
||
|
||
if (BYTES_BIG_ENDIAN)
|
||
{
|
||
/* Cancel the big-endian correction done in assign_stack_local.
|
||
Get the address of the beginning of the slot.
|
||
This is so we can do a big-endian correction unconditionally
|
||
below. */
|
||
adjust = GET_MODE_SIZE (mode) - total_size;
|
||
if (adjust)
|
||
stack_slot
|
||
= adjust_address_nv (x, mode_for_size (total_size
|
||
* BITS_PER_UNIT,
|
||
MODE_INT, 1),
|
||
adjust);
|
||
}
|
||
|
||
spill_stack_slot[from_reg] = stack_slot;
|
||
spill_stack_slot_width[from_reg] = total_size;
|
||
}
|
||
|
||
/* On a big endian machine, the "address" of the slot
|
||
is the address of the low part that fits its inherent mode. */
|
||
if (BYTES_BIG_ENDIAN && inherent_size < total_size)
|
||
adjust += (total_size - inherent_size);
|
||
|
||
/* If we have any adjustment to make, or if the stack slot is the
|
||
wrong mode, make a new stack slot. */
|
||
x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
|
||
|
||
/* If we have a decl for the original register, set it for the
|
||
memory. If this is a shared MEM, make a copy. */
|
||
if (REG_EXPR (regno_reg_rtx[i])
|
||
&& TREE_CODE_CLASS (TREE_CODE (REG_EXPR (regno_reg_rtx[i]))) == 'd')
|
||
{
|
||
rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
|
||
|
||
/* We can do this only for the DECLs home pseudo, not for
|
||
any copies of it, since otherwise when the stack slot
|
||
is reused, nonoverlapping_memrefs_p might think they
|
||
cannot overlap. */
|
||
if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
|
||
{
|
||
if (from_reg != -1 && spill_stack_slot[from_reg] == x)
|
||
x = copy_rtx (x);
|
||
|
||
set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
|
||
}
|
||
}
|
||
|
||
/* Save the stack slot for later. */
|
||
reg_equiv_memory_loc[i] = x;
|
||
}
|
||
}
|
||
|
||
/* Mark the slots in regs_ever_live for the hard regs
|
||
used by pseudo-reg number REGNO. */
|
||
|
||
void
|
||
mark_home_live (int regno)
|
||
{
|
||
int i, lim;
|
||
|
||
i = reg_renumber[regno];
|
||
if (i < 0)
|
||
return;
|
||
lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
|
||
while (i < lim)
|
||
regs_ever_live[i++] = 1;
|
||
}
|
||
|
||
/* This function handles the tracking of elimination offsets around branches.
|
||
|
||
X is a piece of RTL being scanned.
|
||
|
||
INSN is the insn that it came from, if any.
|
||
|
||
INITIAL_P is nonzero if we are to set the offset to be the initial
|
||
offset and zero if we are setting the offset of the label to be the
|
||
current offset. */
|
||
|
||
static void
|
||
set_label_offsets (rtx x, rtx insn, int initial_p)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx tem;
|
||
unsigned int i;
|
||
struct elim_table *p;
|
||
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
if (LABEL_REF_NONLOCAL_P (x))
|
||
return;
|
||
|
||
x = XEXP (x, 0);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case CODE_LABEL:
|
||
/* If we know nothing about this label, set the desired offsets. Note
|
||
that this sets the offset at a label to be the offset before a label
|
||
if we don't know anything about the label. This is not correct for
|
||
the label after a BARRIER, but is the best guess we can make. If
|
||
we guessed wrong, we will suppress an elimination that might have
|
||
been possible had we been able to guess correctly. */
|
||
|
||
if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
|
||
{
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
|
||
= (initial_p ? reg_eliminate[i].initial_offset
|
||
: reg_eliminate[i].offset);
|
||
offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
|
||
}
|
||
|
||
/* Otherwise, if this is the definition of a label and it is
|
||
preceded by a BARRIER, set our offsets to the known offset of
|
||
that label. */
|
||
|
||
else if (x == insn
|
||
&& (tem = prev_nonnote_insn (insn)) != 0
|
||
&& GET_CODE (tem) == BARRIER)
|
||
set_offsets_for_label (insn);
|
||
else
|
||
/* If neither of the above cases is true, compare each offset
|
||
with those previously recorded and suppress any eliminations
|
||
where the offsets disagree. */
|
||
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
|
||
!= (initial_p ? reg_eliminate[i].initial_offset
|
||
: reg_eliminate[i].offset))
|
||
reg_eliminate[i].can_eliminate = 0;
|
||
|
||
return;
|
||
|
||
case JUMP_INSN:
|
||
set_label_offsets (PATTERN (insn), insn, initial_p);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case INSN:
|
||
case CALL_INSN:
|
||
/* Any labels mentioned in REG_LABEL notes can be branched to indirectly
|
||
and hence must have all eliminations at their initial offsets. */
|
||
for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
|
||
if (REG_NOTE_KIND (tem) == REG_LABEL)
|
||
set_label_offsets (XEXP (tem, 0), insn, 1);
|
||
return;
|
||
|
||
case PARALLEL:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
/* Each of the labels in the parallel or address vector must be
|
||
at their initial offsets. We want the first field for PARALLEL
|
||
and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
|
||
|
||
for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
|
||
set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
|
||
insn, initial_p);
|
||
return;
|
||
|
||
case SET:
|
||
/* We only care about setting PC. If the source is not RETURN,
|
||
IF_THEN_ELSE, or a label, disable any eliminations not at
|
||
their initial offsets. Similarly if any arm of the IF_THEN_ELSE
|
||
isn't one of those possibilities. For branches to a label,
|
||
call ourselves recursively.
|
||
|
||
Note that this can disable elimination unnecessarily when we have
|
||
a non-local goto since it will look like a non-constant jump to
|
||
someplace in the current function. This isn't a significant
|
||
problem since such jumps will normally be when all elimination
|
||
pairs are back to their initial offsets. */
|
||
|
||
if (SET_DEST (x) != pc_rtx)
|
||
return;
|
||
|
||
switch (GET_CODE (SET_SRC (x)))
|
||
{
|
||
case PC:
|
||
case RETURN:
|
||
return;
|
||
|
||
case LABEL_REF:
|
||
set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
|
||
return;
|
||
|
||
case IF_THEN_ELSE:
|
||
tem = XEXP (SET_SRC (x), 1);
|
||
if (GET_CODE (tem) == LABEL_REF)
|
||
set_label_offsets (XEXP (tem, 0), insn, initial_p);
|
||
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
|
||
break;
|
||
|
||
tem = XEXP (SET_SRC (x), 2);
|
||
if (GET_CODE (tem) == LABEL_REF)
|
||
set_label_offsets (XEXP (tem, 0), insn, initial_p);
|
||
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
|
||
break;
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we reach here, all eliminations must be at their initial
|
||
offset because we are doing a jump to a variable address. */
|
||
for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++)
|
||
if (p->offset != p->initial_offset)
|
||
p->can_eliminate = 0;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Scan X and replace any eliminable registers (such as fp) with a
|
||
replacement (such as sp), plus an offset.
|
||
|
||
MEM_MODE is the mode of an enclosing MEM. We need this to know how
|
||
much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
|
||
MEM, we are allowed to replace a sum of a register and the constant zero
|
||
with the register, which we cannot do outside a MEM. In addition, we need
|
||
to record the fact that a register is referenced outside a MEM.
|
||
|
||
If INSN is an insn, it is the insn containing X. If we replace a REG
|
||
in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
|
||
CLOBBER of the pseudo after INSN so find_equiv_regs will know that
|
||
the REG is being modified.
|
||
|
||
Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
|
||
That's used when we eliminate in expressions stored in notes.
|
||
This means, do not set ref_outside_mem even if the reference
|
||
is outside of MEMs.
|
||
|
||
REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
|
||
replacements done assuming all offsets are at their initial values. If
|
||
they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
|
||
encounter, return the actual location so that find_reloads will do
|
||
the proper thing. */
|
||
|
||
rtx
|
||
eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
struct elim_table *ep;
|
||
int regno;
|
||
rtx new;
|
||
int i, j;
|
||
const char *fmt;
|
||
int copied = 0;
|
||
|
||
if (! current_function_decl)
|
||
return x;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case ASM_INPUT:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case RETURN:
|
||
return x;
|
||
|
||
case ADDRESSOF:
|
||
/* This is only for the benefit of the debugging backends, which call
|
||
eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
|
||
removed after CSE. */
|
||
new = eliminate_regs (XEXP (x, 0), 0, insn);
|
||
if (GET_CODE (new) == MEM)
|
||
return XEXP (new, 0);
|
||
return x;
|
||
|
||
case REG:
|
||
regno = REGNO (x);
|
||
|
||
/* First handle the case where we encounter a bare register that
|
||
is eliminable. Replace it with a PLUS. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == x && ep->can_eliminate)
|
||
return plus_constant (ep->to_rtx, ep->previous_offset);
|
||
|
||
}
|
||
else if (reg_renumber && reg_renumber[regno] < 0
|
||
&& reg_equiv_constant && reg_equiv_constant[regno]
|
||
&& ! CONSTANT_P (reg_equiv_constant[regno]))
|
||
return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
|
||
mem_mode, insn);
|
||
return x;
|
||
|
||
/* You might think handling MINUS in a manner similar to PLUS is a
|
||
good idea. It is not. It has been tried multiple times and every
|
||
time the change has had to have been reverted.
|
||
|
||
Other parts of reload know a PLUS is special (gen_reload for example)
|
||
and require special code to handle code a reloaded PLUS operand.
|
||
|
||
Also consider backends where the flags register is clobbered by a
|
||
MINUS, but we can emit a PLUS that does not clobber flags (ia32,
|
||
lea instruction comes to mind). If we try to reload a MINUS, we
|
||
may kill the flags register that was holding a useful value.
|
||
|
||
So, please before trying to handle MINUS, consider reload as a
|
||
whole instead of this little section as well as the backend issues. */
|
||
case PLUS:
|
||
/* If this is the sum of an eliminable register and a constant, rework
|
||
the sum. */
|
||
if (GET_CODE (XEXP (x, 0)) == REG
|
||
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
|
||
&& CONSTANT_P (XEXP (x, 1)))
|
||
{
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
|
||
{
|
||
/* The only time we want to replace a PLUS with a REG (this
|
||
occurs when the constant operand of the PLUS is the negative
|
||
of the offset) is when we are inside a MEM. We won't want
|
||
to do so at other times because that would change the
|
||
structure of the insn in a way that reload can't handle.
|
||
We special-case the commonest situation in
|
||
eliminate_regs_in_insn, so just replace a PLUS with a
|
||
PLUS here, unless inside a MEM. */
|
||
if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) == - ep->previous_offset)
|
||
return ep->to_rtx;
|
||
else
|
||
return gen_rtx_PLUS (Pmode, ep->to_rtx,
|
||
plus_constant (XEXP (x, 1),
|
||
ep->previous_offset));
|
||
}
|
||
|
||
/* If the register is not eliminable, we are done since the other
|
||
operand is a constant. */
|
||
return x;
|
||
}
|
||
|
||
/* If this is part of an address, we want to bring any constant to the
|
||
outermost PLUS. We will do this by doing register replacement in
|
||
our operands and seeing if a constant shows up in one of them.
|
||
|
||
Note that there is no risk of modifying the structure of the insn,
|
||
since we only get called for its operands, thus we are either
|
||
modifying the address inside a MEM, or something like an address
|
||
operand of a load-address insn. */
|
||
|
||
{
|
||
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
|
||
|
||
if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
|
||
{
|
||
/* If one side is a PLUS and the other side is a pseudo that
|
||
didn't get a hard register but has a reg_equiv_constant,
|
||
we must replace the constant here since it may no longer
|
||
be in the position of any operand. */
|
||
if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
|
||
&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (new1)] < 0
|
||
&& reg_equiv_constant != 0
|
||
&& reg_equiv_constant[REGNO (new1)] != 0)
|
||
new1 = reg_equiv_constant[REGNO (new1)];
|
||
else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
|
||
&& REGNO (new0) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (new0)] < 0
|
||
&& reg_equiv_constant[REGNO (new0)] != 0)
|
||
new0 = reg_equiv_constant[REGNO (new0)];
|
||
|
||
new = form_sum (new0, new1);
|
||
|
||
/* As above, if we are not inside a MEM we do not want to
|
||
turn a PLUS into something else. We might try to do so here
|
||
for an addition of 0 if we aren't optimizing. */
|
||
if (! mem_mode && GET_CODE (new) != PLUS)
|
||
return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
|
||
else
|
||
return new;
|
||
}
|
||
}
|
||
return x;
|
||
|
||
case MULT:
|
||
/* If this is the product of an eliminable register and a
|
||
constant, apply the distribute law and move the constant out
|
||
so that we have (plus (mult ..) ..). This is needed in order
|
||
to keep load-address insns valid. This case is pathological.
|
||
We ignore the possibility of overflow here. */
|
||
if (GET_CODE (XEXP (x, 0)) == REG
|
||
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
|
||
{
|
||
if (! mem_mode
|
||
/* Refs inside notes don't count for this purpose. */
|
||
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|
||
|| GET_CODE (insn) == INSN_LIST)))
|
||
ep->ref_outside_mem = 1;
|
||
|
||
return
|
||
plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
|
||
ep->previous_offset * INTVAL (XEXP (x, 1)));
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case CALL:
|
||
case COMPARE:
|
||
/* See comments before PLUS about handling MINUS. */
|
||
case MINUS:
|
||
case DIV: case UDIV:
|
||
case MOD: case UMOD:
|
||
case AND: case IOR: case XOR:
|
||
case ROTATERT: case ROTATE:
|
||
case ASHIFTRT: case LSHIFTRT: case ASHIFT:
|
||
case NE: case EQ:
|
||
case GE: case GT: case GEU: case GTU:
|
||
case LE: case LT: case LEU: case LTU:
|
||
{
|
||
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
rtx new1
|
||
= XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
|
||
|
||
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
|
||
return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
|
||
}
|
||
return x;
|
||
|
||
case EXPR_LIST:
|
||
/* If we have something in XEXP (x, 0), the usual case, eliminate it. */
|
||
if (XEXP (x, 0))
|
||
{
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
if (new != XEXP (x, 0))
|
||
{
|
||
/* If this is a REG_DEAD note, it is not valid anymore.
|
||
Using the eliminated version could result in creating a
|
||
REG_DEAD note for the stack or frame pointer. */
|
||
if (GET_MODE (x) == REG_DEAD)
|
||
return (XEXP (x, 1)
|
||
? eliminate_regs (XEXP (x, 1), mem_mode, insn)
|
||
: NULL_RTX);
|
||
|
||
x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
|
||
}
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case INSN_LIST:
|
||
/* Now do eliminations in the rest of the chain. If this was
|
||
an EXPR_LIST, this might result in allocating more memory than is
|
||
strictly needed, but it simplifies the code. */
|
||
if (XEXP (x, 1))
|
||
{
|
||
new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
|
||
if (new != XEXP (x, 1))
|
||
return
|
||
gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
|
||
}
|
||
return x;
|
||
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
case STRICT_LOW_PART:
|
||
case NEG: case NOT:
|
||
case SIGN_EXTEND: case ZERO_EXTEND:
|
||
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
|
||
case FLOAT: case FIX:
|
||
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
|
||
case ABS:
|
||
case SQRT:
|
||
case FFS:
|
||
case CLZ:
|
||
case CTZ:
|
||
case POPCOUNT:
|
||
case PARITY:
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
|
||
if (new != XEXP (x, 0))
|
||
return gen_rtx_fmt_e (code, GET_MODE (x), new);
|
||
return x;
|
||
|
||
case SUBREG:
|
||
/* Similar to above processing, but preserve SUBREG_BYTE.
|
||
Convert (subreg (mem)) to (mem) if not paradoxical.
|
||
Also, if we have a non-paradoxical (subreg (pseudo)) and the
|
||
pseudo didn't get a hard reg, we must replace this with the
|
||
eliminated version of the memory location because push_reload
|
||
may do the replacement in certain circumstances. */
|
||
if (GET_CODE (SUBREG_REG (x)) == REG
|
||
&& (GET_MODE_SIZE (GET_MODE (x))
|
||
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
&& reg_equiv_memory_loc != 0
|
||
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
|
||
{
|
||
new = SUBREG_REG (x);
|
||
}
|
||
else
|
||
new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
|
||
|
||
if (new != SUBREG_REG (x))
|
||
{
|
||
int x_size = GET_MODE_SIZE (GET_MODE (x));
|
||
int new_size = GET_MODE_SIZE (GET_MODE (new));
|
||
|
||
if (GET_CODE (new) == MEM
|
||
&& ((x_size < new_size
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
/* On these machines, combine can create rtl of the form
|
||
(set (subreg:m1 (reg:m2 R) 0) ...)
|
||
where m1 < m2, and expects something interesting to
|
||
happen to the entire word. Moreover, it will use the
|
||
(reg:m2 R) later, expecting all bits to be preserved.
|
||
So if the number of words is the same, preserve the
|
||
subreg so that push_reload can see it. */
|
||
&& ! ((x_size - 1) / UNITS_PER_WORD
|
||
== (new_size -1 ) / UNITS_PER_WORD)
|
||
#endif
|
||
)
|
||
|| x_size == new_size)
|
||
)
|
||
return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
|
||
else
|
||
return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
|
||
}
|
||
|
||
return x;
|
||
|
||
case MEM:
|
||
/* This is only for the benefit of the debugging backends, which call
|
||
eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
|
||
removed after CSE. */
|
||
if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
|
||
return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
|
||
|
||
/* Our only special processing is to pass the mode of the MEM to our
|
||
recursive call and copy the flags. While we are here, handle this
|
||
case more efficiently. */
|
||
return
|
||
replace_equiv_address_nv (x,
|
||
eliminate_regs (XEXP (x, 0),
|
||
GET_MODE (x), insn));
|
||
|
||
case USE:
|
||
/* Handle insn_list USE that a call to a pure function may generate. */
|
||
new = eliminate_regs (XEXP (x, 0), 0, insn);
|
||
if (new != XEXP (x, 0))
|
||
return gen_rtx_USE (GET_MODE (x), new);
|
||
return x;
|
||
|
||
case CLOBBER:
|
||
case ASM_OPERANDS:
|
||
case SET:
|
||
abort ();
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Process each of our operands recursively. If any have changed, make a
|
||
copy of the rtx. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
{
|
||
if (*fmt == 'e')
|
||
{
|
||
new = eliminate_regs (XEXP (x, i), mem_mode, insn);
|
||
if (new != XEXP (x, i) && ! copied)
|
||
{
|
||
rtx new_x = rtx_alloc (code);
|
||
memcpy (new_x, x, RTX_SIZE (code));
|
||
x = new_x;
|
||
copied = 1;
|
||
}
|
||
XEXP (x, i) = new;
|
||
}
|
||
else if (*fmt == 'E')
|
||
{
|
||
int copied_vec = 0;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
{
|
||
new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
|
||
if (new != XVECEXP (x, i, j) && ! copied_vec)
|
||
{
|
||
rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
|
||
XVEC (x, i)->elem);
|
||
if (! copied)
|
||
{
|
||
rtx new_x = rtx_alloc (code);
|
||
memcpy (new_x, x, RTX_SIZE (code));
|
||
x = new_x;
|
||
copied = 1;
|
||
}
|
||
XVEC (x, i) = new_v;
|
||
copied_vec = 1;
|
||
}
|
||
XVECEXP (x, i, j) = new;
|
||
}
|
||
}
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Scan rtx X for modifications of elimination target registers. Update
|
||
the table of eliminables to reflect the changed state. MEM_MODE is
|
||
the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
|
||
|
||
static void
|
||
elimination_effects (rtx x, enum machine_mode mem_mode)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
struct elim_table *ep;
|
||
int regno;
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case ASM_INPUT:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case RETURN:
|
||
return;
|
||
|
||
case ADDRESSOF:
|
||
abort ();
|
||
|
||
case REG:
|
||
regno = REGNO (x);
|
||
|
||
/* First handle the case where we encounter a bare register that
|
||
is eliminable. Replace it with a PLUS. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == x && ep->can_eliminate)
|
||
{
|
||
if (! mem_mode)
|
||
ep->ref_outside_mem = 1;
|
||
return;
|
||
}
|
||
|
||
}
|
||
else if (reg_renumber[regno] < 0 && reg_equiv_constant
|
||
&& reg_equiv_constant[regno]
|
||
&& ! function_invariant_p (reg_equiv_constant[regno]))
|
||
elimination_effects (reg_equiv_constant[regno], mem_mode);
|
||
return;
|
||
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
case POST_MODIFY:
|
||
case PRE_MODIFY:
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->to_rtx == XEXP (x, 0))
|
||
{
|
||
int size = GET_MODE_SIZE (mem_mode);
|
||
|
||
/* If more bytes than MEM_MODE are pushed, account for them. */
|
||
#ifdef PUSH_ROUNDING
|
||
if (ep->to_rtx == stack_pointer_rtx)
|
||
size = PUSH_ROUNDING (size);
|
||
#endif
|
||
if (code == PRE_DEC || code == POST_DEC)
|
||
ep->offset += size;
|
||
else if (code == PRE_INC || code == POST_INC)
|
||
ep->offset -= size;
|
||
else if ((code == PRE_MODIFY || code == POST_MODIFY)
|
||
&& GET_CODE (XEXP (x, 1)) == PLUS
|
||
&& XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
|
||
&& CONSTANT_P (XEXP (XEXP (x, 1), 1)))
|
||
ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
|
||
}
|
||
|
||
/* These two aren't unary operators. */
|
||
if (code == POST_MODIFY || code == PRE_MODIFY)
|
||
break;
|
||
|
||
/* Fall through to generic unary operation case. */
|
||
case STRICT_LOW_PART:
|
||
case NEG: case NOT:
|
||
case SIGN_EXTEND: case ZERO_EXTEND:
|
||
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
|
||
case FLOAT: case FIX:
|
||
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
|
||
case ABS:
|
||
case SQRT:
|
||
case FFS:
|
||
case CLZ:
|
||
case CTZ:
|
||
case POPCOUNT:
|
||
case PARITY:
|
||
elimination_effects (XEXP (x, 0), mem_mode);
|
||
return;
|
||
|
||
case SUBREG:
|
||
if (GET_CODE (SUBREG_REG (x)) == REG
|
||
&& (GET_MODE_SIZE (GET_MODE (x))
|
||
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
&& reg_equiv_memory_loc != 0
|
||
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
|
||
return;
|
||
|
||
elimination_effects (SUBREG_REG (x), mem_mode);
|
||
return;
|
||
|
||
case USE:
|
||
/* If using a register that is the source of an eliminate we still
|
||
think can be performed, note it cannot be performed since we don't
|
||
know how this register is used. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->from_rtx == XEXP (x, 0))
|
||
ep->can_eliminate = 0;
|
||
|
||
elimination_effects (XEXP (x, 0), mem_mode);
|
||
return;
|
||
|
||
case CLOBBER:
|
||
/* If clobbering a register that is the replacement register for an
|
||
elimination we still think can be performed, note that it cannot
|
||
be performed. Otherwise, we need not be concerned about it. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->to_rtx == XEXP (x, 0))
|
||
ep->can_eliminate = 0;
|
||
|
||
elimination_effects (XEXP (x, 0), mem_mode);
|
||
return;
|
||
|
||
case SET:
|
||
/* Check for setting a register that we know about. */
|
||
if (GET_CODE (SET_DEST (x)) == REG)
|
||
{
|
||
/* See if this is setting the replacement register for an
|
||
elimination.
|
||
|
||
If DEST is the hard frame pointer, we do nothing because we
|
||
assume that all assignments to the frame pointer are for
|
||
non-local gotos and are being done at a time when they are valid
|
||
and do not disturb anything else. Some machines want to
|
||
eliminate a fake argument pointer (or even a fake frame pointer)
|
||
with either the real frame or the stack pointer. Assignments to
|
||
the hard frame pointer must not prevent this elimination. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->to_rtx == SET_DEST (x)
|
||
&& SET_DEST (x) != hard_frame_pointer_rtx)
|
||
{
|
||
/* If it is being incremented, adjust the offset. Otherwise,
|
||
this elimination can't be done. */
|
||
rtx src = SET_SRC (x);
|
||
|
||
if (GET_CODE (src) == PLUS
|
||
&& XEXP (src, 0) == SET_DEST (x)
|
||
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
|
||
ep->offset -= INTVAL (XEXP (src, 1));
|
||
else
|
||
ep->can_eliminate = 0;
|
||
}
|
||
}
|
||
|
||
elimination_effects (SET_DEST (x), 0);
|
||
elimination_effects (SET_SRC (x), 0);
|
||
return;
|
||
|
||
case MEM:
|
||
if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
|
||
abort ();
|
||
|
||
/* Our only special processing is to pass the mode of the MEM to our
|
||
recursive call. */
|
||
elimination_effects (XEXP (x, 0), GET_MODE (x));
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
{
|
||
if (*fmt == 'e')
|
||
elimination_effects (XEXP (x, i), mem_mode);
|
||
else if (*fmt == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
elimination_effects (XVECEXP (x, i, j), mem_mode);
|
||
}
|
||
}
|
||
|
||
/* Descend through rtx X and verify that no references to eliminable registers
|
||
remain. If any do remain, mark the involved register as not
|
||
eliminable. */
|
||
|
||
static void
|
||
check_eliminable_occurrences (rtx x)
|
||
{
|
||
const char *fmt;
|
||
int i;
|
||
enum rtx_code code;
|
||
|
||
if (x == 0)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
struct elim_table *ep;
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->from_rtx == x && ep->can_eliminate)
|
||
ep->can_eliminate = 0;
|
||
return;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
{
|
||
if (*fmt == 'e')
|
||
check_eliminable_occurrences (XEXP (x, i));
|
||
else if (*fmt == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
check_eliminable_occurrences (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Scan INSN and eliminate all eliminable registers in it.
|
||
|
||
If REPLACE is nonzero, do the replacement destructively. Also
|
||
delete the insn as dead it if it is setting an eliminable register.
|
||
|
||
If REPLACE is zero, do all our allocations in reload_obstack.
|
||
|
||
If no eliminations were done and this insn doesn't require any elimination
|
||
processing (these are not identical conditions: it might be updating sp,
|
||
but not referencing fp; this needs to be seen during reload_as_needed so
|
||
that the offset between fp and sp can be taken into consideration), zero
|
||
is returned. Otherwise, 1 is returned. */
|
||
|
||
static int
|
||
eliminate_regs_in_insn (rtx insn, int replace)
|
||
{
|
||
int icode = recog_memoized (insn);
|
||
rtx old_body = PATTERN (insn);
|
||
int insn_is_asm = asm_noperands (old_body) >= 0;
|
||
rtx old_set = single_set (insn);
|
||
rtx new_body;
|
||
int val = 0;
|
||
int i;
|
||
rtx substed_operand[MAX_RECOG_OPERANDS];
|
||
rtx orig_operand[MAX_RECOG_OPERANDS];
|
||
struct elim_table *ep;
|
||
|
||
if (! insn_is_asm && icode < 0)
|
||
{
|
||
if (GET_CODE (PATTERN (insn)) == USE
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
||
|| GET_CODE (PATTERN (insn)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
|
||
|| GET_CODE (PATTERN (insn)) == ASM_INPUT)
|
||
return 0;
|
||
abort ();
|
||
}
|
||
|
||
if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
|
||
&& REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* Check for setting an eliminable register. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
|
||
{
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
/* If this is setting the frame pointer register to the
|
||
hardware frame pointer register and this is an elimination
|
||
that will be done (tested above), this insn is really
|
||
adjusting the frame pointer downward to compensate for
|
||
the adjustment done before a nonlocal goto. */
|
||
if (ep->from == FRAME_POINTER_REGNUM
|
||
&& ep->to == HARD_FRAME_POINTER_REGNUM)
|
||
{
|
||
rtx base = SET_SRC (old_set);
|
||
rtx base_insn = insn;
|
||
HOST_WIDE_INT offset = 0;
|
||
|
||
while (base != ep->to_rtx)
|
||
{
|
||
rtx prev_insn, prev_set;
|
||
|
||
if (GET_CODE (base) == PLUS
|
||
&& GET_CODE (XEXP (base, 1)) == CONST_INT)
|
||
{
|
||
offset += INTVAL (XEXP (base, 1));
|
||
base = XEXP (base, 0);
|
||
}
|
||
else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
|
||
&& (prev_set = single_set (prev_insn)) != 0
|
||
&& rtx_equal_p (SET_DEST (prev_set), base))
|
||
{
|
||
base = SET_SRC (prev_set);
|
||
base_insn = prev_insn;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (base == ep->to_rtx)
|
||
{
|
||
rtx src
|
||
= plus_constant (ep->to_rtx, offset - ep->offset);
|
||
|
||
new_body = old_body;
|
||
if (! replace)
|
||
{
|
||
new_body = copy_insn (old_body);
|
||
if (REG_NOTES (insn))
|
||
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
|
||
}
|
||
PATTERN (insn) = new_body;
|
||
old_set = single_set (insn);
|
||
|
||
/* First see if this insn remains valid when we
|
||
make the change. If not, keep the INSN_CODE
|
||
the same and let reload fit it up. */
|
||
validate_change (insn, &SET_SRC (old_set), src, 1);
|
||
validate_change (insn, &SET_DEST (old_set),
|
||
ep->to_rtx, 1);
|
||
if (! apply_change_group ())
|
||
{
|
||
SET_SRC (old_set) = src;
|
||
SET_DEST (old_set) = ep->to_rtx;
|
||
}
|
||
|
||
val = 1;
|
||
goto done;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* In this case this insn isn't serving a useful purpose. We
|
||
will delete it in reload_as_needed once we know that this
|
||
elimination is, in fact, being done.
|
||
|
||
If REPLACE isn't set, we can't delete this insn, but needn't
|
||
process it since it won't be used unless something changes. */
|
||
if (replace)
|
||
{
|
||
delete_dead_insn (insn);
|
||
return 1;
|
||
}
|
||
val = 1;
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
/* We allow one special case which happens to work on all machines we
|
||
currently support: a single set with the source being a PLUS of an
|
||
eliminable register and a constant. */
|
||
if (old_set
|
||
&& GET_CODE (SET_DEST (old_set)) == REG
|
||
&& GET_CODE (SET_SRC (old_set)) == PLUS
|
||
&& GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
|
||
&& GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
|
||
&& REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
rtx reg = XEXP (SET_SRC (old_set), 0);
|
||
HOST_WIDE_INT offset = INTVAL (XEXP (SET_SRC (old_set), 1));
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->from_rtx == reg && ep->can_eliminate)
|
||
{
|
||
offset += ep->offset;
|
||
|
||
if (offset == 0)
|
||
{
|
||
int num_clobbers;
|
||
/* We assume here that if we need a PARALLEL with
|
||
CLOBBERs for this assignment, we can do with the
|
||
MATCH_SCRATCHes that add_clobbers allocates.
|
||
There's not much we can do if that doesn't work. */
|
||
PATTERN (insn) = gen_rtx_SET (VOIDmode,
|
||
SET_DEST (old_set),
|
||
ep->to_rtx);
|
||
num_clobbers = 0;
|
||
INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
|
||
if (num_clobbers)
|
||
{
|
||
rtvec vec = rtvec_alloc (num_clobbers + 1);
|
||
|
||
vec->elem[0] = PATTERN (insn);
|
||
PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
|
||
add_clobbers (PATTERN (insn), INSN_CODE (insn));
|
||
}
|
||
if (INSN_CODE (insn) < 0)
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
new_body = old_body;
|
||
if (! replace)
|
||
{
|
||
new_body = copy_insn (old_body);
|
||
if (REG_NOTES (insn))
|
||
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
|
||
}
|
||
PATTERN (insn) = new_body;
|
||
old_set = single_set (insn);
|
||
|
||
XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
|
||
XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
|
||
}
|
||
val = 1;
|
||
/* This can't have an effect on elimination offsets, so skip right
|
||
to the end. */
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
/* Determine the effects of this insn on elimination offsets. */
|
||
elimination_effects (old_body, 0);
|
||
|
||
/* Eliminate all eliminable registers occurring in operands that
|
||
can be handled by reload. */
|
||
extract_insn (insn);
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
{
|
||
orig_operand[i] = recog_data.operand[i];
|
||
substed_operand[i] = recog_data.operand[i];
|
||
|
||
/* For an asm statement, every operand is eliminable. */
|
||
if (insn_is_asm || insn_data[icode].operand[i].eliminable)
|
||
{
|
||
/* Check for setting a register that we know about. */
|
||
if (recog_data.operand_type[i] != OP_IN
|
||
&& GET_CODE (orig_operand[i]) == REG)
|
||
{
|
||
/* If we are assigning to a register that can be eliminated, it
|
||
must be as part of a PARALLEL, since the code above handles
|
||
single SETs. We must indicate that we can no longer
|
||
eliminate this reg. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
|
||
ep->can_eliminate = 0;
|
||
}
|
||
|
||
substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
|
||
replace ? insn : NULL_RTX);
|
||
if (substed_operand[i] != orig_operand[i])
|
||
val = 1;
|
||
/* Terminate the search in check_eliminable_occurrences at
|
||
this point. */
|
||
*recog_data.operand_loc[i] = 0;
|
||
|
||
/* If an output operand changed from a REG to a MEM and INSN is an
|
||
insn, write a CLOBBER insn. */
|
||
if (recog_data.operand_type[i] != OP_IN
|
||
&& GET_CODE (orig_operand[i]) == REG
|
||
&& GET_CODE (substed_operand[i]) == MEM
|
||
&& replace)
|
||
emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
|
||
insn);
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < recog_data.n_dups; i++)
|
||
*recog_data.dup_loc[i]
|
||
= *recog_data.operand_loc[(int) recog_data.dup_num[i]];
|
||
|
||
/* If any eliminable remain, they aren't eliminable anymore. */
|
||
check_eliminable_occurrences (old_body);
|
||
|
||
/* Substitute the operands; the new values are in the substed_operand
|
||
array. */
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
*recog_data.operand_loc[i] = substed_operand[i];
|
||
for (i = 0; i < recog_data.n_dups; i++)
|
||
*recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
|
||
|
||
/* If we are replacing a body that was a (set X (plus Y Z)), try to
|
||
re-recognize the insn. We do this in case we had a simple addition
|
||
but now can do this as a load-address. This saves an insn in this
|
||
common case.
|
||
If re-recognition fails, the old insn code number will still be used,
|
||
and some register operands may have changed into PLUS expressions.
|
||
These will be handled by find_reloads by loading them into a register
|
||
again. */
|
||
|
||
if (val)
|
||
{
|
||
/* If we aren't replacing things permanently and we changed something,
|
||
make another copy to ensure that all the RTL is new. Otherwise
|
||
things can go wrong if find_reload swaps commutative operands
|
||
and one is inside RTL that has been copied while the other is not. */
|
||
new_body = old_body;
|
||
if (! replace)
|
||
{
|
||
new_body = copy_insn (old_body);
|
||
if (REG_NOTES (insn))
|
||
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
|
||
}
|
||
PATTERN (insn) = new_body;
|
||
|
||
/* If we had a move insn but now we don't, rerecognize it. This will
|
||
cause spurious re-recognition if the old move had a PARALLEL since
|
||
the new one still will, but we can't call single_set without
|
||
having put NEW_BODY into the insn and the re-recognition won't
|
||
hurt in this rare case. */
|
||
/* ??? Why this huge if statement - why don't we just rerecognize the
|
||
thing always? */
|
||
if (! insn_is_asm
|
||
&& old_set != 0
|
||
&& ((GET_CODE (SET_SRC (old_set)) == REG
|
||
&& (GET_CODE (new_body) != SET
|
||
|| GET_CODE (SET_SRC (new_body)) != REG))
|
||
/* If this was a load from or store to memory, compare
|
||
the MEM in recog_data.operand to the one in the insn.
|
||
If they are not equal, then rerecognize the insn. */
|
||
|| (old_set != 0
|
||
&& ((GET_CODE (SET_SRC (old_set)) == MEM
|
||
&& SET_SRC (old_set) != recog_data.operand[1])
|
||
|| (GET_CODE (SET_DEST (old_set)) == MEM
|
||
&& SET_DEST (old_set) != recog_data.operand[0])))
|
||
/* If this was an add insn before, rerecognize. */
|
||
|| GET_CODE (SET_SRC (old_set)) == PLUS))
|
||
{
|
||
int new_icode = recog (PATTERN (insn), insn, 0);
|
||
if (new_icode < 0)
|
||
INSN_CODE (insn) = icode;
|
||
}
|
||
}
|
||
|
||
/* Restore the old body. If there were any changes to it, we made a copy
|
||
of it while the changes were still in place, so we'll correctly return
|
||
a modified insn below. */
|
||
if (! replace)
|
||
{
|
||
/* Restore the old body. */
|
||
for (i = 0; i < recog_data.n_operands; i++)
|
||
*recog_data.operand_loc[i] = orig_operand[i];
|
||
for (i = 0; i < recog_data.n_dups; i++)
|
||
*recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
|
||
}
|
||
|
||
/* Update all elimination pairs to reflect the status after the current
|
||
insn. The changes we make were determined by the earlier call to
|
||
elimination_effects.
|
||
|
||
We also detect cases where register elimination cannot be done,
|
||
namely, if a register would be both changed and referenced outside a MEM
|
||
in the resulting insn since such an insn is often undefined and, even if
|
||
not, we cannot know what meaning will be given to it. Note that it is
|
||
valid to have a register used in an address in an insn that changes it
|
||
(presumably with a pre- or post-increment or decrement).
|
||
|
||
If anything changes, return nonzero. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
|
||
ep->can_eliminate = 0;
|
||
|
||
ep->ref_outside_mem = 0;
|
||
|
||
if (ep->previous_offset != ep->offset)
|
||
val = 1;
|
||
}
|
||
|
||
done:
|
||
/* If we changed something, perform elimination in REG_NOTES. This is
|
||
needed even when REPLACE is zero because a REG_DEAD note might refer
|
||
to a register that we eliminate and could cause a different number
|
||
of spill registers to be needed in the final reload pass than in
|
||
the pre-passes. */
|
||
if (val && REG_NOTES (insn) != 0)
|
||
REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Loop through all elimination pairs.
|
||
Recalculate the number not at initial offset.
|
||
|
||
Compute the maximum offset (minimum offset if the stack does not
|
||
grow downward) for each elimination pair. */
|
||
|
||
static void
|
||
update_eliminable_offsets (void)
|
||
{
|
||
struct elim_table *ep;
|
||
|
||
num_not_at_initial_offset = 0;
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
ep->previous_offset = ep->offset;
|
||
if (ep->can_eliminate && ep->offset != ep->initial_offset)
|
||
num_not_at_initial_offset++;
|
||
}
|
||
}
|
||
|
||
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
|
||
replacement we currently believe is valid, mark it as not eliminable if X
|
||
modifies DEST in any way other than by adding a constant integer to it.
|
||
|
||
If DEST is the frame pointer, we do nothing because we assume that
|
||
all assignments to the hard frame pointer are nonlocal gotos and are being
|
||
done at a time when they are valid and do not disturb anything else.
|
||
Some machines want to eliminate a fake argument pointer with either the
|
||
frame or stack pointer. Assignments to the hard frame pointer must not
|
||
prevent this elimination.
|
||
|
||
Called via note_stores from reload before starting its passes to scan
|
||
the insns of the function. */
|
||
|
||
static void
|
||
mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned int i;
|
||
|
||
/* A SUBREG of a hard register here is just changing its mode. We should
|
||
not see a SUBREG of an eliminable hard register, but check just in
|
||
case. */
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
|
||
if (dest == hard_frame_pointer_rtx)
|
||
return;
|
||
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
|
||
&& (GET_CODE (x) != SET
|
||
|| GET_CODE (SET_SRC (x)) != PLUS
|
||
|| XEXP (SET_SRC (x), 0) != dest
|
||
|| GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
|
||
{
|
||
reg_eliminate[i].can_eliminate_previous
|
||
= reg_eliminate[i].can_eliminate = 0;
|
||
num_eliminable--;
|
||
}
|
||
}
|
||
|
||
/* Verify that the initial elimination offsets did not change since the
|
||
last call to set_initial_elim_offsets. This is used to catch cases
|
||
where something illegal happened during reload_as_needed that could
|
||
cause incorrect code to be generated if we did not check for it. */
|
||
|
||
static void
|
||
verify_initial_elim_offsets (void)
|
||
{
|
||
HOST_WIDE_INT t;
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
struct elim_table *ep;
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
|
||
if (t != ep->initial_offset)
|
||
abort ();
|
||
}
|
||
#else
|
||
INITIAL_FRAME_POINTER_OFFSET (t);
|
||
if (t != reg_eliminate[0].initial_offset)
|
||
abort ();
|
||
#endif
|
||
}
|
||
|
||
/* Reset all offsets on eliminable registers to their initial values. */
|
||
|
||
static void
|
||
set_initial_elim_offsets (void)
|
||
{
|
||
struct elim_table *ep = reg_eliminate;
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
for (; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
|
||
ep->previous_offset = ep->offset = ep->initial_offset;
|
||
}
|
||
#else
|
||
INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
|
||
ep->previous_offset = ep->offset = ep->initial_offset;
|
||
#endif
|
||
|
||
num_not_at_initial_offset = 0;
|
||
}
|
||
|
||
/* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
|
||
|
||
static void
|
||
set_initial_eh_label_offset (rtx label)
|
||
{
|
||
set_label_offsets (label, NULL_RTX, 1);
|
||
}
|
||
|
||
/* Initialize the known label offsets.
|
||
Set a known offset for each forced label to be at the initial offset
|
||
of each elimination. We do this because we assume that all
|
||
computed jumps occur from a location where each elimination is
|
||
at its initial offset.
|
||
For all other labels, show that we don't know the offsets. */
|
||
|
||
static void
|
||
set_initial_label_offsets (void)
|
||
{
|
||
rtx x;
|
||
memset (offsets_known_at, 0, num_labels);
|
||
|
||
for (x = forced_labels; x; x = XEXP (x, 1))
|
||
if (XEXP (x, 0))
|
||
set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
|
||
|
||
for_each_eh_label (set_initial_eh_label_offset);
|
||
}
|
||
|
||
/* Set all elimination offsets to the known values for the code label given
|
||
by INSN. */
|
||
|
||
static void
|
||
set_offsets_for_label (rtx insn)
|
||
{
|
||
unsigned int i;
|
||
int label_nr = CODE_LABEL_NUMBER (insn);
|
||
struct elim_table *ep;
|
||
|
||
num_not_at_initial_offset = 0;
|
||
for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
|
||
{
|
||
ep->offset = ep->previous_offset
|
||
= offsets_at[label_nr - first_label_num][i];
|
||
if (ep->can_eliminate && ep->offset != ep->initial_offset)
|
||
num_not_at_initial_offset++;
|
||
}
|
||
}
|
||
|
||
/* See if anything that happened changes which eliminations are valid.
|
||
For example, on the SPARC, whether or not the frame pointer can
|
||
be eliminated can depend on what registers have been used. We need
|
||
not check some conditions again (such as flag_omit_frame_pointer)
|
||
since they can't have changed. */
|
||
|
||
static void
|
||
update_eliminables (HARD_REG_SET *pset)
|
||
{
|
||
int previous_frame_pointer_needed = frame_pointer_needed;
|
||
struct elim_table *ep;
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
|
||
#ifdef ELIMINABLE_REGS
|
||
|| ! CAN_ELIMINATE (ep->from, ep->to)
|
||
#endif
|
||
)
|
||
ep->can_eliminate = 0;
|
||
|
||
/* Look for the case where we have discovered that we can't replace
|
||
register A with register B and that means that we will now be
|
||
trying to replace register A with register C. This means we can
|
||
no longer replace register C with register B and we need to disable
|
||
such an elimination, if it exists. This occurs often with A == ap,
|
||
B == sp, and C == fp. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
struct elim_table *op;
|
||
int new_to = -1;
|
||
|
||
if (! ep->can_eliminate && ep->can_eliminate_previous)
|
||
{
|
||
/* Find the current elimination for ep->from, if there is a
|
||
new one. */
|
||
for (op = reg_eliminate;
|
||
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
|
||
if (op->from == ep->from && op->can_eliminate)
|
||
{
|
||
new_to = op->to;
|
||
break;
|
||
}
|
||
|
||
/* See if there is an elimination of NEW_TO -> EP->TO. If so,
|
||
disable it. */
|
||
for (op = reg_eliminate;
|
||
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
|
||
if (op->from == new_to && op->to == ep->to)
|
||
op->can_eliminate = 0;
|
||
}
|
||
}
|
||
|
||
/* See if any registers that we thought we could eliminate the previous
|
||
time are no longer eliminable. If so, something has changed and we
|
||
must spill the register. Also, recompute the number of eliminable
|
||
registers and see if the frame pointer is needed; it is if there is
|
||
no elimination of the frame pointer that we can perform. */
|
||
|
||
frame_pointer_needed = 1;
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
|
||
&& ep->to != HARD_FRAME_POINTER_REGNUM)
|
||
frame_pointer_needed = 0;
|
||
|
||
if (! ep->can_eliminate && ep->can_eliminate_previous)
|
||
{
|
||
ep->can_eliminate_previous = 0;
|
||
SET_HARD_REG_BIT (*pset, ep->from);
|
||
num_eliminable--;
|
||
}
|
||
}
|
||
|
||
/* If we didn't need a frame pointer last time, but we do now, spill
|
||
the hard frame pointer. */
|
||
if (frame_pointer_needed && ! previous_frame_pointer_needed)
|
||
SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
|
||
}
|
||
|
||
/* Initialize the table of registers to eliminate. */
|
||
|
||
static void
|
||
init_elim_table (void)
|
||
{
|
||
struct elim_table *ep;
|
||
#ifdef ELIMINABLE_REGS
|
||
const struct elim_table_1 *ep1;
|
||
#endif
|
||
|
||
if (!reg_eliminate)
|
||
reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
|
||
|
||
/* Does this function require a frame pointer? */
|
||
|
||
frame_pointer_needed = (! flag_omit_frame_pointer
|
||
/* ?? If EXIT_IGNORE_STACK is set, we will not save
|
||
and restore sp for alloca. So we can't eliminate
|
||
the frame pointer in that case. At some point,
|
||
we should improve this by emitting the
|
||
sp-adjusting insns for this case. */
|
||
|| (current_function_calls_alloca
|
||
&& EXIT_IGNORE_STACK)
|
||
|| FRAME_POINTER_REQUIRED);
|
||
|
||
num_eliminable = 0;
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
for (ep = reg_eliminate, ep1 = reg_eliminate_1;
|
||
ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
|
||
{
|
||
ep->from = ep1->from;
|
||
ep->to = ep1->to;
|
||
ep->can_eliminate = ep->can_eliminate_previous
|
||
= (CAN_ELIMINATE (ep->from, ep->to)
|
||
&& ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
|
||
}
|
||
#else
|
||
reg_eliminate[0].from = reg_eliminate_1[0].from;
|
||
reg_eliminate[0].to = reg_eliminate_1[0].to;
|
||
reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
|
||
= ! frame_pointer_needed;
|
||
#endif
|
||
|
||
/* Count the number of eliminable registers and build the FROM and TO
|
||
REG rtx's. Note that code in gen_rtx will cause, e.g.,
|
||
gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
|
||
We depend on this. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
num_eliminable += ep->can_eliminate;
|
||
ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
|
||
ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
|
||
}
|
||
}
|
||
|
||
/* Kick all pseudos out of hard register REGNO.
|
||
|
||
If CANT_ELIMINATE is nonzero, it means that we are doing this spill
|
||
because we found we can't eliminate some register. In the case, no pseudos
|
||
are allowed to be in the register, even if they are only in a block that
|
||
doesn't require spill registers, unlike the case when we are spilling this
|
||
hard reg to produce another spill register.
|
||
|
||
Return nonzero if any pseudos needed to be kicked out. */
|
||
|
||
static void
|
||
spill_hard_reg (unsigned int regno, int cant_eliminate)
|
||
{
|
||
int i;
|
||
|
||
if (cant_eliminate)
|
||
{
|
||
SET_HARD_REG_BIT (bad_spill_regs_global, regno);
|
||
regs_ever_live[regno] = 1;
|
||
}
|
||
|
||
/* Spill every pseudo reg that was allocated to this reg
|
||
or to something that overlaps this reg. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] >= 0
|
||
&& (unsigned int) reg_renumber[i] <= regno
|
||
&& ((unsigned int) reg_renumber[i]
|
||
+ HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
|
||
PSEUDO_REGNO_MODE (i))
|
||
> regno))
|
||
SET_REGNO_REG_SET (&spilled_pseudos, i);
|
||
}
|
||
|
||
/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
|
||
from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
|
||
|
||
static void
|
||
ior_hard_reg_set (HARD_REG_SET *set1, HARD_REG_SET *set2)
|
||
{
|
||
IOR_HARD_REG_SET (*set1, *set2);
|
||
}
|
||
|
||
/* After find_reload_regs has been run for all insn that need reloads,
|
||
and/or spill_hard_regs was called, this function is used to actually
|
||
spill pseudo registers and try to reallocate them. It also sets up the
|
||
spill_regs array for use by choose_reload_regs. */
|
||
|
||
static int
|
||
finish_spills (int global)
|
||
{
|
||
struct insn_chain *chain;
|
||
int something_changed = 0;
|
||
int i;
|
||
|
||
/* Build the spill_regs array for the function. */
|
||
/* If there are some registers still to eliminate and one of the spill regs
|
||
wasn't ever used before, additional stack space may have to be
|
||
allocated to store this register. Thus, we may have changed the offset
|
||
between the stack and frame pointers, so mark that something has changed.
|
||
|
||
One might think that we need only set VAL to 1 if this is a call-used
|
||
register. However, the set of registers that must be saved by the
|
||
prologue is not identical to the call-used set. For example, the
|
||
register used by the call insn for the return PC is a call-used register,
|
||
but must be saved by the prologue. */
|
||
|
||
n_spills = 0;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (TEST_HARD_REG_BIT (used_spill_regs, i))
|
||
{
|
||
spill_reg_order[i] = n_spills;
|
||
spill_regs[n_spills++] = i;
|
||
if (num_eliminable && ! regs_ever_live[i])
|
||
something_changed = 1;
|
||
regs_ever_live[i] = 1;
|
||
}
|
||
else
|
||
spill_reg_order[i] = -1;
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
/* Record the current hard register the pseudo is allocated to in
|
||
pseudo_previous_regs so we avoid reallocating it to the same
|
||
hard reg in a later pass. */
|
||
if (reg_renumber[i] < 0)
|
||
abort ();
|
||
|
||
SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
|
||
/* Mark it as no longer having a hard register home. */
|
||
reg_renumber[i] = -1;
|
||
/* We will need to scan everything again. */
|
||
something_changed = 1;
|
||
});
|
||
|
||
/* Retry global register allocation if possible. */
|
||
if (global)
|
||
{
|
||
memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
|
||
/* For every insn that needs reloads, set the registers used as spill
|
||
regs in pseudo_forbidden_regs for every pseudo live across the
|
||
insn. */
|
||
for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
|
||
{
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
ior_hard_reg_set (pseudo_forbidden_regs + i,
|
||
&chain->used_spill_regs);
|
||
});
|
||
EXECUTE_IF_SET_IN_REG_SET
|
||
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
|
||
{
|
||
ior_hard_reg_set (pseudo_forbidden_regs + i,
|
||
&chain->used_spill_regs);
|
||
});
|
||
}
|
||
|
||
/* Retry allocating the spilled pseudos. For each reg, merge the
|
||
various reg sets that indicate which hard regs can't be used,
|
||
and call retry_global_alloc.
|
||
We change spill_pseudos here to only contain pseudos that did not
|
||
get a new hard register. */
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_old_renumber[i] != reg_renumber[i])
|
||
{
|
||
HARD_REG_SET forbidden;
|
||
COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
|
||
IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
|
||
IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
|
||
retry_global_alloc (i, forbidden);
|
||
if (reg_renumber[i] >= 0)
|
||
CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
|
||
}
|
||
}
|
||
|
||
/* Fix up the register information in the insn chain.
|
||
This involves deleting those of the spilled pseudos which did not get
|
||
a new hard register home from the live_{before,after} sets. */
|
||
for (chain = reload_insn_chain; chain; chain = chain->next)
|
||
{
|
||
HARD_REG_SET used_by_pseudos;
|
||
HARD_REG_SET used_by_pseudos2;
|
||
|
||
AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
|
||
AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
|
||
|
||
/* Mark any unallocated hard regs as available for spills. That
|
||
makes inheritance work somewhat better. */
|
||
if (chain->need_reload)
|
||
{
|
||
REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
|
||
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
|
||
IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
|
||
|
||
/* Save the old value for the sanity test below. */
|
||
COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
|
||
|
||
compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
|
||
compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
|
||
COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
|
||
AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
|
||
|
||
/* Make sure we only enlarge the set. */
|
||
GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
|
||
abort ();
|
||
ok:;
|
||
}
|
||
}
|
||
|
||
/* Let alter_reg modify the reg rtx's for the modified pseudos. */
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
int regno = reg_renumber[i];
|
||
if (reg_old_renumber[i] == regno)
|
||
continue;
|
||
|
||
alter_reg (i, reg_old_renumber[i]);
|
||
reg_old_renumber[i] = regno;
|
||
if (rtl_dump_file)
|
||
{
|
||
if (regno == -1)
|
||
fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
|
||
else
|
||
fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
|
||
i, reg_renumber[i]);
|
||
}
|
||
}
|
||
|
||
return something_changed;
|
||
}
|
||
|
||
/* Find all paradoxical subregs within X and update reg_max_ref_width.
|
||
Also mark any hard registers used to store user variables as
|
||
forbidden from being used for spill registers. */
|
||
|
||
static void
|
||
scan_paradoxical_subregs (rtx x)
|
||
{
|
||
int i;
|
||
const char *fmt;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
#if 0
|
||
if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
|
||
&& REG_USERVAR_P (x))
|
||
SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
|
||
#endif
|
||
return;
|
||
|
||
case CONST_INT:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR: /* shouldn't happen, but just in case. */
|
||
case CC0:
|
||
case PC:
|
||
case USE:
|
||
case CLOBBER:
|
||
return;
|
||
|
||
case SUBREG:
|
||
if (GET_CODE (SUBREG_REG (x)) == REG
|
||
&& GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
reg_max_ref_width[REGNO (SUBREG_REG (x))]
|
||
= GET_MODE_SIZE (GET_MODE (x));
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
scan_paradoxical_subregs (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
scan_paradoxical_subregs (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Reload pseudo-registers into hard regs around each insn as needed.
|
||
Additional register load insns are output before the insn that needs it
|
||
and perhaps store insns after insns that modify the reloaded pseudo reg.
|
||
|
||
reg_last_reload_reg and reg_reloaded_contents keep track of
|
||
which registers are already available in reload registers.
|
||
We update these for the reloads that we perform,
|
||
as the insns are scanned. */
|
||
|
||
static void
|
||
reload_as_needed (int live_known)
|
||
{
|
||
struct insn_chain *chain;
|
||
#if defined (AUTO_INC_DEC)
|
||
int i;
|
||
#endif
|
||
rtx x;
|
||
|
||
memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
|
||
memset (spill_reg_store, 0, sizeof spill_reg_store);
|
||
reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
|
||
reg_has_output_reload = xmalloc (max_regno);
|
||
CLEAR_HARD_REG_SET (reg_reloaded_valid);
|
||
CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
|
||
|
||
set_initial_elim_offsets ();
|
||
|
||
for (chain = reload_insn_chain; chain; chain = chain->next)
|
||
{
|
||
rtx prev = 0;
|
||
rtx insn = chain->insn;
|
||
rtx old_next = NEXT_INSN (insn);
|
||
|
||
/* If we pass a label, copy the offsets from the label information
|
||
into the current offsets of each elimination. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
set_offsets_for_label (insn);
|
||
|
||
else if (INSN_P (insn))
|
||
{
|
||
rtx oldpat = copy_rtx (PATTERN (insn));
|
||
|
||
/* If this is a USE and CLOBBER of a MEM, ensure that any
|
||
references to eliminable registers have been removed. */
|
||
|
||
if ((GET_CODE (PATTERN (insn)) == USE
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
&& GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
|
||
XEXP (XEXP (PATTERN (insn), 0), 0)
|
||
= eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
|
||
GET_MODE (XEXP (PATTERN (insn), 0)),
|
||
NULL_RTX);
|
||
|
||
/* If we need to do register elimination processing, do so.
|
||
This might delete the insn, in which case we are done. */
|
||
if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
|
||
{
|
||
eliminate_regs_in_insn (insn, 1);
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
update_eliminable_offsets ();
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If need_elim is nonzero but need_reload is zero, one might think
|
||
that we could simply set n_reloads to 0. However, find_reloads
|
||
could have done some manipulation of the insn (such as swapping
|
||
commutative operands), and these manipulations are lost during
|
||
the first pass for every insn that needs register elimination.
|
||
So the actions of find_reloads must be redone here. */
|
||
|
||
if (! chain->need_elim && ! chain->need_reload
|
||
&& ! chain->need_operand_change)
|
||
n_reloads = 0;
|
||
/* First find the pseudo regs that must be reloaded for this insn.
|
||
This info is returned in the tables reload_... (see reload.h).
|
||
Also modify the body of INSN by substituting RELOAD
|
||
rtx's for those pseudo regs. */
|
||
else
|
||
{
|
||
memset (reg_has_output_reload, 0, max_regno);
|
||
CLEAR_HARD_REG_SET (reg_is_output_reload);
|
||
|
||
find_reloads (insn, 1, spill_indirect_levels, live_known,
|
||
spill_reg_order);
|
||
}
|
||
|
||
if (n_reloads > 0)
|
||
{
|
||
rtx next = NEXT_INSN (insn);
|
||
rtx p;
|
||
|
||
prev = PREV_INSN (insn);
|
||
|
||
/* Now compute which reload regs to reload them into. Perhaps
|
||
reusing reload regs from previous insns, or else output
|
||
load insns to reload them. Maybe output store insns too.
|
||
Record the choices of reload reg in reload_reg_rtx. */
|
||
choose_reload_regs (chain);
|
||
|
||
/* Merge any reloads that we didn't combine for fear of
|
||
increasing the number of spill registers needed but now
|
||
discover can be safely merged. */
|
||
if (SMALL_REGISTER_CLASSES)
|
||
merge_assigned_reloads (insn);
|
||
|
||
/* Generate the insns to reload operands into or out of
|
||
their reload regs. */
|
||
emit_reload_insns (chain);
|
||
|
||
/* Substitute the chosen reload regs from reload_reg_rtx
|
||
into the insn's body (or perhaps into the bodies of other
|
||
load and store insn that we just made for reloading
|
||
and that we moved the structure into). */
|
||
subst_reloads (insn);
|
||
|
||
/* If this was an ASM, make sure that all the reload insns
|
||
we have generated are valid. If not, give an error
|
||
and delete them. */
|
||
|
||
if (asm_noperands (PATTERN (insn)) >= 0)
|
||
for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
|
||
if (p != insn && INSN_P (p)
|
||
&& GET_CODE (PATTERN (p)) != USE
|
||
&& (recog_memoized (p) < 0
|
||
|| (extract_insn (p), ! constrain_operands (1))))
|
||
{
|
||
error_for_asm (insn,
|
||
"`asm' operand requires impossible reload");
|
||
delete_insn (p);
|
||
}
|
||
}
|
||
|
||
if (num_eliminable && chain->need_elim)
|
||
update_eliminable_offsets ();
|
||
|
||
/* Any previously reloaded spilled pseudo reg, stored in this insn,
|
||
is no longer validly lying around to save a future reload.
|
||
Note that this does not detect pseudos that were reloaded
|
||
for this insn in order to be stored in
|
||
(obeying register constraints). That is correct; such reload
|
||
registers ARE still valid. */
|
||
note_stores (oldpat, forget_old_reloads_1, NULL);
|
||
|
||
/* There may have been CLOBBER insns placed after INSN. So scan
|
||
between INSN and NEXT and use them to forget old reloads. */
|
||
for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
|
||
if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
|
||
note_stores (PATTERN (x), forget_old_reloads_1, NULL);
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
/* Likewise for regs altered by auto-increment in this insn.
|
||
REG_INC notes have been changed by reloading:
|
||
find_reloads_address_1 records substitutions for them,
|
||
which have been performed by subst_reloads above. */
|
||
for (i = n_reloads - 1; i >= 0; i--)
|
||
{
|
||
rtx in_reg = rld[i].in_reg;
|
||
if (in_reg)
|
||
{
|
||
enum rtx_code code = GET_CODE (in_reg);
|
||
/* PRE_INC / PRE_DEC will have the reload register ending up
|
||
with the same value as the stack slot, but that doesn't
|
||
hold true for POST_INC / POST_DEC. Either we have to
|
||
convert the memory access to a true POST_INC / POST_DEC,
|
||
or we can't use the reload register for inheritance. */
|
||
if ((code == POST_INC || code == POST_DEC)
|
||
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
|
||
REGNO (rld[i].reg_rtx))
|
||
/* Make sure it is the inc/dec pseudo, and not
|
||
some other (e.g. output operand) pseudo. */
|
||
&& ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
|
||
== REGNO (XEXP (in_reg, 0))))
|
||
|
||
{
|
||
rtx reload_reg = rld[i].reg_rtx;
|
||
enum machine_mode mode = GET_MODE (reload_reg);
|
||
int n = 0;
|
||
rtx p;
|
||
|
||
for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
|
||
{
|
||
/* We really want to ignore REG_INC notes here, so
|
||
use PATTERN (p) as argument to reg_set_p . */
|
||
if (reg_set_p (reload_reg, PATTERN (p)))
|
||
break;
|
||
n = count_occurrences (PATTERN (p), reload_reg, 0);
|
||
if (! n)
|
||
continue;
|
||
if (n == 1)
|
||
{
|
||
n = validate_replace_rtx (reload_reg,
|
||
gen_rtx (code, mode,
|
||
reload_reg),
|
||
p);
|
||
|
||
/* We must also verify that the constraints
|
||
are met after the replacement. */
|
||
extract_insn (p);
|
||
if (n)
|
||
n = constrain_operands (1);
|
||
else
|
||
break;
|
||
|
||
/* If the constraints were not met, then
|
||
undo the replacement. */
|
||
if (!n)
|
||
{
|
||
validate_replace_rtx (gen_rtx (code, mode,
|
||
reload_reg),
|
||
reload_reg, p);
|
||
break;
|
||
}
|
||
|
||
}
|
||
break;
|
||
}
|
||
if (n == 1)
|
||
{
|
||
REG_NOTES (p)
|
||
= gen_rtx_EXPR_LIST (REG_INC, reload_reg,
|
||
REG_NOTES (p));
|
||
/* Mark this as having an output reload so that the
|
||
REG_INC processing code below won't invalidate
|
||
the reload for inheritance. */
|
||
SET_HARD_REG_BIT (reg_is_output_reload,
|
||
REGNO (reload_reg));
|
||
reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
|
||
}
|
||
else
|
||
forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
|
||
NULL);
|
||
}
|
||
else if ((code == PRE_INC || code == PRE_DEC)
|
||
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
|
||
REGNO (rld[i].reg_rtx))
|
||
/* Make sure it is the inc/dec pseudo, and not
|
||
some other (e.g. output operand) pseudo. */
|
||
&& ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
|
||
== REGNO (XEXP (in_reg, 0))))
|
||
{
|
||
SET_HARD_REG_BIT (reg_is_output_reload,
|
||
REGNO (rld[i].reg_rtx));
|
||
reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
|
||
}
|
||
}
|
||
}
|
||
/* If a pseudo that got a hard register is auto-incremented,
|
||
we must purge records of copying it into pseudos without
|
||
hard registers. */
|
||
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
||
if (REG_NOTE_KIND (x) == REG_INC)
|
||
{
|
||
/* See if this pseudo reg was reloaded in this insn.
|
||
If so, its last-reload info is still valid
|
||
because it is based on this insn's reload. */
|
||
for (i = 0; i < n_reloads; i++)
|
||
if (rld[i].out == XEXP (x, 0))
|
||
break;
|
||
|
||
if (i == n_reloads)
|
||
forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
|
||
}
|
||
#endif
|
||
}
|
||
/* A reload reg's contents are unknown after a label. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
CLEAR_HARD_REG_SET (reg_reloaded_valid);
|
||
|
||
/* Don't assume a reload reg is still good after a call insn
|
||
if it is a call-used reg, or if it contains a value that will
|
||
be partially clobbered by the call. */
|
||
else if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
|
||
AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
|
||
}
|
||
}
|
||
|
||
/* Clean up. */
|
||
free (reg_last_reload_reg);
|
||
free (reg_has_output_reload);
|
||
}
|
||
|
||
/* Discard all record of any value reloaded from X,
|
||
or reloaded in X from someplace else;
|
||
unless X is an output reload reg of the current insn.
|
||
|
||
X may be a hard reg (the reload reg)
|
||
or it may be a pseudo reg that was reloaded from. */
|
||
|
||
static void
|
||
forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned int regno;
|
||
unsigned int nr;
|
||
|
||
/* note_stores does give us subregs of hard regs,
|
||
subreg_regno_offset will abort if it is not a hard reg. */
|
||
while (GET_CODE (x) == SUBREG)
|
||
{
|
||
/* We ignore the subreg offset when calculating the regno,
|
||
because we are using the entire underlying hard register
|
||
below. */
|
||
x = SUBREG_REG (x);
|
||
}
|
||
|
||
if (GET_CODE (x) != REG)
|
||
return;
|
||
|
||
regno = REGNO (x);
|
||
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
nr = 1;
|
||
else
|
||
{
|
||
unsigned int i;
|
||
|
||
nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
|
||
/* Storing into a spilled-reg invalidates its contents.
|
||
This can happen if a block-local pseudo is allocated to that reg
|
||
and it wasn't spilled because this block's total need is 0.
|
||
Then some insn might have an optional reload and use this reg. */
|
||
for (i = 0; i < nr; i++)
|
||
/* But don't do this if the reg actually serves as an output
|
||
reload reg in the current instruction. */
|
||
if (n_reloads == 0
|
||
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
|
||
{
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
|
||
spill_reg_store[regno + i] = 0;
|
||
}
|
||
}
|
||
|
||
/* Since value of X has changed,
|
||
forget any value previously copied from it. */
|
||
|
||
while (nr-- > 0)
|
||
/* But don't forget a copy if this is the output reload
|
||
that establishes the copy's validity. */
|
||
if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
|
||
reg_last_reload_reg[regno + nr] = 0;
|
||
}
|
||
|
||
/* The following HARD_REG_SETs indicate when each hard register is
|
||
used for a reload of various parts of the current insn. */
|
||
|
||
/* If reg is unavailable for all reloads. */
|
||
static HARD_REG_SET reload_reg_unavailable;
|
||
/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
|
||
static HARD_REG_SET reload_reg_used;
|
||
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
|
||
static HARD_REG_SET reload_reg_used_in_op_addr;
|
||
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
|
||
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
|
||
/* If reg is in use for a RELOAD_FOR_INSN reload. */
|
||
static HARD_REG_SET reload_reg_used_in_insn;
|
||
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
|
||
static HARD_REG_SET reload_reg_used_in_other_addr;
|
||
|
||
/* If reg is in use as a reload reg for any sort of reload. */
|
||
static HARD_REG_SET reload_reg_used_at_all;
|
||
|
||
/* If reg is use as an inherited reload. We just mark the first register
|
||
in the group. */
|
||
static HARD_REG_SET reload_reg_used_for_inherit;
|
||
|
||
/* Records which hard regs are used in any way, either as explicit use or
|
||
by being allocated to a pseudo during any point of the current insn. */
|
||
static HARD_REG_SET reg_used_in_insn;
|
||
|
||
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
|
||
TYPE. MODE is used to indicate how many consecutive regs are
|
||
actually used. */
|
||
|
||
static void
|
||
mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
|
||
enum machine_mode mode)
|
||
{
|
||
unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
|
||
unsigned int i;
|
||
|
||
for (i = regno; i < nregs + regno; i++)
|
||
{
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
SET_HARD_REG_BIT (reload_reg_used, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
|
||
break;
|
||
}
|
||
|
||
SET_HARD_REG_BIT (reload_reg_used_at_all, i);
|
||
}
|
||
}
|
||
|
||
/* Similarly, but show REGNO is no longer in use for a reload. */
|
||
|
||
static void
|
||
clear_reload_reg_in_use (unsigned int regno, int opnum,
|
||
enum reload_type type, enum machine_mode mode)
|
||
{
|
||
unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
|
||
unsigned int start_regno, end_regno, r;
|
||
int i;
|
||
/* A complication is that for some reload types, inheritance might
|
||
allow multiple reloads of the same types to share a reload register.
|
||
We set check_opnum if we have to check only reloads with the same
|
||
operand number, and check_any if we have to check all reloads. */
|
||
int check_opnum = 0;
|
||
int check_any = 0;
|
||
HARD_REG_SET *used_in_set;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
used_in_set = &reload_reg_used;
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
used_in_set = &reload_reg_used_in_input_addr[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
check_opnum = 1;
|
||
used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
used_in_set = &reload_reg_used_in_output_addr[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
check_opnum = 1;
|
||
used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
used_in_set = &reload_reg_used_in_op_addr;
|
||
break;
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
check_any = 1;
|
||
used_in_set = &reload_reg_used_in_op_addr_reload;
|
||
break;
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
used_in_set = &reload_reg_used_in_other_addr;
|
||
check_any = 1;
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
used_in_set = &reload_reg_used_in_input[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
used_in_set = &reload_reg_used_in_output[opnum];
|
||
break;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
used_in_set = &reload_reg_used_in_insn;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
/* We resolve conflicts with remaining reloads of the same type by
|
||
excluding the intervals of reload registers by them from the
|
||
interval of freed reload registers. Since we only keep track of
|
||
one set of interval bounds, we might have to exclude somewhat
|
||
more than what would be necessary if we used a HARD_REG_SET here.
|
||
But this should only happen very infrequently, so there should
|
||
be no reason to worry about it. */
|
||
|
||
start_regno = regno;
|
||
end_regno = regno + nregs;
|
||
if (check_opnum || check_any)
|
||
{
|
||
for (i = n_reloads - 1; i >= 0; i--)
|
||
{
|
||
if (rld[i].when_needed == type
|
||
&& (check_any || rld[i].opnum == opnum)
|
||
&& rld[i].reg_rtx)
|
||
{
|
||
unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
|
||
unsigned int conflict_end
|
||
= (conflict_start
|
||
+ HARD_REGNO_NREGS (conflict_start, rld[i].mode));
|
||
|
||
/* If there is an overlap with the first to-be-freed register,
|
||
adjust the interval start. */
|
||
if (conflict_start <= start_regno && conflict_end > start_regno)
|
||
start_regno = conflict_end;
|
||
/* Otherwise, if there is a conflict with one of the other
|
||
to-be-freed registers, adjust the interval end. */
|
||
if (conflict_start > start_regno && conflict_start < end_regno)
|
||
end_regno = conflict_start;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (r = start_regno; r < end_regno; r++)
|
||
CLEAR_HARD_REG_BIT (*used_in_set, r);
|
||
}
|
||
|
||
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
|
||
specified by OPNUM and TYPE. */
|
||
|
||
static int
|
||
reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
|
||
{
|
||
int i;
|
||
|
||
/* In use for a RELOAD_OTHER means it's not available for anything. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
|
||
return 0;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
/* In use for anything means we can't use it for RELOAD_OTHER. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
|
||
return 0;
|
||
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
|
||
return 0;
|
||
|
||
/* If it is used for some other input, can't use it. */
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
/* If it is used in a later operand's address, can't use it. */
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
/* Can't use a register if it is used for an input address for this
|
||
operand or used as an input in an earlier one. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
/* Can't use a register if it is used for an input address
|
||
for this operand or used as an input in an earlier
|
||
one. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
/* Can't use a register if it is used for an output address for this
|
||
operand or used as an output in this or a later operand. Note
|
||
that multiple output operands are emitted in reverse order, so
|
||
the conflicting ones are those with lower indices. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i <= opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
/* Can't use a register if it is used for an output address
|
||
for this operand or used as an output in this or a
|
||
later operand. Note that multiple output operands are
|
||
emitted in reverse order, so the conflicting ones are
|
||
those with lower indices. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i <= opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
/* This cannot share a register with RELOAD_FOR_INSN reloads, other
|
||
outputs, or an operand address for this or an earlier output.
|
||
Note that multiple output operands are emitted in reverse order,
|
||
so the conflicting ones are those with higher indices. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
for (i = opnum; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Return 1 if the value in reload reg REGNO, as used by a reload
|
||
needed for the part of the insn specified by OPNUM and TYPE,
|
||
is still available in REGNO at the end of the insn.
|
||
|
||
We can assume that the reload reg was already tested for availability
|
||
at the time it is needed, and we should not check this again,
|
||
in case the reg has already been marked in use. */
|
||
|
||
static int
|
||
reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
|
||
{
|
||
int i;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
/* Since a RELOAD_OTHER reload claims the reg for the entire insn,
|
||
its value must reach the end. */
|
||
return 1;
|
||
|
||
/* If this use is for part of the insn,
|
||
its value reaches if no subsequent part uses the same register.
|
||
Just like the above function, don't try to do this with lots
|
||
of fallthroughs. */
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
/* Here we check for everything else, since these don't conflict
|
||
with anything else and everything comes later. */
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used, regno));
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
/* Similar, except that we check only for this and subsequent inputs
|
||
and the address of only subsequent inputs and we do not need
|
||
to check for RELOAD_OTHER objects since they are known not to
|
||
conflict. */
|
||
|
||
for (i = opnum; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
|
||
return 0;
|
||
|
||
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& !TEST_HARD_REG_BIT (reload_reg_used, regno));
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
/* Similar to input address, except we start at the next operand for
|
||
both input and input address and we do not check for
|
||
RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
|
||
would conflict. */
|
||
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
/* Check outputs and their addresses. */
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& !TEST_HARD_REG_BIT (reload_reg_used, regno));
|
||
|
||
case RELOAD_FOR_INSN:
|
||
/* These conflict with other outputs with RELOAD_OTHER. So
|
||
we need only check for output addresses. */
|
||
|
||
opnum = reload_n_operands;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
/* We already know these can't conflict with a later output. So the
|
||
only thing to check are later output addresses.
|
||
Note that multiple output operands are emitted in reverse order,
|
||
so the conflicting ones are those with lower indices. */
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
|
||
Return 0 otherwise.
|
||
|
||
This function uses the same algorithm as reload_reg_free_p above. */
|
||
|
||
int
|
||
reloads_conflict (int r1, int r2)
|
||
{
|
||
enum reload_type r1_type = rld[r1].when_needed;
|
||
enum reload_type r2_type = rld[r2].when_needed;
|
||
int r1_opnum = rld[r1].opnum;
|
||
int r2_opnum = rld[r2].opnum;
|
||
|
||
/* RELOAD_OTHER conflicts with everything. */
|
||
if (r2_type == RELOAD_OTHER)
|
||
return 1;
|
||
|
||
/* Otherwise, check conflicts differently for each type. */
|
||
|
||
switch (r1_type)
|
||
{
|
||
case RELOAD_FOR_INPUT:
|
||
return (r2_type == RELOAD_FOR_INSN
|
||
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS
|
||
|| r2_type == RELOAD_FOR_OPADDR_ADDR
|
||
|| r2_type == RELOAD_FOR_INPUT
|
||
|| ((r2_type == RELOAD_FOR_INPUT_ADDRESS
|
||
|| r2_type == RELOAD_FOR_INPADDR_ADDRESS)
|
||
&& r2_opnum > r1_opnum));
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
|
||
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
|
||
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
|
||
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
|
||
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
|
||
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
|
||
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
|
||
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
|
||
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
return (r2_type == RELOAD_FOR_INPUT
|
||
|| r2_type == RELOAD_FOR_OPADDR_ADDR);
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
|
||
|| ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
|
||
|| r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
|
||
&& r2_opnum >= r1_opnum));
|
||
|
||
case RELOAD_FOR_INSN:
|
||
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
|
||
|| r2_type == RELOAD_FOR_INSN
|
||
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
return r2_type == RELOAD_FOR_OTHER_ADDRESS;
|
||
|
||
case RELOAD_OTHER:
|
||
return 1;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Indexed by reload number, 1 if incoming value
|
||
inherited from previous insns. */
|
||
char reload_inherited[MAX_RELOADS];
|
||
|
||
/* For an inherited reload, this is the insn the reload was inherited from,
|
||
if we know it. Otherwise, this is 0. */
|
||
rtx reload_inheritance_insn[MAX_RELOADS];
|
||
|
||
/* If nonzero, this is a place to get the value of the reload,
|
||
rather than using reload_in. */
|
||
rtx reload_override_in[MAX_RELOADS];
|
||
|
||
/* For each reload, the hard register number of the register used,
|
||
or -1 if we did not need a register for this reload. */
|
||
int reload_spill_index[MAX_RELOADS];
|
||
|
||
/* Subroutine of free_for_value_p, used to check a single register.
|
||
START_REGNO is the starting regno of the full reload register
|
||
(possibly comprising multiple hard registers) that we are considering. */
|
||
|
||
static int
|
||
reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
|
||
enum reload_type type, rtx value, rtx out,
|
||
int reloadnum, int ignore_address_reloads)
|
||
{
|
||
int time1;
|
||
/* Set if we see an input reload that must not share its reload register
|
||
with any new earlyclobber, but might otherwise share the reload
|
||
register with an output or input-output reload. */
|
||
int check_earlyclobber = 0;
|
||
int i;
|
||
int copy = 0;
|
||
|
||
if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
|
||
return 0;
|
||
|
||
if (out == const0_rtx)
|
||
{
|
||
copy = 1;
|
||
out = NULL_RTX;
|
||
}
|
||
|
||
/* We use some pseudo 'time' value to check if the lifetimes of the
|
||
new register use would overlap with the one of a previous reload
|
||
that is not read-only or uses a different value.
|
||
The 'time' used doesn't have to be linear in any shape or form, just
|
||
monotonic.
|
||
Some reload types use different 'buckets' for each operand.
|
||
So there are MAX_RECOG_OPERANDS different time values for each
|
||
such reload type.
|
||
We compute TIME1 as the time when the register for the prospective
|
||
new reload ceases to be live, and TIME2 for each existing
|
||
reload as the time when that the reload register of that reload
|
||
becomes live.
|
||
Where there is little to be gained by exact lifetime calculations,
|
||
we just make conservative assumptions, i.e. a longer lifetime;
|
||
this is done in the 'default:' cases. */
|
||
switch (type)
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
/* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
|
||
time1 = copy ? 0 : 1;
|
||
break;
|
||
case RELOAD_OTHER:
|
||
time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
|
||
break;
|
||
/* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
|
||
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
|
||
respectively, to the time values for these, we get distinct time
|
||
values. To get distinct time values for each operand, we have to
|
||
multiply opnum by at least three. We round that up to four because
|
||
multiply by four is often cheaper. */
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
time1 = opnum * 4 + 2;
|
||
break;
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
time1 = opnum * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_INPUT:
|
||
/* All RELOAD_FOR_INPUT reloads remain live till the instruction
|
||
executes (inclusive). */
|
||
time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
/* opnum * 4 + 4
|
||
<= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
|
||
time1 = MAX_RECOG_OPERANDS * 4 + 1;
|
||
break;
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
/* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
|
||
is executed. */
|
||
time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
|
||
break;
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
|
||
break;
|
||
default:
|
||
time1 = MAX_RECOG_OPERANDS * 5 + 5;
|
||
}
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
rtx reg = rld[i].reg_rtx;
|
||
if (reg && GET_CODE (reg) == REG
|
||
&& ((unsigned) regno - true_regnum (reg)
|
||
<= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
|
||
&& i != reloadnum)
|
||
{
|
||
rtx other_input = rld[i].in;
|
||
|
||
/* If the other reload loads the same input value, that
|
||
will not cause a conflict only if it's loading it into
|
||
the same register. */
|
||
if (true_regnum (reg) != start_regno)
|
||
other_input = NULL_RTX;
|
||
if (! other_input || ! rtx_equal_p (other_input, value)
|
||
|| rld[i].out || out)
|
||
{
|
||
int time2;
|
||
switch (rld[i].when_needed)
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
time2 = 0;
|
||
break;
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
/* find_reloads makes sure that a
|
||
RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
|
||
by at most one - the first -
|
||
RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
|
||
address reload is inherited, the address address reload
|
||
goes away, so we can ignore this conflict. */
|
||
if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
|
||
&& ignore_address_reloads
|
||
/* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
|
||
Then the address address is still needed to store
|
||
back the new address. */
|
||
&& ! rld[reloadnum].out)
|
||
continue;
|
||
/* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
|
||
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
|
||
reloads go away. */
|
||
if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
|
||
&& ignore_address_reloads
|
||
/* Unless we are reloading an auto_inc expression. */
|
||
&& ! rld[reloadnum].out)
|
||
continue;
|
||
time2 = rld[i].opnum * 4 + 2;
|
||
break;
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
|
||
&& ignore_address_reloads
|
||
&& ! rld[reloadnum].out)
|
||
continue;
|
||
time2 = rld[i].opnum * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_INPUT:
|
||
time2 = rld[i].opnum * 4 + 4;
|
||
check_earlyclobber = 1;
|
||
break;
|
||
/* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
|
||
== MAX_RECOG_OPERAND * 4 */
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
|
||
&& ignore_address_reloads
|
||
&& ! rld[reloadnum].out)
|
||
continue;
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 1;
|
||
break;
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 2;
|
||
check_earlyclobber = 1;
|
||
break;
|
||
case RELOAD_FOR_INSN:
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 3;
|
||
break;
|
||
case RELOAD_FOR_OUTPUT:
|
||
/* All RELOAD_FOR_OUTPUT reloads become live just after the
|
||
instruction is executed. */
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 4;
|
||
break;
|
||
/* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
|
||
the RELOAD_FOR_OUTPUT reloads, so assign it the same time
|
||
value. */
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
|
||
&& ignore_address_reloads
|
||
&& ! rld[reloadnum].out)
|
||
continue;
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
|
||
break;
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
|
||
break;
|
||
case RELOAD_OTHER:
|
||
/* If there is no conflict in the input part, handle this
|
||
like an output reload. */
|
||
if (! rld[i].in || rtx_equal_p (other_input, value))
|
||
{
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 4;
|
||
/* Earlyclobbered outputs must conflict with inputs. */
|
||
if (earlyclobber_operand_p (rld[i].out))
|
||
time2 = MAX_RECOG_OPERANDS * 4 + 3;
|
||
|
||
break;
|
||
}
|
||
time2 = 1;
|
||
/* RELOAD_OTHER might be live beyond instruction execution,
|
||
but this is not obvious when we set time2 = 1. So check
|
||
here if there might be a problem with the new reload
|
||
clobbering the register used by the RELOAD_OTHER. */
|
||
if (out)
|
||
return 0;
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
if ((time1 >= time2
|
||
&& (! rld[i].in || rld[i].out
|
||
|| ! rtx_equal_p (other_input, value)))
|
||
|| (out && rld[reloadnum].out_reg
|
||
&& time2 >= MAX_RECOG_OPERANDS * 4 + 3))
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Earlyclobbered outputs must conflict with inputs. */
|
||
if (check_earlyclobber && out && earlyclobber_operand_p (out))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if the value in reload reg REGNO, as used by a reload
|
||
needed for the part of the insn specified by OPNUM and TYPE,
|
||
may be used to load VALUE into it.
|
||
|
||
MODE is the mode in which the register is used, this is needed to
|
||
determine how many hard regs to test.
|
||
|
||
Other read-only reloads with the same value do not conflict
|
||
unless OUT is nonzero and these other reloads have to live while
|
||
output reloads live.
|
||
If OUT is CONST0_RTX, this is a special case: it means that the
|
||
test should not be for using register REGNO as reload register, but
|
||
for copying from register REGNO into the reload register.
|
||
|
||
RELOADNUM is the number of the reload we want to load this value for;
|
||
a reload does not conflict with itself.
|
||
|
||
When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
|
||
reloads that load an address for the very reload we are considering.
|
||
|
||
The caller has to make sure that there is no conflict with the return
|
||
register. */
|
||
|
||
static int
|
||
free_for_value_p (int regno, enum machine_mode mode, int opnum,
|
||
enum reload_type type, rtx value, rtx out, int reloadnum,
|
||
int ignore_address_reloads)
|
||
{
|
||
int nregs = HARD_REGNO_NREGS (regno, mode);
|
||
while (nregs-- > 0)
|
||
if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
|
||
value, out, reloadnum,
|
||
ignore_address_reloads))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Determine whether the reload reg X overlaps any rtx'es used for
|
||
overriding inheritance. Return nonzero if so. */
|
||
|
||
static int
|
||
conflicts_with_override (rtx x)
|
||
{
|
||
int i;
|
||
for (i = 0; i < n_reloads; i++)
|
||
if (reload_override_in[i]
|
||
&& reg_overlap_mentioned_p (x, reload_override_in[i]))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Give an error message saying we failed to find a reload for INSN,
|
||
and clear out reload R. */
|
||
static void
|
||
failed_reload (rtx insn, int r)
|
||
{
|
||
if (asm_noperands (PATTERN (insn)) < 0)
|
||
/* It's the compiler's fault. */
|
||
fatal_insn ("could not find a spill register", insn);
|
||
|
||
/* It's the user's fault; the operand's mode and constraint
|
||
don't match. Disable this reload so we don't crash in final. */
|
||
error_for_asm (insn,
|
||
"`asm' operand constraint incompatible with operand size");
|
||
rld[r].in = 0;
|
||
rld[r].out = 0;
|
||
rld[r].reg_rtx = 0;
|
||
rld[r].optional = 1;
|
||
rld[r].secondary_p = 1;
|
||
}
|
||
|
||
/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
|
||
for reload R. If it's valid, get an rtx for it. Return nonzero if
|
||
successful. */
|
||
static int
|
||
set_reload_reg (int i, int r)
|
||
{
|
||
int regno;
|
||
rtx reg = spill_reg_rtx[i];
|
||
|
||
if (reg == 0 || GET_MODE (reg) != rld[r].mode)
|
||
spill_reg_rtx[i] = reg
|
||
= gen_rtx_REG (rld[r].mode, spill_regs[i]);
|
||
|
||
regno = true_regnum (reg);
|
||
|
||
/* Detect when the reload reg can't hold the reload mode.
|
||
This used to be one `if', but Sequent compiler can't handle that. */
|
||
if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
|
||
{
|
||
enum machine_mode test_mode = VOIDmode;
|
||
if (rld[r].in)
|
||
test_mode = GET_MODE (rld[r].in);
|
||
/* If rld[r].in has VOIDmode, it means we will load it
|
||
in whatever mode the reload reg has: to wit, rld[r].mode.
|
||
We have already tested that for validity. */
|
||
/* Aside from that, we need to test that the expressions
|
||
to reload from or into have modes which are valid for this
|
||
reload register. Otherwise the reload insns would be invalid. */
|
||
if (! (rld[r].in != 0 && test_mode != VOIDmode
|
||
&& ! HARD_REGNO_MODE_OK (regno, test_mode)))
|
||
if (! (rld[r].out != 0
|
||
&& ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
|
||
{
|
||
/* The reg is OK. */
|
||
last_spill_reg = i;
|
||
|
||
/* Mark as in use for this insn the reload regs we use
|
||
for this. */
|
||
mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
|
||
rld[r].when_needed, rld[r].mode);
|
||
|
||
rld[r].reg_rtx = reg;
|
||
reload_spill_index[r] = spill_regs[i];
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Find a spill register to use as a reload register for reload R.
|
||
LAST_RELOAD is nonzero if this is the last reload for the insn being
|
||
processed.
|
||
|
||
Set rld[R].reg_rtx to the register allocated.
|
||
|
||
We return 1 if successful, or 0 if we couldn't find a spill reg and
|
||
we didn't change anything. */
|
||
|
||
static int
|
||
allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
|
||
int last_reload)
|
||
{
|
||
int i, pass, count;
|
||
|
||
/* If we put this reload ahead, thinking it is a group,
|
||
then insist on finding a group. Otherwise we can grab a
|
||
reg that some other reload needs.
|
||
(That can happen when we have a 68000 DATA_OR_FP_REG
|
||
which is a group of data regs or one fp reg.)
|
||
We need not be so restrictive if there are no more reloads
|
||
for this insn.
|
||
|
||
??? Really it would be nicer to have smarter handling
|
||
for that kind of reg class, where a problem like this is normal.
|
||
Perhaps those classes should be avoided for reloading
|
||
by use of more alternatives. */
|
||
|
||
int force_group = rld[r].nregs > 1 && ! last_reload;
|
||
|
||
/* If we want a single register and haven't yet found one,
|
||
take any reg in the right class and not in use.
|
||
If we want a consecutive group, here is where we look for it.
|
||
|
||
We use two passes so we can first look for reload regs to
|
||
reuse, which are already in use for other reloads in this insn,
|
||
and only then use additional registers.
|
||
I think that maximizing reuse is needed to make sure we don't
|
||
run out of reload regs. Suppose we have three reloads, and
|
||
reloads A and B can share regs. These need two regs.
|
||
Suppose A and B are given different regs.
|
||
That leaves none for C. */
|
||
for (pass = 0; pass < 2; pass++)
|
||
{
|
||
/* I is the index in spill_regs.
|
||
We advance it round-robin between insns to use all spill regs
|
||
equally, so that inherited reloads have a chance
|
||
of leapfrogging each other. */
|
||
|
||
i = last_spill_reg;
|
||
|
||
for (count = 0; count < n_spills; count++)
|
||
{
|
||
int class = (int) rld[r].class;
|
||
int regnum;
|
||
|
||
i++;
|
||
if (i >= n_spills)
|
||
i -= n_spills;
|
||
regnum = spill_regs[i];
|
||
|
||
if ((reload_reg_free_p (regnum, rld[r].opnum,
|
||
rld[r].when_needed)
|
||
|| (rld[r].in
|
||
/* We check reload_reg_used to make sure we
|
||
don't clobber the return register. */
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
|
||
&& free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
|
||
rld[r].when_needed, rld[r].in,
|
||
rld[r].out, r, 1)))
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
|
||
&& HARD_REGNO_MODE_OK (regnum, rld[r].mode)
|
||
/* Look first for regs to share, then for unshared. But
|
||
don't share regs used for inherited reloads; they are
|
||
the ones we want to preserve. */
|
||
&& (pass
|
||
|| (TEST_HARD_REG_BIT (reload_reg_used_at_all,
|
||
regnum)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
|
||
regnum))))
|
||
{
|
||
int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
|
||
/* Avoid the problem where spilling a GENERAL_OR_FP_REG
|
||
(on 68000) got us two FP regs. If NR is 1,
|
||
we would reject both of them. */
|
||
if (force_group)
|
||
nr = rld[r].nregs;
|
||
/* If we need only one reg, we have already won. */
|
||
if (nr == 1)
|
||
{
|
||
/* But reject a single reg if we demand a group. */
|
||
if (force_group)
|
||
continue;
|
||
break;
|
||
}
|
||
/* Otherwise check that as many consecutive regs as we need
|
||
are available here. */
|
||
while (nr > 1)
|
||
{
|
||
int regno = regnum + nr - 1;
|
||
if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
|
||
&& spill_reg_order[regno] >= 0
|
||
&& reload_reg_free_p (regno, rld[r].opnum,
|
||
rld[r].when_needed)))
|
||
break;
|
||
nr--;
|
||
}
|
||
if (nr == 1)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we found something on pass 1, omit pass 2. */
|
||
if (count < n_spills)
|
||
break;
|
||
}
|
||
|
||
/* We should have found a spill register by now. */
|
||
if (count >= n_spills)
|
||
return 0;
|
||
|
||
/* I is the index in SPILL_REG_RTX of the reload register we are to
|
||
allocate. Get an rtx for it and find its register number. */
|
||
|
||
return set_reload_reg (i, r);
|
||
}
|
||
|
||
/* Initialize all the tables needed to allocate reload registers.
|
||
CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
|
||
is the array we use to restore the reg_rtx field for every reload. */
|
||
|
||
static void
|
||
choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
rld[i].reg_rtx = save_reload_reg_rtx[i];
|
||
|
||
memset (reload_inherited, 0, MAX_RELOADS);
|
||
memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
|
||
memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
|
||
|
||
CLEAR_HARD_REG_SET (reload_reg_used);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_at_all);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
|
||
|
||
CLEAR_HARD_REG_SET (reg_used_in_insn);
|
||
{
|
||
HARD_REG_SET tmp;
|
||
REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
|
||
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
|
||
REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
|
||
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
|
||
compute_use_by_pseudos (®_used_in_insn, &chain->live_throughout);
|
||
compute_use_by_pseudos (®_used_in_insn, &chain->dead_or_set);
|
||
}
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
|
||
}
|
||
|
||
COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
|
||
|
||
CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
/* If we have already decided to use a certain register,
|
||
don't use it in another way. */
|
||
if (rld[i].reg_rtx)
|
||
mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
|
||
rld[i].when_needed, rld[i].mode);
|
||
}
|
||
|
||
/* Assign hard reg targets for the pseudo-registers we must reload
|
||
into hard regs for this insn.
|
||
Also output the instructions to copy them in and out of the hard regs.
|
||
|
||
For machines with register classes, we are responsible for
|
||
finding a reload reg in the proper class. */
|
||
|
||
static void
|
||
choose_reload_regs (struct insn_chain *chain)
|
||
{
|
||
rtx insn = chain->insn;
|
||
int i, j;
|
||
unsigned int max_group_size = 1;
|
||
enum reg_class group_class = NO_REGS;
|
||
int pass, win, inheritance;
|
||
|
||
rtx save_reload_reg_rtx[MAX_RELOADS];
|
||
|
||
/* In order to be certain of getting the registers we need,
|
||
we must sort the reloads into order of increasing register class.
|
||
Then our grabbing of reload registers will parallel the process
|
||
that provided the reload registers.
|
||
|
||
Also note whether any of the reloads wants a consecutive group of regs.
|
||
If so, record the maximum size of the group desired and what
|
||
register class contains all the groups needed by this insn. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
reload_order[j] = j;
|
||
reload_spill_index[j] = -1;
|
||
|
||
if (rld[j].nregs > 1)
|
||
{
|
||
max_group_size = MAX (rld[j].nregs, max_group_size);
|
||
group_class
|
||
= reg_class_superunion[(int) rld[j].class][(int) group_class];
|
||
}
|
||
|
||
save_reload_reg_rtx[j] = rld[j].reg_rtx;
|
||
}
|
||
|
||
if (n_reloads > 1)
|
||
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
|
||
|
||
/* If -O, try first with inheritance, then turning it off.
|
||
If not -O, don't do inheritance.
|
||
Using inheritance when not optimizing leads to paradoxes
|
||
with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
|
||
because one side of the comparison might be inherited. */
|
||
win = 0;
|
||
for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
|
||
{
|
||
choose_reload_regs_init (chain, save_reload_reg_rtx);
|
||
|
||
/* Process the reloads in order of preference just found.
|
||
Beyond this point, subregs can be found in reload_reg_rtx.
|
||
|
||
This used to look for an existing reloaded home for all of the
|
||
reloads, and only then perform any new reloads. But that could lose
|
||
if the reloads were done out of reg-class order because a later
|
||
reload with a looser constraint might have an old home in a register
|
||
needed by an earlier reload with a tighter constraint.
|
||
|
||
To solve this, we make two passes over the reloads, in the order
|
||
described above. In the first pass we try to inherit a reload
|
||
from a previous insn. If there is a later reload that needs a
|
||
class that is a proper subset of the class being processed, we must
|
||
also allocate a spill register during the first pass.
|
||
|
||
Then make a second pass over the reloads to allocate any reloads
|
||
that haven't been given registers yet. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
int r = reload_order[j];
|
||
rtx search_equiv = NULL_RTX;
|
||
|
||
/* Ignore reloads that got marked inoperative. */
|
||
if (rld[r].out == 0 && rld[r].in == 0
|
||
&& ! rld[r].secondary_p)
|
||
continue;
|
||
|
||
/* If find_reloads chose to use reload_in or reload_out as a reload
|
||
register, we don't need to chose one. Otherwise, try even if it
|
||
found one since we might save an insn if we find the value lying
|
||
around.
|
||
Try also when reload_in is a pseudo without a hard reg. */
|
||
if (rld[r].in != 0 && rld[r].reg_rtx != 0
|
||
&& (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
|
||
|| (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
|
||
&& GET_CODE (rld[r].in) != MEM
|
||
&& true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
|
||
continue;
|
||
|
||
#if 0 /* No longer needed for correct operation.
|
||
It might give better code, or might not; worth an experiment? */
|
||
/* If this is an optional reload, we can't inherit from earlier insns
|
||
until we are sure that any non-optional reloads have been allocated.
|
||
The following code takes advantage of the fact that optional reloads
|
||
are at the end of reload_order. */
|
||
if (rld[r].optional != 0)
|
||
for (i = 0; i < j; i++)
|
||
if ((rld[reload_order[i]].out != 0
|
||
|| rld[reload_order[i]].in != 0
|
||
|| rld[reload_order[i]].secondary_p)
|
||
&& ! rld[reload_order[i]].optional
|
||
&& rld[reload_order[i]].reg_rtx == 0)
|
||
allocate_reload_reg (chain, reload_order[i], 0);
|
||
#endif
|
||
|
||
/* First see if this pseudo is already available as reloaded
|
||
for a previous insn. We cannot try to inherit for reloads
|
||
that are smaller than the maximum number of registers needed
|
||
for groups unless the register we would allocate cannot be used
|
||
for the groups.
|
||
|
||
We could check here to see if this is a secondary reload for
|
||
an object that is already in a register of the desired class.
|
||
This would avoid the need for the secondary reload register.
|
||
But this is complex because we can't easily determine what
|
||
objects might want to be loaded via this reload. So let a
|
||
register be allocated here. In `emit_reload_insns' we suppress
|
||
one of the loads in the case described above. */
|
||
|
||
if (inheritance)
|
||
{
|
||
int byte = 0;
|
||
int regno = -1;
|
||
enum machine_mode mode = VOIDmode;
|
||
|
||
if (rld[r].in == 0)
|
||
;
|
||
else if (GET_CODE (rld[r].in) == REG)
|
||
{
|
||
regno = REGNO (rld[r].in);
|
||
mode = GET_MODE (rld[r].in);
|
||
}
|
||
else if (GET_CODE (rld[r].in_reg) == REG)
|
||
{
|
||
regno = REGNO (rld[r].in_reg);
|
||
mode = GET_MODE (rld[r].in_reg);
|
||
}
|
||
else if (GET_CODE (rld[r].in_reg) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
|
||
{
|
||
byte = SUBREG_BYTE (rld[r].in_reg);
|
||
regno = REGNO (SUBREG_REG (rld[r].in_reg));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
regno = subreg_regno (rld[r].in_reg);
|
||
mode = GET_MODE (rld[r].in_reg);
|
||
}
|
||
#ifdef AUTO_INC_DEC
|
||
else if ((GET_CODE (rld[r].in_reg) == PRE_INC
|
||
|| GET_CODE (rld[r].in_reg) == PRE_DEC
|
||
|| GET_CODE (rld[r].in_reg) == POST_INC
|
||
|| GET_CODE (rld[r].in_reg) == POST_DEC)
|
||
&& GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
|
||
{
|
||
regno = REGNO (XEXP (rld[r].in_reg, 0));
|
||
mode = GET_MODE (XEXP (rld[r].in_reg, 0));
|
||
rld[r].out = rld[r].in;
|
||
}
|
||
#endif
|
||
#if 0
|
||
/* This won't work, since REGNO can be a pseudo reg number.
|
||
Also, it takes much more hair to keep track of all the things
|
||
that can invalidate an inherited reload of part of a pseudoreg. */
|
||
else if (GET_CODE (rld[r].in) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (rld[r].in)) == REG)
|
||
regno = subreg_regno (rld[r].in);
|
||
#endif
|
||
|
||
if (regno >= 0 && reg_last_reload_reg[regno] != 0)
|
||
{
|
||
enum reg_class class = rld[r].class, last_class;
|
||
rtx last_reg = reg_last_reload_reg[regno];
|
||
enum machine_mode need_mode;
|
||
|
||
i = REGNO (last_reg);
|
||
i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
|
||
last_class = REGNO_REG_CLASS (i);
|
||
|
||
if (byte == 0)
|
||
need_mode = mode;
|
||
else
|
||
need_mode
|
||
= smallest_mode_for_size (GET_MODE_BITSIZE (mode)
|
||
+ byte * BITS_PER_UNIT,
|
||
GET_MODE_CLASS (mode));
|
||
|
||
if ((GET_MODE_SIZE (GET_MODE (last_reg))
|
||
>= GET_MODE_SIZE (need_mode))
|
||
#ifdef CANNOT_CHANGE_MODE_CLASS
|
||
/* Verify that the register in "i" can be obtained
|
||
from LAST_REG. */
|
||
&& !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
|
||
GET_MODE (last_reg),
|
||
mode)
|
||
#endif
|
||
&& reg_reloaded_contents[i] == regno
|
||
&& TEST_HARD_REG_BIT (reg_reloaded_valid, i)
|
||
&& HARD_REGNO_MODE_OK (i, rld[r].mode)
|
||
&& (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
|
||
/* Even if we can't use this register as a reload
|
||
register, we might use it for reload_override_in,
|
||
if copying it to the desired class is cheap
|
||
enough. */
|
||
|| ((REGISTER_MOVE_COST (mode, last_class, class)
|
||
< MEMORY_MOVE_COST (mode, class, 1))
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
&& (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
|
||
last_reg)
|
||
== NO_REGS)
|
||
#endif
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
&& ! SECONDARY_MEMORY_NEEDED (last_class, class,
|
||
mode)
|
||
#endif
|
||
))
|
||
|
||
&& (rld[r].nregs == max_group_size
|
||
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
|
||
i))
|
||
&& free_for_value_p (i, rld[r].mode, rld[r].opnum,
|
||
rld[r].when_needed, rld[r].in,
|
||
const0_rtx, r, 1))
|
||
{
|
||
/* If a group is needed, verify that all the subsequent
|
||
registers still have their values intact. */
|
||
int nr = HARD_REGNO_NREGS (i, rld[r].mode);
|
||
int k;
|
||
|
||
for (k = 1; k < nr; k++)
|
||
if (reg_reloaded_contents[i + k] != regno
|
||
|| ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
|
||
break;
|
||
|
||
if (k == nr)
|
||
{
|
||
int i1;
|
||
int bad_for_class;
|
||
|
||
last_reg = (GET_MODE (last_reg) == mode
|
||
? last_reg : gen_rtx_REG (mode, i));
|
||
|
||
bad_for_class = 0;
|
||
for (k = 0; k < nr; k++)
|
||
bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
|
||
i+k);
|
||
|
||
/* We found a register that contains the
|
||
value we need. If this register is the
|
||
same as an `earlyclobber' operand of the
|
||
current insn, just mark it as a place to
|
||
reload from since we can't use it as the
|
||
reload register itself. */
|
||
|
||
for (i1 = 0; i1 < n_earlyclobbers; i1++)
|
||
if (reg_overlap_mentioned_for_reload_p
|
||
(reg_last_reload_reg[regno],
|
||
reload_earlyclobbers[i1]))
|
||
break;
|
||
|
||
if (i1 != n_earlyclobbers
|
||
|| ! (free_for_value_p (i, rld[r].mode,
|
||
rld[r].opnum,
|
||
rld[r].when_needed, rld[r].in,
|
||
rld[r].out, r, 1))
|
||
/* Don't use it if we'd clobber a pseudo reg. */
|
||
|| (TEST_HARD_REG_BIT (reg_used_in_insn, i)
|
||
&& rld[r].out
|
||
&& ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
|
||
/* Don't clobber the frame pointer. */
|
||
|| (i == HARD_FRAME_POINTER_REGNUM
|
||
&& frame_pointer_needed
|
||
&& rld[r].out)
|
||
/* Don't really use the inherited spill reg
|
||
if we need it wider than we've got it. */
|
||
|| (GET_MODE_SIZE (rld[r].mode)
|
||
> GET_MODE_SIZE (mode))
|
||
|| bad_for_class
|
||
|
||
/* If find_reloads chose reload_out as reload
|
||
register, stay with it - that leaves the
|
||
inherited register for subsequent reloads. */
|
||
|| (rld[r].out && rld[r].reg_rtx
|
||
&& rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
|
||
{
|
||
if (! rld[r].optional)
|
||
{
|
||
reload_override_in[r] = last_reg;
|
||
reload_inheritance_insn[r]
|
||
= reg_reloaded_insn[i];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int k;
|
||
/* We can use this as a reload reg. */
|
||
/* Mark the register as in use for this part of
|
||
the insn. */
|
||
mark_reload_reg_in_use (i,
|
||
rld[r].opnum,
|
||
rld[r].when_needed,
|
||
rld[r].mode);
|
||
rld[r].reg_rtx = last_reg;
|
||
reload_inherited[r] = 1;
|
||
reload_inheritance_insn[r]
|
||
= reg_reloaded_insn[i];
|
||
reload_spill_index[r] = i;
|
||
for (k = 0; k < nr; k++)
|
||
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
|
||
i + k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Here's another way to see if the value is already lying around. */
|
||
if (inheritance
|
||
&& rld[r].in != 0
|
||
&& ! reload_inherited[r]
|
||
&& rld[r].out == 0
|
||
&& (CONSTANT_P (rld[r].in)
|
||
|| GET_CODE (rld[r].in) == PLUS
|
||
|| GET_CODE (rld[r].in) == REG
|
||
|| GET_CODE (rld[r].in) == MEM)
|
||
&& (rld[r].nregs == max_group_size
|
||
|| ! reg_classes_intersect_p (rld[r].class, group_class)))
|
||
search_equiv = rld[r].in;
|
||
/* If this is an output reload from a simple move insn, look
|
||
if an equivalence for the input is available. */
|
||
else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
if (set
|
||
&& rtx_equal_p (rld[r].out, SET_DEST (set))
|
||
&& CONSTANT_P (SET_SRC (set)))
|
||
search_equiv = SET_SRC (set);
|
||
}
|
||
|
||
if (search_equiv)
|
||
{
|
||
rtx equiv
|
||
= find_equiv_reg (search_equiv, insn, rld[r].class,
|
||
-1, NULL, 0, rld[r].mode);
|
||
int regno = 0;
|
||
|
||
if (equiv != 0)
|
||
{
|
||
if (GET_CODE (equiv) == REG)
|
||
regno = REGNO (equiv);
|
||
else if (GET_CODE (equiv) == SUBREG)
|
||
{
|
||
/* This must be a SUBREG of a hard register.
|
||
Make a new REG since this might be used in an
|
||
address and not all machines support SUBREGs
|
||
there. */
|
||
regno = subreg_regno (equiv);
|
||
equiv = gen_rtx_REG (rld[r].mode, regno);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* If we found a spill reg, reject it unless it is free
|
||
and of the desired class. */
|
||
if (equiv != 0)
|
||
{
|
||
int regs_used = 0;
|
||
int bad_for_class = 0;
|
||
int max_regno = regno + rld[r].nregs;
|
||
|
||
for (i = regno; i < max_regno; i++)
|
||
{
|
||
regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
|
||
i);
|
||
bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
|
||
i);
|
||
}
|
||
|
||
if ((regs_used
|
||
&& ! free_for_value_p (regno, rld[r].mode,
|
||
rld[r].opnum, rld[r].when_needed,
|
||
rld[r].in, rld[r].out, r, 1))
|
||
|| bad_for_class)
|
||
equiv = 0;
|
||
}
|
||
|
||
if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
|
||
equiv = 0;
|
||
|
||
/* We found a register that contains the value we need.
|
||
If this register is the same as an `earlyclobber' operand
|
||
of the current insn, just mark it as a place to reload from
|
||
since we can't use it as the reload register itself. */
|
||
|
||
if (equiv != 0)
|
||
for (i = 0; i < n_earlyclobbers; i++)
|
||
if (reg_overlap_mentioned_for_reload_p (equiv,
|
||
reload_earlyclobbers[i]))
|
||
{
|
||
if (! rld[r].optional)
|
||
reload_override_in[r] = equiv;
|
||
equiv = 0;
|
||
break;
|
||
}
|
||
|
||
/* If the equiv register we have found is explicitly clobbered
|
||
in the current insn, it depends on the reload type if we
|
||
can use it, use it for reload_override_in, or not at all.
|
||
In particular, we then can't use EQUIV for a
|
||
RELOAD_FOR_OUTPUT_ADDRESS reload. */
|
||
|
||
if (equiv != 0)
|
||
{
|
||
if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
|
||
switch (rld[r].when_needed)
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
break;
|
||
case RELOAD_OTHER:
|
||
case RELOAD_FOR_INPUT:
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
if (! rld[r].optional)
|
||
reload_override_in[r] = equiv;
|
||
/* Fall through. */
|
||
default:
|
||
equiv = 0;
|
||
break;
|
||
}
|
||
else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
|
||
switch (rld[r].when_needed)
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
case RELOAD_FOR_INPUT:
|
||
break;
|
||
case RELOAD_OTHER:
|
||
if (! rld[r].optional)
|
||
reload_override_in[r] = equiv;
|
||
/* Fall through. */
|
||
default:
|
||
equiv = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we found an equivalent reg, say no code need be generated
|
||
to load it, and use it as our reload reg. */
|
||
if (equiv != 0
|
||
&& (regno != HARD_FRAME_POINTER_REGNUM
|
||
|| !frame_pointer_needed))
|
||
{
|
||
int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
|
||
int k;
|
||
rld[r].reg_rtx = equiv;
|
||
reload_inherited[r] = 1;
|
||
|
||
/* If reg_reloaded_valid is not set for this register,
|
||
there might be a stale spill_reg_store lying around.
|
||
We must clear it, since otherwise emit_reload_insns
|
||
might delete the store. */
|
||
if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
|
||
spill_reg_store[regno] = NULL_RTX;
|
||
/* If any of the hard registers in EQUIV are spill
|
||
registers, mark them as in use for this insn. */
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
i = spill_reg_order[regno + k];
|
||
if (i >= 0)
|
||
{
|
||
mark_reload_reg_in_use (regno, rld[r].opnum,
|
||
rld[r].when_needed,
|
||
rld[r].mode);
|
||
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
|
||
regno + k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we found a register to use already, or if this is an optional
|
||
reload, we are done. */
|
||
if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
|
||
continue;
|
||
|
||
#if 0
|
||
/* No longer needed for correct operation. Might or might
|
||
not give better code on the average. Want to experiment? */
|
||
|
||
/* See if there is a later reload that has a class different from our
|
||
class that intersects our class or that requires less register
|
||
than our reload. If so, we must allocate a register to this
|
||
reload now, since that reload might inherit a previous reload
|
||
and take the only available register in our class. Don't do this
|
||
for optional reloads since they will force all previous reloads
|
||
to be allocated. Also don't do this for reloads that have been
|
||
turned off. */
|
||
|
||
for (i = j + 1; i < n_reloads; i++)
|
||
{
|
||
int s = reload_order[i];
|
||
|
||
if ((rld[s].in == 0 && rld[s].out == 0
|
||
&& ! rld[s].secondary_p)
|
||
|| rld[s].optional)
|
||
continue;
|
||
|
||
if ((rld[s].class != rld[r].class
|
||
&& reg_classes_intersect_p (rld[r].class,
|
||
rld[s].class))
|
||
|| rld[s].nregs < rld[r].nregs)
|
||
break;
|
||
}
|
||
|
||
if (i == n_reloads)
|
||
continue;
|
||
|
||
allocate_reload_reg (chain, r, j == n_reloads - 1);
|
||
#endif
|
||
}
|
||
|
||
/* Now allocate reload registers for anything non-optional that
|
||
didn't get one yet. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
int r = reload_order[j];
|
||
|
||
/* Ignore reloads that got marked inoperative. */
|
||
if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
|
||
continue;
|
||
|
||
/* Skip reloads that already have a register allocated or are
|
||
optional. */
|
||
if (rld[r].reg_rtx != 0 || rld[r].optional)
|
||
continue;
|
||
|
||
if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
|
||
break;
|
||
}
|
||
|
||
/* If that loop got all the way, we have won. */
|
||
if (j == n_reloads)
|
||
{
|
||
win = 1;
|
||
break;
|
||
}
|
||
|
||
/* Loop around and try without any inheritance. */
|
||
}
|
||
|
||
if (! win)
|
||
{
|
||
/* First undo everything done by the failed attempt
|
||
to allocate with inheritance. */
|
||
choose_reload_regs_init (chain, save_reload_reg_rtx);
|
||
|
||
/* Some sanity tests to verify that the reloads found in the first
|
||
pass are identical to the ones we have now. */
|
||
if (chain->n_reloads != n_reloads)
|
||
abort ();
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
|
||
continue;
|
||
if (chain->rld[i].when_needed != rld[i].when_needed)
|
||
abort ();
|
||
for (j = 0; j < n_spills; j++)
|
||
if (spill_regs[j] == chain->rld[i].regno)
|
||
if (! set_reload_reg (j, i))
|
||
failed_reload (chain->insn, i);
|
||
}
|
||
}
|
||
|
||
/* If we thought we could inherit a reload, because it seemed that
|
||
nothing else wanted the same reload register earlier in the insn,
|
||
verify that assumption, now that all reloads have been assigned.
|
||
Likewise for reloads where reload_override_in has been set. */
|
||
|
||
/* If doing expensive optimizations, do one preliminary pass that doesn't
|
||
cancel any inheritance, but removes reloads that have been needed only
|
||
for reloads that we know can be inherited. */
|
||
for (pass = flag_expensive_optimizations; pass >= 0; pass--)
|
||
{
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
int r = reload_order[j];
|
||
rtx check_reg;
|
||
if (reload_inherited[r] && rld[r].reg_rtx)
|
||
check_reg = rld[r].reg_rtx;
|
||
else if (reload_override_in[r]
|
||
&& (GET_CODE (reload_override_in[r]) == REG
|
||
|| GET_CODE (reload_override_in[r]) == SUBREG))
|
||
check_reg = reload_override_in[r];
|
||
else
|
||
continue;
|
||
if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
|
||
rld[r].opnum, rld[r].when_needed, rld[r].in,
|
||
(reload_inherited[r]
|
||
? rld[r].out : const0_rtx),
|
||
r, 1))
|
||
{
|
||
if (pass)
|
||
continue;
|
||
reload_inherited[r] = 0;
|
||
reload_override_in[r] = 0;
|
||
}
|
||
/* If we can inherit a RELOAD_FOR_INPUT, or can use a
|
||
reload_override_in, then we do not need its related
|
||
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
|
||
likewise for other reload types.
|
||
We handle this by removing a reload when its only replacement
|
||
is mentioned in reload_in of the reload we are going to inherit.
|
||
A special case are auto_inc expressions; even if the input is
|
||
inherited, we still need the address for the output. We can
|
||
recognize them because they have RELOAD_OUT set to RELOAD_IN.
|
||
If we succeeded removing some reload and we are doing a preliminary
|
||
pass just to remove such reloads, make another pass, since the
|
||
removal of one reload might allow us to inherit another one. */
|
||
else if (rld[r].in
|
||
&& rld[r].out != rld[r].in
|
||
&& remove_address_replacements (rld[r].in) && pass)
|
||
pass = 2;
|
||
}
|
||
}
|
||
|
||
/* Now that reload_override_in is known valid,
|
||
actually override reload_in. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (reload_override_in[j])
|
||
rld[j].in = reload_override_in[j];
|
||
|
||
/* If this reload won't be done because it has been canceled or is
|
||
optional and not inherited, clear reload_reg_rtx so other
|
||
routines (such as subst_reloads) don't get confused. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (rld[j].reg_rtx != 0
|
||
&& ((rld[j].optional && ! reload_inherited[j])
|
||
|| (rld[j].in == 0 && rld[j].out == 0
|
||
&& ! rld[j].secondary_p)))
|
||
{
|
||
int regno = true_regnum (rld[j].reg_rtx);
|
||
|
||
if (spill_reg_order[regno] >= 0)
|
||
clear_reload_reg_in_use (regno, rld[j].opnum,
|
||
rld[j].when_needed, rld[j].mode);
|
||
rld[j].reg_rtx = 0;
|
||
reload_spill_index[j] = -1;
|
||
}
|
||
|
||
/* Record which pseudos and which spill regs have output reloads. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
int r = reload_order[j];
|
||
|
||
i = reload_spill_index[r];
|
||
|
||
/* I is nonneg if this reload uses a register.
|
||
If rld[r].reg_rtx is 0, this is an optional reload
|
||
that we opted to ignore. */
|
||
if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
|
||
&& rld[r].reg_rtx != 0)
|
||
{
|
||
int nregno = REGNO (rld[r].out_reg);
|
||
int nr = 1;
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
|
||
|
||
while (--nr >= 0)
|
||
reg_has_output_reload[nregno + nr] = 1;
|
||
|
||
if (i >= 0)
|
||
{
|
||
nr = HARD_REGNO_NREGS (i, rld[r].mode);
|
||
while (--nr >= 0)
|
||
SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
|
||
}
|
||
|
||
if (rld[r].when_needed != RELOAD_OTHER
|
||
&& rld[r].when_needed != RELOAD_FOR_OUTPUT
|
||
&& rld[r].when_needed != RELOAD_FOR_INSN)
|
||
abort ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Deallocate the reload register for reload R. This is called from
|
||
remove_address_replacements. */
|
||
|
||
void
|
||
deallocate_reload_reg (int r)
|
||
{
|
||
int regno;
|
||
|
||
if (! rld[r].reg_rtx)
|
||
return;
|
||
regno = true_regnum (rld[r].reg_rtx);
|
||
rld[r].reg_rtx = 0;
|
||
if (spill_reg_order[regno] >= 0)
|
||
clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
|
||
rld[r].mode);
|
||
reload_spill_index[r] = -1;
|
||
}
|
||
|
||
/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
|
||
reloads of the same item for fear that we might not have enough reload
|
||
registers. However, normally they will get the same reload register
|
||
and hence actually need not be loaded twice.
|
||
|
||
Here we check for the most common case of this phenomenon: when we have
|
||
a number of reloads for the same object, each of which were allocated
|
||
the same reload_reg_rtx, that reload_reg_rtx is not used for any other
|
||
reload, and is not modified in the insn itself. If we find such,
|
||
merge all the reloads and set the resulting reload to RELOAD_OTHER.
|
||
This will not increase the number of spill registers needed and will
|
||
prevent redundant code. */
|
||
|
||
static void
|
||
merge_assigned_reloads (rtx insn)
|
||
{
|
||
int i, j;
|
||
|
||
/* Scan all the reloads looking for ones that only load values and
|
||
are not already RELOAD_OTHER and ones whose reload_reg_rtx are
|
||
assigned and not modified by INSN. */
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
int conflicting_input = 0;
|
||
int max_input_address_opnum = -1;
|
||
int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
|
||
|
||
if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
|
||
|| rld[i].out != 0 || rld[i].reg_rtx == 0
|
||
|| reg_set_p (rld[i].reg_rtx, insn))
|
||
continue;
|
||
|
||
/* Look at all other reloads. Ensure that the only use of this
|
||
reload_reg_rtx is in a reload that just loads the same value
|
||
as we do. Note that any secondary reloads must be of the identical
|
||
class since the values, modes, and result registers are the
|
||
same, so we need not do anything with any secondary reloads. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
if (i == j || rld[j].reg_rtx == 0
|
||
|| ! reg_overlap_mentioned_p (rld[j].reg_rtx,
|
||
rld[i].reg_rtx))
|
||
continue;
|
||
|
||
if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
||
&& rld[j].opnum > max_input_address_opnum)
|
||
max_input_address_opnum = rld[j].opnum;
|
||
|
||
/* If the reload regs aren't exactly the same (e.g, different modes)
|
||
or if the values are different, we can't merge this reload.
|
||
But if it is an input reload, we might still merge
|
||
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
|
||
|
||
if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
|
||
|| rld[j].out != 0 || rld[j].in == 0
|
||
|| ! rtx_equal_p (rld[i].in, rld[j].in))
|
||
{
|
||
if (rld[j].when_needed != RELOAD_FOR_INPUT
|
||
|| ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
|
||
|| rld[i].opnum > rld[j].opnum)
|
||
&& rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
|
||
break;
|
||
conflicting_input = 1;
|
||
if (min_conflicting_input_opnum > rld[j].opnum)
|
||
min_conflicting_input_opnum = rld[j].opnum;
|
||
}
|
||
}
|
||
|
||
/* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
|
||
we, in fact, found any matching reloads. */
|
||
|
||
if (j == n_reloads
|
||
&& max_input_address_opnum <= min_conflicting_input_opnum)
|
||
{
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (i != j && rld[j].reg_rtx != 0
|
||
&& rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
|
||
&& (! conflicting_input
|
||
|| rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
||
|| rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
|
||
{
|
||
rld[i].when_needed = RELOAD_OTHER;
|
||
rld[j].in = 0;
|
||
reload_spill_index[j] = -1;
|
||
transfer_replacements (i, j);
|
||
}
|
||
|
||
/* If this is now RELOAD_OTHER, look for any reloads that load
|
||
parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
|
||
if they were for inputs, RELOAD_OTHER for outputs. Note that
|
||
this test is equivalent to looking for reloads for this operand
|
||
number. */
|
||
/* We must take special care when there are two or more reloads to
|
||
be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
|
||
same value or a part of it; we must not change its type if there
|
||
is a conflicting input. */
|
||
|
||
if (rld[i].when_needed == RELOAD_OTHER)
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (rld[j].in != 0
|
||
&& rld[j].when_needed != RELOAD_OTHER
|
||
&& rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
|
||
&& (! conflicting_input
|
||
|| rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
||
|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
|
||
&& reg_overlap_mentioned_for_reload_p (rld[j].in,
|
||
rld[i].in))
|
||
{
|
||
int k;
|
||
|
||
rld[j].when_needed
|
||
= ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
||
|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
|
||
? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
|
||
|
||
/* Check to see if we accidentally converted two reloads
|
||
that use the same reload register with different inputs
|
||
to the same type. If so, the resulting code won't work,
|
||
so abort. */
|
||
if (rld[j].reg_rtx)
|
||
for (k = 0; k < j; k++)
|
||
if (rld[k].in != 0 && rld[k].reg_rtx != 0
|
||
&& rld[k].when_needed == rld[j].when_needed
|
||
&& rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx)
|
||
&& ! rtx_equal_p (rld[k].in, rld[j].in))
|
||
abort ();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* These arrays are filled by emit_reload_insns and its subroutines. */
|
||
static rtx input_reload_insns[MAX_RECOG_OPERANDS];
|
||
static rtx other_input_address_reload_insns = 0;
|
||
static rtx other_input_reload_insns = 0;
|
||
static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
static rtx output_reload_insns[MAX_RECOG_OPERANDS];
|
||
static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
static rtx operand_reload_insns = 0;
|
||
static rtx other_operand_reload_insns = 0;
|
||
static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
|
||
|
||
/* Values to be put in spill_reg_store are put here first. */
|
||
static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
|
||
static HARD_REG_SET reg_reloaded_died;
|
||
|
||
/* Generate insns to perform reload RL, which is for the insn in CHAIN and
|
||
has the number J. OLD contains the value to be used as input. */
|
||
|
||
static void
|
||
emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
|
||
rtx old, int j)
|
||
{
|
||
rtx insn = chain->insn;
|
||
rtx reloadreg = rl->reg_rtx;
|
||
rtx oldequiv_reg = 0;
|
||
rtx oldequiv = 0;
|
||
int special = 0;
|
||
enum machine_mode mode;
|
||
rtx *where;
|
||
|
||
/* Determine the mode to reload in.
|
||
This is very tricky because we have three to choose from.
|
||
There is the mode the insn operand wants (rl->inmode).
|
||
There is the mode of the reload register RELOADREG.
|
||
There is the intrinsic mode of the operand, which we could find
|
||
by stripping some SUBREGs.
|
||
It turns out that RELOADREG's mode is irrelevant:
|
||
we can change that arbitrarily.
|
||
|
||
Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
|
||
then the reload reg may not support QImode moves, so use SImode.
|
||
If foo is in memory due to spilling a pseudo reg, this is safe,
|
||
because the QImode value is in the least significant part of a
|
||
slot big enough for a SImode. If foo is some other sort of
|
||
memory reference, then it is impossible to reload this case,
|
||
so previous passes had better make sure this never happens.
|
||
|
||
Then consider a one-word union which has SImode and one of its
|
||
members is a float, being fetched as (SUBREG:SF union:SI).
|
||
We must fetch that as SFmode because we could be loading into
|
||
a float-only register. In this case OLD's mode is correct.
|
||
|
||
Consider an immediate integer: it has VOIDmode. Here we need
|
||
to get a mode from something else.
|
||
|
||
In some cases, there is a fourth mode, the operand's
|
||
containing mode. If the insn specifies a containing mode for
|
||
this operand, it overrides all others.
|
||
|
||
I am not sure whether the algorithm here is always right,
|
||
but it does the right things in those cases. */
|
||
|
||
mode = GET_MODE (old);
|
||
if (mode == VOIDmode)
|
||
mode = rl->inmode;
|
||
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
/* If we need a secondary register for this operation, see if
|
||
the value is already in a register in that class. Don't
|
||
do this if the secondary register will be used as a scratch
|
||
register. */
|
||
|
||
if (rl->secondary_in_reload >= 0
|
||
&& rl->secondary_in_icode == CODE_FOR_nothing
|
||
&& optimize)
|
||
oldequiv
|
||
= find_equiv_reg (old, insn,
|
||
rld[rl->secondary_in_reload].class,
|
||
-1, NULL, 0, mode);
|
||
#endif
|
||
|
||
/* If reloading from memory, see if there is a register
|
||
that already holds the same value. If so, reload from there.
|
||
We can pass 0 as the reload_reg_p argument because
|
||
any other reload has either already been emitted,
|
||
in which case find_equiv_reg will see the reload-insn,
|
||
or has yet to be emitted, in which case it doesn't matter
|
||
because we will use this equiv reg right away. */
|
||
|
||
if (oldequiv == 0 && optimize
|
||
&& (GET_CODE (old) == MEM
|
||
|| (GET_CODE (old) == REG
|
||
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (old)] < 0)))
|
||
oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
|
||
|
||
if (oldequiv)
|
||
{
|
||
unsigned int regno = true_regnum (oldequiv);
|
||
|
||
/* Don't use OLDEQUIV if any other reload changes it at an
|
||
earlier stage of this insn or at this stage. */
|
||
if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
|
||
rl->in, const0_rtx, j, 0))
|
||
oldequiv = 0;
|
||
|
||
/* If it is no cheaper to copy from OLDEQUIV into the
|
||
reload register than it would be to move from memory,
|
||
don't use it. Likewise, if we need a secondary register
|
||
or memory. */
|
||
|
||
if (oldequiv != 0
|
||
&& (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
|
||
&& (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
|
||
rl->class)
|
||
>= MEMORY_MOVE_COST (mode, rl->class, 1)))
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
|| (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
|
||
mode, oldequiv)
|
||
!= NO_REGS)
|
||
#endif
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
|| SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
|
||
rl->class,
|
||
mode)
|
||
#endif
|
||
))
|
||
oldequiv = 0;
|
||
}
|
||
|
||
/* delete_output_reload is only invoked properly if old contains
|
||
the original pseudo register. Since this is replaced with a
|
||
hard reg when RELOAD_OVERRIDE_IN is set, see if we can
|
||
find the pseudo in RELOAD_IN_REG. */
|
||
if (oldequiv == 0
|
||
&& reload_override_in[j]
|
||
&& GET_CODE (rl->in_reg) == REG)
|
||
{
|
||
oldequiv = old;
|
||
old = rl->in_reg;
|
||
}
|
||
if (oldequiv == 0)
|
||
oldequiv = old;
|
||
else if (GET_CODE (oldequiv) == REG)
|
||
oldequiv_reg = oldequiv;
|
||
else if (GET_CODE (oldequiv) == SUBREG)
|
||
oldequiv_reg = SUBREG_REG (oldequiv);
|
||
|
||
/* If we are reloading from a register that was recently stored in
|
||
with an output-reload, see if we can prove there was
|
||
actually no need to store the old value in it. */
|
||
|
||
if (optimize && GET_CODE (oldequiv) == REG
|
||
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
|
||
&& spill_reg_store[REGNO (oldequiv)]
|
||
&& GET_CODE (old) == REG
|
||
&& (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
|
||
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
|
||
rl->out_reg)))
|
||
delete_output_reload (insn, j, REGNO (oldequiv));
|
||
|
||
/* Encapsulate both RELOADREG and OLDEQUIV into that mode,
|
||
then load RELOADREG from OLDEQUIV. Note that we cannot use
|
||
gen_lowpart_common since it can do the wrong thing when
|
||
RELOADREG has a multi-word mode. Note that RELOADREG
|
||
must always be a REG here. */
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
|
||
while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
|
||
oldequiv = SUBREG_REG (oldequiv);
|
||
if (GET_MODE (oldequiv) != VOIDmode
|
||
&& mode != GET_MODE (oldequiv))
|
||
oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
|
||
|
||
/* Switch to the right place to emit the reload insns. */
|
||
switch (rl->when_needed)
|
||
{
|
||
case RELOAD_OTHER:
|
||
where = &other_input_reload_insns;
|
||
break;
|
||
case RELOAD_FOR_INPUT:
|
||
where = &input_reload_insns[rl->opnum];
|
||
break;
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
where = &input_address_reload_insns[rl->opnum];
|
||
break;
|
||
case RELOAD_FOR_INPADDR_ADDRESS:
|
||
where = &inpaddr_address_reload_insns[rl->opnum];
|
||
break;
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
where = &output_address_reload_insns[rl->opnum];
|
||
break;
|
||
case RELOAD_FOR_OUTADDR_ADDRESS:
|
||
where = &outaddr_address_reload_insns[rl->opnum];
|
||
break;
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
where = &operand_reload_insns;
|
||
break;
|
||
case RELOAD_FOR_OPADDR_ADDR:
|
||
where = &other_operand_reload_insns;
|
||
break;
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
where = &other_input_address_reload_insns;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
push_to_sequence (*where);
|
||
|
||
/* Auto-increment addresses must be reloaded in a special way. */
|
||
if (rl->out && ! rl->out_reg)
|
||
{
|
||
/* We are not going to bother supporting the case where a
|
||
incremented register can't be copied directly from
|
||
OLDEQUIV since this seems highly unlikely. */
|
||
if (rl->secondary_in_reload >= 0)
|
||
abort ();
|
||
|
||
if (reload_inherited[j])
|
||
oldequiv = reloadreg;
|
||
|
||
old = XEXP (rl->in_reg, 0);
|
||
|
||
if (optimize && GET_CODE (oldequiv) == REG
|
||
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
|
||
&& spill_reg_store[REGNO (oldequiv)]
|
||
&& GET_CODE (old) == REG
|
||
&& (dead_or_set_p (insn,
|
||
spill_reg_stored_to[REGNO (oldequiv)])
|
||
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
|
||
old)))
|
||
delete_output_reload (insn, j, REGNO (oldequiv));
|
||
|
||
/* Prevent normal processing of this reload. */
|
||
special = 1;
|
||
/* Output a special code sequence for this case. */
|
||
new_spill_reg_store[REGNO (reloadreg)]
|
||
= inc_for_reload (reloadreg, oldequiv, rl->out,
|
||
rl->inc);
|
||
}
|
||
|
||
/* If we are reloading a pseudo-register that was set by the previous
|
||
insn, see if we can get rid of that pseudo-register entirely
|
||
by redirecting the previous insn into our reload register. */
|
||
|
||
else if (optimize && GET_CODE (old) == REG
|
||
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& dead_or_set_p (insn, old)
|
||
/* This is unsafe if some other reload
|
||
uses the same reg first. */
|
||
&& ! conflicts_with_override (reloadreg)
|
||
&& free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
|
||
rl->when_needed, old, rl->out, j, 0))
|
||
{
|
||
rtx temp = PREV_INSN (insn);
|
||
while (temp && GET_CODE (temp) == NOTE)
|
||
temp = PREV_INSN (temp);
|
||
if (temp
|
||
&& GET_CODE (temp) == INSN
|
||
&& GET_CODE (PATTERN (temp)) == SET
|
||
&& SET_DEST (PATTERN (temp)) == old
|
||
/* Make sure we can access insn_operand_constraint. */
|
||
&& asm_noperands (PATTERN (temp)) < 0
|
||
/* This is unsafe if operand occurs more than once in current
|
||
insn. Perhaps some occurrences aren't reloaded. */
|
||
&& count_occurrences (PATTERN (insn), old, 0) == 1)
|
||
{
|
||
rtx old = SET_DEST (PATTERN (temp));
|
||
/* Store into the reload register instead of the pseudo. */
|
||
SET_DEST (PATTERN (temp)) = reloadreg;
|
||
|
||
/* Verify that resulting insn is valid. */
|
||
extract_insn (temp);
|
||
if (constrain_operands (1))
|
||
{
|
||
/* If the previous insn is an output reload, the source is
|
||
a reload register, and its spill_reg_store entry will
|
||
contain the previous destination. This is now
|
||
invalid. */
|
||
if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
|
||
&& REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
|
||
spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
|
||
}
|
||
|
||
/* If these are the only uses of the pseudo reg,
|
||
pretend for GDB it lives in the reload reg we used. */
|
||
if (REG_N_DEATHS (REGNO (old)) == 1
|
||
&& REG_N_SETS (REGNO (old)) == 1)
|
||
{
|
||
reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
|
||
alter_reg (REGNO (old), -1);
|
||
}
|
||
special = 1;
|
||
}
|
||
else
|
||
{
|
||
SET_DEST (PATTERN (temp)) = old;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We can't do that, so output an insn to load RELOADREG. */
|
||
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
/* If we have a secondary reload, pick up the secondary register
|
||
and icode, if any. If OLDEQUIV and OLD are different or
|
||
if this is an in-out reload, recompute whether or not we
|
||
still need a secondary register and what the icode should
|
||
be. If we still need a secondary register and the class or
|
||
icode is different, go back to reloading from OLD if using
|
||
OLDEQUIV means that we got the wrong type of register. We
|
||
cannot have different class or icode due to an in-out reload
|
||
because we don't make such reloads when both the input and
|
||
output need secondary reload registers. */
|
||
|
||
if (! special && rl->secondary_in_reload >= 0)
|
||
{
|
||
rtx second_reload_reg = 0;
|
||
int secondary_reload = rl->secondary_in_reload;
|
||
rtx real_oldequiv = oldequiv;
|
||
rtx real_old = old;
|
||
rtx tmp;
|
||
enum insn_code icode;
|
||
|
||
/* If OLDEQUIV is a pseudo with a MEM, get the real MEM
|
||
and similarly for OLD.
|
||
See comments in get_secondary_reload in reload.c. */
|
||
/* If it is a pseudo that cannot be replaced with its
|
||
equivalent MEM, we must fall back to reload_in, which
|
||
will have all the necessary substitutions registered.
|
||
Likewise for a pseudo that can't be replaced with its
|
||
equivalent constant.
|
||
|
||
Take extra care for subregs of such pseudos. Note that
|
||
we cannot use reg_equiv_mem in this case because it is
|
||
not in the right mode. */
|
||
|
||
tmp = oldequiv;
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if (GET_CODE (tmp) == REG
|
||
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
|
||
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|
||
|| reg_equiv_constant[REGNO (tmp)] != 0))
|
||
{
|
||
if (! reg_equiv_mem[REGNO (tmp)]
|
||
|| num_not_at_initial_offset
|
||
|| GET_CODE (oldequiv) == SUBREG)
|
||
real_oldequiv = rl->in;
|
||
else
|
||
real_oldequiv = reg_equiv_mem[REGNO (tmp)];
|
||
}
|
||
|
||
tmp = old;
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if (GET_CODE (tmp) == REG
|
||
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
|
||
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|
||
|| reg_equiv_constant[REGNO (tmp)] != 0))
|
||
{
|
||
if (! reg_equiv_mem[REGNO (tmp)]
|
||
|| num_not_at_initial_offset
|
||
|| GET_CODE (old) == SUBREG)
|
||
real_old = rl->in;
|
||
else
|
||
real_old = reg_equiv_mem[REGNO (tmp)];
|
||
}
|
||
|
||
second_reload_reg = rld[secondary_reload].reg_rtx;
|
||
icode = rl->secondary_in_icode;
|
||
|
||
if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
|
||
|| (rl->in != 0 && rl->out != 0))
|
||
{
|
||
enum reg_class new_class
|
||
= SECONDARY_INPUT_RELOAD_CLASS (rl->class,
|
||
mode, real_oldequiv);
|
||
|
||
if (new_class == NO_REGS)
|
||
second_reload_reg = 0;
|
||
else
|
||
{
|
||
enum insn_code new_icode;
|
||
enum machine_mode new_mode;
|
||
|
||
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
|
||
REGNO (second_reload_reg)))
|
||
oldequiv = old, real_oldequiv = real_old;
|
||
else
|
||
{
|
||
new_icode = reload_in_optab[(int) mode];
|
||
if (new_icode != CODE_FOR_nothing
|
||
&& ((insn_data[(int) new_icode].operand[0].predicate
|
||
&& ! ((*insn_data[(int) new_icode].operand[0].predicate)
|
||
(reloadreg, mode)))
|
||
|| (insn_data[(int) new_icode].operand[1].predicate
|
||
&& ! ((*insn_data[(int) new_icode].operand[1].predicate)
|
||
(real_oldequiv, mode)))))
|
||
new_icode = CODE_FOR_nothing;
|
||
|
||
if (new_icode == CODE_FOR_nothing)
|
||
new_mode = mode;
|
||
else
|
||
new_mode = insn_data[(int) new_icode].operand[2].mode;
|
||
|
||
if (GET_MODE (second_reload_reg) != new_mode)
|
||
{
|
||
if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
|
||
new_mode))
|
||
oldequiv = old, real_oldequiv = real_old;
|
||
else
|
||
second_reload_reg
|
||
= reload_adjust_reg_for_mode (second_reload_reg,
|
||
new_mode);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we still need a secondary reload register, check
|
||
to see if it is being used as a scratch or intermediate
|
||
register and generate code appropriately. If we need
|
||
a scratch register, use REAL_OLDEQUIV since the form of
|
||
the insn may depend on the actual address if it is
|
||
a MEM. */
|
||
|
||
if (second_reload_reg)
|
||
{
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
|
||
second_reload_reg));
|
||
special = 1;
|
||
}
|
||
else
|
||
{
|
||
/* See if we need a scratch register to load the
|
||
intermediate register (a tertiary reload). */
|
||
enum insn_code tertiary_icode
|
||
= rld[secondary_reload].secondary_in_icode;
|
||
|
||
if (tertiary_icode != CODE_FOR_nothing)
|
||
{
|
||
rtx third_reload_reg
|
||
= rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
|
||
|
||
emit_insn ((GEN_FCN (tertiary_icode)
|
||
(second_reload_reg, real_oldequiv,
|
||
third_reload_reg)));
|
||
}
|
||
else
|
||
gen_reload (second_reload_reg, real_oldequiv,
|
||
rl->opnum,
|
||
rl->when_needed);
|
||
|
||
oldequiv = second_reload_reg;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (! special && ! rtx_equal_p (reloadreg, oldequiv))
|
||
{
|
||
rtx real_oldequiv = oldequiv;
|
||
|
||
if ((GET_CODE (oldequiv) == REG
|
||
&& REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
|
||
&& (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
|
||
|| reg_equiv_constant[REGNO (oldequiv)] != 0))
|
||
|| (GET_CODE (oldequiv) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (oldequiv)) == REG
|
||
&& (REGNO (SUBREG_REG (oldequiv))
|
||
>= FIRST_PSEUDO_REGISTER)
|
||
&& ((reg_equiv_memory_loc
|
||
[REGNO (SUBREG_REG (oldequiv))] != 0)
|
||
|| (reg_equiv_constant
|
||
[REGNO (SUBREG_REG (oldequiv))] != 0)))
|
||
|| (CONSTANT_P (oldequiv)
|
||
&& (PREFERRED_RELOAD_CLASS (oldequiv,
|
||
REGNO_REG_CLASS (REGNO (reloadreg)))
|
||
== NO_REGS)))
|
||
real_oldequiv = rl->in;
|
||
gen_reload (reloadreg, real_oldequiv, rl->opnum,
|
||
rl->when_needed);
|
||
}
|
||
|
||
if (flag_non_call_exceptions)
|
||
copy_eh_notes (insn, get_insns ());
|
||
|
||
/* End this sequence. */
|
||
*where = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Update reload_override_in so that delete_address_reloads_1
|
||
can see the actual register usage. */
|
||
if (oldequiv_reg)
|
||
reload_override_in[j] = oldequiv;
|
||
}
|
||
|
||
/* Generate insns to for the output reload RL, which is for the insn described
|
||
by CHAIN and has the number J. */
|
||
static void
|
||
emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
|
||
int j)
|
||
{
|
||
rtx reloadreg = rl->reg_rtx;
|
||
rtx insn = chain->insn;
|
||
int special = 0;
|
||
rtx old = rl->out;
|
||
enum machine_mode mode = GET_MODE (old);
|
||
rtx p;
|
||
|
||
if (rl->when_needed == RELOAD_OTHER)
|
||
start_sequence ();
|
||
else
|
||
push_to_sequence (output_reload_insns[rl->opnum]);
|
||
|
||
/* Determine the mode to reload in.
|
||
See comments above (for input reloading). */
|
||
|
||
if (mode == VOIDmode)
|
||
{
|
||
/* VOIDmode should never happen for an output. */
|
||
if (asm_noperands (PATTERN (insn)) < 0)
|
||
/* It's the compiler's fault. */
|
||
fatal_insn ("VOIDmode on an output", insn);
|
||
error_for_asm (insn, "output operand is constant in `asm'");
|
||
/* Prevent crash--use something we know is valid. */
|
||
mode = word_mode;
|
||
old = gen_rtx_REG (mode, REGNO (reloadreg));
|
||
}
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
|
||
|
||
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
|
||
|
||
/* If we need two reload regs, set RELOADREG to the intermediate
|
||
one, since it will be stored into OLD. We might need a secondary
|
||
register only for an input reload, so check again here. */
|
||
|
||
if (rl->secondary_out_reload >= 0)
|
||
{
|
||
rtx real_old = old;
|
||
|
||
if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_equiv_mem[REGNO (old)] != 0)
|
||
real_old = reg_equiv_mem[REGNO (old)];
|
||
|
||
if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
|
||
mode, real_old)
|
||
!= NO_REGS))
|
||
{
|
||
rtx second_reloadreg = reloadreg;
|
||
reloadreg = rld[rl->secondary_out_reload].reg_rtx;
|
||
|
||
/* See if RELOADREG is to be used as a scratch register
|
||
or as an intermediate register. */
|
||
if (rl->secondary_out_icode != CODE_FOR_nothing)
|
||
{
|
||
emit_insn ((GEN_FCN (rl->secondary_out_icode)
|
||
(real_old, second_reloadreg, reloadreg)));
|
||
special = 1;
|
||
}
|
||
else
|
||
{
|
||
/* See if we need both a scratch and intermediate reload
|
||
register. */
|
||
|
||
int secondary_reload = rl->secondary_out_reload;
|
||
enum insn_code tertiary_icode
|
||
= rld[secondary_reload].secondary_out_icode;
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
|
||
|
||
if (tertiary_icode != CODE_FOR_nothing)
|
||
{
|
||
rtx third_reloadreg
|
||
= rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
|
||
rtx tem;
|
||
|
||
/* Copy primary reload reg to secondary reload reg.
|
||
(Note that these have been swapped above, then
|
||
secondary reload reg to OLD using our insn.) */
|
||
|
||
/* If REAL_OLD is a paradoxical SUBREG, remove it
|
||
and try to put the opposite SUBREG on
|
||
RELOADREG. */
|
||
if (GET_CODE (real_old) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (real_old))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
|
||
&& 0 != (tem = gen_lowpart_common
|
||
(GET_MODE (SUBREG_REG (real_old)),
|
||
reloadreg)))
|
||
real_old = SUBREG_REG (real_old), reloadreg = tem;
|
||
|
||
gen_reload (reloadreg, second_reloadreg,
|
||
rl->opnum, rl->when_needed);
|
||
emit_insn ((GEN_FCN (tertiary_icode)
|
||
(real_old, reloadreg, third_reloadreg)));
|
||
special = 1;
|
||
}
|
||
|
||
else
|
||
/* Copy between the reload regs here and then to
|
||
OUT later. */
|
||
|
||
gen_reload (reloadreg, second_reloadreg,
|
||
rl->opnum, rl->when_needed);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Output the last reload insn. */
|
||
if (! special)
|
||
{
|
||
rtx set;
|
||
|
||
/* Don't output the last reload if OLD is not the dest of
|
||
INSN and is in the src and is clobbered by INSN. */
|
||
if (! flag_expensive_optimizations
|
||
|| GET_CODE (old) != REG
|
||
|| !(set = single_set (insn))
|
||
|| rtx_equal_p (old, SET_DEST (set))
|
||
|| !reg_mentioned_p (old, SET_SRC (set))
|
||
|| !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
|
||
gen_reload (old, reloadreg, rl->opnum,
|
||
rl->when_needed);
|
||
}
|
||
|
||
/* Look at all insns we emitted, just to be safe. */
|
||
for (p = get_insns (); p; p = NEXT_INSN (p))
|
||
if (INSN_P (p))
|
||
{
|
||
rtx pat = PATTERN (p);
|
||
|
||
/* If this output reload doesn't come from a spill reg,
|
||
clear any memory of reloaded copies of the pseudo reg.
|
||
If this output reload comes from a spill reg,
|
||
reg_has_output_reload will make this do nothing. */
|
||
note_stores (pat, forget_old_reloads_1, NULL);
|
||
|
||
if (reg_mentioned_p (rl->reg_rtx, pat))
|
||
{
|
||
rtx set = single_set (insn);
|
||
if (reload_spill_index[j] < 0
|
||
&& set
|
||
&& SET_SRC (set) == rl->reg_rtx)
|
||
{
|
||
int src = REGNO (SET_SRC (set));
|
||
|
||
reload_spill_index[j] = src;
|
||
SET_HARD_REG_BIT (reg_is_output_reload, src);
|
||
if (find_regno_note (insn, REG_DEAD, src))
|
||
SET_HARD_REG_BIT (reg_reloaded_died, src);
|
||
}
|
||
if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int s = rl->secondary_out_reload;
|
||
set = single_set (p);
|
||
/* If this reload copies only to the secondary reload
|
||
register, the secondary reload does the actual
|
||
store. */
|
||
if (s >= 0 && set == NULL_RTX)
|
||
/* We can't tell what function the secondary reload
|
||
has and where the actual store to the pseudo is
|
||
made; leave new_spill_reg_store alone. */
|
||
;
|
||
else if (s >= 0
|
||
&& SET_SRC (set) == rl->reg_rtx
|
||
&& SET_DEST (set) == rld[s].reg_rtx)
|
||
{
|
||
/* Usually the next instruction will be the
|
||
secondary reload insn; if we can confirm
|
||
that it is, setting new_spill_reg_store to
|
||
that insn will allow an extra optimization. */
|
||
rtx s_reg = rld[s].reg_rtx;
|
||
rtx next = NEXT_INSN (p);
|
||
rld[s].out = rl->out;
|
||
rld[s].out_reg = rl->out_reg;
|
||
set = single_set (next);
|
||
if (set && SET_SRC (set) == s_reg
|
||
&& ! new_spill_reg_store[REGNO (s_reg)])
|
||
{
|
||
SET_HARD_REG_BIT (reg_is_output_reload,
|
||
REGNO (s_reg));
|
||
new_spill_reg_store[REGNO (s_reg)] = next;
|
||
}
|
||
}
|
||
else
|
||
new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (rl->when_needed == RELOAD_OTHER)
|
||
{
|
||
emit_insn (other_output_reload_insns[rl->opnum]);
|
||
other_output_reload_insns[rl->opnum] = get_insns ();
|
||
}
|
||
else
|
||
output_reload_insns[rl->opnum] = get_insns ();
|
||
|
||
if (flag_non_call_exceptions)
|
||
copy_eh_notes (insn, get_insns ());
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Do input reloading for reload RL, which is for the insn described by CHAIN
|
||
and has the number J. */
|
||
static void
|
||
do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
|
||
{
|
||
rtx insn = chain->insn;
|
||
rtx old = (rl->in && GET_CODE (rl->in) == MEM
|
||
? rl->in_reg : rl->in);
|
||
|
||
if (old != 0
|
||
/* AUTO_INC reloads need to be handled even if inherited. We got an
|
||
AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
|
||
&& (! reload_inherited[j] || (rl->out && ! rl->out_reg))
|
||
&& ! rtx_equal_p (rl->reg_rtx, old)
|
||
&& rl->reg_rtx != 0)
|
||
emit_input_reload_insns (chain, rld + j, old, j);
|
||
|
||
/* When inheriting a wider reload, we have a MEM in rl->in,
|
||
e.g. inheriting a SImode output reload for
|
||
(mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
|
||
if (optimize && reload_inherited[j] && rl->in
|
||
&& GET_CODE (rl->in) == MEM
|
||
&& GET_CODE (rl->in_reg) == MEM
|
||
&& reload_spill_index[j] >= 0
|
||
&& TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
|
||
rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
|
||
|
||
/* If we are reloading a register that was recently stored in with an
|
||
output-reload, see if we can prove there was
|
||
actually no need to store the old value in it. */
|
||
|
||
if (optimize
|
||
/* Only attempt this for input reloads; for RELOAD_OTHER we miss
|
||
that there may be multiple uses of the previous output reload.
|
||
Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
|
||
&& rl->when_needed == RELOAD_FOR_INPUT
|
||
&& (reload_inherited[j] || reload_override_in[j])
|
||
&& rl->reg_rtx
|
||
&& GET_CODE (rl->reg_rtx) == REG
|
||
&& spill_reg_store[REGNO (rl->reg_rtx)] != 0
|
||
#if 0
|
||
/* There doesn't seem to be any reason to restrict this to pseudos
|
||
and doing so loses in the case where we are copying from a
|
||
register of the wrong class. */
|
||
&& (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
|
||
>= FIRST_PSEUDO_REGISTER)
|
||
#endif
|
||
/* The insn might have already some references to stackslots
|
||
replaced by MEMs, while reload_out_reg still names the
|
||
original pseudo. */
|
||
&& (dead_or_set_p (insn,
|
||
spill_reg_stored_to[REGNO (rl->reg_rtx)])
|
||
|| rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
|
||
rl->out_reg)))
|
||
delete_output_reload (insn, j, REGNO (rl->reg_rtx));
|
||
}
|
||
|
||
/* Do output reloading for reload RL, which is for the insn described by
|
||
CHAIN and has the number J.
|
||
??? At some point we need to support handling output reloads of
|
||
JUMP_INSNs or insns that set cc0. */
|
||
static void
|
||
do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
|
||
{
|
||
rtx note, old;
|
||
rtx insn = chain->insn;
|
||
/* If this is an output reload that stores something that is
|
||
not loaded in this same reload, see if we can eliminate a previous
|
||
store. */
|
||
rtx pseudo = rl->out_reg;
|
||
|
||
if (pseudo
|
||
&& optimize
|
||
&& GET_CODE (pseudo) == REG
|
||
&& ! rtx_equal_p (rl->in_reg, pseudo)
|
||
&& REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_last_reload_reg[REGNO (pseudo)])
|
||
{
|
||
int pseudo_no = REGNO (pseudo);
|
||
int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
|
||
|
||
/* We don't need to test full validity of last_regno for
|
||
inherit here; we only want to know if the store actually
|
||
matches the pseudo. */
|
||
if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
|
||
&& reg_reloaded_contents[last_regno] == pseudo_no
|
||
&& spill_reg_store[last_regno]
|
||
&& rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
|
||
delete_output_reload (insn, j, last_regno);
|
||
}
|
||
|
||
old = rl->out_reg;
|
||
if (old == 0
|
||
|| rl->reg_rtx == old
|
||
|| rl->reg_rtx == 0)
|
||
return;
|
||
|
||
/* An output operand that dies right away does need a reload,
|
||
but need not be copied from it. Show the new location in the
|
||
REG_UNUSED note. */
|
||
if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
|
||
&& (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
|
||
{
|
||
XEXP (note, 0) = rl->reg_rtx;
|
||
return;
|
||
}
|
||
/* Likewise for a SUBREG of an operand that dies. */
|
||
else if (GET_CODE (old) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (old)) == REG
|
||
&& 0 != (note = find_reg_note (insn, REG_UNUSED,
|
||
SUBREG_REG (old))))
|
||
{
|
||
XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
|
||
rl->reg_rtx);
|
||
return;
|
||
}
|
||
else if (GET_CODE (old) == SCRATCH)
|
||
/* If we aren't optimizing, there won't be a REG_UNUSED note,
|
||
but we don't want to make an output reload. */
|
||
return;
|
||
|
||
/* If is a JUMP_INSN, we can't support output reloads yet. */
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
abort ();
|
||
|
||
emit_output_reload_insns (chain, rld + j, j);
|
||
}
|
||
|
||
/* Output insns to reload values in and out of the chosen reload regs. */
|
||
|
||
static void
|
||
emit_reload_insns (struct insn_chain *chain)
|
||
{
|
||
rtx insn = chain->insn;
|
||
|
||
int j;
|
||
|
||
CLEAR_HARD_REG_SET (reg_reloaded_died);
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
input_reload_insns[j] = input_address_reload_insns[j]
|
||
= inpaddr_address_reload_insns[j]
|
||
= output_reload_insns[j] = output_address_reload_insns[j]
|
||
= outaddr_address_reload_insns[j]
|
||
= other_output_reload_insns[j] = 0;
|
||
other_input_address_reload_insns = 0;
|
||
other_input_reload_insns = 0;
|
||
operand_reload_insns = 0;
|
||
other_operand_reload_insns = 0;
|
||
|
||
/* Dump reloads into the dump file. */
|
||
if (rtl_dump_file)
|
||
{
|
||
fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
|
||
debug_reload_to_stream (rtl_dump_file);
|
||
}
|
||
|
||
/* Now output the instructions to copy the data into and out of the
|
||
reload registers. Do these in the order that the reloads were reported,
|
||
since reloads of base and index registers precede reloads of operands
|
||
and the operands may need the base and index registers reloaded. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
if (rld[j].reg_rtx
|
||
&& REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
|
||
new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
|
||
|
||
do_input_reload (chain, rld + j, j);
|
||
do_output_reload (chain, rld + j, j);
|
||
}
|
||
|
||
/* Now write all the insns we made for reloads in the order expected by
|
||
the allocation functions. Prior to the insn being reloaded, we write
|
||
the following reloads:
|
||
|
||
RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
|
||
|
||
RELOAD_OTHER reloads.
|
||
|
||
For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
|
||
by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
|
||
RELOAD_FOR_INPUT reload for the operand.
|
||
|
||
RELOAD_FOR_OPADDR_ADDRS reloads.
|
||
|
||
RELOAD_FOR_OPERAND_ADDRESS reloads.
|
||
|
||
After the insn being reloaded, we write the following:
|
||
|
||
For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
|
||
by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
|
||
RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
|
||
reloads for the operand. The RELOAD_OTHER output reloads are
|
||
output in descending order by reload number. */
|
||
|
||
emit_insn_before (other_input_address_reload_insns, insn);
|
||
emit_insn_before (other_input_reload_insns, insn);
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
{
|
||
emit_insn_before (inpaddr_address_reload_insns[j], insn);
|
||
emit_insn_before (input_address_reload_insns[j], insn);
|
||
emit_insn_before (input_reload_insns[j], insn);
|
||
}
|
||
|
||
emit_insn_before (other_operand_reload_insns, insn);
|
||
emit_insn_before (operand_reload_insns, insn);
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
{
|
||
rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
|
||
x = emit_insn_after (output_address_reload_insns[j], x);
|
||
x = emit_insn_after (output_reload_insns[j], x);
|
||
emit_insn_after (other_output_reload_insns[j], x);
|
||
}
|
||
|
||
/* For all the spill regs newly reloaded in this instruction,
|
||
record what they were reloaded from, so subsequent instructions
|
||
can inherit the reloads.
|
||
|
||
Update spill_reg_store for the reloads of this insn.
|
||
Copy the elements that were updated in the loop above. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
int r = reload_order[j];
|
||
int i = reload_spill_index[r];
|
||
|
||
/* If this is a non-inherited input reload from a pseudo, we must
|
||
clear any memory of a previous store to the same pseudo. Only do
|
||
something if there will not be an output reload for the pseudo
|
||
being reloaded. */
|
||
if (rld[r].in_reg != 0
|
||
&& ! (reload_inherited[r] || reload_override_in[r]))
|
||
{
|
||
rtx reg = rld[r].in_reg;
|
||
|
||
if (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
if (GET_CODE (reg) == REG
|
||
&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
|
||
&& ! reg_has_output_reload[REGNO (reg)])
|
||
{
|
||
int nregno = REGNO (reg);
|
||
|
||
if (reg_last_reload_reg[nregno])
|
||
{
|
||
int last_regno = REGNO (reg_last_reload_reg[nregno]);
|
||
|
||
if (reg_reloaded_contents[last_regno] == nregno)
|
||
spill_reg_store[last_regno] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* I is nonneg if this reload used a register.
|
||
If rld[r].reg_rtx is 0, this is an optional reload
|
||
that we opted to ignore. */
|
||
|
||
if (i >= 0 && rld[r].reg_rtx != 0)
|
||
{
|
||
int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
|
||
int k;
|
||
int part_reaches_end = 0;
|
||
int all_reaches_end = 1;
|
||
|
||
/* For a multi register reload, we need to check if all or part
|
||
of the value lives to the end. */
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
|
||
rld[r].when_needed))
|
||
part_reaches_end = 1;
|
||
else
|
||
all_reaches_end = 0;
|
||
}
|
||
|
||
/* Ignore reloads that don't reach the end of the insn in
|
||
entirety. */
|
||
if (all_reaches_end)
|
||
{
|
||
/* First, clear out memory of what used to be in this spill reg.
|
||
If consecutive registers are used, clear them all. */
|
||
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
|
||
}
|
||
|
||
/* Maybe the spill reg contains a copy of reload_out. */
|
||
if (rld[r].out != 0
|
||
&& (GET_CODE (rld[r].out) == REG
|
||
#ifdef AUTO_INC_DEC
|
||
|| ! rld[r].out_reg
|
||
#endif
|
||
|| GET_CODE (rld[r].out_reg) == REG))
|
||
{
|
||
rtx out = (GET_CODE (rld[r].out) == REG
|
||
? rld[r].out
|
||
: rld[r].out_reg
|
||
? rld[r].out_reg
|
||
/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
|
||
int nregno = REGNO (out);
|
||
int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
|
||
: HARD_REGNO_NREGS (nregno,
|
||
GET_MODE (rld[r].reg_rtx)));
|
||
|
||
spill_reg_store[i] = new_spill_reg_store[i];
|
||
spill_reg_stored_to[i] = out;
|
||
reg_last_reload_reg[nregno] = rld[r].reg_rtx;
|
||
|
||
/* If NREGNO is a hard register, it may occupy more than
|
||
one register. If it does, say what is in the
|
||
rest of the registers assuming that both registers
|
||
agree on how many words the object takes. If not,
|
||
invalidate the subsequent registers. */
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
for (k = 1; k < nnr; k++)
|
||
reg_last_reload_reg[nregno + k]
|
||
= (nr == nnr
|
||
? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
|
||
: 0);
|
||
|
||
/* Now do the inverse operation. */
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
|
||
reg_reloaded_contents[i + k]
|
||
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
|
||
? nregno
|
||
: nregno + k);
|
||
reg_reloaded_insn[i + k] = insn;
|
||
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
||
if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
|
||
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
|
||
}
|
||
}
|
||
|
||
/* Maybe the spill reg contains a copy of reload_in. Only do
|
||
something if there will not be an output reload for
|
||
the register being reloaded. */
|
||
else if (rld[r].out_reg == 0
|
||
&& rld[r].in != 0
|
||
&& ((GET_CODE (rld[r].in) == REG
|
||
&& REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
|
||
&& ! reg_has_output_reload[REGNO (rld[r].in)])
|
||
|| (GET_CODE (rld[r].in_reg) == REG
|
||
&& ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
|
||
&& ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
|
||
{
|
||
int nregno;
|
||
int nnr;
|
||
rtx in;
|
||
|
||
if (GET_CODE (rld[r].in) == REG
|
||
&& REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
|
||
in = rld[r].in;
|
||
else if (GET_CODE (rld[r].in_reg) == REG)
|
||
in = rld[r].in_reg;
|
||
else
|
||
in = XEXP (rld[r].in_reg, 0);
|
||
nregno = REGNO (in);
|
||
|
||
nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
|
||
: HARD_REGNO_NREGS (nregno,
|
||
GET_MODE (rld[r].reg_rtx)));
|
||
|
||
reg_last_reload_reg[nregno] = rld[r].reg_rtx;
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
for (k = 1; k < nnr; k++)
|
||
reg_last_reload_reg[nregno + k]
|
||
= (nr == nnr
|
||
? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
|
||
: 0);
|
||
|
||
/* Unless we inherited this reload, show we haven't
|
||
recently done a store.
|
||
Previous stores of inherited auto_inc expressions
|
||
also have to be discarded. */
|
||
if (! reload_inherited[r]
|
||
|| (rld[r].out && ! rld[r].out_reg))
|
||
spill_reg_store[i] = 0;
|
||
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
|
||
reg_reloaded_contents[i + k]
|
||
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
|
||
? nregno
|
||
: nregno + k);
|
||
reg_reloaded_insn[i + k] = insn;
|
||
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
||
if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
|
||
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* However, if part of the reload reaches the end, then we must
|
||
invalidate the old info for the part that survives to the end. */
|
||
else if (part_reaches_end)
|
||
{
|
||
for (k = 0; k < nr; k++)
|
||
if (reload_reg_reaches_end_p (i + k,
|
||
rld[r].opnum,
|
||
rld[r].when_needed))
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
|
||
}
|
||
}
|
||
|
||
/* The following if-statement was #if 0'd in 1.34 (or before...).
|
||
It's reenabled in 1.35 because supposedly nothing else
|
||
deals with this problem. */
|
||
|
||
/* If a register gets output-reloaded from a non-spill register,
|
||
that invalidates any previous reloaded copy of it.
|
||
But forget_old_reloads_1 won't get to see it, because
|
||
it thinks only about the original insn. So invalidate it here. */
|
||
if (i < 0 && rld[r].out != 0
|
||
&& (GET_CODE (rld[r].out) == REG
|
||
|| (GET_CODE (rld[r].out) == MEM
|
||
&& GET_CODE (rld[r].out_reg) == REG)))
|
||
{
|
||
rtx out = (GET_CODE (rld[r].out) == REG
|
||
? rld[r].out : rld[r].out_reg);
|
||
int nregno = REGNO (out);
|
||
if (nregno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
rtx src_reg, store_insn = NULL_RTX;
|
||
|
||
reg_last_reload_reg[nregno] = 0;
|
||
|
||
/* If we can find a hard register that is stored, record
|
||
the storing insn so that we may delete this insn with
|
||
delete_output_reload. */
|
||
src_reg = rld[r].reg_rtx;
|
||
|
||
/* If this is an optional reload, try to find the source reg
|
||
from an input reload. */
|
||
if (! src_reg)
|
||
{
|
||
rtx set = single_set (insn);
|
||
if (set && SET_DEST (set) == rld[r].out)
|
||
{
|
||
int k;
|
||
|
||
src_reg = SET_SRC (set);
|
||
store_insn = insn;
|
||
for (k = 0; k < n_reloads; k++)
|
||
{
|
||
if (rld[k].in == src_reg)
|
||
{
|
||
src_reg = rld[k].reg_rtx;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
store_insn = new_spill_reg_store[REGNO (src_reg)];
|
||
if (src_reg && GET_CODE (src_reg) == REG
|
||
&& REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int src_regno = REGNO (src_reg);
|
||
int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
|
||
/* The place where to find a death note varies with
|
||
PRESERVE_DEATH_INFO_REGNO_P . The condition is not
|
||
necessarily checked exactly in the code that moves
|
||
notes, so just check both locations. */
|
||
rtx note = find_regno_note (insn, REG_DEAD, src_regno);
|
||
if (! note && store_insn)
|
||
note = find_regno_note (store_insn, REG_DEAD, src_regno);
|
||
while (nr-- > 0)
|
||
{
|
||
spill_reg_store[src_regno + nr] = store_insn;
|
||
spill_reg_stored_to[src_regno + nr] = out;
|
||
reg_reloaded_contents[src_regno + nr] = nregno;
|
||
reg_reloaded_insn[src_regno + nr] = store_insn;
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
|
||
SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
|
||
if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
|
||
GET_MODE (src_reg)))
|
||
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
|
||
src_regno + nr);
|
||
SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
|
||
if (note)
|
||
SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
|
||
else
|
||
CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
|
||
}
|
||
reg_last_reload_reg[nregno] = src_reg;
|
||
/* We have to set reg_has_output_reload here, or else
|
||
forget_old_reloads_1 will clear reg_last_reload_reg
|
||
right away. */
|
||
reg_has_output_reload[nregno] = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
|
||
|
||
while (num_regs-- > 0)
|
||
reg_last_reload_reg[nregno + num_regs] = 0;
|
||
}
|
||
}
|
||
}
|
||
IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
|
||
}
|
||
|
||
/* Emit code to perform a reload from IN (which may be a reload register) to
|
||
OUT (which may also be a reload register). IN or OUT is from operand
|
||
OPNUM with reload type TYPE.
|
||
|
||
Returns first insn emitted. */
|
||
|
||
rtx
|
||
gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
|
||
{
|
||
rtx last = get_last_insn ();
|
||
rtx tem;
|
||
|
||
/* If IN is a paradoxical SUBREG, remove it and try to put the
|
||
opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
|
||
if (GET_CODE (in) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (in))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
|
||
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
|
||
in = SUBREG_REG (in), out = tem;
|
||
else if (GET_CODE (out) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (out))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
|
||
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
|
||
out = SUBREG_REG (out), in = tem;
|
||
|
||
/* How to do this reload can get quite tricky. Normally, we are being
|
||
asked to reload a simple operand, such as a MEM, a constant, or a pseudo
|
||
register that didn't get a hard register. In that case we can just
|
||
call emit_move_insn.
|
||
|
||
We can also be asked to reload a PLUS that adds a register or a MEM to
|
||
another register, constant or MEM. This can occur during frame pointer
|
||
elimination and while reloading addresses. This case is handled by
|
||
trying to emit a single insn to perform the add. If it is not valid,
|
||
we use a two insn sequence.
|
||
|
||
Finally, we could be called to handle an 'o' constraint by putting
|
||
an address into a register. In that case, we first try to do this
|
||
with a named pattern of "reload_load_address". If no such pattern
|
||
exists, we just emit a SET insn and hope for the best (it will normally
|
||
be valid on machines that use 'o').
|
||
|
||
This entire process is made complex because reload will never
|
||
process the insns we generate here and so we must ensure that
|
||
they will fit their constraints and also by the fact that parts of
|
||
IN might be being reloaded separately and replaced with spill registers.
|
||
Because of this, we are, in some sense, just guessing the right approach
|
||
here. The one listed above seems to work.
|
||
|
||
??? At some point, this whole thing needs to be rethought. */
|
||
|
||
if (GET_CODE (in) == PLUS
|
||
&& (GET_CODE (XEXP (in, 0)) == REG
|
||
|| GET_CODE (XEXP (in, 0)) == SUBREG
|
||
|| GET_CODE (XEXP (in, 0)) == MEM)
|
||
&& (GET_CODE (XEXP (in, 1)) == REG
|
||
|| GET_CODE (XEXP (in, 1)) == SUBREG
|
||
|| CONSTANT_P (XEXP (in, 1))
|
||
|| GET_CODE (XEXP (in, 1)) == MEM))
|
||
{
|
||
/* We need to compute the sum of a register or a MEM and another
|
||
register, constant, or MEM, and put it into the reload
|
||
register. The best possible way of doing this is if the machine
|
||
has a three-operand ADD insn that accepts the required operands.
|
||
|
||
The simplest approach is to try to generate such an insn and see if it
|
||
is recognized and matches its constraints. If so, it can be used.
|
||
|
||
It might be better not to actually emit the insn unless it is valid,
|
||
but we need to pass the insn as an operand to `recog' and
|
||
`extract_insn' and it is simpler to emit and then delete the insn if
|
||
not valid than to dummy things up. */
|
||
|
||
rtx op0, op1, tem, insn;
|
||
int code;
|
||
|
||
op0 = find_replacement (&XEXP (in, 0));
|
||
op1 = find_replacement (&XEXP (in, 1));
|
||
|
||
/* Since constraint checking is strict, commutativity won't be
|
||
checked, so we need to do that here to avoid spurious failure
|
||
if the add instruction is two-address and the second operand
|
||
of the add is the same as the reload reg, which is frequently
|
||
the case. If the insn would be A = B + A, rearrange it so
|
||
it will be A = A + B as constrain_operands expects. */
|
||
|
||
if (GET_CODE (XEXP (in, 1)) == REG
|
||
&& REGNO (out) == REGNO (XEXP (in, 1)))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
|
||
in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
|
||
|
||
insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
|
||
code = recog_memoized (insn);
|
||
|
||
if (code >= 0)
|
||
{
|
||
extract_insn (insn);
|
||
/* We want constrain operands to treat this insn strictly in
|
||
its validity determination, i.e., the way it would after reload
|
||
has completed. */
|
||
if (constrain_operands (1))
|
||
return insn;
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* If that failed, we must use a conservative two-insn sequence.
|
||
|
||
Use a move to copy one operand into the reload register. Prefer
|
||
to reload a constant, MEM or pseudo since the move patterns can
|
||
handle an arbitrary operand. If OP1 is not a constant, MEM or
|
||
pseudo and OP1 is not a valid operand for an add instruction, then
|
||
reload OP1.
|
||
|
||
After reloading one of the operands into the reload register, add
|
||
the reload register to the output register.
|
||
|
||
If there is another way to do this for a specific machine, a
|
||
DEFINE_PEEPHOLE should be specified that recognizes the sequence
|
||
we emit below. */
|
||
|
||
code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
|
||
|
||
if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
|
||
|| (GET_CODE (op1) == REG
|
||
&& REGNO (op1) >= FIRST_PSEUDO_REGISTER)
|
||
|| (code != CODE_FOR_nothing
|
||
&& ! ((*insn_data[code].operand[2].predicate)
|
||
(op1, insn_data[code].operand[2].mode))))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
gen_reload (out, op0, opnum, type);
|
||
|
||
/* If OP0 and OP1 are the same, we can use OUT for OP1.
|
||
This fixes a problem on the 32K where the stack pointer cannot
|
||
be used as an operand of an add insn. */
|
||
|
||
if (rtx_equal_p (op0, op1))
|
||
op1 = out;
|
||
|
||
insn = emit_insn (gen_add2_insn (out, op1));
|
||
|
||
/* If that failed, copy the address register to the reload register.
|
||
Then add the constant to the reload register. */
|
||
|
||
code = recog_memoized (insn);
|
||
|
||
if (code >= 0)
|
||
{
|
||
extract_insn (insn);
|
||
/* We want constrain operands to treat this insn strictly in
|
||
its validity determination, i.e., the way it would after reload
|
||
has completed. */
|
||
if (constrain_operands (1))
|
||
{
|
||
/* Add a REG_EQUIV note so that find_equiv_reg can find it. */
|
||
REG_NOTES (insn)
|
||
= gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
|
||
return insn;
|
||
}
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
gen_reload (out, op1, opnum, type);
|
||
insn = emit_insn (gen_add2_insn (out, op0));
|
||
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
|
||
}
|
||
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
/* If we need a memory location to do the move, do it that way. */
|
||
else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
|
||
&& reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
|
||
&& (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
|
||
&& reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
|
||
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
|
||
REGNO_REG_CLASS (reg_or_subregno (out)),
|
||
GET_MODE (out)))
|
||
{
|
||
/* Get the memory to use and rewrite both registers to its mode. */
|
||
rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
|
||
|
||
if (GET_MODE (loc) != GET_MODE (out))
|
||
out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
|
||
|
||
if (GET_MODE (loc) != GET_MODE (in))
|
||
in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
|
||
|
||
gen_reload (loc, in, opnum, type);
|
||
gen_reload (out, loc, opnum, type);
|
||
}
|
||
#endif
|
||
|
||
/* If IN is a simple operand, use gen_move_insn. */
|
||
else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
|
||
emit_insn (gen_move_insn (out, in));
|
||
|
||
#ifdef HAVE_reload_load_address
|
||
else if (HAVE_reload_load_address)
|
||
emit_insn (gen_reload_load_address (out, in));
|
||
#endif
|
||
|
||
/* Otherwise, just write (set OUT IN) and hope for the best. */
|
||
else
|
||
emit_insn (gen_rtx_SET (VOIDmode, out, in));
|
||
|
||
/* Return the first insn emitted.
|
||
We can not just return get_last_insn, because there may have
|
||
been multiple instructions emitted. Also note that gen_move_insn may
|
||
emit more than one insn itself, so we can not assume that there is one
|
||
insn emitted per emit_insn_before call. */
|
||
|
||
return last ? NEXT_INSN (last) : get_insns ();
|
||
}
|
||
|
||
/* Delete a previously made output-reload whose result we now believe
|
||
is not needed. First we double-check.
|
||
|
||
INSN is the insn now being processed.
|
||
LAST_RELOAD_REG is the hard register number for which we want to delete
|
||
the last output reload.
|
||
J is the reload-number that originally used REG. The caller has made
|
||
certain that reload J doesn't use REG any longer for input. */
|
||
|
||
static void
|
||
delete_output_reload (rtx insn, int j, int last_reload_reg)
|
||
{
|
||
rtx output_reload_insn = spill_reg_store[last_reload_reg];
|
||
rtx reg = spill_reg_stored_to[last_reload_reg];
|
||
int k;
|
||
int n_occurrences;
|
||
int n_inherited = 0;
|
||
rtx i1;
|
||
rtx substed;
|
||
|
||
/* It is possible that this reload has been only used to set another reload
|
||
we eliminated earlier and thus deleted this instruction too. */
|
||
if (INSN_DELETED_P (output_reload_insn))
|
||
return;
|
||
|
||
/* Get the raw pseudo-register referred to. */
|
||
|
||
while (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
substed = reg_equiv_memory_loc[REGNO (reg)];
|
||
|
||
/* This is unsafe if the operand occurs more often in the current
|
||
insn than it is inherited. */
|
||
for (k = n_reloads - 1; k >= 0; k--)
|
||
{
|
||
rtx reg2 = rld[k].in;
|
||
if (! reg2)
|
||
continue;
|
||
if (GET_CODE (reg2) == MEM || reload_override_in[k])
|
||
reg2 = rld[k].in_reg;
|
||
#ifdef AUTO_INC_DEC
|
||
if (rld[k].out && ! rld[k].out_reg)
|
||
reg2 = XEXP (rld[k].in_reg, 0);
|
||
#endif
|
||
while (GET_CODE (reg2) == SUBREG)
|
||
reg2 = SUBREG_REG (reg2);
|
||
if (rtx_equal_p (reg2, reg))
|
||
{
|
||
if (reload_inherited[k] || reload_override_in[k] || k == j)
|
||
{
|
||
n_inherited++;
|
||
reg2 = rld[k].out_reg;
|
||
if (! reg2)
|
||
continue;
|
||
while (GET_CODE (reg2) == SUBREG)
|
||
reg2 = XEXP (reg2, 0);
|
||
if (rtx_equal_p (reg2, reg))
|
||
n_inherited++;
|
||
}
|
||
else
|
||
return;
|
||
}
|
||
}
|
||
n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
|
||
if (substed)
|
||
n_occurrences += count_occurrences (PATTERN (insn),
|
||
eliminate_regs (substed, 0,
|
||
NULL_RTX), 0);
|
||
if (n_occurrences > n_inherited)
|
||
return;
|
||
|
||
/* If the pseudo-reg we are reloading is no longer referenced
|
||
anywhere between the store into it and here,
|
||
and no jumps or labels intervene, then the value can get
|
||
here through the reload reg alone.
|
||
Otherwise, give up--return. */
|
||
for (i1 = NEXT_INSN (output_reload_insn);
|
||
i1 != insn; i1 = NEXT_INSN (i1))
|
||
{
|
||
if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
|
||
return;
|
||
if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
|
||
&& reg_mentioned_p (reg, PATTERN (i1)))
|
||
{
|
||
/* If this is USE in front of INSN, we only have to check that
|
||
there are no more references than accounted for by inheritance. */
|
||
while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
|
||
{
|
||
n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
|
||
i1 = NEXT_INSN (i1);
|
||
}
|
||
if (n_occurrences <= n_inherited && i1 == insn)
|
||
break;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* We will be deleting the insn. Remove the spill reg information. */
|
||
for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
|
||
{
|
||
spill_reg_store[last_reload_reg + k] = 0;
|
||
spill_reg_stored_to[last_reload_reg + k] = 0;
|
||
}
|
||
|
||
/* The caller has already checked that REG dies or is set in INSN.
|
||
It has also checked that we are optimizing, and thus some
|
||
inaccuracies in the debugging information are acceptable.
|
||
So we could just delete output_reload_insn. But in some cases
|
||
we can improve the debugging information without sacrificing
|
||
optimization - maybe even improving the code: See if the pseudo
|
||
reg has been completely replaced with reload regs. If so, delete
|
||
the store insn and forget we had a stack slot for the pseudo. */
|
||
if (rld[j].out != rld[j].in
|
||
&& REG_N_DEATHS (REGNO (reg)) == 1
|
||
&& REG_N_SETS (REGNO (reg)) == 1
|
||
&& REG_BASIC_BLOCK (REGNO (reg)) >= 0
|
||
&& find_regno_note (insn, REG_DEAD, REGNO (reg)))
|
||
{
|
||
rtx i2;
|
||
|
||
/* We know that it was used only between here and the beginning of
|
||
the current basic block. (We also know that the last use before
|
||
INSN was the output reload we are thinking of deleting, but never
|
||
mind that.) Search that range; see if any ref remains. */
|
||
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
|
||
{
|
||
rtx set = single_set (i2);
|
||
|
||
/* Uses which just store in the pseudo don't count,
|
||
since if they are the only uses, they are dead. */
|
||
if (set != 0 && SET_DEST (set) == reg)
|
||
continue;
|
||
if (GET_CODE (i2) == CODE_LABEL
|
||
|| GET_CODE (i2) == JUMP_INSN)
|
||
break;
|
||
if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
|
||
&& reg_mentioned_p (reg, PATTERN (i2)))
|
||
{
|
||
/* Some other ref remains; just delete the output reload we
|
||
know to be dead. */
|
||
delete_address_reloads (output_reload_insn, insn);
|
||
delete_insn (output_reload_insn);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Delete the now-dead stores into this pseudo. Note that this
|
||
loop also takes care of deleting output_reload_insn. */
|
||
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
|
||
{
|
||
rtx set = single_set (i2);
|
||
|
||
if (set != 0 && SET_DEST (set) == reg)
|
||
{
|
||
delete_address_reloads (i2, insn);
|
||
delete_insn (i2);
|
||
}
|
||
if (GET_CODE (i2) == CODE_LABEL
|
||
|| GET_CODE (i2) == JUMP_INSN)
|
||
break;
|
||
}
|
||
|
||
/* For the debugging info, say the pseudo lives in this reload reg. */
|
||
reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
|
||
alter_reg (REGNO (reg), -1);
|
||
}
|
||
else
|
||
{
|
||
delete_address_reloads (output_reload_insn, insn);
|
||
delete_insn (output_reload_insn);
|
||
}
|
||
}
|
||
|
||
/* We are going to delete DEAD_INSN. Recursively delete loads of
|
||
reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
|
||
CURRENT_INSN is being reloaded, so we have to check its reloads too. */
|
||
static void
|
||
delete_address_reloads (rtx dead_insn, rtx current_insn)
|
||
{
|
||
rtx set = single_set (dead_insn);
|
||
rtx set2, dst, prev, next;
|
||
if (set)
|
||
{
|
||
rtx dst = SET_DEST (set);
|
||
if (GET_CODE (dst) == MEM)
|
||
delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
|
||
}
|
||
/* If we deleted the store from a reloaded post_{in,de}c expression,
|
||
we can delete the matching adds. */
|
||
prev = PREV_INSN (dead_insn);
|
||
next = NEXT_INSN (dead_insn);
|
||
if (! prev || ! next)
|
||
return;
|
||
set = single_set (next);
|
||
set2 = single_set (prev);
|
||
if (! set || ! set2
|
||
|| GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
|
||
|| GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
|
||
|| GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
|
||
return;
|
||
dst = SET_DEST (set);
|
||
if (! rtx_equal_p (dst, SET_DEST (set2))
|
||
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
|
||
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
|
||
|| (INTVAL (XEXP (SET_SRC (set), 1))
|
||
!= -INTVAL (XEXP (SET_SRC (set2), 1))))
|
||
return;
|
||
delete_related_insns (prev);
|
||
delete_related_insns (next);
|
||
}
|
||
|
||
/* Subfunction of delete_address_reloads: process registers found in X. */
|
||
static void
|
||
delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
|
||
{
|
||
rtx prev, set, dst, i2;
|
||
int i, j;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
if (code != REG)
|
||
{
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
|
||
current_insn);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (spill_reg_order[REGNO (x)] < 0)
|
||
return;
|
||
|
||
/* Scan backwards for the insn that sets x. This might be a way back due
|
||
to inheritance. */
|
||
for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
|
||
{
|
||
code = GET_CODE (prev);
|
||
if (code == CODE_LABEL || code == JUMP_INSN)
|
||
return;
|
||
if (GET_RTX_CLASS (code) != 'i')
|
||
continue;
|
||
if (reg_set_p (x, PATTERN (prev)))
|
||
break;
|
||
if (reg_referenced_p (x, PATTERN (prev)))
|
||
return;
|
||
}
|
||
if (! prev || INSN_UID (prev) < reload_first_uid)
|
||
return;
|
||
/* Check that PREV only sets the reload register. */
|
||
set = single_set (prev);
|
||
if (! set)
|
||
return;
|
||
dst = SET_DEST (set);
|
||
if (GET_CODE (dst) != REG
|
||
|| ! rtx_equal_p (dst, x))
|
||
return;
|
||
if (! reg_set_p (dst, PATTERN (dead_insn)))
|
||
{
|
||
/* Check if DST was used in a later insn -
|
||
it might have been inherited. */
|
||
for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
|
||
{
|
||
if (GET_CODE (i2) == CODE_LABEL)
|
||
break;
|
||
if (! INSN_P (i2))
|
||
continue;
|
||
if (reg_referenced_p (dst, PATTERN (i2)))
|
||
{
|
||
/* If there is a reference to the register in the current insn,
|
||
it might be loaded in a non-inherited reload. If no other
|
||
reload uses it, that means the register is set before
|
||
referenced. */
|
||
if (i2 == current_insn)
|
||
{
|
||
for (j = n_reloads - 1; j >= 0; j--)
|
||
if ((rld[j].reg_rtx == dst && reload_inherited[j])
|
||
|| reload_override_in[j] == dst)
|
||
return;
|
||
for (j = n_reloads - 1; j >= 0; j--)
|
||
if (rld[j].in && rld[j].reg_rtx == dst)
|
||
break;
|
||
if (j >= 0)
|
||
break;
|
||
}
|
||
return;
|
||
}
|
||
if (GET_CODE (i2) == JUMP_INSN)
|
||
break;
|
||
/* If DST is still live at CURRENT_INSN, check if it is used for
|
||
any reload. Note that even if CURRENT_INSN sets DST, we still
|
||
have to check the reloads. */
|
||
if (i2 == current_insn)
|
||
{
|
||
for (j = n_reloads - 1; j >= 0; j--)
|
||
if ((rld[j].reg_rtx == dst && reload_inherited[j])
|
||
|| reload_override_in[j] == dst)
|
||
return;
|
||
/* ??? We can't finish the loop here, because dst might be
|
||
allocated to a pseudo in this block if no reload in this
|
||
block needs any of the classes containing DST - see
|
||
spill_hard_reg. There is no easy way to tell this, so we
|
||
have to scan till the end of the basic block. */
|
||
}
|
||
if (reg_set_p (dst, PATTERN (i2)))
|
||
break;
|
||
}
|
||
}
|
||
delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
|
||
reg_reloaded_contents[REGNO (dst)] = -1;
|
||
delete_insn (prev);
|
||
}
|
||
|
||
/* Output reload-insns to reload VALUE into RELOADREG.
|
||
VALUE is an autoincrement or autodecrement RTX whose operand
|
||
is a register or memory location;
|
||
so reloading involves incrementing that location.
|
||
IN is either identical to VALUE, or some cheaper place to reload from.
|
||
|
||
INC_AMOUNT is the number to increment or decrement by (always positive).
|
||
This cannot be deduced from VALUE.
|
||
|
||
Return the instruction that stores into RELOADREG. */
|
||
|
||
static rtx
|
||
inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
|
||
{
|
||
/* REG or MEM to be copied and incremented. */
|
||
rtx incloc = XEXP (value, 0);
|
||
/* Nonzero if increment after copying. */
|
||
int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
|
||
rtx last;
|
||
rtx inc;
|
||
rtx add_insn;
|
||
int code;
|
||
rtx store;
|
||
rtx real_in = in == value ? XEXP (in, 0) : in;
|
||
|
||
/* No hard register is equivalent to this register after
|
||
inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
|
||
we could inc/dec that register as well (maybe even using it for
|
||
the source), but I'm not sure it's worth worrying about. */
|
||
if (GET_CODE (incloc) == REG)
|
||
reg_last_reload_reg[REGNO (incloc)] = 0;
|
||
|
||
if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
|
||
inc_amount = -inc_amount;
|
||
|
||
inc = GEN_INT (inc_amount);
|
||
|
||
/* If this is post-increment, first copy the location to the reload reg. */
|
||
if (post && real_in != reloadreg)
|
||
emit_insn (gen_move_insn (reloadreg, real_in));
|
||
|
||
if (in == value)
|
||
{
|
||
/* See if we can directly increment INCLOC. Use a method similar to
|
||
that in gen_reload. */
|
||
|
||
last = get_last_insn ();
|
||
add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
|
||
gen_rtx_PLUS (GET_MODE (incloc),
|
||
incloc, inc)));
|
||
|
||
code = recog_memoized (add_insn);
|
||
if (code >= 0)
|
||
{
|
||
extract_insn (add_insn);
|
||
if (constrain_operands (1))
|
||
{
|
||
/* If this is a pre-increment and we have incremented the value
|
||
where it lives, copy the incremented value to RELOADREG to
|
||
be used as an address. */
|
||
|
||
if (! post)
|
||
emit_insn (gen_move_insn (reloadreg, incloc));
|
||
|
||
return add_insn;
|
||
}
|
||
}
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* If couldn't do the increment directly, must increment in RELOADREG.
|
||
The way we do this depends on whether this is pre- or post-increment.
|
||
For pre-increment, copy INCLOC to the reload register, increment it
|
||
there, then save back. */
|
||
|
||
if (! post)
|
||
{
|
||
if (in != reloadreg)
|
||
emit_insn (gen_move_insn (reloadreg, real_in));
|
||
emit_insn (gen_add2_insn (reloadreg, inc));
|
||
store = emit_insn (gen_move_insn (incloc, reloadreg));
|
||
}
|
||
else
|
||
{
|
||
/* Postincrement.
|
||
Because this might be a jump insn or a compare, and because RELOADREG
|
||
may not be available after the insn in an input reload, we must do
|
||
the incrementation before the insn being reloaded for.
|
||
|
||
We have already copied IN to RELOADREG. Increment the copy in
|
||
RELOADREG, save that back, then decrement RELOADREG so it has
|
||
the original value. */
|
||
|
||
emit_insn (gen_add2_insn (reloadreg, inc));
|
||
store = emit_insn (gen_move_insn (incloc, reloadreg));
|
||
emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
|
||
}
|
||
|
||
return store;
|
||
}
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
static void
|
||
add_auto_inc_notes (rtx insn, rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char *fmt;
|
||
int i, j;
|
||
|
||
if (code == MEM && auto_inc_p (XEXP (x, 0)))
|
||
{
|
||
REG_NOTES (insn)
|
||
= gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
|
||
return;
|
||
}
|
||
|
||
/* Scan all the operand sub-expressions. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
add_auto_inc_notes (insn, XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
add_auto_inc_notes (insn, XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Copy EH notes from an insn to its reloads. */
|
||
static void
|
||
copy_eh_notes (rtx insn, rtx x)
|
||
{
|
||
rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
||
if (eh_note)
|
||
{
|
||
for (; x != 0; x = NEXT_INSN (x))
|
||
{
|
||
if (may_trap_p (PATTERN (x)))
|
||
REG_NOTES (x)
|
||
= gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
|
||
REG_NOTES (x));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This is used by reload pass, that does emit some instructions after
|
||
abnormal calls moving basic block end, but in fact it wants to emit
|
||
them on the edge. Looks for abnormal call edges, find backward the
|
||
proper call and fix the damage.
|
||
|
||
Similar handle instructions throwing exceptions internally. */
|
||
void
|
||
fixup_abnormal_edges (void)
|
||
{
|
||
bool inserted = false;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
edge e;
|
||
|
||
/* Look for cases we are interested in - calls or instructions causing
|
||
exceptions. */
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
{
|
||
if (e->flags & EDGE_ABNORMAL_CALL)
|
||
break;
|
||
if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
|
||
== (EDGE_ABNORMAL | EDGE_EH))
|
||
break;
|
||
}
|
||
if (e && GET_CODE (BB_END (bb)) != CALL_INSN
|
||
&& !can_throw_internal (BB_END (bb)))
|
||
{
|
||
rtx insn = BB_END (bb), stop = NEXT_INSN (BB_END (bb));
|
||
rtx next;
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
break;
|
||
/* Get past the new insns generated. Allow notes, as the insns may
|
||
be already deleted. */
|
||
while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
|
||
&& !can_throw_internal (insn)
|
||
&& insn != BB_HEAD (bb))
|
||
insn = PREV_INSN (insn);
|
||
if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
|
||
abort ();
|
||
BB_END (bb) = insn;
|
||
inserted = true;
|
||
insn = NEXT_INSN (insn);
|
||
while (insn && insn != stop)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (INSN_P (insn))
|
||
{
|
||
delete_insn (insn);
|
||
|
||
/* Sometimes there's still the return value USE.
|
||
If it's placed after a trapping call (i.e. that
|
||
call is the last insn anyway), we have no fallthru
|
||
edge. Simply delete this use and don't try to insert
|
||
on the non-existent edge. */
|
||
if (GET_CODE (PATTERN (insn)) != USE)
|
||
{
|
||
/* We're not deleting it, we're moving it. */
|
||
INSN_DELETED_P (insn) = 0;
|
||
PREV_INSN (insn) = NULL_RTX;
|
||
NEXT_INSN (insn) = NULL_RTX;
|
||
|
||
insert_insn_on_edge (insn, e);
|
||
}
|
||
}
|
||
insn = next;
|
||
}
|
||
}
|
||
}
|
||
/* We've possibly turned single trapping insn into multiple ones. */
|
||
if (flag_non_call_exceptions)
|
||
{
|
||
sbitmap blocks;
|
||
blocks = sbitmap_alloc (last_basic_block);
|
||
sbitmap_ones (blocks);
|
||
find_many_sub_basic_blocks (blocks);
|
||
}
|
||
if (inserted)
|
||
commit_edge_insertions ();
|
||
}
|